Nothing Special   »   [go: up one dir, main page]

JP3992529B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3992529B2
JP3992529B2 JP2002111193A JP2002111193A JP3992529B2 JP 3992529 B2 JP3992529 B2 JP 3992529B2 JP 2002111193 A JP2002111193 A JP 2002111193A JP 2002111193 A JP2002111193 A JP 2002111193A JP 3992529 B2 JP3992529 B2 JP 3992529B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
electrolyte secondary
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002111193A
Other languages
Japanese (ja)
Other versions
JP2003308831A (en
Inventor
将之 山田
永姚 夏
上田  篤司
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2002111193A priority Critical patent/JP3992529B2/en
Publication of JP2003308831A publication Critical patent/JP2003308831A/en
Application granted granted Critical
Publication of JP3992529B2 publication Critical patent/JP3992529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高容量でかつサイクル特性に優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
アルカリ金属を活物質とする電池は、高いエネルギー密度を有する高性能の電池として注目されている。その中でも、リチウム電池は特に高いエネルギー密度を有し、貯蔵性などの信頼性においても優れているため、既に一次電池として小型の電子機器の電源に広く用いられている。また、最近では、小型携帯用電気機器の普及に伴い、充電して繰り返し使えるリチウム二次電池の需要が急増している。
【0003】
このリチウム二次電池の負極材料には、例えば、リチウム金属、リチウム合金又はリチウムを吸蔵・放出可能な炭素材料にリチウムを吸蔵させた炭素質材料などが使用されている。
【0004】
リチウム金属やリチウム合金を負極に用いた非水電解質二次電池では、高エネルギー密度の電池が得られるが、充放電サイクルの進行に伴いリチウムの溶解と析出が繰り返され、その際に析出した活性なリチウムが電解液の溶媒と反応するため、充放電可能なリチウムが失われて負極の充放電効率が低下するという問題がある。さらに、リチウムはデンドライト(樹枝状結晶)として析出するため、そのデンドライトがセパレータを貫通して内部短絡を招く危険性がある。
【0005】
このため、リチウム金属やリチウム合金に代えて、リチウムイオンをドープ・脱ドープすることが可能なコークス又はガラス状炭素等の非晶質炭素、天然又は人造の黒鉛等の炭素材料を負極材料として用いることが行われている。例えば、特開平1−204361号公報、特開平2−66856号公報、特開平4−24831号公報、特開平5−17669公報などには、この炭素材料を負極材料として使用することにより、リチウム二次電池にサイクル耐久性を付与することが記載されている。
【0006】
しかし、上記炭素材料を負極材料として使用した負極の理論容量は、例えば黒鉛では372mAh/gであり、最近の携帯機器用電池の高容量化の要請には不十分である。そこで、最近ではリチウムと合金を形成することが可能な元素であるケイ素(Si)や錫(Sn)等からなる負極材料が注目を集めている。例えば、特開平7−29602号公報には、LixSi(0≦x≦5)を負極活物質として用いた非水電解質二次電池が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、リチウムと合金を形成することが可能な元素からなる負極材料は、上記のような炭素材料に比べて高容量化が可能であるが、充放電サイクルによる負極材料の膨張・収縮が大きく、これにより負極内の導電性ネットワークが破壊されて容量が著しく低下したり、内部抵抗が増大したりする問題がある。また、負極合剤を金属箔に塗布する従来の方式で作製した負極では、負極材料の膨張・収縮が大きいために負極そのものが厚み方向に大きく膨張し、集電体の集電性能が低下したり、負極自体が湾曲したり、又は電池缶が膨れたりするといった問題が生じる。
【0008】
ここで、リチウムと合金を形成することが可能な元素からなる負極材料の膨張・収縮が大きい理由を、ケイ素を例にして説明する。
【0009】
ケイ素は、その結晶学的な単位格子(立方晶、空間群Fd−3m)に8個のSi原子を含んでいる。格子定数a=0.5431nmから計算して、単位格子体積は0.1592nm3であり、Si原子1個の占める体積(単位格子体積を単位格子中のSi原子数で除した値)は0.0199nm3である。ケイ素からなる負極を100mV以下まで充電する(リチウムを挿入させる)と、リチウムを多く含む化合物であるLi15Si4やLi21Si5を生じ、その容量は約4000mAh/gに相当するが、体積膨張率が極めて大きくなる。例えば、Li21Si5の単位格子(立方晶、空間群F4−3m)には83個のSi原子が含まれている。その格子定数a=1.8750nmから計算して、単位格子体積は6.5918nm3であり、Si原子1個の占める体積は0.079nm3である。この値は単体ケイ素の体積の3.95倍である。即ち、ケイ素は充電によりその体積が約4倍に増加する。さらに、このように充放電時の体積差が極めて大きいため、ケイ素の粒子に大きな歪みが生じ、粒子が微粉化して粒子間に空間が生じ、導電性ネットワークが分断され、電気化学的な反応に関与できない部分が増加し、充放電容量が低下することになる。
【0010】
一方、特開平2000−272911号公報には、ケイ素の粒子が黒鉛及び非結晶質炭素中に埋設された複合体粒子を負極に用いた、充放電特性に優れたリチウム電池が記載されている。黒鉛及び非結晶質炭素とケイ素とを複合化することによって、ケイ素の粒子の膨張が緩和でき、充放電サイクル特性は向上する。しかし、1000mAh/g程度の高容量を発現するようなケイ素の利用率が高い場合には、充放電サイクル特性は十分ではなく実用化レベルには達しない。これは、ケイ素の利用率が高い場合にケイ素の膨張・収縮が大きくなり、それに伴って上記複合体粒子の膨張・収縮も増加して負極内部での導電性ネットワークが破壊されるためと考えられる。
【0011】
本発明は前記従来の問題を解決するためになされたものであり、充放電サイクルを繰り返しても電極の膨張・収縮が大きくならず、また電極内部の導電性ネットワークが破壊されず、電池容量が減少したり内部抵抗が増大したりしない高エネルギー密度の非水電解質二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明の非水電解質二次電池は、正極と、負極と、非水電解質とを備え、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子の表面が気相法により炭素で被覆されてなる負極材料が充填された電極を用いることを特徴とする。
【0013】
リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子の表面を気相法により炭素で被覆し、さらに、三次元構造を有する集電体を用いることにより、充放電サイクルを繰り返しても負極の膨張・収縮が大きくならず、また負極内部の導電性ネットワークが破壊されない。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0015】
本発明の非水電解質二次電池は、正極と、負極と、非水電解質とを備え、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子の表面が気相法により炭素で被覆されてなる負極材料が充填された電極を用いている。
【0016】
上記リチウムと合金を形成することが可能な元素としては、例えば、ケイ素、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、錫、鉛、アンチモン、ビスマスなどが挙げられる。特に、ケイ素、錫、アルミニウムが材料コストや取り扱い上の観点から好ましい。
【0017】
また、リチウムと合金を形成することが可能な元素を含有する材料は、結晶、低結晶及びアモルファスのいずれの状態であっても良い。また、この材料は、リチウムと合金を形成することが可能な元素の単体、及びそれらの元素を含む合金又は化合物を用いることができる。例えば、ケイ素、錫、アルミニウム、酸化ケイ素(SiO)、酸化錫(SnO)、ケイ素、錫、アルミニウムなどと他の金属の固溶体又は金属間化合物などである。ケイ素やゲルマニウムを含有する材料には、例えばホウ素やリンのドープによりn型あるいはp型の半導体となって電気抵抗が大きく低下したものを用いてもよい。
【0018】
また、これらのリチウムと合金を形成することが可能な元素を含有する材料は、導電性材料と複合化させて複合体を形成し、その表面を気相法により炭素で被覆しなければならない。この複合化によって、充放電サイクルに伴う負極材料の微粉化を抑制でき、さらに微粉化した際の負極材料粒子内の導電性ネットワークを維持させることができる。
【0019】
上記複合体は通常粒子状の形態をなしており、その平均粒子径は2μm以上、100μm以下が好ましく、特に2〜50μmが好ましい。複合体粒子の平均粒子径が2μm以上であると、その構造から複合体粒子を構成するリチウムと合金を形成することが可能な元素を含有する材料や導電性材料は0.5μm以上の粒子が使用でき、造粒、複合化が容易となり、複合体粒子の比表面積が過大となることもなく、製造プロセスや電池特性に悪影響を及ぼさない。一方、複合体粒子の平均粒子径が50μm以下であると、三次元構造を有する集電体への充填が容易となり、電極の作製に有利となる。
【0020】
また、前記複合体中のリチウムと合金を形成することが可能な元素の含有量は、30質量%以上、80質量%以下が好ましい。30質量%以上であると、1000mAh/g程度の容量を発現させる場合に、リチウムと合金を形成することが可能な元素の利用率が高くなりすぎず、リチウムと合金を形成することが可能な元素を含有する個々の材料粒子の膨張が大きくならず、微粉化しにくくなる。また、80質量%以下であると、リチウムと合金を形成することが可能な元素を含有する材料と導電性材料との接着点が多くなるため、導電性ネットワークの構築が容易となる。
【0021】
上記複合体に含まれる導電性材料としては、人造黒鉛、天然黒鉛、土状黒鉛、膨張黒鉛、燐片状黒鉛又はこれらの熱処理物のほか、有機物を様々な条件で熱分解した炭素材料、あるいは銅などの金属材料を用いることができる。特に、繊維状、コイル状の炭素材料又は金属材料が好ましい。これらは、形状が柔軟性のある細い糸状であるため、それらと接合又は隣接しているリチウムと合金を形成することが可能な元素を含有する材料の膨張・収縮に効果的に追従することができるためである。本発明に用いることができる繊維状炭素材料としては、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維又は気相成長炭素繊維等があるが、何れを用いてもよい。
【0022】
リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体の製造方法は特に制限されないが、例えば、次に示す方法を用いることができる。リチウムと合金を形成することが可能な元素を含有する材料としてケイ素を用い、導電性材料に炭素を用いた場合、まずケイ素と炭素とを造粒し、続いて、有機物等の炭素前駆体と混合して炭素前駆体を炭素化する方法、あるいはケイ素と炭素とを造粒した後に気相方法により表面を炭素被覆する方法などによって、目的の複合体を得ることができる。造粒方法としては、転動造粒、圧縮造粒、焼結造粒、振動造粒、混合造粒、解砕造粒などが好適に使用できる。複合体中の空隙体積占有率は、混合材料の種類、粒子径、混合割合、造粒の条件などを制御することで調整できる。炭素を気相方法で被覆させる方法としては、炭化水素系のガスを熱分解して被覆させる熱分解CVD法や、炭素棒を用いて疑似アーク放電により蒸着させるPVD法などが好適に使用できる。
【0023】
上記のようにして得られた本発明の複合体粒子は、比表面積が10m2/g未満であることが好ましい。比表面積が10m2/gを越えると、条件によっては複合体粒子と電解液とが反応して、複合体粒子の表面に被膜が形成されやすくなり、その被膜にリチウムが取り込まれて充放電に関与しないリチウムが増加することによる不可逆容量が増加する可能性があるからである。
【0024】
本発明の非水電解質二次電池の負極では、三次元構造を有する集電体に、表面が気相法により炭素で被覆された上記複合体粒子を含む負極材料が充填される。即ち、集電体が負極材料中に三次元的に広がった状態で負極材料と一体化されるので、複合体粒子の膨張・収縮が大きいものとなっても導電性ネットワークは維持され続ける。また、負極材料と集電体との間の平均距離が小さいため、負極の内部抵抗が小さい。したがって、負極材料のほとんどがその機能を発揮することになるため、容量の大きい電池が得られ、大電流にも耐えることができる。
【0025】
上記集電体に、表面が気相法により炭素で被覆された上記複合体粒子を含む負極材料を充填するに際し、負極材料をバインダとともに集電体に充填してプレスすることが好ましい。バインダにより負極材料の脱落が防止でき、また、電極作製時にプレスすることにより、電極の厚み方向への膨張に対して収縮力を与えることができる。よって、複合体粒子の膨張・収縮が大きいものとなっても電極の膨張は抑制できる。
【0026】
また、上記三次元構造を有する集電体としては、発泡状金属又は繊維状金属焼結体からなるシート又はマットであることが好ましい。これらは、集電性能に優れているとともに負極材料の膨張・収縮に対して大きな抵抗を有しているからである。
【0027】
以下、リチウムと合金を形成することが可能な元素を含有する材料にケイ素を用い、導電性材料に炭素を用いた場合(ケイ素/炭素複合体材料)を例にして本発明の負極をさらに説明する。
【0028】
負極は、例えば、ケイ素/炭素複合体材料と、フッ素樹脂からなるバインダとに溶媒を混合してスラリーとし、このスラリーを発泡状金属のシート又は繊維状金属焼結体のマットに塗工した後に乾燥して得ることができる。次いで、プレス等で圧縮し、厚さと空隙率を調整する。また、フッ素樹脂と架橋剤とをトルエン、キシレン等の有機溶媒に溶解し、これにケイ素/炭素複合体材料の粉末を混合してスラリーとし、このスラリーを発泡状金属のシートや繊維状金属焼結体のマットに塗工し、50〜100℃で乾燥して溶剤を除去し、100〜180℃で加熱しつつプレス等で圧縮して硬化させてもよい。
【0029】
負極中では、発泡状金属又は繊維状金属焼結体とバインダとが負極材料を縛りつけているので、ケイ素/炭素複合体材料が充放電サイクルの進行によって膨張・収縮を繰り返すことがあっても、ケイ素/炭素複合体材料の粒子間の接触が保持されて負極の内部抵抗の増大が抑制され、また、導電性ネットワークが崩壊することがなく電池の初期容量を保持できる。
【0030】
また、この負極は、プレス等で好ましくは9.8〜980MPaの圧力で圧縮してその空隙率を調整することができるので、負極の体積当たりの容量を大きくできる。また、負極中に適量の隙間を確保して電解液を容易に負極内に含浸させることができ、リチウムイオンの拡散に必要な経路が確保されるので、大電流を流したときにも負極活物質の利用率が高い。また、充電時に複合体粒子が膨張しても、その空隙が粒子膨張体積分を埋め合わせることが出来るため、電極の膨張を抑制できる。
【0031】
このように、負極の厚さと空隙率の調整は、発泡状金属又は繊維状金属焼結体にバインダを含むケイ素/炭素複合体材料を充填したものをプレス等で圧縮して行うが、その厚さは0.1mm以上が好ましく、より好ましくは0.15mm以上である。厚さが0.1mm未満であると、電極材料の担持量が少なく電池容量が小さくなる。また、余りに厚いと、圧縮による空隙率の調整がしにくいなど、実用性が劣るため10mm以下とするのが好ましい。この場合、バインダの融点以上に加熱しつつプレスすると、負極の強度が大きくなって電池特性が顕著に向上する。また、空隙率が小さいと電解液の含浸が難しくなり、電解液を経由するイオン伝導性が低下し、負極材料の働きが制限されて電池容量が低下するので、空隙率は20〜50%、好ましくは25〜40%とするのが好ましい。空隙率は、空隙の占める体積÷見かけの体積×100で表され、空隙の占める体積は水銀圧入法で測定される。
【0032】
上記発泡状金属は、連続した開孔を有する海綿状の多孔体であることが好ましい。これにより、内部抵抗が小さくなり、充放電サイクルを繰り返しても導電性ネットワークが維持されるため内部抵抗の増大も防止でき、さらに電極の膨張も抑制できる。また、発泡状金属の開孔径は、10μm〜1.0mmであることが好ましい。開孔径が10μm以上であると、ケイ素/炭素複合体材料とバインダからなる混合物の開孔内への充填が容易となり、また1.0mm以下であると、集電体である発泡状金属と負極材料であるリチウムを吸蔵させたケイ素/炭素複合体材料との間の平均距離が大きくならず、充放電サイクルに伴う導電性ネットワークの維持が容易となって、容量低下や電極の内部抵抗増加を引き起こすことがなくなる。
【0033】
また、発泡状金属の開孔率は、70〜99%であるのが好ましい。開孔率が70%以上であると、開孔内に充填しうるケイ素/炭素複合体材料とバインダとからなる負極材料を多く充填でき、電池の容量を十分確保できる。また、開孔率が99%以下であると、発泡状金属の強度が小さくならず、負極材料を縛りつける力を維持できるからである。
【0034】
上記発泡状金属の開孔径の場合と同じ理由によって、繊維状金属焼結体の繊維径(直径)は、1〜50μmであることが好ましい。繊維状金属焼結体としては、短繊維又は長繊維の焼結体が使用される。その開孔率は、発泡状金属の場合と同じ理由によって、50〜95%のものを使用するのが好ましい。
【0035】
本発明の負極に使用される発泡状金属や繊維状金属焼結体の材質は、ニッケル、銅、ニッケル−銅合金、ニッケル−鉄−クロム合金などのリチウムに対して耐食性を有する金属が好ましく使用される。
【0036】
リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子を気相法により炭素で被覆した負極材料はバインダと混合して負極用合剤とすることが出来るが、さらに負極用の導電材を混合してもよい。合剤を作製する際の負極用導電材は、構成された非水電解質二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されない。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉(銅粉、ニッケル粉、アルミニウム粉、銀粉など)、金属繊維、又は特開昭59−20971号公報に記載のポリフェニレン誘導体などの導電性材料を使用できる。これらの導電性材料は単独でも使用できるが、複数の導電性材料を混合して使用することもできる。
【0037】
上記バインダとしては、熱可塑性樹脂、熱硬化性樹脂のいずれを用いてもよい。バインダには、通常、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレン−ブタジエンゴム、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキシド、などの多糖類、熱可塑性樹脂、ゴム弾性を有するポリマーなどやこれらの変成体のうち少なくとも1種又はこれらの混合物を用いることができる。特に、電解液の溶媒に溶けず、電気化学的に非水電解質二次電池が機能する条件下で安定なフッ素樹脂を用いるのが好ましい。フッ素樹脂は耐熱性と耐薬品性に優れており、フッ素樹脂をバインダに使用すると、負極材料粒子間の接触の保持と、負極材料の集電体からの脱落防止の効果が向上する。バインダに使用するフッ素樹脂は、ポリテトラフルオロエチレン、ポリフッ化ビニリデンの如き、有機溶剤に分散又は可溶なものを使用するのが好ましい。この場合、バインダを有機溶剤に分散又は溶解させ、これと負極材料とを混合してスラリーを作り、このスラリーを集電体に充填するのが好ましい。なお、フッ素樹脂としては、硬化剤(架橋剤等)とともに使用するものも好ましく使用できる。
【0038】
本発明の非水電解質二次電池の正極には、従来の塗布方式で形成した電極を用いることが出来る。さらには、アルミニウム、チタニウム、ステンレス(SUS316又はSUS316L)を主成分とする発泡状金属又は繊維状金属焼結体に、リチウムを吸蔵・放出可能な正極材料と導電材との混合物をバインダとともに充填し、その厚さが0.1mm以上で、空隙率が20〜50%であるものを用いてもよい。
【0039】
また、リチウムを吸蔵・放出可能な正極材料には、例えば、周期表の4属、5属、6属、7属、8属、9属、10属、11属、12属、13属及び14属に属する金属を主体とする酸化物、複合酸化物、硫化物等のカルコゲン化物、及びこれらの金属を主体とするオキシハロゲン化物が使用される。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン、ポリパラフェニレン、又はそれらの誘導体等の導電性高分子材料も正極材料として使用できる。
【0040】
作動電位が高く、リチウムを吸蔵・放出する容量が大きい正極材料を使用することによって電池のエネルギー密度を高くできるので、化学式がLiCoO2、LiNiO2、LiMnO2又はLiMn24で示されるスピネル型リチウムマンガン複合酸化物を正極材料として用いるのが好ましい。
【0041】
なお、正極材料の粉末の粒子径は、電極を作製しやすく、リチウムの吸蔵と放出がスムーズに行われ、かつあまり嵩高くならないように1〜80μmとするのが好ましい。
【0042】
正極は、例えば次のようにして作製される。即ち、正極材料の粉末、導電材及びバインダであるフッ素樹脂からなる混合物に、有機溶媒を加えてスラリーとし、このスラリーを金属箔上に塗布するか、あるいは発泡状金属のシート又は繊維状金属焼結体のマットに塗工し、乾燥して有機溶媒を除去する。次いで、プレス等によって圧縮し、正極の厚さと空隙率を調整する。
【0043】
なお、正極用のバインダは、前記した負極の場合に使用したものと同様なものが好適に使用できる。
【0044】
また、本発明に用いられる非水電解質は、非水系の液状電解質、ポリマー電解質のいずれも用い得るが、一般に電解液と呼ばれる液状電解質が多用されるので、以下、この液状電解質に関して「電解液」という表現で説明する。即ち、非水系の電解液は、有機溶媒と、その有機溶媒に溶解しているリチウム塩とから構成されている。有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3−プロパンサルトン、などの非プロトン性有機溶媒の1種又は2種以上を混合した溶媒を用いることができる。また、その有機溶媒に溶解させるリチウム塩としては、例えば、LiClO4、LiBF6、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl4、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどの1種以上の塩を用いることができる。中でも、エチレンカーボネート又はプロピレンカーボネートと、1,2−ジメトキシエタン及び/又はジエチルカーボネート及び/又はメチルエチルカーボネートの混合溶媒に、LiClO4、LiBF6、LiPF6及び/又はLiCF3SO3を溶解させた電解液が好ましい。
【0045】
これらの非水電解質の電池内での使用量は特に限定されないが、活物質の量や電池のサイズによって必要量を調整することができる。支持電解質であるリチウム塩の濃度は特に限定されないが、電解液1dm3当たり0.2〜3.0molが好ましい。この濃度の範囲内であれば、イオン伝導度が低下したり、リチウム塩が析出したりするがない。
【0046】
セパレータとしては、微孔性フィルムや不織布などが用いられるが、その材質としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンのほか、耐熱用途として、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)などが挙げられる。
【0047】
本発明の非水電解質二次電池の形状は、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれであってもよい。
【0048】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0049】
(実施例1)
リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体を以下のようにして作製した。
【0050】
まず、粒子径1μmのケイ素粉末と、長さ5μmで直径0.2μmの気相成長炭素繊維(VGCF)と、粒子径2μmの黒鉛とを、ケイ素:VGCF:黒鉛=60:10:30の質量比で混合し、遊星ボールミルを用いて転動造粒した。その結果、平均粒子径15μmの複合体粒子が得られた。続いて、ベンゼンを炭素源として化学蒸着処理方法(CVD)により、温度1000℃で上記複合体粒子の表面を炭素で被覆した。被覆した炭素量は被覆前後の質量変化から求めた。被覆後の複合体粒子の組成は、ケイ素:VGCF:黒鉛:被覆炭素=56:9:28:7の質量比であった。なお、この複合体粒子の平均粒子径は約15μmであった。
【0051】
負極は次のように作製した。まず、上記複合体粒子を90質量部、導電材として炭素粉末を5質量部、バインダとしてポリフッ化ビニリデンを5質量部混合し、これをN−メチル−2−ピロリドンに分散させてスラリーを作製した。得られたスラリーを、厚さが0.5mmのニッケルの発泡体シート(開孔率98%、平均孔径0.2mm)に塗工し、100℃で加熱乾燥した。このシートを直径16mmの円形に打ち抜き、プレスで加圧して、その厚さを0.2mmに圧縮して負極とした。この負極中に含まれる水分を完全に除くため、13Paの減圧下で120℃にて24時間保持して乾燥した。この負極の空隙率は37%であった。
【0052】
次に、正極を以下のようにして作製した。まず、LiMnO2の粉末を100質量部、導電材としてカーボンブラックを5質量部、同じく導電材として鱗片状黒鉛を5質量部、バインダとしてポリテトラフルオロエチレンを0.7質量部混合し、乾燥後に直径16mm、厚さ0.1mmのペレット状に加圧成形し、250℃で加熱乾燥して正極とした。
【0053】
セパレータは、ポリプロピレン製の不織布とポリプロピレン製の微孔性フィルムからなるものを用い、電解液は、エチレンカーボネートとエチルメチルカーボネートの容積比1:1の混合溶媒に、1mol/dm3の濃度となるようにLiPF6を溶解させたものを使用した。
【0054】
上記負極、正極、セパレータ、電解液を用い、図1に示すようなコイン型非水電解質二次電池を作製した。図1に示すように、正極端子を兼ねる金属外装缶4の開口端部を内方に締め付けることにより、金属外装缶4と負極端子を兼ねる封口板5及びガスケット6とで、正極1、負極2及び電解液を含浸させたセパレータ3を密閉している。なお、電解液の電極等への含浸と電池の封口は、露点がマイナス50℃の乾燥空気雰囲気としたグローブボックス中で行った。
【0055】
上記コイン型非水電解質二次電池を用いて以下の条件で充放電サイクル特性を調べた。即ち、充電は電流密度を0.5mA/cm2として定電流で行い、充電電圧が120mVに達した後、1/10の電流密度になるまで定電圧で充電を行った。放電は電流密度0.5mA/cm2の定電流で行い、放電終止電圧は1.5Vとした。その結果、2サイクル目の放電容量、50サイクル目の容量保持率は、それぞれ1000mAh/g、95%であった。放電容量は複合体粒子1g当たりで算出した。また、50サイクル目の容量保持率は50サイクル目の放電容量を2サイクル目の放電容量で割ることによりを算出した。
【0056】
さらに、上記負極と金属リチウムとを組み合わせ、上記と同様の電解液とセパレータとを用いてモデルセルを作製した。このモデルセルを用いて上記負極の厚み変化を調べた。その結果、上記と同じ条件で1000mAh/gまで充電した際の負極の厚みは0.25mmとなり、充電前の負極の厚み0.2mmから計算すると、負極の厚みの膨張率は125%であった。
【0057】
(実施例2)
ニッケルの発泡体シートに代えて、プレス前の厚さが0.5mmの繊維状ニッケル焼結体マット(開孔率91%、繊維径20μm)を用いたこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0058】
このコイン型非水電解質二次電池の2サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ1000mAh/g、85%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、1000mAh/gまで充電した際の負極の厚みは0.3mmとなり、充電前の負極の厚み0.2mmから計算すると、負極の厚みの膨張率は150%であった。
【0059】
(実施例3)
ニッケルの発泡体シートに代えて、プレス前の厚さが0.6mmの銅の発泡体シート(開孔率96%、平均孔径0.2mm)を用いて作製した負極(厚み0.3mm、空隙率34%)を使用したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0060】
このコイン型非水電解質二次電池の2サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ1000mAh/g、92%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、1000mAh/gまで充電した際の負極の厚みは0.42mmとなり、充電前の負極の厚み0.3mmから計算すると、負極の厚みの膨張率は140%であった。
【0061】
(比較例1)
ニッケルの発泡体シートに代えて、厚み10μmの銅箔を用いて作製した負極(厚み0.07mm、空隙率28%)を使用したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0062】
このコイン型非水電解質二次電池の2サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ1000mAh/g、60%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、1000mAh/gまで充電した際の負極の厚みは0.16mmとなり、充電前の負極の厚み0.07mmから計算すると、負極の厚みの膨張率は229%であった。
【0063】
(比較例2)
実施例1で用いた複合体粒子に代えて、粒子径5μmのケイ素粉末を用いて作製した負極(厚さ0.2mm、空隙率36%)を使用したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0064】
このコイン型非水電解質二次電池の2サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ1500mAh/g、10%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、1000mAh/gまで充電した際の負極の厚みは0.33mmとなり、充電前の負極の厚み0.2mmから計算すると、負極の厚みの膨張率は165%であった。
【0065】
【発明の効果】
以上説明したように、本発明では、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子の表面が気相法により炭素で被覆されてなる負極材料が充填された負極とすることにより、充放電サイクルを繰り返しても電極の膨張・収縮が大きくならず、また電極内部の導電性ネットワークが破壊されず、電池容量が減少したり内部抵抗が増大したりしない高エネルギー密度の非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明のコイン型非水電解質二次電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 金属外装缶
5 封口板
6 ガスケット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics.
[0002]
[Prior art]
A battery using an alkali metal as an active material has attracted attention as a high-performance battery having a high energy density. Among them, lithium batteries have a particularly high energy density and are excellent in reliability such as storability, and are already widely used as power sources for small electronic devices as primary batteries. Recently, with the spread of small portable electric devices, the demand for lithium secondary batteries that can be charged and used repeatedly has increased rapidly.
[0003]
As the negative electrode material of the lithium secondary battery, for example, a lithium metal, a lithium alloy, or a carbonaceous material in which lithium is occluded in a carbon material that can occlude / release lithium is used.
[0004]
In non-aqueous electrolyte secondary batteries using lithium metal or lithium alloy as the negative electrode, a battery with a high energy density is obtained, but the dissolution and precipitation of lithium are repeated as the charge / discharge cycle progresses, and the activity deposited at that time Since lithium reacts with the solvent of the electrolytic solution, there is a problem that chargeable / dischargeable lithium is lost and the charge / discharge efficiency of the negative electrode is lowered. Furthermore, since lithium precipitates as dendrites (dendritic crystals), there is a risk that the dendrites penetrate the separator and cause an internal short circuit.
[0005]
Therefore, in place of lithium metal or lithium alloy, carbon materials such as coke or amorphous carbon such as glassy carbon that can be doped / undoped with lithium ions, or natural or artificial graphite are used as the negative electrode material. Things have been done. For example, JP-A-1-204361, JP-A-2-66856, JP-A-4-24831, JP-A-5-17669, and the like disclose that using a carbon material as a negative electrode material, lithium It is described that cycle durability is imparted to the secondary battery.
[0006]
However, the theoretical capacity of a negative electrode using the above carbon material as a negative electrode material is, for example, 372 mAh / g for graphite, which is insufficient for the recent demand for higher capacity of batteries for portable devices. Therefore, recently, negative electrode materials made of silicon (Si), tin (Sn), or the like, which are elements capable of forming an alloy with lithium, have attracted attention. For example, JP-A-7-29602 discloses Li x A non-aqueous electrolyte secondary battery using Si (0 ≦ x ≦ 5) as a negative electrode active material is described.
[0007]
[Problems to be solved by the invention]
However, the negative electrode material made of an element capable of forming an alloy with lithium can have a higher capacity than the above carbon material, but the expansion / contraction of the negative electrode material due to the charge / discharge cycle is large, As a result, there is a problem that the conductive network in the negative electrode is destroyed and the capacity is remarkably lowered or the internal resistance is increased. Moreover, in the negative electrode produced by the conventional method of applying the negative electrode mixture to the metal foil, the negative electrode material expands greatly in the thickness direction due to the large expansion and contraction of the negative electrode material, and the current collecting performance of the current collector is reduced. Or the negative electrode itself bends or the battery can swells.
[0008]
Here, the reason why the negative electrode material composed of an element capable of forming an alloy with lithium is large in expansion / contraction will be described by taking silicon as an example.
[0009]
Silicon contains 8 Si atoms in its crystallographic unit cell (cubic, space group Fd-3m). Calculated from the lattice constant a = 0.5431 nm, the unit cell volume is 0.1592 nm. Three The volume occupied by one Si atom (the value obtained by dividing the unit cell volume by the number of Si atoms in the unit cell) is 0.0199 nm. Three It is. When a negative electrode made of silicon is charged to 100 mV or less (lithium is inserted), Li is a compound containing a large amount of lithium. 15 Si Four Or Li twenty one Si Five The capacity corresponds to about 4000 mAh / g, but the volume expansion coefficient becomes extremely large. For example, Li twenty one Si Five The unit cell (cubic crystal, space group F4-3m) contains 83 Si atoms. Calculated from the lattice constant a = 1.8750 nm, the unit cell volume is 6.5918 nm. Three The volume occupied by one Si atom is 0.079 nm Three It is. This value is 3.95 times the volume of simple silicon. That is, the volume of silicon increases by about 4 times by charging. Furthermore, since the volume difference during charging / discharging is extremely large as described above, a large strain is generated in the silicon particles, the particles are pulverized and spaces are formed between the particles, the conductive network is divided, and the electrochemical reaction occurs. The portion that cannot be involved increases, and the charge / discharge capacity decreases.
[0010]
On the other hand, Japanese Patent Application Laid-Open No. 2000-272911 describes a lithium battery excellent in charge / discharge characteristics using composite particles in which silicon particles are embedded in graphite and amorphous carbon as a negative electrode. By combining graphite and amorphous carbon with silicon, the expansion of silicon particles can be reduced, and the charge / discharge cycle characteristics can be improved. However, when the utilization rate of silicon that expresses a high capacity of about 1000 mAh / g is high, the charge / discharge cycle characteristics are not sufficient and the practical level is not reached. This is thought to be due to the fact that when the silicon utilization rate is high, the expansion / contraction of silicon increases, and the expansion / contraction of the composite particles increases accordingly, and the conductive network inside the negative electrode is destroyed. .
[0011]
The present invention has been made in order to solve the above-described conventional problems. Even when the charge / discharge cycle is repeated, the expansion / contraction of the electrode does not increase, the conductive network inside the electrode is not destroyed, and the battery capacity is increased. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a high energy density that does not decrease or increase the internal resistance.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and forms an alloy with lithium on a current collector having a three-dimensional structure as the negative electrode. A composite comprising a material containing an element that can be processed and a conductive material Particle surface is coated with carbon by vapor phase method An electrode filled with a negative electrode material is used.
[0013]
The surface of a composite particle composed of a material containing an element capable of forming an alloy with lithium and a conductive material is coated with carbon by a vapor phase method, and By using a current collector having a three-dimensional structure, expansion / contraction of the negative electrode does not increase even when the charge / discharge cycle is repeated, and the conductive network inside the negative electrode is not destroyed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0015]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. As the negative electrode, an element capable of forming an alloy with lithium is formed on a current collector having a three-dimensional structure. Composite composed of contained material and conductive material Particle surface is coated with carbon by vapor phase method An electrode filled with a negative electrode material is used.
[0016]
Examples of the element capable of forming an alloy with lithium include silicon, silver, gold, zinc, cadmium, aluminum, gallium, indium, thallium, germanium, tin, lead, antimony, and bismuth. In particular, silicon, tin, and aluminum are preferable from the viewpoint of material cost and handling.
[0017]
Further, the material containing an element capable of forming an alloy with lithium may be in any state of crystal, low crystal, and amorphous. As this material, a simple substance of an element capable of forming an alloy with lithium and an alloy or a compound containing the element can be used. For example, a solid solution or an intermetallic compound of silicon, tin, aluminum, silicon oxide (SiO), tin oxide (SnO), silicon, tin, aluminum, and other metals and the like. As the material containing silicon or germanium, for example, a material which has become an n-type or p-type semiconductor by doping with boron or phosphorus and whose electric resistance is greatly reduced may be used.
[0018]
In addition, these materials containing elements that can form alloys with lithium are combined with conductive materials to form composites. And the surface is coated with carbon by the vapor phase method. Must. By this combination, the pulverization of the negative electrode material accompanying the charge / discharge cycle can be suppressed, and the conductive network in the negative electrode material particles when further pulverized can be maintained.
[0019]
The complex is usually in the form of particles, and the average particle diameter is preferably 2 μm or more and 100 μm or less, particularly preferably 2 to 50 μm. When the average particle diameter of the composite particles is 2 μm or more, the material containing the element capable of forming an alloy with lithium constituting the composite particles or the conductive material is 0.5 μm or more. It can be used, granulation and compounding are facilitated, the specific surface area of the composite particles is not excessive, and the production process and battery characteristics are not adversely affected. On the other hand, when the average particle diameter of the composite particles is 50 μm or less, filling into a current collector having a three-dimensional structure is facilitated, which is advantageous for producing an electrode.
[0020]
Further, the content of an element capable of forming an alloy with lithium in the composite is preferably 30% by mass or more and 80% by mass or less. When it is 30% by mass or more, when a capacity of about 1000 mAh / g is expressed, the utilization factor of an element capable of forming an alloy with lithium does not become too high, and an alloy can be formed with lithium. The expansion of the individual material particles containing the element does not increase, and it becomes difficult to pulverize. In addition, when the content is 80% by mass or less, the number of adhesion points between the material containing an element capable of forming an alloy with lithium and the conductive material increases, and thus the construction of the conductive network is facilitated.
[0021]
Examples of the conductive material included in the composite include artificial graphite, natural graphite, earthy graphite, expanded graphite, flake graphite, or a heat-treated product thereof, a carbon material obtained by pyrolyzing an organic substance under various conditions, or A metal material such as copper can be used. In particular, a fibrous or coiled carbon material or metal material is preferable. Since these are flexible thin thread-like shapes, they can effectively follow the expansion and contraction of materials containing elements that can form an alloy with lithium that is bonded or adjacent to them. This is because it can. Examples of the fibrous carbon material that can be used in the present invention include polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, and vapor-grown carbon fiber, and any of them may be used.
[0022]
Although the manufacturing method of the composite which consists of a material containing the element which can form an alloy with lithium, and an electroconductive material is not restrict | limited, For example, the method shown next can be used. When silicon is used as a material containing an element capable of forming an alloy with lithium and carbon is used as a conductive material, first, silicon and carbon are granulated, and then a carbon precursor such as an organic substance is used. The target composite can be obtained by a method of carbonizing the carbon precursor by mixing, or a method of granulating silicon and carbon and then coating the surface with a gas phase method. As the granulation method, rolling granulation, compression granulation, sintering granulation, vibration granulation, mixed granulation, pulverization granulation and the like can be suitably used. The void volume occupancy in the composite can be adjusted by controlling the type of mixed material, particle size, mixing ratio, granulation conditions, and the like. As a method for coating carbon by a vapor phase method, a thermal decomposition CVD method in which a hydrocarbon-based gas is thermally decomposed and coated, a PVD method in which vapor deposition is performed by a pseudo arc discharge using a carbon rod, and the like can be suitably used.
[0023]
The composite particles of the present invention obtained as described above have a specific surface area of 10 m. 2 / G is preferable. Specific surface area is 10m 2 When exceeding / g, depending on the conditions, the composite particles react with the electrolytic solution, and a film is easily formed on the surface of the composite particles. Lithium is taken into the film and lithium that is not involved in charge / discharge increases. This is because the irreversible capacity may increase.
[0024]
In the negative electrode of the nonaqueous electrolyte secondary battery of the present invention, a current collector having a three-dimensional structure is used. The surface was coated with carbon by vapor phase method The negative electrode material containing the composite particles is filled. That is, since the current collector is integrated with the negative electrode material in a state of being three-dimensionally spread in the negative electrode material, the conductive network continues to be maintained even if the composite particles are greatly expanded and contracted. Further, since the average distance between the negative electrode material and the current collector is small, the internal resistance of the negative electrode is small. Therefore, since most of the negative electrode material exhibits its function, a battery having a large capacity can be obtained and can withstand a large current.
[0025]
To the current collector The surface was coated with carbon by vapor phase method When filling the negative electrode material containing the composite particles, the negative electrode material is preferably filled into a current collector together with a binder and pressed. The binder can prevent the negative electrode material from falling off, and by pressing at the time of producing the electrode, a contraction force can be applied to the expansion in the thickness direction of the electrode. Therefore, the expansion of the electrode can be suppressed even if the composite particles have a large expansion / contraction.
[0026]
The current collector having the three-dimensional structure is preferably a sheet or mat made of a foam metal or a fibrous metal sintered body. This is because they have excellent current collecting performance and have a large resistance to expansion / contraction of the negative electrode material.
[0027]
Hereinafter, the negative electrode of the present invention will be further described with reference to the case where silicon is used as a material containing an element capable of forming an alloy with lithium and carbon is used as a conductive material (silicon / carbon composite material). To do.
[0028]
The negative electrode is, for example, a mixture of a silicon / carbon composite material and a binder made of a fluororesin to form a slurry, and this slurry is applied to a foam metal sheet or a fibrous metal sintered body mat. It can be obtained by drying. Subsequently, it compresses with a press etc. and adjusts thickness and porosity. In addition, a fluororesin and a crosslinking agent are dissolved in an organic solvent such as toluene and xylene, and a powder of silicon / carbon composite material is mixed with the fluororesin and a cross-linking agent to form a slurry. It may be applied to the mat of the bonded body, dried at 50 to 100 ° C. to remove the solvent, and compressed and cured with a press or the like while heating at 100 to 180 ° C.
[0029]
In the negative electrode, since the foamed metal or fibrous metal sintered body and the binder bind the negative electrode material, even if the silicon / carbon composite material repeatedly expands and contracts as the charge / discharge cycle progresses, The contact between the particles of the silicon / carbon composite material is maintained, the increase in the internal resistance of the negative electrode is suppressed, and the initial capacity of the battery can be maintained without collapsing the conductive network.
[0030]
Moreover, since this negative electrode can be compressed with a press or the like, preferably at a pressure of 9.8 to 980 MPa, and the porosity thereof can be adjusted, the capacity per volume of the negative electrode can be increased. In addition, an appropriate amount of gap can be secured in the negative electrode so that the electrolyte can be easily impregnated in the negative electrode, and a necessary path for lithium ion diffusion is ensured. The utilization rate of substances is high. Moreover, even if the composite particles expand during charging, the voids can make up for the particle expansion volume integral, so that the expansion of the electrode can be suppressed.
[0031]
As described above, the adjustment of the thickness and porosity of the negative electrode is performed by compressing a foamed metal or fibrous metal sintered body filled with a silicon / carbon composite material containing a binder with a press or the like. The thickness is preferably 0.1 mm or more, and more preferably 0.15 mm or more. When the thickness is less than 0.1 mm, the amount of the electrode material supported is small and the battery capacity becomes small. On the other hand, if it is too thick, the practicality is inferior, for example, it is difficult to adjust the porosity by compression. In this case, if the pressing is performed while heating to a temperature equal to or higher than the melting point of the binder, the strength of the negative electrode is increased and the battery characteristics are remarkably improved. In addition, when the porosity is small, impregnation with the electrolytic solution becomes difficult, the ionic conductivity through the electrolytic solution decreases, the function of the negative electrode material is limited and the battery capacity decreases, so the porosity is 20 to 50%, Preferably it is 25 to 40%. The void ratio is expressed by the volume occupied by the void / apparent volume × 100, and the volume occupied by the void is measured by a mercury intrusion method.
[0032]
The foam metal is preferably a sponge-like porous body having continuous openings. As a result, the internal resistance is reduced, and the conductive network is maintained even when the charge / discharge cycle is repeated, so that an increase in the internal resistance can be prevented and the expansion of the electrode can be suppressed. Moreover, it is preferable that the aperture diameter of a foam-like metal is 10 micrometers-1.0 mm. When the aperture diameter is 10 μm or more, the mixture of the silicon / carbon composite material and the binder can be easily filled into the aperture, and when the aperture diameter is 1.0 mm or less, the foamed metal and the negative electrode which are current collectors The average distance between the silicon / carbon composite material that occludes lithium, which is a material, does not increase, and it is easy to maintain a conductive network that accompanies a charge / discharge cycle, reducing the capacity and increasing the internal resistance of the electrode. No longer cause.
[0033]
Moreover, it is preferable that the porosity of a foam-like metal is 70 to 99%. When the opening ratio is 70% or more, a large amount of negative electrode material composed of a silicon / carbon composite material and a binder that can be filled in the opening can be filled, and a sufficient battery capacity can be secured. Further, when the porosity is 99% or less, the strength of the foam metal is not reduced, and the force to bind the negative electrode material can be maintained.
[0034]
The fiber diameter (diameter) of the fibrous metal sintered body is preferably 1 to 50 μm for the same reason as in the case of the pore diameter of the foam metal. As the fibrous metal sintered body, a short fiber or long fiber sintered body is used. For the same reason as in the case of the foam metal, it is preferable to use a porosity of 50 to 95%.
[0035]
The material of the foam metal or fibrous metal sintered body used in the negative electrode of the present invention is preferably a metal having corrosion resistance to lithium such as nickel, copper, nickel-copper alloy, nickel-iron-chromium alloy. Is done.
[0036]
A composite comprising a material containing an element capable of forming an alloy with lithium and a conductive material Anode material with particles coated with carbon by vapor phase method Can be mixed with a binder to form a negative electrode mixture, but a negative electrode conductive material may be further mixed. The negative electrode conductive material for producing the mixture is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the constituted nonaqueous electrolyte secondary battery. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, metal powder (copper powder, nickel powder, aluminum powder, silver powder, etc.), Metal fibers or conductive materials such as polyphenylene derivatives described in JP-A-59-20971 can be used. These conductive materials can be used alone, but a plurality of conductive materials can be mixed and used.
[0037]
As the binder, either a thermoplastic resin or a thermosetting resin may be used. As the binder, starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, ethylene -Propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, butadiene rubber, polybutadiene, fluororubber, polyethylene oxide, and other polysaccharides, thermoplastic resins, rubber elastic polymers, etc., and their modified products Among these, at least one kind or a mixture thereof can be used. In particular, it is preferable to use a fluororesin that is not soluble in the solvent of the electrolytic solution and is stable under conditions in which the nonaqueous electrolyte secondary battery functions electrochemically. The fluororesin is excellent in heat resistance and chemical resistance. When the fluororesin is used as a binder, the effect of maintaining contact between the negative electrode material particles and preventing the negative electrode material from falling off the current collector is improved. The fluororesin used for the binder is preferably one that is dispersed or soluble in an organic solvent, such as polytetrafluoroethylene or polyvinylidene fluoride. In this case, it is preferable to disperse or dissolve the binder in an organic solvent, mix this with the negative electrode material to form a slurry, and fill the current collector with this slurry. In addition, as a fluororesin, what is used with a hardening | curing agent (crosslinking agent etc.) can also be used preferably.
[0038]
For the positive electrode of the nonaqueous electrolyte secondary battery of the present invention, an electrode formed by a conventional coating method can be used. Further, a foamed metal or fibrous metal sintered body mainly composed of aluminum, titanium, and stainless steel (SUS316 or SUS316L) is filled with a mixture of a positive electrode material capable of inserting and extracting lithium and a conductive material together with a binder. Further, a material having a thickness of 0.1 mm or more and a porosity of 20 to 50% may be used.
[0039]
Examples of the positive electrode material capable of occluding / releasing lithium include, for example, 4 genera, 5 genera, 6 genera, 7 genera, 8 genera, 9 genera, 10 genera, 11 genera, 12 genera, 13 genera and 14 in the periodic table. Oxides mainly composed of metals belonging to the genus, chalcogenides such as composite oxides and sulfides, and oxyhalides mainly composed of these metals are used. In addition, conductive polymer materials such as polyaniline, polypyrrole, polythiophene, polyacene, polyparaphenylene, or derivatives thereof can also be used as the positive electrode material.
[0040]
By using a positive electrode material with a high operating potential and a large capacity for occluding and releasing lithium, the energy density of the battery can be increased, so that the chemical formula is LiCoO 2 LiNiO 2 LiMnO 2 Or LiMn 2 O Four It is preferable to use a spinel type lithium manganese oxide represented by the above as a positive electrode material.
[0041]
The particle diameter of the positive electrode material powder is preferably 1 to 80 μm so that an electrode can be easily produced, lithium can be smoothly inserted and extracted, and is not so bulky.
[0042]
The positive electrode is produced, for example, as follows. That is, an organic solvent is added to a mixture of a positive electrode material powder, a conductive material, and a fluororesin as a binder to form a slurry, which is then applied onto a metal foil, or a sheet of foamed metal or a fibrous metal firing. It is applied to the mat of the bonded body and dried to remove the organic solvent. Subsequently, it compresses with a press etc. and adjusts the thickness and porosity of a positive electrode.
[0043]
In addition, the thing similar to what was used in the case of the above-mentioned negative electrode can be used suitably for the binder for positive electrodes.
[0044]
In addition, the nonaqueous electrolyte used in the present invention can be either a nonaqueous liquid electrolyte or a polymer electrolyte. However, since a liquid electrolyte generally called an electrolyte is often used, hereinafter, an “electrolyte” is referred to for this liquid electrolyte. It explains with the expression. That is, the nonaqueous electrolytic solution is composed of an organic solvent and a lithium salt dissolved in the organic solvent. Examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3 -Dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, diethyl ether , 1,3-propane sultone, etc., a solvent obtained by mixing one or more aprotic organic solvents It is possible to have. Examples of the lithium salt dissolved in the organic solvent include LiClO. Four , LiBF 6 , LiPF 6 , LiCF Three SO Three , LiCF Three CO 2 , LiAsF 6 , LiSbF 6 , LiB Ten Cl Ten , Lower aliphatic lithium carboxylate, LiAlCl Four One or more salts such as LiCl, LiBr, LiI, lithium chloroborane, and lithium tetraphenylborate can be used. Among them, a mixed solvent of ethylene carbonate or propylene carbonate, 1,2-dimethoxyethane and / or diethyl carbonate and / or methyl ethyl carbonate, LiClO Four , LiBF 6 , LiPF 6 And / or LiCF Three SO Three An electrolytic solution in which is dissolved is preferable.
[0045]
The amount of these nonaqueous electrolytes used in the battery is not particularly limited, but the required amount can be adjusted according to the amount of active material and the size of the battery. The concentration of the lithium salt that is the supporting electrolyte is not particularly limited, but the electrolyte solution 1 dm Three 0.2 to 3.0 mol per unit is preferable. Within this concentration range, the ionic conductivity does not decrease and the lithium salt does not precipitate.
[0046]
As the separator, a microporous film, a nonwoven fabric, or the like is used. Examples of the material include polyolefins such as polyethylene and polypropylene, and tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) for heat resistance. ), Polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), and the like.
[0047]
The shape of the nonaqueous electrolyte secondary battery of the present invention may be any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, and the like.
[0048]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
[0049]
Example 1
A composite comprising a material containing an element capable of forming an alloy with lithium and a conductive material was produced as follows.
[0050]
First, a silicon powder having a particle diameter of 1 μm, a vapor grown carbon fiber (VGCF) having a length of 5 μm and a diameter of 0.2 μm, and graphite having a particle diameter of 2 μm are mixed with a mass of silicon: VGCF: graphite = 60: 10: 30. The mixture was mixed at a ratio and tumbled and granulated using a planetary ball mill. As a result, composite particles having an average particle diameter of 15 μm were obtained. Subsequently, the surface of the composite particle was coated with carbon at a temperature of 1000 ° C. by a chemical vapor deposition method (CVD) using benzene as a carbon source. The amount of coated carbon was determined from the change in mass before and after coating. The composition of the composite particles after coating was a mass ratio of silicon: VGCF: graphite: coated carbon = 56: 9: 28: 7. The average particle size of the composite particles was about 15 μm.
[0051]
The negative electrode was produced as follows. First, 90 parts by mass of the composite particles, 5 parts by mass of carbon powder as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed and dispersed in N-methyl-2-pyrrolidone to prepare a slurry. . The obtained slurry was applied to a nickel foam sheet having a thickness of 0.5 mm (aperture ratio 98%, average pore diameter 0.2 mm) and dried by heating at 100 ° C. This sheet was punched into a circle with a diameter of 16 mm, pressed with a press, and the thickness was compressed to 0.2 mm to obtain a negative electrode. In order to completely remove the water contained in the negative electrode, it was dried by holding at 120 ° C. for 24 hours under a reduced pressure of 13 Pa. The porosity of this negative electrode was 37%.
[0052]
Next, the positive electrode was produced as follows. First, LiMnO 2 100 parts by weight of the powder, 5 parts by weight of carbon black as the conductive material, 5 parts by weight of flake graphite as the conductive material, and 0.7 parts by weight of polytetrafluoroethylene as the binder are mixed, and after drying, the diameter is 16 mm. It was press-molded into a 0.1 mm thick pellet and heat dried at 250 ° C. to obtain a positive electrode.
[0053]
The separator is made of a nonwoven fabric made of polypropylene and a microporous film made of polypropylene, and the electrolytic solution is 1 mol / dm in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1. Three LiPF so that the concentration of 6 What was dissolved was used.
[0054]
A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the negative electrode, positive electrode, separator, and electrolytic solution. As shown in FIG. 1, the opening end of the metal outer can 4 also serving as the positive electrode terminal is tightened inward, so that the metal outer can 4 and the sealing plate 5 and gasket 6 also serving as the negative electrode terminal The separator 3 impregnated with the electrolyte is sealed. The impregnation of the electrode with the electrolyte and the sealing of the battery were performed in a glove box having a dry air atmosphere with a dew point of minus 50 ° C.
[0055]
Using the coin-type non-aqueous electrolyte secondary battery, the charge / discharge cycle characteristics were examined under the following conditions. That is, the charge has a current density of 0.5 mA / cm. 2 The battery was charged at a constant voltage until the charge voltage reached 120 mV and the current density reached 1/10. Discharge current density 0.5mA / cm 2 The discharge end voltage was 1.5V. As a result, the discharge capacity at the second cycle and the capacity retention at the 50th cycle were 1000 mAh / g and 95%, respectively. The discharge capacity was calculated per 1 g of composite particles. The capacity retention rate at the 50th cycle was calculated by dividing the discharge capacity at the 50th cycle by the discharge capacity at the 2nd cycle.
[0056]
Further, the negative electrode and metallic lithium were combined, and a model cell was produced using the same electrolytic solution and separator as described above. Using this model cell, the thickness change of the negative electrode was examined. As a result, the thickness of the negative electrode when charged to 1000 mAh / g under the same conditions as described above was 0.25 mm, and the coefficient of expansion of the negative electrode thickness was 125% when calculated from the thickness of the negative electrode before charging 0.2 mm. .
[0057]
(Example 2)
Instead of the nickel foam sheet, the same procedure as in Example 1 was used except that a fibrous nickel sintered mat (opening ratio 91%, fiber diameter 20 μm) having a thickness of 0.5 mm before pressing was used. Coin-type non-aqueous electrolyte secondary batteries and model cells were prepared, and charge / discharge cycle characteristics and negative electrode thickness changes were similarly examined.
[0058]
The coin-type nonaqueous electrolyte secondary battery had a discharge capacity at the second cycle and a capacity retention at the 50th cycle of 1000 mAh / g and 85%, respectively. Moreover, the thickness change before and after charging of the negative electrode using this model cell is 0.3 mm when the negative electrode is charged to 1000 mAh / g, and the thickness of the negative electrode is calculated from the thickness 0.2 mm of the negative electrode before charging. The expansion coefficient of was 150%.
[0059]
(Example 3)
Instead of the nickel foam sheet, a negative electrode (thickness 0.3 mm, void) prepared using a copper foam sheet (opening ratio 96%, average pore diameter 0.2 mm) having a thickness of 0.6 mm before pressing. A coin-type non-aqueous electrolyte secondary battery and a model cell were produced in the same manner as in Example 1 except that the ratio was 34%), and the charge / discharge cycle characteristics and the thickness change of the negative electrode were similarly examined.
[0060]
The coin-type non-aqueous electrolyte secondary battery had a discharge capacity at the second cycle and a capacity retention at the 50th cycle of 1000 mAh / g and 92%, respectively. Moreover, the thickness change before and after charging of the negative electrode using this model cell is 0.42 mm when the negative electrode is charged to 1000 mAh / g, and the thickness of the negative electrode is calculated from the thickness 0.3 mm of the negative electrode before charging. The expansion rate of was 140%.
[0061]
(Comparative Example 1)
A coin-type nonaqueous electrolyte was used in the same manner as in Example 1 except that a negative electrode (thickness 0.07 mm, porosity 28%) produced using a 10 μm thick copper foil was used instead of the nickel foam sheet. Secondary batteries and model cells were prepared, and charge / discharge cycle characteristics and negative electrode thickness changes were similarly examined.
[0062]
The coin-type nonaqueous electrolyte secondary battery had a discharge capacity at the second cycle and a capacity retention at the 50th cycle of 1000 mAh / g and 60%, respectively. Moreover, the thickness change before and after charging of the negative electrode using this model cell is 0.16 mm when the negative electrode is charged to 1000 mAh / g, and the thickness of the negative electrode is calculated from the thickness of the negative electrode 0.07 mm before charging. The expansion coefficient of was 229%.
[0063]
(Comparative Example 2)
Instead of the composite particles used in Example 1, a negative electrode (thickness 0.2 mm, porosity 36%) prepared using silicon powder having a particle diameter of 5 μm was used, and the same procedure as in Example 1 was performed. Coin-type non-aqueous electrolyte secondary batteries and model cells were prepared, and charge / discharge cycle characteristics and negative electrode thickness changes were similarly examined.
[0064]
The coin-type nonaqueous electrolyte secondary battery had a discharge capacity at the second cycle and a capacity retention at the 50th cycle of 1500 mAh / g and 10%, respectively. Moreover, the thickness change before and after charging of the negative electrode using this model cell is 0.33 mm when the negative electrode is charged to 1000 mAh / g, and the thickness of the negative electrode is calculated from the thickness 0.2 mm of the negative electrode before charging. The expansion coefficient of was 165%.
[0065]
【The invention's effect】
As described above, in the present invention, the current collector having a three-dimensional structure is composed of a composite containing a material containing an element capable of forming an alloy with lithium and a conductive material. Particle surface is coated with carbon by vapor phase method By making the negative electrode filled with the negative electrode material, the expansion / contraction of the electrode does not increase even when the charge / discharge cycle is repeated, the conductive network inside the electrode is not destroyed, the battery capacity is reduced, and the internal resistance is reduced. A non-aqueous electrolyte secondary battery having a high energy density that does not increase can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a coin-type non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
1 Positive electrode
2 Negative electrode
3 Separator
4 Metal outer can
5 Sealing plate
6 Gasket

Claims (8)

正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料と導電性材料とからなる複合体粒子の表面が気相法により炭素で被覆されてなる負極材料が充填された電極を用いることを特徴とする非水電解質二次電池。A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode contains an element capable of forming an alloy with lithium in a current collector having a three-dimensional structure A non-aqueous electrolyte secondary battery using an electrode filled with a negative electrode material in which a surface of a composite particle composed of a material to be conductive and a conductive material is coated with carbon by a vapor phase method . 前記負極が、前記負極材料をバインダとともに前記集電体に充填してプレスしたものである請求項1に記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is obtained by filling the negative electrode material together with a binder into the current collector and pressing the negative electrode material. 前記負極の厚さが0.1〜10mmであり、その空隙率が20〜50%である請求項1に記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode has a thickness of 0.1 to 10 mm and a porosity of 20 to 50%. 前記集電体が、発泡状金属又は繊維状金属焼結体から構成されている請求項1に記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector is composed of a foam metal or a fibrous metal sintered body. 前記発泡状金属又は前記繊維状金属焼結体が、ニッケル及び銅からなる群から選ばれる少なくとも一種を含む金属からなる請求項4に記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 4, wherein the foamed metal or the fibrous metal sintered body is made of a metal containing at least one selected from the group consisting of nickel and copper. 前記リチウムと合金を形成することが可能な元素が、ケイ素である請求項1に記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the element capable of forming an alloy with lithium is silicon. 前記複合体が、前記リチウムと合金を形成することが可能な元素を30〜80質量%の範囲で含有している請求項1に記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the composite contains an element capable of forming an alloy with lithium in an amount of 30 to 80% by mass. 前記リチウムと合金を形成することが可能な元素を含有する材料が、ケイ素又は錫の単体、それらの元素を含む合金又は化合物のいずれかである請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the material containing an element capable of forming an alloy with lithium is any one of silicon or tin, an alloy or a compound containing these elements .
JP2002111193A 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3992529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111193A JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111193A JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003308831A JP2003308831A (en) 2003-10-31
JP3992529B2 true JP3992529B2 (en) 2007-10-17

Family

ID=29394100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111193A Expired - Lifetime JP3992529B2 (en) 2002-04-12 2002-04-12 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3992529B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030443B2 (en) * 2003-02-27 2008-01-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2006035961A1 (en) * 2004-09-29 2006-04-06 Toshiba Battery Co., Ltd. Non-aqueous electrolyte battery
JP5031193B2 (en) * 2005-03-16 2012-09-19 独立行政法人科学技術振興機構 Metal porous negative electrode and lithium secondary battery using the same
JP5200339B2 (en) * 2006-06-16 2013-06-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2008112710A (en) * 2006-10-03 2008-05-15 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2009199744A (en) * 2008-02-19 2009-09-03 Sumitomo Electric Ind Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP4844849B2 (en) * 2008-04-23 2011-12-28 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101806547B1 (en) * 2011-04-06 2018-01-10 주식회사 제낙스 Battery having electrode structure with metallic fibers and method of fabricating the electrode structure
ES2971635T3 (en) 2017-05-22 2024-06-06 Lg Energy Solution Ltd Flexible electrode, method for manufacturing the same and secondary battery that includes the same
DE102018112641A1 (en) * 2018-05-25 2019-11-28 Volkswagen Aktiengesellschaft Lithium anode and process for its preparation
JP7140789B2 (en) * 2020-02-14 2022-09-21 本田技研工業株式会社 Electrodes for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP7324737B2 (en) 2020-07-09 2023-08-10 本田技研工業株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with the same

Also Published As

Publication number Publication date
JP2003308831A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4374661B2 (en) Non-aqueous electrolyte secondary battery
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
JP4595145B2 (en) Non-aqueous electrolyte battery
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
JP2004362895A (en) Negative electrode material, and battery using it
CN110556521B (en) Silicon anode material
WO2005064714A1 (en) Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
JP2003297353A (en) Negative electrode for secondary battery, secondary battery using such negative electrode, and manufacturing method for negative electrode
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP5851801B2 (en) Lithium secondary battery
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20220048837A (en) Positive electrode for lithium secondary battery, and rechargebaly lithium battery including the same
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP3734169B2 (en) Battery negative electrode material and battery using the same
JP3824111B2 (en) Non-aqueous electrolyte battery
JP4352503B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3992529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term