JP3982040B2 - Method and apparatus for treating halogen-containing materials - Google Patents
Method and apparatus for treating halogen-containing materials Download PDFInfo
- Publication number
- JP3982040B2 JP3982040B2 JP03836898A JP3836898A JP3982040B2 JP 3982040 B2 JP3982040 B2 JP 3982040B2 JP 03836898 A JP03836898 A JP 03836898A JP 3836898 A JP3836898 A JP 3836898A JP 3982040 B2 JP3982040 B2 JP 3982040B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- halogen
- chloride
- heat treatment
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Incineration Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ハロゲン(塩素,臭素,ヨウ素等)を多量に含有する廃棄物などの被処理物を、熱分解などの熱的処理を行って処理する処理方法および処理装置に関し、特に、前工程の分解反応工程で、被処理物に付着している水分を除去した後に被処理物の含有するハロゲン物質(特に、塩素)を分解析出する際、アルカリ物質と反応させて無害な塩化物に置換生成することで、有害なダイオキシン類の発生を防止し、合わせて排ガスの無害化と被処理物の無害化を図り、次工程で、この無害化された被処理物を前工程とは別の加熱処理炉で炭化又は灰化等の減容化を行って残渣中にハロゲン物質が反応残存しないようにする処理方法および装置に関する。
【0002】
【従来の技術】
都市ゴミなどの一般廃棄物や産業廃棄物、シュレッダーダスト、塩化ビニルなどの廃棄物はハロゲン物質(塩素、臭素、沃素、フッ素、アスタチン)、特に、塩素成分を多量に含んでいるので、焼却などの加熱処理をした場合には、塩素系ガス(塩化水素、塩素)を多量に発生し、発生したガス(排ガス)、焼却後の残渣(処理灰)、排ガス中の飛灰中に猛毒のダイオキシン類を生成し、環境汚染、焼却設備の劣化等の問題を発生させる。そこで、これらの問題を解決するための技術の開発が進められ、現在次のような技術が開示されている。
【0003】
(1)焼却による処理方法
この方法は、廃棄物等の被処理物を焼却炉で焼却するものであるが、焼却する際、焼却炉内にアルカリ物質(石灰粉)を噴霧して、焼却によって発生した排ガス中の塩素系ガスと接触反応させ、無害な塩化物(塩化カルシウム)を生成させて排ガスの無害化を図る(例えば、特開昭54−93864号)。
【0004】
(2)乾留(熱分解)による処理方法
この処理方法としては、単一の回転処理炉(ロータリーキルン)を使用して熱分解し、排出された残渣を後ストーカで焼却し、熱分解ガスを再燃室で燃焼させ、発生した高温ガスをボイラ等を通した後、反応塔に導き、この反応塔で前述同様に消石灰スラリを噴霧して排ガスと反応させるようにして処理する方法が提案されている(例えば、特開平5−33916)。
【0005】
また、回転処理炉で低温乾留法により廃棄物を熱処理して低温乾留ガスと熱分解残留物とに変換し、これを高温燃焼炉で燃焼して溶融液状のスラグを生成し、これを冷却してガラス状に固化し、発生したガスはボイラ、除去フィルタ及びガス浄化装置で処理して排出する処理の方法も提案されている(例えば、特表平8−510789)。
【0006】
また、他の方法として、被処理物を加熱処理炉で加熱処理する際、塩素成分と反応しやすいアルカリ系の添加剤を適量混入して加熱処理し、処理灰に塩素成分を固定化して無害な排ガスを得、処理灰は水洗浄等により塩素成分を除去する方法も提案されている(特開平9−155326)。
【0007】
【発明が解決しようとする課題】
上記の焼却処理による方法は、アルカリ物質を焼却炉内に噴霧していることから、発生源に近い所での処理ではあるが、塩素系ガスを一旦発生させた後に処理するのである。
【0008】
従って、この方法によれば、塩素系ガスの除去効果はある程度期待できるものの、改正された法規制による各種ガスの排出基準値を十分に満足することは困難である。
【0009】
しかも焼却であることから、反応温度が高いものであり、安定した反応を維持することは困難である。また多量に噴霧すると本来の燃焼にも悪影響(未燃現象の発生)を及ぼし法規制による各種ガスの排出基準値を満足することが困難となる。
【0010】
また、乾留処理による方法は、被処理物を燃焼させることなく、熱分解させることから、焼却炉ほどの不安定要因は除去されやすい。しかし、焼却炉と同様に熱処理炉内にアルカリ物質を噴霧したものは、焼却処理の場合と同様の効果しか期待できない。
【0011】
また、上記の各処理方法において、排ガスが多量のハロゲン物質(特に塩素系ガス)を含む場合には、加熱処理炉及び煙道など施設の腐食が著しいものとなり、施設の耐久性の低下、排ガス漏れなどを引き起こす恐れがあり、保守が大変となる。
【0012】
以上のいずれの処理方法も、被処理物から一旦塩素系ガスを発生させた後、後工程で(バグフィルタ,燃焼などの手段等により)塩素系ガス、ダイオキシン類を除去するために問題が発生している。
【0013】
これらの課題を解決するために、本願の出願人は、先に加熱処理する際にアルカリ系の添加剤を混入することを提案している(特開平9−155326)。
【0014】
上記の乾留処理による各処理方法は、被処理物を熱分解して分解ガスを析出する処理は、単一処理炉で行われている。即ち、単一の処理炉の一方の供給口から被処理物を供給し、他方の排出口から炭化物を排出する一連の過程で行われる。この一連の過程において、被処理物を撹拌しながら、加熱処理(例えば、1時間、300℃〜600℃)することで、被処理物の乾燥→熱分解→減容(炭化)の各処理が連続して行われる。
【0015】
ところで、ハロゲン物質が被処理物から熱分解して析出する温度は、200℃〜350℃程度であり、処理炉内に分解析出したハロゲン物質、特に、塩素系ガスが充満しやすい状態となる。従って、この時点でダイオキシン類を生成する可能性がある。
【0016】
また、被処理物は撹拌されており、発生した塩素系ガスが被処理物に巻き込まれやすく、被処理物が350℃以上の温度に加熱されて炭化物となった場合には、炭化物に吸着されてしまう。
【0017】
処理炉内に生成した炭化物,塩素系ガス,生成されたダイオキシン類が同時に存在すると、炭化物はこれらの塩素系ガス,ダイオキシン類を吸着してしまい、一旦吸着したダイオキシン類を炭化物から除去することは非常に困難である。
【0018】
従って、生成した炭化物は再利用することは困難で、残渣として最終処分場に埋設するか、非常に高温にて溶融処理する等の別の手段によって処理する必要がある。
【0019】
そこで、本発明が解決しようとする課題は、被処理物の分解処理時に被処理物に付着している水分を除去した後に温度を上げて被処理物からハロゲン物質を分解析出し、この析出したハロゲン物質(特に、塩化水素)とアルカリ物質とを確実に接触反応させて、無害な塩化物を形成することで、排ガスおよび残渣の無害化を実現し、この無害化された残渣を別の処理炉で炭化等により減容化し、再利用を可能とすることにある。
【0020】
【課題を解決するための手段】
本願の発明者は、種々実験検討の結果、加熱処理炉は略密閉空間であり、被処理物に付着(又は含有)している水分(H2O)を除去する環境と、その後に被処理物に含まれていてダイオキシン類生成に起因するハロゲン物質(特に、塩素など)を被処理物から分解析出し、且つアルカリ物質と接触反応させる環境と、その後の減容化(炭化,灰化)する環境とを夫々別の環境の加熱処理炉で行えば、前記の課題が解決されることを見い出した。
【0021】
また、アルカリ物質を被処理物に添加して加熱処理することで、ハロゲン物質、特に、塩化水素が分解析出直後にアルカリ物質と接触反応して無害な塩化物を生成し、発生源で排ガスおよび残渣の無害化処理ができ、従来のような塩素系ガスを含有する排気ガスの無害化処理は不要となることも判明した。
【0022】
本発明は、これらの実験検討の結果なされたもので、分解反応工程を、被処理物に付着している水分を加熱して除去する工程と、被処理物が含有しているハロゲン物質(塩素など)を加熱して分解析出し、添加したアルカリ物質とを接触反応させて無害な塩化物を生成する工程に分けて無害化し、次に、この分解反応工程で無害化された被処理物を別の熱処理炉に移送し、炭化する温度350℃(紙類は350℃程度で炭化する)以上で加熱して炭化処理、又は800℃以上に加熱して灰化処理して減容化する。
【0023】
この減容化工程における加熱処理炉内には、塩素系ガス成分,ダイオキシン類は存在しないので、炭化した被処理物が吸着することはない。従って、減容化された炭化物,灰類の無害化が実現でき、資源として再利用が可能となる。
【0024】
そこで、本発明による課題解決の具体的手段は、
ハロゲン物質を含有する被処理物を加熱処理して被処理物の減容化を行う処理方法において、前記加熱処理は、被処理物にアルカリ物質を添加して加熱炉で加熱し、被処理物からハロゲン物質を分解析出させるとともに、アルカリ物質と接触反応させて無害な塩化物を生成することで排ガスの無害化と被処理物の無害化処理を行う分解反応工程と、該分解反応工程で処理した被処理物を炭化等により減容化する減容化工程とから成り、前記分解反応工程は、被処理物から水分を除去する乾燥工程と、無害な塩化物を生成する塩化物生成工程とからなり、これら各工程は夫々異なる加熱処理炉で行うことを特徴とする。
【0025】
即ち、分解反応工程において被処理物を乾燥して水分を除去した後、塩化物生成工程において被処理物にアルカリ物質を添加して200℃〜350℃に加熱することで、被処理物から分解析出した塩素系ガスは発生と同時に周辺に存在するアルカリ物質と接触反応して無害な塩化物に置換生成され、排ガスの無害化ができ、同時に塩素系ガスを含まない被処理物となる。
【0026】
分解反応工程で添加するアルカリ物質は、ハロゲン物質と反応して無害な塩化物を生成する、アルカリ金属(Na,Kなど)、アルカリ土類金属(Ca,Sr,Ba,Ra)、アルカリ土類金属化合物(石灰,消石灰,炭酸カルシウム,ドロマイドなど)に含まれる物質の中から、少なくとも1種類を選択する。また、分解反応工程は、被処理物を乾燥する乾燥工程を経た後、塩化物生成工程に移る。
【0027】
この処理方法を実現するための処理装置は、被処理物を乾燥する乾燥処理炉と、被処理物に添加したアルカリ物質とを加熱して被処理物からハロゲン物質を分解析出させアルカリ物質と接触反応させて無害な塩化物を生成する塩化物生成炉と、この塩化物生成炉で処理された被処理物を炭化等により減容する減容化加熱処理炉と、これら各処理炉間に被処理物を導くダクトとを備え、これら乾燥処理炉、塩化物生成炉および減容化加熱処理炉は、一端側に被処理物を供給する供給口および他端側にこれを排出する排出口を有する円筒体と、該円筒体の内部を供給口側から排出口側に被処理物を撹拌しながら移送させる手段と、この円筒体を外部から加熱する加熱手段とで構成し、乾燥処理炉の排出口と塩化物生成炉の供給口とをダクトで連通し、塩化物生成炉の排出口と、前記減容化加熱処理炉の供給口とを他のダクトで連通し、被処理物を乾燥処理炉の供給口から供給し、減容化処理炉の排出口から排出するように構成する。
【0028】
前記の乾燥処理炉と塩化物生成炉と減容化加熱処理炉とを横置きにして上下に順次配置し、乾燥処理炉の排出口と塩化物生成炉の供給口とをダクトで連通し、該塩化物生成炉の排出口と減容化加熱処理炉の供給口とを他のダクトで連通する。このように上下に順次配置することで、乾燥処理炉から塩化物生成炉および減容化加熱処理炉に被処理物がスムーズに移行される。
【0029】
この乾燥処理炉を2基使用する場合は、ダクトの上部にダクトを挾んだ両側に設ける。
【0030】
また、乾燥処理炉と塩化物生成炉とをダクトを挾んで両側の上下に配置し、塩化物生成炉と減容化加熱処理炉とをダクトの同一側面の上下に設ける。
【0031】
上,下ではなく平面的に連通する場合は、ダクト内に被処理物を移送するスクリュー体又はコンベヤ等の移送手段が必要となる。
【0032】
この水分を除去する乾燥処理炉、ハロゲン物質を分解析出して反応させる塩化物生成炉および/又は減容化処理する加熱処理炉は、少なくとも1基は配置する必要があるが必要に応じて複数配置してもよい。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を図面によって説明する。本発明は上記のように、ハロゲン物質を含有する被処理物を加熱処理する際、被処理物からハロゲン物質を分解析出してアルカリ物質からなる処理剤と反応する分解反応工程と、この分解反応工程で処理した被処理物を炭化処理等により減容化する工程とを異なる加熱処理炉で行うとともに、分解反応工程を、被処理物から水分を除去する乾燥工程と、析出したハロゲン物質とアルカリ物質とを反応させて無害な塩化物を生成する塩化物生成工程とに分け、これらの工程を異なる加熱処理炉で行うことに特徴を有する。図1にこの基本思想を説明するための廃棄物処理設備の概念図を示す。
【0034】
図1において10は乾燥処理炉、20は塩化物生成炉で、乾燥処理炉10で水分(H2O)を除去した被処理物とアルカリ物質からなる添加剤とを加熱処理して分解したハロゲン物質(特に、塩素)とアルカリ物質とを反応させて無害な塩化物を生成する。30は減容化加熱処理炉を示す。
【0035】
乾燥処理炉10は、回転自在の円筒体11と、該円筒体11の外周にガスダクトを形成し熱ガスを導入して円筒体11を加熱する加熱筒12と、円筒体11の一方の端部に設けられ、被処理物を円筒体11内に供給する供給口13と、円筒体11の他方の端部に設けられた排出口14とで構成され、この円筒体11は回転駆動手段15によって回転駆動される。回転駆動手段15は駆動用モータ15a,駆動歯車15b,円筒体11に設けられた従動歯車15cから成る。16は供給口13側を包囲する供給側ダクト、17は排出口14側を包囲する排出側ダクト、18は加熱コイル(誘導加熱又は抵抗体)で、加熱筒12の両側の円筒体11の外周に、円筒体11とは非接触で且つ近接して設けられ、加熱筒12と共に加熱手段を構成する。
【0036】
なお、図中19は温度センサ装着用筒、Pは動的シールを示している。
【0037】
塩化物生成炉20および減容化加熱処理炉30は、乾燥処理炉10と基本的な構成は同じである。よって、これと同一又は相当部分には20および30の次の一桁を同じ数字とし、(例えば円筒体11,21,31、加熱筒12,22,32)詳細な説明を省略する。
【0038】
40はホッパで、被処理物とアルカリ物質からなる処理剤とを混合して投入し、該被処理物は開閉バルブ(開閉扉)31を介して円筒体11の供給口13から円筒体11内に供給する。被処理物としては、一般廃棄物,産業廃棄物等の固形物や灰類、汚泥いずれでもよい。
【0039】
また、このホッパ40は、破砕機能と処理剤の混合機能を持たせ、固形物を破砕しながら処理剤と混合してもよいし、また、あらかじめ破砕した被処理物と処理剤とを混合して投入してもよい。
【0040】
処理剤としてのアルカリ物質は、ハロゲン物質と反応して無害な塩化物を生成する、アルカリ金属(Na,Kなど)、アルカリ土類金属(Ca,Sr,Ba,Ra)、アルカリ土類金属化合物(石灰,消石灰,炭酸カルシウム,ドロマイドなど)、に含まれる物資の中から少なくとも1種類を選択する。
【0041】
乾燥処理炉10の円筒体11と、塩化物生成炉20の円筒体21および減容化加熱処理炉30の円筒体31とは上下方向に配設され、円筒体11の排出側ダクト17と円筒体21の供給口23とは開閉バルブ(開閉扉)42を介して連通され、また、塩化物生成炉20の円筒体21の排出側ダクト27と減容化加熱処理炉30の供給口33とは、開閉バルブ43を介して連通している。この減容化加熱処理炉30の円筒体31の排出口34は排出側ダクト37,開閉バルブ44を介して溶解槽45に連通し、減容化処理後の残渣および反応済みの処理剤を排出する。
【0042】
46は燃焼装置で、例えばLNGを燃焼させる場合は、LNGタンク47からのLNGを燃焼して熱ガスを発生させる。この熱ガスは減容化加熱処理炉30の加熱筒32−連絡管48−塩化物生成炉20の加熱筒22−連絡管49−乾燥処理炉10の加熱筒12の順に送り込まれ、円筒体31,21,11を順次加熱する。これら円筒体を加熱した後、更に、排出管48を経て乾燥手段50を加熱し、管路41を介して排ガスの燃焼手段52に送り込まれる。
【0043】
燃焼手段52は、乾燥処理炉10の排出側ダクト17,塩化物生成炉20の供給側ダクト26および減容化加熱処理炉30の排出側ダクト37内のガスと燃焼装置46から送出され、各加熱部に利用した後のガスを燃焼させ、次工程のバグフィルタ51に送り込む。
【0044】
この燃焼手段52では、ガスを燃焼してタール分を除去し、且つバグフィルタ51の耐久温度以下にガスを冷却して送り込む。
【0045】
バグフィルタ51では処理剤で反応処理した後、未反応の処理剤をホッパ40に送って再利用し、排ガスは排ガス燃焼部53に送り込み、ここでLNG等により燃焼処理を行い、煙突54から放出する。
【0046】
55は脱水手段で、溶解槽45内の水溶液を固、液分離し、固形物は乾燥手段50で乾燥した後、炭化物ホッパ56に排出し、液体は、水処理手段57で中和剤等により中和した後、溶解層45に返送して、再利用を図る。
【0047】
図2は円筒体11,21および31の縦断面図で、内部に複数の羽根Sを有し、円筒体の回転により、内部に供給された被処理物、また被処理物と処理剤の混合物を撹拌しながら供給口側から排出口側に移動させる。この移動をスムーズにするため、円筒体11,21,31を供給口側を排出口側より若干高く傾斜して設備してもよい。
【0048】
次に一連の処理方法について説明すると、まず、燃焼装置46でLNGを燃焼して熱ガスを発生させ、加熱筒32,22及び12の順に供給する。また必要に応じて加熱コイル18,28,38に交流電力を供給して円筒体31,21,11を加熱する。次に/又は同時にハロゲン物質を含有する被処理物とアルカリ物質からなる処理剤とを混合したもの、又は混合しながらホッパ40から乾燥処理炉10の円筒体11内に供給する。
【0049】
ここで100℃〜200℃の温度で加熱し、被処理物に付着している水分(H2O)を除去する。
【0050】
水分を除去した被処理物は、排出側ダクト17および開閉バルブ42を介して塩化物生成炉20に送り込まれ、該塩化物生成炉20で、ハロゲン物質(特に、塩素系ガス)を分解析出する温度の200℃〜350℃で加熱処理し、塩素系ガス等を被処理物から分解析出させる。この析出した時点で塩素系ガス等は添加している処理剤のアルカリ物質と反応して無害な塩化物に置換生成され、発生ガスおよび残渣のいずれにも有害な塩素成分は無くなり、被処理物の無害化が実現できる。
【0051】
このハロゲン物質を析出し、無害化した後の被処理物はダクト27,開閉バルブ43を介して減容化加熱処理炉30の円筒体31に送り、ここで、被処理物が炭化する温度(紙類は350℃程度で炭化が始まる。)350℃〜700℃に加熱して炭化処理、又は800℃以上に加熱して灰化処理して減容化する。この減容化工程の減容化加熱処理炉30内には、塩素系ガス成分、ダイオキシン類は存在しないので、炭化または灰化した被処理物にはこれらの塩素系ガスやダイオキシン類を吸着することはない。
【0052】
この減容化した被処理物と反応済みの処理剤とはダクト37,開閉バルブ44を介して溶解槽45内に排出される。この溶解槽45内で、減容化された被処理物、反応した後の処理剤等を水に溶解し、これを脱水手段55で固体物と液体とを分離して、固体物は乾燥手段50で乾燥した後、炭化物ホッパ56から取り出し、一方、液体は水処理手段57で処理済みの処理剤を回収し、中和剤等を注入して処理した後、溶解槽45に戻し再利用する。
【0053】
一方、各処理炉の円筒体内のガスは、ダクト17,26および37から管路41により燃焼手段52に送り込まれ、ここで燃焼してタール分を除去し、バグフィルタ51の耐久温度以下にガスを冷却した後、バグフィルタ51に送り込む。バグフィルタ51では処理剤を使用し周知の手段で、無害化処理をし更に排ガス燃焼部53で燃焼処理した後、煙突54から排出する。
【0054】
乾燥処理炉10,塩化物生成炉20および減容化加熱処理炉30の加熱制御は、概略次のように行われる。
【0055】
乾燥処理炉10においては、塩化物生成炉20の加熱筒22との連絡管49にバルブ(開閉又は、3方弁)を設け、このバルブの開閉制御により、又は連絡管49を複数本設けて使用本数をバルブ開閉制御により選択する手段、又は加熱コイル18に供給する交流電流、もしくは誘導加熱の場合は周波数を制御する手段で行われる。これらの制御はダクト17内のHCI等のガス濃度をガス濃度計58又は温度センサ装着用筒19内に設けられた温度センサによる検出温度により自動又は手動で制御される。
【0056】
また、塩化物生成炉20においては、乾燥処理炉10とほぼ同じで、減容化加熱処理炉30の加熱筒32との連絡管48のバルブ開閉制御又は加熱コイル28への電流(周波数)制御によって行われる。
【0057】
また、減容化加熱処理炉30においては、上記とほぼ同じであるが、燃焼装置46によるLNG燃焼手段の制御が主となる。これらの制御はいずれもダクト26,27,36,37内のHCI濃度を計測するガス濃度計59,60,61,62および温度を反映して制御する。
【0058】
なお、図1の実施の形態は、乾燥処理炉10、塩化物生成炉20、減容化加熱処理炉30内の被処理物を撹拌して移動する手段として、円筒体の中に図2に示すような羽根を設けて円筒体自体を回転させて移動するようにした場合であるが、必ずしも円筒体を回転させる必要はなく、円筒体を固定し、内部の軸線方向に長いスクリュー体を設け、スクリュー体を外部から回転駆動するようにしてもよい。
【0059】
また、円筒体を加熱する加熱手段は、熱ガスによる加熱と加熱コイルによる加熱の両方を適用した場合について説明したが、いずれか一方の加熱手段でもよい。
【0060】
また、減容化加熱処理炉30での減容化は、被処理物を炭化した後、金属類等を分離回収し、その他の残渣を高温で灰化するようにしてもよい。
【0061】
以上のように本発明は、被処理物と共存する水分の除去(乾燥)工程と、被処理物に含有するハロゲン物質(特に、塩素)を分解析出してアルカリ物質と接触反応させる塩化物生成工程と、その後の被処理物を炭化などにより減容化する減容化工程とを別々の加熱処理炉で行い、残渣中にハロゲン物質(特に、塩化水素)が反応残存しないようにすることを基本としているので、これらの処理を行わせる処理炉の数および配置の仕方は、設置場所の条件等により任意に選定しても実現できる。
【0062】
その実施の形態を模式図によって説明する。
【0063】
今、乾燥処理炉を乾燥手段1、塩化物生成炉を塩化生成手段2、減容化加熱処理炉を減容手段3、これらを連絡するダクトを4とすると、図1の処理装置は図3のように模式化される。
【0064】
即ち、乾燥手段1と塩化生成手段2および減容手段3とを横置きにして上下に順次配置し、乾燥手段1の排出口と塩化生成手段2の供給口とをダクト4で連通し、また、塩化生成手段2の排出口と減容手段3の供給口とをダクト4′で連通し、乾燥手段の供給口から被処理物を供給し、減容手段3の排出口から炭化等により減容化した被処理物を排出する。なお、図中、5,5′はダクト4,4′内に設けられた開閉扉(開閉バルブ)で、被処理物の移送量を制御可能にする。
【0065】
図4は第2の実施の形態の模式図の正面図で、第1の実施の形態に乾燥手段1,1′の2基設け、両乾燥手段で乾燥して塩化生成手段2に供給する場合である。
【0066】
図5は第3の実施の形態の模式図の正面図で、塩化生成手段2と減容手段3とはダクト4′の同一側面に配置し、乾燥手段1はダクト4を挟んだ塩化生成手段の反対側に設置した場合である。
【0067】
なお、上記の各実施の形態は、ダクトを立設(垂直又は傾斜して)し、各処理手段を上下に配置し、各処理手段間の被処理物の移動を流下により行う場合であるが、必ずしも上下に配置する必要はなく、設置場所の条件等によっては、平面的に配置してもよい。但し、この場合は、ダクト内に被処理物を移送させる移送手段(例えば回転駆動されるスクリュー)を設ける必要がある。
【0068】
【発明の効果】
本発明は以上のように、最初に被処理物に付着している水分を除去し、次に被処理物の含有するハロゲン物質(特に、塩素系ガス等)を分解析出させると同時にアルカリ物質と反応させる分解反応手段と、その後の被処理物を加熱して減容化する手段とを別の加熱処理炉で行うようにしたので、次の効果を奏する。
【0069】
(1)被処理物の含有するハロゲン物質(塩素系ガスなど)を分解析出させる分解反応工程において、被処理物と添加しているアルカリ物質とを共に加熱することで、分解析出した塩素系ガスとアルカリ物質との接触反応は迅速に且つ確実に行われ、無害な塩化物を生成して発生ガス及び残渣を無害化し、排ガス中には、塩素系ガスは残存しないので、ダイオキシンの生成は防止できる。
【0070】
また、煙道の腐食もなく、高温の排ガス又は高温にして、熱源、燃料として安全に使用できる。
【0071】
(2)塩素系ガスを除去した被処理物を加熱して減容化する減容化工程は、先の分解反応工程の加熱処理炉とは別の加熱処理炉で行うので、減容化工程では、残渣中にはハロゲン物質に起因して生成されるダイオキシン類は存在しないので、ダイオキシン類が残渣(炭化物,灰類)に吸着混入することはなく、残渣の無害化が実現でき、残渣から金属,炭化物を取り出して再利用できる。
【0072】
(3)ハロゲン物質を分解析出する分解反応工程において、まず被処理物に付着している水分を除去する乾燥工程後に、温度を上げてハロゲン物質の分解析出を行うことから確実に分解析出できる。
【0073】
しかも、添加しているアルカリ物質と接触反応させて無害な塩化物を生成でき、有害なダイオキシン類の生成を起こすことはなく、従って、次工程で被処理物を減容化し、排出する残渣(炭化物、灰類)に残存することはなく、これら残渣から金属の抽出、又はガラス化原料として有益に再利用することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態の廃棄物処理設備の概念図。
【図2】円筒体の縦断面図。
【図3】本発明の第1の実施の形態の模式図。
【図4】本発明の第2の実施の形態の模式図。
【図5】本発明の第3の実施の形態の模式図。
【符号の説明】
1…乾燥手段
2…塩化生成手段
3…減容手段
4,4′…ダクト
5…開閉扉
10…乾燥処理炉
20…塩化物生成炉
30…減容化加熱処理炉
11,21,31…円筒体
12,22,32…加熱筒
13,23,33…供給口
14,24,34…排出口
15,25,35…回転駆動手段
16,26,36…供給側ダクト
17,27,37…排出側ダクト
18,28,38…加熱コイル
19,29,39…温度センサ装着用筒
40…ホッパ
41…管路
42,43,44…開閉バルブ
45…溶解槽
46…燃焼装置
47…LNGタンク
48…排出管
49…連絡管
50…乾燥手段
51…バグフィルタ
52…燃焼手段
53…排ガス燃焼部
54…煙突
55…脱水手段
56…炭化物ホッパ
57…水処理手段
58,59,6,61,62…ガス濃度計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treatment method and a treatment apparatus for treating an object to be treated such as waste containing a large amount of halogen (chlorine, bromine, iodine, etc.) by performing a thermal treatment such as thermal decomposition, and in particular, a pre-process. In the decomposition reaction step of the above, when removing the moisture adhering to the object to be processed and decomposing and precipitating the halogen substance (especially chlorine) contained in the object to be processed, it is reacted with an alkali substance to form harmless chloride. By generating substitution, harmful dioxins are prevented from being generated, and the exhaust gas is harmless and the object to be treated is harmed.In the next process, the harmless object to be treated is separated from the previous process. The present invention relates to a processing method and apparatus for reducing the volume of carbonization or ashing in a heat treatment furnace so that no halogen substance remains in the residue.
[0002]
[Prior art]
General waste such as municipal waste, industrial waste, shredder dust, vinyl chloride and other waste contain halogen substances (chlorine, bromine, iodine, fluorine, astatine), especially incineration because they contain a large amount of chlorine components. When heat treatment is performed, a large amount of chlorine-based gas (hydrogen chloride, chlorine) is generated, and the generated gas (exhaust gas), the residue after incineration (treated ash), and the highly toxic dioxin in the fly ash in the exhaust gas To produce problems such as environmental pollution and deterioration of incineration facilities. Therefore, development of techniques for solving these problems has been advanced, and the following techniques are currently disclosed.
[0003]
(1) Treatment method by incineration This method is to incinerate wastes and other objects to be treated in an incinerator. When incinerated, spray an alkali substance (lime powder) into the incinerator and incinerate it. A contact reaction with the chlorine-based gas in the generated exhaust gas is performed to generate harmless chloride (calcium chloride) to make the exhaust gas harmless (for example, JP-A-54-93864).
[0004]
(2) Treatment method by dry distillation (pyrolysis) As this treatment method, pyrolysis is performed using a single rotary furnace (rotary kiln), the discharged residue is incinerated with a post-stoker, and the pyrolysis gas is reburned. A method has been proposed in which a high-temperature gas generated by combustion in a chamber is passed through a boiler or the like, and then guided to a reaction tower, in which the slaked lime slurry is sprayed and reacted with exhaust gas in the same manner as described above. (For example, JP-A-5-33916).
[0005]
Also, heat treatment of the waste by a low-temperature carbonization method in a rotary processing furnace converts it into low-temperature carbonization gas and pyrolysis residue, which is burned in a high-temperature combustion furnace to produce molten liquid slag, which is cooled. There has also been proposed a processing method in which the generated gas is solidified into a glass and the generated gas is processed by a boiler, a removal filter, and a gas purification device and discharged (for example, JP-A-8-510789).
[0006]
As another method, when heat-treating an object to be treated in a heat treatment furnace, an appropriate amount of an alkaline additive that easily reacts with the chlorine component is mixed and heat-treated, and the chlorine component is fixed to the treated ash and harmless. In addition, a method has been proposed in which fresh exhaust gas is obtained and the treated ash is freed from chlorine by water washing or the like (Japanese Patent Laid-Open No. 9-155326).
[0007]
[Problems to be solved by the invention]
In the method by the incineration treatment described above, since the alkaline substance is sprayed in the incinerator, the treatment is performed at a place close to the generation source, but the treatment is performed after the chlorine-based gas is once generated.
[0008]
Therefore, according to this method, the removal effect of chlorine gas can be expected to some extent, but it is difficult to sufficiently satisfy the emission standard values of various gases according to the revised regulations.
[0009]
Moreover, since it is incineration, the reaction temperature is high and it is difficult to maintain a stable reaction. Moreover, if it sprays in large quantities, it will adversely affect the original combustion (occurrence of unburned phenomenon) and it will be difficult to satisfy the emission standard values of various gases stipulated by laws and regulations.
[0010]
Moreover, since the method using the dry distillation process thermally decomposes the object to be treated without burning it, the instability factor as in an incinerator is easily removed. However, the same effect as in the case of incineration can be expected when the alkali substance is sprayed into the heat treatment furnace as in the incinerator.
[0011]
Also, in each of the above treatment methods, if the exhaust gas contains a large amount of halogen substances (especially chlorine-based gas), the corrosion of facilities such as heat treatment furnaces and flues becomes significant, and the durability of the facility is reduced. There is a risk of leaks and maintenance becomes difficult.
[0012]
In any of the above processing methods, once a chlorine-based gas is generated from the object to be processed, problems arise due to removal of the chlorine-based gas and dioxins in a later process (by means such as a bag filter or combustion). is doing.
[0013]
In order to solve these problems, the applicant of the present application has proposed that an alkaline additive is mixed in the heat treatment (Japanese Patent Laid-Open No. 9-155326).
[0014]
In each treatment method using the above-mentioned dry distillation treatment, the treatment for thermally decomposing an object to be treated and precipitating the decomposition gas is performed in a single treatment furnace. That is, it is carried out in a series of processes in which a workpiece is supplied from one supply port of a single processing furnace and carbide is discharged from the other discharge port. In this series of processes, the heat treatment (for example, 1 hour, 300 ° C. to 600 ° C.) is performed while stirring the object to be processed, so that each treatment of the object to be processed is dry → thermal decomposition → volume reduction (carbonization) It is done continuously.
[0015]
By the way, the temperature at which the halogen substance is thermally decomposed and deposited from the object to be processed is about 200 ° C. to 350 ° C., and the halogen substance decomposed and deposited in the processing furnace, in particular, the chlorine-based gas is easily filled. . Therefore, dioxins may be generated at this point.
[0016]
In addition, the object to be treated is agitated, and the generated chlorine-based gas is likely to be caught in the object to be treated. When the object to be treated is heated to a temperature of 350 ° C. or more and becomes carbide, it is adsorbed by the carbide. End up.
[0017]
If the generated carbide, chlorine-based gas, and generated dioxins exist in the processing furnace at the same time, the carbide adsorbs these chlorine-based gas and dioxins, and once adsorbed dioxins are removed from the carbide. It is very difficult.
[0018]
Therefore, it is difficult to reuse the produced carbide, and it is necessary to embed it as a residue in a final disposal site or to treat it by another means such as melting at a very high temperature.
[0019]
Therefore, the problem to be solved by the present invention is to remove the moisture adhering to the object to be processed at the time of decomposition of the object to be processed, and then raise the temperature to decompose and precipitate the halogen substance from the object to be processed. Halogenous substances (especially hydrogen chloride) and alkaline substances are reliably brought into contact reaction to form harmless chlorides, thereby detoxifying exhaust gases and residues, and this detoxified residue is treated separately. The purpose is to reduce the volume by carbonization in a furnace and to enable reuse.
[0020]
[Means for Solving the Problems]
As a result of various experimental studies, the inventor of the present application is that the heat treatment furnace is a substantially sealed space, removes moisture (H 2 O) adhering (or contained) to the object to be treated, and then the object to be treated. Environments in which halogen substances (especially chlorine, etc.) that are contained in the product and are caused by dioxin formation are decomposed and deposited from the object to be treated and contacted with alkaline substances, and then volume reduction (carbonization, ashing) It has been found that the above-mentioned problems can be solved by performing the heat treatment in different environments.
[0021]
In addition, by adding an alkaline substance to the material to be treated and heat-treating it, the halogen substance, especially hydrogen chloride, reacts with the alkali substance immediately after decomposition and decomposition to produce harmless chloride, and exhaust gas is generated at the source. It was also found that the residue can be detoxified, and the conventional exhaust gas containing chlorine gas is not required to be detoxified.
[0022]
The present invention has been made as a result of these experimental studies. The decomposition reaction step includes a step of heating and removing moisture adhering to the object to be treated, and a halogen substance (chlorine) contained in the object to be treated. Etc.) is decomposed by heating and contacted with the added alkaline substance to produce harmless chlorides, detoxified, and then the detoxified material to be detoxified in this decomposition reaction process It is transferred to another heat treatment furnace and heated at a carbonization temperature of 350 ° C. or higher (paper is carbonized at about 350 ° C.) or higher and carbonized, or heated to 800 ° C. or higher and ashed to reduce the volume.
[0023]
Since the chlorine-based gas component and dioxins are not present in the heat treatment furnace in this volume reduction process, the carbonized object is not adsorbed. Therefore, detoxification of the reduced carbide and ash can be realized, and reuse as a resource becomes possible.
[0024]
Therefore, specific means for solving the problems according to the present invention are as follows:
In the treatment method for reducing the volume of the object to be processed by heat-treating the object to be processed containing the halogen substance, the heat treatment is performed by adding an alkali substance to the object to be processed and heating it in a heating furnace. A decomposition reaction step of decomposing and precipitating a halogen substance from the catalyst, generating a harmless chloride by contact reaction with an alkali substance, and detoxifying the exhaust gas and detoxifying the object to be treated; and A volume reduction step of reducing the volume of the treated material by carbonization or the like, and the decomposition reaction step includes a drying step for removing moisture from the material to be treated, and a chloride production step for producing harmless chloride. These steps are performed in different heat treatment furnaces.
[0025]
In other words, after the treatment object is dried and water is removed in the decomposition reaction step, an alkaline substance is added to the treatment object in the chloride production step and heated to 200 ° C. to 350 ° C. The chlorinated gas that has been analyzed is contacted with an alkaline substance present in the vicinity at the same time as it is generated and replaced with harmless chloride to make the exhaust gas harmless, and at the same time, the material to be treated does not contain chlorinated gas.
[0026]
Alkaline substances added in the decomposition reaction step react with halogen substances to produce harmless chlorides, alkali metals (Na, K, etc.), alkaline earth metals (Ca, Sr, Ba, Ra), alkaline earths At least one type is selected from substances contained in metal compounds (lime, slaked lime, calcium carbonate, dolomide, etc.). The decomposition reaction step goes to a chloride generation step after passing through a drying step of drying the object to be processed.
[0027]
A processing apparatus for realizing this processing method includes a drying furnace for drying an object to be processed and an alkali substance added to the object to be processed to decompose and precipitate a halogen substance from the object to be processed. A chloride generation furnace that produces harmless chloride by contact reaction, a volume reduction heat treatment furnace that reduces the volume of the object to be processed in the chloride generation furnace by carbonization, and the like. And a drying treatment furnace, a chloride generation furnace, and a volume reduction heat treatment furnace, each of which includes a supply port for supplying the object to be processed and a discharge port for discharging the object to the other side. And a heating means for heating the cylindrical body from the outside, and a means for transferring the inside of the cylindrical body from the supply port side to the discharge port side while stirring. Between the exhaust outlet and the supply port of the chloride generator through a duct The discharge port of the chloride generation furnace and the supply port of the volume reduction heat treatment furnace communicate with each other through another duct, and the object to be processed is supplied from the supply port of the drying process furnace, and the discharge of the volume reduction treatment furnace is performed. It is configured to discharge from the outlet.
[0028]
The drying treatment furnace, the chloride production furnace, and the volume reduction heat treatment furnace are placed side by side in the up and down direction, and the discharge port of the drying treatment furnace and the supply port of the chloride production furnace are connected by a duct, The discharge port of the chloride generation furnace and the supply port of the volume reduction heat treatment furnace are communicated with each other through another duct. By sequentially arranging in this manner, the workpiece is smoothly transferred from the drying treatment furnace to the chloride production furnace and the volume reduction heat treatment furnace.
[0029]
When two drying treatment furnaces are used, they are provided on both sides of the duct in the upper part of the duct.
[0030]
In addition, a drying treatment furnace and a chloride production furnace are disposed above and below both sides of the duct, and a chloride production furnace and a volume reduction heat treatment furnace are provided above and below the same side surface of the duct.
[0031]
When communicating in a plane rather than up and down, a transfer means such as a screw body or a conveyor for transferring an object to be processed into the duct is required.
[0032]
At least one drying treatment furnace for removing moisture, a chloride production furnace for decomposing and reacting a halogen substance, and / or a heat treatment furnace for volume reduction treatment must be arranged. You may arrange.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the present invention, as described above, when an object to be processed containing a halogen substance is heat-treated, a decomposition reaction step in which the halogen substance is decomposed and precipitated from the object to be processed and reacted with a treatment agent made of an alkaline substance, and this decomposition reaction A process for reducing the volume of the object to be processed in the process by carbonization or the like is performed in a different heat treatment furnace, and a decomposition reaction process is performed by a drying process for removing moisture from the object to be processed, a precipitated halogen substance and an alkali. It is characterized in that it is divided into a chloride generation process in which a substance is reacted to generate harmless chloride, and these processes are performed in different heat treatment furnaces. FIG. 1 is a conceptual diagram of a waste treatment facility for explaining this basic idea.
[0034]
In FIG. 1, 10 is a drying treatment furnace, 20 is a chloride production furnace, and a halogen which is decomposed by heat-treating an object to be treated from which moisture (H 2 O) has been removed in the drying
[0035]
The drying
[0036]
In the figure, 19 indicates a temperature sensor mounting cylinder, and P indicates a dynamic seal.
[0037]
The basic structure of the
[0038]
[0039]
Further, the
[0040]
Alkaline substances as treatment agents react with halogen substances to produce harmless chlorides, alkali metals (Na, K, etc.), alkaline earth metals (Ca, Sr, Ba, Ra), alkaline earth metal compounds (Lime, slaked lime, calcium carbonate, dolomide, etc.)
[0041]
The
[0042]
46 is a combustion device, for example, when LNG is burned, the LNG from the
[0043]
The combustion means 52 is sent out from the gas in the
[0044]
The combustion means 52 burns the gas to remove the tar, and cools and sends the gas below the durable temperature of the
[0045]
In the
[0046]
Dehydration means 55 solidifies and separates the aqueous solution in the dissolution tank 45, and the solid matter is dried by the drying means 50 and then discharged to the
[0047]
FIG. 2 is a longitudinal sectional view of the
[0048]
Next, a series of processing methods will be described. First, LNG is burned by the
[0049]
Here, heating is performed at a temperature of 100 ° C. to 200 ° C. to remove moisture (H 2 O) adhering to the object to be processed.
[0050]
The processed material from which moisture has been removed is sent to the
[0051]
The object to be processed after depositing and detoxifying the halogen substance is sent to the
[0052]
The volume-reduced object to be treated and the reacted treatment agent are discharged into the dissolution tank 45 through the
[0053]
On the other hand, the gas in the cylindrical body of each processing furnace is sent from the
[0054]
The heating control of the drying
[0055]
In the drying
[0056]
Further, the
[0057]
In the volume reduction
[0058]
In the embodiment shown in FIG. 1, as a means for stirring and moving the object to be processed in the drying
[0059]
Moreover, although the heating means which heats a cylindrical body demonstrated the case where both the heating by a hot gas and the heating by a heating coil were applied, any one heating means may be sufficient.
[0060]
The volume reduction in the volume reduction
[0061]
As described above, the present invention includes a process for removing (drying) water coexisting with the object to be treated, and generating chloride by causing the halogen substance (especially chlorine) contained in the object to be decomposed and contact-reacted with an alkali substance. The process and the subsequent volume reduction process to reduce the volume of the object to be processed by carbonization etc. are performed in separate heat treatment furnaces, so that halogen substances (especially hydrogen chloride) do not remain in the residue. Since it is based, the number and arrangement of processing furnaces for performing these processes can be realized by arbitrarily selecting the conditions according to the installation location.
[0062]
The embodiment will be described with reference to schematic views.
[0063]
Now, assuming that the drying treatment furnace is the drying means 1, the chloride production furnace is the chloride production means 2, the volume reduction heating treatment furnace is the volume reduction means 3, and the duct connecting them is 4, the treatment apparatus of FIG. It is modeled as follows.
[0064]
That is, the drying means 1, the chloride generation means 2 and the volume reduction means 3 are placed horizontally and sequentially arranged one above the other, and the discharge port of the drying means 1 and the supply port of the chloride generation means 2 are communicated with each other through the
[0065]
FIG. 4 is a front view of the schematic diagram of the second embodiment. In the first embodiment, two drying means 1 and 1 ′ are provided, and the two drying means are used for drying and supplied to the chloride generation means 2. It is.
[0066]
FIG. 5 is a front view of the schematic diagram of the third embodiment. The chloride generating means 2 and the
[0067]
Each of the above embodiments is a case where a duct is erected (perpendicularly or inclined), each processing means is arranged up and down, and a workpiece is moved between the processing means by flowing down. However, it is not always necessary to arrange them vertically, and they may be arranged in a plane depending on the conditions of the installation location. However, in this case, it is necessary to provide transfer means (for example, a screw that is rotationally driven) for transferring the object to be processed in the duct.
[0068]
【The invention's effect】
As described above, the present invention first removes the water adhering to the object to be treated, and then decomposes and precipitates the halogen substance (especially chlorine-based gas) contained in the object to be treated, and at the same time an alkaline substance Since the decomposition reaction means for reacting with and the means for reducing the volume of the object to be processed thereafter by heating are performed in separate heat treatment furnaces, the following effects can be obtained.
[0069]
(1) In the decomposition reaction step of decomposing and precipitating halogen substances (chlorine gas etc.) contained in the object to be treated, chlorine that has been decomposed and precipitated by heating both the object to be treated and the added alkali substance. The catalytic reaction between the system gas and the alkaline substance is carried out quickly and reliably, producing harmless chlorides to make the generated gas and residue harmless, and since no chlorine gas remains in the exhaust gas, dioxins are generated. Can be prevented.
[0070]
Moreover, it can be safely used as a heat source and fuel without corrosive flue and by making it hot exhaust gas or high temperature.
[0071]
(2) The volume reduction process for heating and reducing the volume of the object from which chlorine gas has been removed is carried out in a heat treatment furnace different from the heat treatment furnace in the previous decomposition reaction process. In the residue, there are no dioxins generated due to halogen substances in the residue, so the dioxins are not adsorbed and mixed into the residue (carbides, ash), and the residue can be made harmless. Metal and carbide can be taken out and reused.
[0072]
(3) In the decomposition reaction step of decomposing and precipitating the halogen substance, first, after the drying step to remove the water adhering to the object to be processed, the temperature is raised and the halogen substance is decomposed and precipitated, so it is reliably analyzed. I can go out.
[0073]
Moreover, it can generate harmless chlorides by contact reaction with the added alkaline substance, and does not cause generation of harmful dioxins. It does not remain in the carbides and ash), and can be usefully reused as a metal extraction or vitrification raw material from these residues.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a waste treatment facility according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a cylindrical body.
FIG. 3 is a schematic diagram of the first embodiment of the present invention.
FIG. 4 is a schematic diagram of a second embodiment of the present invention.
FIG. 5 is a schematic diagram of a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (6)
前記加熱処理は、
被処理物にアルカリ物質を添加して加熱炉で加熱し、被処理物からハロゲン物質を分解析出させるとともに、アルカリ物質と接触反応させて無害な塩化物を生成することで排ガスの無害化と被処理物の無害化処理を行う分解反応工程と、
該分解反応工程で処理した被処理物を炭化等により減容化する減容化工程と
から成り、
前記分解反応工程は、
被処理物から水分を除去する乾燥工程と、
無害な塩化物を生成する塩化物生成工程と
からなり、
これら各工程は夫々異なる加熱処理炉で行い、
前記アルカリ物質は、ハロゲン物質と反応して無害な塩化物を生成するアルカリ金属,アルカリ土類金属,アルカリ土類金属化合物に含まれる物質の中から少なくとも1種類を選択されたものであり、
前記乾燥工程、塩化物生成工程及び減容化工程から排出された水蒸気及び乾留ガスは燃焼手段に供給されて燃焼処理されること
を特徴とするハロゲン含有物の処理方法。In a processing method for reducing the volume of a processing object by heat-processing the processing object containing a halogen substance,
The heat treatment includes
An alkaline substance is added to the object to be treated and heated in a heating furnace to decompose and precipitate the halogen substance from the object to be treated, and to produce a harmless chloride by reacting with the alkali substance to produce harmless exhaust gas. A decomposition reaction step for detoxifying the workpiece;
Comprising a volume reduction process for reducing the volume of the material to be processed in the decomposition reaction process by carbonization or the like,
The decomposition reaction step includes
A drying process for removing moisture from the workpiece;
A chloride production process that produces harmless chloride,
Each of these steps is performed in a different heat treatment furnace,
The alkaline substance is selected from at least one kind selected from substances contained in alkali metals, alkaline earth metals, and alkaline earth metal compounds that react with halogen substances to produce harmless chlorides.
The method for treating a halogen-containing material, wherein water vapor and dry distillation gas discharged from the drying step, the chloride generation step and the volume reduction step are supplied to a combustion means for combustion treatment .
被処理物に添加したアルカリ物質を加熱して被処理物からハロゲン物質を分解析出させアルカリ物質と接触反応させて無害な塩化物を生成する塩化物生成炉と、
この塩化物生成炉で処理された被処理物を炭化等により減容する減容化加熱処理炉と、
を備え、
前記乾燥処理炉、前記塩化物生成炉及び前記減容化加熱処理炉は、
一端側に被処理物を供給する供給口および他端側にこれを排出する排出口を有する円筒体と、この円筒体の内部を供給口から排出口側に被処理物を撹拌しながら移送させる手段と、この円筒体を外部から加熱する加熱手段と
で構成し、
前記乾燥処理炉の排出口と前記塩化物生成炉の供給口とはダクトで連通され、
前記塩化物生成炉の排出口と前記減容化加熱処理炉の供給口とは他のダクトで連通され、
被処理物は前記乾燥処理炉の供給口から供給され、前記減容化処理炉の排出口から排出され、
前記ダクト及び前記他のダクトとから排出された水蒸気及び乾留ガスは燃焼手段に供給されて燃焼処理されること
を特徴とするハロゲン含有物の処理装置。A drying furnace for drying the workpiece;
A chloride generating furnace that heats an alkaline substance added to the object to be processed, decomposes and precipitates a halogen substance from the object to be processed, and causes a contact reaction with the alkali substance to generate harmless chloride;
A volume-reducing heat treatment furnace for reducing the volume of the object to be treated that has been treated in the chloride production furnace by carbonization, etc .;
With
The drying treatment furnace, the chloride production furnace and the volume reduction heat treatment furnace are:
A cylindrical body having a supply port for supplying an object to be processed on one end side and a discharge port for discharging the object on the other end side, and transferring the object to be processed from the supply port to the discharge port side while stirring. And a heating means for heating the cylindrical body from the outside,
The discharge port of the drying treatment furnace and the supply port of the chloride generation furnace are communicated by a duct ,
The discharge port of the chloride generation furnace and the supply port of the volume reduction heat treatment furnace are communicated by another duct ,
The object to be processed is supplied from the supply port of the drying processing furnace, discharged from the discharge port of the volume reduction processing furnace ,
The halogen-containing material processing apparatus, wherein water vapor and dry distillation gas discharged from the duct and the other duct are supplied to combustion means for combustion treatment .
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03836898A JP3982040B2 (en) | 1998-02-20 | 1998-02-20 | Method and apparatus for treating halogen-containing materials |
SG1999000527A SG68092A1 (en) | 1998-02-20 | 1999-02-10 | Process and system for treating material containing noxious components |
DE69925056T DE69925056T2 (en) | 1998-02-20 | 1999-02-11 | Method of treating material containing harmful components |
AT99102627T ATE294846T1 (en) | 1998-02-20 | 1999-02-11 | METHOD AND SYSTEM FOR TREATING MATERIALS CONTAINING CONTAMINANT SUBSTANCES |
EP99102627A EP0937766B1 (en) | 1998-02-20 | 1999-02-11 | Process and system for treating material containing noxious components |
CNB991023013A CN1136927C (en) | 1998-02-20 | 1999-02-12 | Process and system for treating material containing noxious components |
NO19990714A NO321447B1 (en) | 1998-02-20 | 1999-02-16 | Process for treating a treatable material containing a harmful compound which is chlorine |
KR1019990005649A KR100288521B1 (en) | 1998-02-20 | 1999-02-19 | Process and System for Treating Material Containing Noxious Components |
US09/253,051 US6376738B1 (en) | 1998-02-20 | 1999-02-19 | Process and system for treating material containing noxious components |
US10/094,969 US7029635B2 (en) | 1998-02-20 | 2002-03-12 | System for treating material containing noxious components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03836898A JP3982040B2 (en) | 1998-02-20 | 1998-02-20 | Method and apparatus for treating halogen-containing materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11226547A JPH11226547A (en) | 1999-08-24 |
JP3982040B2 true JP3982040B2 (en) | 2007-09-26 |
Family
ID=12523350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03836898A Expired - Lifetime JP3982040B2 (en) | 1998-02-20 | 1998-02-20 | Method and apparatus for treating halogen-containing materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3982040B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205281A (en) * | 2002-01-16 | 2003-07-22 | Memorial Network Kk | Continuous detoxifying treatment of waste containing organic chlorine compound, recycling method thereof and apparatus therefor |
EP2722382A3 (en) * | 2006-06-14 | 2014-05-07 | Torr-Coal Technology B.V. | Method for the preparation of solid fuels by means of torrefaction as well as the solid fuels thus obtained and the use of these fuels |
CN109266365B (en) * | 2018-09-05 | 2021-12-31 | 任慷平 | Component separation type carbonization system |
-
1998
- 1998-02-20 JP JP03836898A patent/JP3982040B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11226547A (en) | 1999-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3982040B2 (en) | Method and apparatus for treating halogen-containing materials | |
JP3864553B2 (en) | Equipment for processing harmful substances | |
JP2001239248A (en) | Method of heat-treating substance to be treated and treating device | |
JPH11226546A (en) | Apparatus for treating halogen-containing substance | |
JPH11226548A (en) | Method and apparatus for treating halogen-containing substance | |
JPH11226545A (en) | Method and apparatus for treating halogen-containing substance | |
JP3785789B2 (en) | Processing method and processing apparatus for substances containing harmful components | |
JPH11211042A (en) | Method and apparatus for treating halogen containing material | |
JPH11333405A (en) | Apparatus for treating harmful component-containing matter | |
JP3852204B2 (en) | Processing method and processing apparatus for substances containing harmful components | |
JP2000044962A (en) | Plant for treating waste, etc., equipped with exhaust gas combustion apparatus | |
JPH11333406A (en) | Treating equipment for harmful component-containing material | |
JPH11290818A (en) | Waste treatment facility equipped with bag filter device | |
JPH11211040A (en) | Method and device of treating halogen containing substance | |
JPH11263977A (en) | Apparatus for heat-treating material to be treated | |
JPH11333404A (en) | Apparatus for treating harmful component-containing matter | |
JPH11333419A (en) | Apparatus for treating material containing harmful component | |
JPH11207295A (en) | Method and apparatus for treating halogen-containing matter | |
JPH11278887A (en) | Production of cement clinker | |
JP2000044960A (en) | Plant for treating waste product, etc., equipped with exhaust gas combustion apparatus | |
JP2004008917A (en) | Heating treatment method for sludge and facilities therefor | |
JPH11315282A (en) | Apparatus for treating waste containing harmful component | |
JPH11244814A (en) | Treatment of harmful component-containing matter and treating device | |
JPH11333417A (en) | Apparatus for treating material containing harmful component | |
JP3888001B2 (en) | Heat treatment method and processing apparatus for workpiece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070625 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |