Nothing Special   »   [go: up one dir, main page]

JP3966670B2 - Method for producing hot-dip galvanized steel sheet - Google Patents

Method for producing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP3966670B2
JP3966670B2 JP2000091246A JP2000091246A JP3966670B2 JP 3966670 B2 JP3966670 B2 JP 3966670B2 JP 2000091246 A JP2000091246 A JP 2000091246A JP 2000091246 A JP2000091246 A JP 2000091246A JP 3966670 B2 JP3966670 B2 JP 3966670B2
Authority
JP
Japan
Prior art keywords
steel sheet
plating
alloying
dip galvanized
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000091246A
Other languages
Japanese (ja)
Other versions
JP2001279411A (en
Inventor
雅彦 多田
真樹子 井尻
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000091246A priority Critical patent/JP3966670B2/en
Publication of JP2001279411A publication Critical patent/JP2001279411A/en
Application granted granted Critical
Publication of JP3966670B2 publication Critical patent/JP3966670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、Si 0.2 %未満、Mnを0.8 %以上含み、Pを0.02質量%未満含む高張力鋼板を下地鋼板とし、該下地鋼板に溶融亜鉛めっきを施してなる、自動車用鋼板として好適な溶融亜鉛めっき鋼板に係り、とくに、めっき外観、めっき密着性、プレス成形性および溶接性に優れた溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
自動車、家電などの分野では、その使用環境に鑑み、高耐食性を有する表面処理鋼板が要求され、種々の亜鉛系めっき鋼板が開発されて実用化が進んでいる。なかでも、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板などの溶融亜鉛めっき鋼板は、電気亜鉛系めっき鋼板に比べ、製造コストが低廉で、かつ良好な耐食性を有しているため広く使用されている。
【0003】
また、地球温暖化防止の観点から、自動車の燃費向上が大きな課題の1つとなっており、自動車車体の軽量化と、乗員の安全性確保との両立を目指して、使用する鋼板のゲージダウン・高強度化が求められている。
一般に、鋼板の高強度化のために、Si、Mn、P等の固溶強化元素の添加が行われている。しかし、連続式溶融めっき鋼板製造ライン等で鋼板に還元焼鈍を施す際に、Si、Mn等の固溶強化元素は選択酸化されて、表面濃化する。鋼板表面に濃化したこれら固溶強化元素の酸化物により、溶融亜鉛めっき処理に際し、鋼板と溶融亜鉛との濡れ性が著しく低下するため、溶融亜鉛めっき層の密着性が著しく低下する。そして、極端な場合には、溶融亜鉛が鋼板に付着しない、いわゆる不めっきといった現象が生じる。
【0004】
さらに、溶融亜鉛めっきに引き続き、合金化加熱処理を施す場合には、鋼中Pの存在により、合金化が著しく遅延する。このため、合金化を達成するためには、合金化加熱温度を極端に高くするか、あるいは、ライン速度を極端に遅くする必要がある。しかし、合金化加熱温度を極端に高めると、硬くて脆い合金相の生成が助長されてプレス成形時にめっき層が剥離しやすくなり、また、ライン速度を極端に遅くすると、生産性が著しく低下するという問題が生じる。また、合金化加熱温度の上昇や、ライン速度の増加は、従来型の合金化処理装置での合金化処理を困難にすることになる。
【0005】
このような下地鋼板の組成の違い、すなわち鋼種が異なるごとに、合金化加熱温度、ライン速度といった合金化処理条件を頻繁に変更することは、条件の変更に時間を要するため生産能率や歩留りが低下すること、また、処理条件を短時間に安定化させるためにはかなりの熟練を要することなど、安定した合金化処理を維持するには多くの困難が伴うという問題があった。
【0006】
さらに、鋼板中に多量にPが含有されると、Pの粒界偏析により合金化挙動に差が生じ、色調むらが発生するという問題もある。
このような問題に対し、特開平11−50220 号公報には、Mn含有量が0.2 %以上、Nb含有量が0.005 %以上、Ti含有量が0.01%以上のうち1または2以上を満たし、かつP含有量が0.02%以上である高強度鋼板に、硫黄または硫黄化合物をS量として0.1 〜1000mg/m2 付着させた後、水素を含む非酸化性雰囲気で680 ℃以上の温度で焼鈍し、その後少なくとも0.05〜0.30%のAlを含む溶融亜鉛浴に浸漬してめっきを行うP含有高強度溶融亜鉛めっき鋼板の製造方法が提案されている。
【0007】
なお、特開平11−50220 号公報には、用いる硫黄化合物として、硫酸ナトリウム、チオ硫酸ナトリウム、硫酸ソーダ、亜硫酸ソーダ等の無機硫酸塩、チオシアン酸アンモニウム、チオシアン酸カリ等のチオシアン酸塩、アルキルメルカブタン、チオ尿素などの脂肪族有機物が例示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特開平11−50220 号公報に記載された技術では、Mn:0.2 %以上、P:0.02%以上を含む鋼板を使用している。Pを0.02%以上含有する場合には、鋼板粒界に偏析したPがMnの表面濃化を抑制するバリヤー効果を生むのでめっき性には有利であり、硫黄または硫黄化合物を付着させることなく、不めっきを防止することができる。しかし、Pが0.02%未満と鋼中Pが少ない場合には、Mnの表面濃化を抑制する効果が少なくなり、微小な不めっきを完全に防止することはできないという問題があった。
【0009】
また、Pが0.02%以上含有される場合には、スポット溶接性が劣化し、溶接部位から部材破断が発生することがあり、Pで高強度化した鋼板は溶接を必須とする使途には適用できないという問題もある。
このようなことから、Pを0.02%未満に低減しスポット溶接性を改善し、かつ不めっきを防止できる高強度溶融亜鉛めっき鋼板が要望されていた。
【0010】
本発明は、上記した従来技術の問題を解決し、めっき外観、めっき性、めっき密着性、溶接性さらにはプレス成形性に優れる溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するため、Mn:0.8 質量%以上、P:0.02質量%未満を含有する高張力鋼板の表面に付着して、溶融亜鉛めっき性を改善できる薬剤について鋭意研究した。その結果、高張力鋼板の表面に、硫黄または硫黄化合物を付着させて熱処理を施すことにより、溶融亜鉛めっき性が顕著に改善することを知見した。
【0012】
まず、本発明者らが行った実験結果を説明する。
Mn:1.8 質量%、P:0.01質量%を含有する高張力鋼板の表面に、硫黄化合物を含む水溶液(チオ硫酸アンモニウム水溶液)を塗布して、硫黄化合物をS換算で50mg/m2 付着して、N2+5vol%H2雰囲気中で板温:800 ℃とする焼鈍(熱処理)を施し、さらに熱処理後直ちに浴温:470 ℃、浴組成:Zn−0.14質量%Alとした溶融亜鉛めっき処理を施した。熱処理後の鋼板および溶融亜鉛めっき−合金化処理後の鋼板について、グロー放電分光法(GDS)を用いて、表面から深さ方向のMn、S、Fe、Alの分布を分析した。その結果を図1(熱処理後)および図2(溶融亜鉛めっき−合金化処理後)に示す。なお、比較として、硫黄化合物を付着せずに、鋼板を熱処理した場合のGDS分析結果を図3に示す。
【0013】
図3に示すように、硫黄化合物を付着させずに鋼板を熱処理した場合には、表層にMnの濃化が認められる。これに対し、図1に示すように、硫黄化合物を付着して熱処理した鋼板では、Mnの表層への濃化が著しく抑制されている。そして、鋼板表面と、表面より下の地鉄側にもSとMnの濃化が認められた。これはX線回折法により、MnS が生成していることを確認した。
【0014】
溶融亜鉛めっき−合金化処理を施したのちも、図2に示すように、合金化溶融亜鉛めっき層直下の地鉄中にもMnとSが残存していることがわかる。このように、質量%でMnを0.8 %以上、Pを0.02%未満含む鋼板表面に硫黄化合物アンモニウム塩を付着することにより、Mnの表面濃化が抑制でき、めっき性が改善できるという知見を得た。
【0015】
本発明は、上記した知見に基づいてさらに検討を行い、完成されたものである。
すなわち、本発明は、質量%で、Siを0.2 %未満、Mnを0.8 %以上含み、さらにPを0.02%未満含む組成の高張力鋼板の表面に、硫黄化合物として、 アンモニウム塩とアルカリ金属の無機硫酸塩を複合してS換算で0.1 〜1000mg/m2 付着させたのち、熱処理を施し、ついで溶融亜鉛めっき処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法であり、また、本発明では、前記溶融亜鉛めっき処理後、直ちに合金化処理を施すことが好ましい。
【0016】
【発明の実施の形態】
以下、本発明について具体的に説明する。なお、とくに断らないかぎり、組成における質量%は単に%と記す。
本発明では、めっきの下地鋼板として、Si 0.2 %未満、Mnを0.8 %以上、Pを0.02%未満含有する高張力鋼板を用いる。Mn含有量が0.8 %未満では、焼鈍時のMnの表面濃化が少なく、めっき性は良好であり、また合金化の遅延はなく耐パウダリング性も良好であり、本発明の効果が明確とならないため、本発明の対象外とする。なお、本発明では、Mnは冷間圧延性の観点から5%以下とするのが好ましい。5%を超える過剰のMnの含有は、鋼板を硬質化させ、冷間圧延を困難にする。
【0017】
また、本発明では、P含有量を0.02%未満とする。P含有量が0.02%を超えると、スポット溶接性が劣化し、溶接部位から部材破断が発生するため、Pは0.02%未満に限定する。また、本発明では Si 含有量を 0.2 %未満とする。
上記した以外の化学成分は、熱処理時の鋼板表面と表面より下の地鉄側のMn、Sの濃化、さらに好ましくはMnS の生成を阻害しない元素であれば、とくに限定する必要はなく、所望の特性に応じ適宜含有することができる。例えば、C:0.0005〜0.5 %、S:0.05以下、Nb:0.001 〜0.20%以下、Ti:0.1 以下、B:0.005 %以下、Cr:0.05%以下が、それぞれ個別に許容できる。
【0018】
本発明では、上記した組成のSi、Mn、Pを含有する高張力鋼板の表面に、硫黄化合物(S成分)を付着させる。なお、鋼板の表面は、好ましくはアルカリ脱脂、酸洗等により、親水性の表面としておくことが好ましい。親水性の表面としておくことにより、S成分が均一に付着する。
硫黄化合物としては、硫黄化合物である硫酸ナトリウム、チオ硫酸ナトリウム、硫酸ソーダ、亜硫酸ソーダ等のアルカリ金属の無機硫酸塩と、硫酸アンモニウム、亜硫酸アンモニウム、チオ硫酸アンモニウム、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウム等のアンモニウム塩とを複合して使用する。なお、Na、K等のアルカリ金属を含む薬剤を使用すると、鋼板表面に融点の低い金属酸化物が生成し、熱処理炉内のロールに付着しロール表面を傷めることがあり、アンモニウム塩と併用する。
【0019】
これら硫黄化合物を、水または有機溶剤に溶解あるいは混合したり、前処理液(例えば脱脂液、あるいは水洗液)中に混合したり、あるいは冷間圧延時の防錆油中に混合したりして用いることができる。また、付着性を高めるために界面活性剤を添加してもよく、また、反応性を高めるために反応促進剤を添加してもよい。溶液中の硫黄化合物の濃度は、付着膜厚との関係で決定されるが、多くても50%以下、乾燥のしやすさから1〜30%とするのが好ましい。
【0020】
また、硫黄化合物の鋼板への付着方法は、とくに限定するものではなく、設備的あるいはコスト的に有利な方法を用いればよい。例えば、硫黄化合物を溶解した液を、ロールコーターで塗布して付着する方法、布状物で塗布して付着する方法、スプレーで噴霧して付着する方法、あるいは電気めっき法、無電解めっき法、蒸着法等で付着する方法などが好適である。
【0021】
黄化合物の鋼板表面への付着量は、S換算で0.1 〜1000mg/m2 とする。付着量が0.1mg/m2未満では熱処理時にMnの表面濃化を抑制するには不十分であり、めっき性が低下し、不めっきが発生するとともに、合金化処理時に合金化の遅滞が生じる。
付着量が多くなるにしたがい、表面濃化の抑制効果は向上するが、硫黄化合物をS換算で1000mg/m2 超えて付着させると、効果が飽和し、付着量に見合う効果が期待できず、経済的に不利となるうえ、めっき性に悪影響を与える場合がある。なお、好ましくは5 〜200mg/m2である。より好ましくは10〜120mg/m2である。なお、付着量の好適範囲は、熱処理炉内のガス流量、水素濃度、ライン速度等の製造条件により変動するため、上記した範囲内で製造設備に最適の付着量を採用するのが好ましい。なお、付着量の調整は、溶解液の濃度調整、リンガーロールの押付け圧等によるのが好ましい。
【0022】
上記したように、表面に、硫黄化合物を付着させた鋼板はついで、溶融亜鉛めっきを施す前に、熱処理を施される。なお、熱処理前に、自然乾燥、あるいは強制乾燥、あるいは乾燥のための加熱を行ってもよい。あるいは、硫黄化合物を付着させのち直ちに熱処理に供してもよい。
熱処理では、加熱温度を600 ℃以上、好ましくは950 ℃以下とする。加熱温度が600 ℃未満では、鋼板表層におけるMnとSの濃化、さらにMnS 等の硫黄化合物の生成が遅く、長時間の加熱を必要とし生産能率を低下させ経済的でない。加熱温度が950 ℃を超えると、再結晶のためには高すぎ、経済的に不利になるという問題がある。また、熱処理時の雰囲気は、非酸化性あるいは還元性とするのが好ましい。事前に酸化処理を行ってもよい。なお、熱処理における加熱保持時間は、再結晶の観点から0〜120 sとするのが好ましい。また、加熱方式はオールラジアントチューブ方式、ガス加熱方式、誘導加熱方式等の連続方式、あるいはバッチ式の加熱方式等、従来公知の方法がいずれも適用できる。
【0023】
鋼板表面に硫黄化合物を付着させたのち、熱処理を行うことにより、鋼板表面に付着したS成分は、鋼板の地鉄中に拡散し、鋼板中に均一に分散したMn等と反応してMnS 等の硫黄化合物を生成する。この硫黄化合物は、鋼板結晶粒内に限らず、結晶粒界にも生成し、硫黄濃化層を形成する。この結果、Mnの表面濃化(表層でのMn酸化物の生成)を抑制するとともに、この硫黄濃化層が一種のバリヤー層となることにより、Mnの鋼板表層への拡散経路あるいは雰囲気ガス成分の鋼板中の拡散経路を遮断し、Mnの表面濃化(表層でのMn酸化物の生成)を抑制する。なお、硫黄化合物は一部がめっき層中に含まれてもよい。
【0024】
上記した熱処理を施された鋼板は、直ちに溶融亜鉛めっき処理を施される。
溶融亜鉛めっき処理は、浴温:450 〜550 ℃の溶融亜鉛浴に鋼板(下地鋼板)を浸漬して行うのが好ましい。
溶融亜鉛浴としては、従来から使用されている、0.1 〜0.2 質量%Alあるいはさらに0.005 〜0.05質量%のFeを含有する組成の溶融亜鉛浴を用いるのが好ましい。溶融亜鉛浴中のAl含有量が、0.1 質量%未満ではめっき処理において鋼板と亜鉛が反応しやすく、Fe−Zn合金相が大量に生成する。このため、めっき密着性が劣化する。また、Al含有量が0.2 質量%を超えると、鋼板とAlが反応して、厚いFe−Al合金相を生成する。このため、めっき処理後の合金化が著しく遅延する。
【0025】
めっき処理時の溶融亜鉛浴の浴温は450 〜550 ℃であればよい。浴温が450 ℃未満では、めっき処理時の適正なFe−Al合金相の生成が抑制される。一方、浴温が550 ℃を超えると、Fe−Zn合金相の生成が促進され、めっき密着性が劣化するとともに、亜鉛浴を保持する溶解炉で亜鉛による浸食が促進され、溶解炉の壁面が劣化する。また、めっき浴中には、Fe、Si、Mg、Mn、Ni、Pb、Sb、Sn、La、In、Ce、Cd、Co等の不可避的不純物が含有されていても問題はない。
【0026】
溶融亜鉛めっきの付着量の調整は、通常公知のガスワイピング等の方法でよく、めっき層の防錆性、およびめっき層の密着性の観点からめっき層の付着量は20〜120g/m2 程度とするのが好ましい。
めっき処理後、合金化処理を行うことにより、合金化溶融亜鉛めっき鋼板としてもよい。合金化処理後のめっき層の平均Fe含有率は、7〜13質量%とするのが好適である。めっき層の平均Fe含有率が7質量%未満では、一部η相(Zn相)が残存し、合金化が完了せず、あるいは表層に比較的軟質なζ相(Fe含有率の低いFe−Zn合金相)が大量に残存し、プレス成形時の耐フレーキング性を劣化する。一方、めっき層の平均Fe含有率が13質量%を超えると、めっき層と下地鋼板との界面に硬くて脆いΓ相(Fe含有率の高いFe−Zn合金相)が残存し、プレス成形時の耐パウダリング性を劣化する。
【0027】
合金化処理における鋼板の加熱温度は、450 〜600 ℃とするのが好ましい。加熱温度が450 ℃未満では、めっき層のFe含有率を7質量%以上とするために、長時間の加熱処理や、長大な合金化炉を必要とし、あるいは鋼板の搬送速度を低速するなどの処置が必要となり、生産性が低下する。一方、加熱温度が600 ℃を超えると、硬くて脆いΓ相が短時間加熱で生成し、耐パウダリング性が劣化する。
【0028】
なお、合金化処理時の鋼板加熱方式は、とくに限定されることはなく、ガス加熱方式、誘導加熱方式、通電加熱方式等がいずれも適用可能である。
上記した製造方法で得られた溶融亜鉛めっき鋼板は、鋼板の地鉄表面上に溶融亜鉛めっき層、あるいは合金化溶融亜鉛めっき層を有し、さらに前記溶融亜鉛めっき層あるいは合金化溶融亜鉛めっき層と前記鋼板の地鉄との界面から、地鉄側に硫黄濃化層を有するめっき鋼板である。硫黄濃化層中には硫黄化合物としては、MnS が析出している。硫黄濃化層には、単にSが濃化しただけでもよいのはいうまでもない。
【0029】
【実施例】
表1に示す組成の冷延鋼板にアルカリ脱脂、酸洗を施したのち、表2に示す種類と濃度の薬剤(硫黄化合物)を含む水溶液を、バーコータにより鋼板表面に均一に塗布した後、直ちにドライヤー乾燥させた。硫黄化合物としては、硫酸アンモニウムとチオ硫酸ナトリウム、硫酸アンモニウムと硫酸ナトリウム、硫酸ナトリウムを使用した。なお、水溶液中の硫黄化合物の濃度は、3%、10%、30%とした。なお、比較例として、薬剤を全く付着させない場合についても実施した。また、薬剤の付着量は、薬剤が付着した鋼板を80℃加温水中に浸漬し、攪拌して付着物を溶解したのち、溶解液中のS量を原子吸光法により定量した。
【0030】
ついで、これら鋼板に、溶融めっきシミュレーターを用いて、熱処理および溶融亜鉛めっき処理を施した。熱処理条件は、
板温 : 850 ℃
保持時間: 60秒
雰囲気 : N2−5vol %H2(露点:−40℃)
とした。また、溶融亜鉛めっき処理条件は、
浴組成 : 0.14質量%Al−Zn
浴温 : 470 ℃(≒めっき板温)
浸漬時間: 2秒
付着量 : 片面30g/m2
とした。
【0031】
なお、全ての鋼板について、溶融亜鉛めっき処理後、さらに合金化処理を行った。合金化処理条件は、
板温 : 460, 490, 520 ℃の3水準
とし、溶融亜鉛めっき層中の平均Fe含有量が9〜11質量%となるように保持時間を調整した。
【0032】
まず、溶融亜鉛めっき処理後の鋼板について、めっき性試験、およびボールインパクト試験を実施し、めっき性およびめっき密着性を評価した。なお、試験方法は下記の通りとした。
(1)めっき性試験
溶融亜鉛めっき鋼板のめっき表面を、10倍に拡大して、目視で不めっき発生状況を観察しめっき性を評価した。なお、不めっき個所が1m2当たり5個所以上の場合を×、5個所未満〜1個所以上の場合を△、不めっきなしの場合を○とした。
(2)ボールインパクト試験(めっき密着性試験)
ボールインパクト試験は、直径1/2 インチ(12.7mm)の半球状突起の上に載せた溶融亜鉛めっき鋼板上に、1kgの重りを1mの高さから落下させたのち、セロハン粘着テープをはり付け、引き剥がして、めっき層の剥離状態を調査した。めっき剥離ありを×、めっき剥離なし、めっき亀裂ありを△、めっき剥離、亀裂なしを○、としてめっき密着性を評価した。
【0033】
ついで、合金化溶融亜鉛めっき鋼板について、外観試験、耐パウダリング試験、カップ絞り試験およびスポット溶接試験を実施した。
(3)外観試験
各合金化溶融亜鉛めっき鋼板の外観を、目視で観察し、異物付着あるいは色調ムラあるいは合金化ムラ等の状況を調査した。その観察結果を、○:異物付着、色調ムラおよび合金化ムラなく良好、△:微細な異物付着あるいはうすい色調ムラあるいは微細な筋状の合金化ムラが発生、×:明瞭な異物付着あるいは明瞭な色調ムラあるいは明瞭な筋状の合金化ムラ、局部的な焼けムラ発生として評価した。
(4)耐パウダリング試験
各合金化溶融亜鉛めっき鋼板から採取した曲げ試験片(30mm幅×40mm長さ)に、90゜曲げ戻しを行った後、めっき面にセロハン粘着テープをはり付け、引き剥がして、テープに付着するZn量により耐パウダリング性を評価した。幅24mmのテープに付着するZn量が1000 cps以下を○、1000超2000 cps以下を△、2000 cps超を×として評価した。
(5)カップ絞り試験
各合金化溶融亜鉛めっき鋼板から採取した試験片(φ73mm円板)に、洗浄油を両面に塗油したのち、ポンチ径:33mm、しわ押え圧:500kgf(4.90kN)として、絞り比2.0 のカップを成形した。これらカップの側壁部にセロハン粘着テープをはり付け、引き剥がして、テープに付着するZn量を測定し、摺動性を評価した。幅24mmテープに付着するZn量が200cps以下を○、200 超300cps以下を△、300cps超を×として評価した。
(6)スポット溶接試験
一部の合金化溶融亜鉛めっき鋼板(板厚:0.8mm )について、各めっき鋼板ごとに重ねあわせ、Cu−Cr合金製の円錐台頭型電極(先端径:5mmφ)を用い、加圧力:200kgf(1.96kN)、初期加圧時間:30サイクル、通電時間:10サイクル、保持時間:5サイクル、溶接電流:9kAの溶接条件で連続打点を行い、電極交換までの連続打点数をスポット溶接性の一つの指標とした。連続打点数が3000点以上を○、3000未満〜2000点以上を△、2000点未満を×とした。また、スポット溶接部の引張剪断強度を求め、スポット溶接性の一つの指標とした。引張剪断強度が15kN以上を○、15kN未満を×とした。
【0034】
これらの結果を表2に示す。
【0035】
【表1】

Figure 0003966670
【0036】
【表2】
Figure 0003966670
【0037】
【表3】
Figure 0003966670
【0039】
本発明例は、いずれもめっき外観、めっき性、めっき密着性などのめっき品質や、溶接性に優れた溶融亜鉛めっき鋼板となっている。
れに対し、本発明の範囲を外れる比較例は、いずれもめっき品質あるいは溶接性のいずれかが劣化していた。また、本発明例はいずれも、合金化速度が速く、合金化が促進されていることがわかる。これに対し、本発明の範囲を外れる比較例は、合金化が遅延している。なお、比較例である Na を含む薬剤を単独で塗布した場合には、めっき外観にロールによるすり疵と考えられる若干の不良が見られた。
【0040】
【発明の効果】
以上説明したように、本発明によれば、Si 0.2 %未満、Mnを0.8 質量%以上、Pを0.02%未満含有する高張力鋼板を下地鋼板として溶融亜鉛めっき処理あるいはさらに合金化処理を施しても、不めっき、合金化の遅滞等はなく、めっき外観、めっき密着性、めっき性および溶接性に優れためっき鋼板を生産性よく製造することができ、めっき品質の要求レベルの高い自動車用として適用拡大が可能となり、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】本発明の方法を適用した熱処理後の鋼板断面における各元素の深さ方向分布状況を示すグラフである。
【図2】本発明の方法を適用した溶融亜鉛めっき処理−合金化処理後の鋼板断面における各元素の深さ方向分布状況を示すグラフである。
【図3】比較例の熱処理後の鋼板断面における各元素の深さ方向分布状況を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable as a steel sheet for automobiles, in which a high-strength steel sheet containing Si of less than 0.2 %, Mn of 0.8% or more and P of less than 0.02% by mass is used as a base steel sheet, and the base steel sheet is hot dip galvanized. The present invention relates to a hot dip galvanized steel sheet, and more particularly to a method for producing a hot dip galvanized steel sheet having excellent plating appearance, plating adhesion, press formability, and weldability.
[0002]
[Prior art]
In fields such as automobiles and home appliances, in view of the usage environment, surface-treated steel sheets having high corrosion resistance are required, and various zinc-based plated steel sheets have been developed and put into practical use. Among them, hot dip galvanized steel sheets such as hot dip galvanized steel sheets and alloyed hot dip galvanized steel sheets are widely used because they have lower manufacturing costs and better corrosion resistance than electrogalvanized steel sheets. Yes.
[0003]
In addition, from the perspective of preventing global warming, improving the fuel efficiency of automobiles is one of the major issues. With the aim of both reducing the weight of automobile bodies and ensuring the safety of passengers, the gauges of steel sheets used can be reduced. There is a demand for higher strength.
In general, addition of a solid solution strengthening element such as Si, Mn, or P is performed to increase the strength of a steel sheet. However, when the steel sheet is subjected to reduction annealing in a continuous hot-dip galvanized steel sheet production line or the like, the solid solution strengthening elements such as Si and Mn are selectively oxidized and the surface is concentrated. The oxides of these solid solution strengthening elements concentrated on the surface of the steel sheet significantly reduce the wettability between the steel sheet and the molten zinc during the hot dip galvanizing treatment, and therefore the adhesion of the hot dip galvanized layer is significantly reduced. In extreme cases, a phenomenon such as so-called non-plating occurs in which molten zinc does not adhere to the steel sheet.
[0004]
Furthermore, when alloying heat treatment is performed subsequent to hot dip galvanizing, alloying is significantly delayed due to the presence of P in the steel. For this reason, in order to achieve alloying, it is necessary to extremely increase the alloying heating temperature or extremely decrease the line speed. However, when the alloying heating temperature is extremely increased, the formation of a hard and brittle alloy phase is promoted, and the plating layer is easily peeled off during press molding. When the line speed is extremely slow, the productivity is significantly reduced. The problem arises. In addition, the increase in the alloying heating temperature and the increase in the line speed make it difficult to perform the alloying process in a conventional alloying apparatus.
[0005]
Such a difference in the composition of the underlying steel sheet, that is, every time the steel type is different, frequently changing the alloying treatment conditions such as the alloying heating temperature and the line speed requires time to change the conditions. There is a problem that many difficulties are involved in maintaining a stable alloying treatment, such as a decrease in the temperature and a considerable amount of skill required to stabilize the processing conditions in a short time.
[0006]
Furthermore, when P contains a large amount in the steel sheet, there is a problem that a difference in alloying behavior occurs due to the grain boundary segregation of P, resulting in uneven color tone.
In order to solve such a problem, Japanese Patent Application Laid-Open No. 11-50220 satisfies Mn content of 0.2% or more, Nb content of 0.005% or more, and Ti content of 1 or 2 of 0.01% or more, and After attaching sulfur or a sulfur compound as an S amount to 0.1 to 1000 mg / m 2 on a high-strength steel sheet having a P content of 0.02% or more, annealing is performed at a temperature of 680 ° C. or more in a non-oxidizing atmosphere containing hydrogen. Thereafter, a method for producing a P-containing high-strength hot-dip galvanized steel sheet in which plating is performed by dipping in a hot-dip galvanizing bath containing at least 0.05 to 0.30% Al has been proposed.
[0007]
In JP-A-11-50220, the sulfur compounds used include inorganic sulfates such as sodium sulfate, sodium thiosulfate, sodium sulfate and sodium sulfite, thiocyanates such as ammonium thiocyanate and potassium thiocyanate, and alkylmer. Aliphatic organic substances such as kabutane and thiourea are exemplified.
[0008]
[Problems to be solved by the invention]
However, in the technique described in JP-A-11-50220, a steel plate containing Mn: 0.2% or more and P: 0.02% or more is used. When P is contained in an amount of 0.02% or more, P segregated at the grain boundary of the steel sheet has a barrier effect to suppress Mn surface concentration, which is advantageous for plating properties, without attaching sulfur or a sulfur compound, Non-plating can be prevented. However, when P is less than 0.02% and the amount of P in the steel is small, there is a problem that the effect of suppressing the surface concentration of Mn is reduced, and minute non-plating cannot be completely prevented.
[0009]
In addition, when P is contained in an amount of 0.02% or more, spot weldability may deteriorate and member breakage may occur from the welded part. Steel sheets that have been strengthened with P are applicable for uses that require welding. There is also a problem that it cannot be done.
For these reasons, there has been a demand for a high-strength hot-dip galvanized steel sheet that can reduce P to less than 0.02%, improve spot weldability, and prevent non-plating.
[0010]
The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a hot-dip galvanized steel sheet that is excellent in plating appearance, plating properties, plating adhesion, weldability, and press formability.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have earnestly investigated a drug that can adhere to the surface of a high-tensile steel plate containing Mn: 0.8% by mass or more and P: less than 0.02% by mass and improve hot dip galvanizing properties. Studied. As a result, it has been found that the hot dip galvanizing property is remarkably improved by attaching sulfur or a sulfur compound to the surface of the high-tensile steel plate and performing a heat treatment.
[0012]
First, experimental results conducted by the present inventors will be described.
An aqueous solution containing a sulfur compound (ammonium thiosulfate aqueous solution) was applied to the surface of a high-tensile steel plate containing Mn: 1.8% by mass and P: 0.01% by mass, and the sulfur compound was adhered to 50 mg / m 2 in terms of S. Annealing (heat treatment) at a plate temperature of 800 ° C. was performed in an N 2 +5 vol% H 2 atmosphere. Immediately after the heat treatment, a hot dip galvanizing treatment with a bath temperature of 470 ° C. and a bath composition of Zn-0.14 mass% Al was performed. did. The steel plate after the heat treatment and the steel plate after the hot dip galvanizing-alloying treatment were analyzed for the distribution of Mn, S, Fe, and Al in the depth direction from the surface using glow discharge spectroscopy (GDS). The results are shown in FIG. 1 (after heat treatment) and FIG. 2 (after hot dip galvanizing-alloying treatment). For comparison, FIG. 3 shows the GDS analysis results when the steel sheet was heat-treated without attaching a sulfur compound.
[0013]
As shown in FIG. 3, when the steel sheet is heat-treated without adhering a sulfur compound, concentration of Mn is recognized on the surface layer. On the other hand, as shown in FIG. 1, in the steel sheet heat-treated with the sulfur compound attached, concentration of Mn on the surface layer is remarkably suppressed. And enrichment of S and Mn was recognized also on the steel plate surface and the base iron side below the surface. This confirmed that MnS was produced by X-ray diffraction.
[0014]
After the hot dip galvanization-alloying treatment, as shown in FIG. 2, it can be seen that Mn and S remain in the ground iron directly under the galvannealed alloy layer. Thus, by attaching sulfur compound ammonium salt to the steel sheet surface containing Mn of 0.8% or more and P of less than 0.02% by mass%, it has been found that the surface concentration of Mn can be suppressed and the plating property can be improved. It was.
[0015]
The present invention has been completed by further studies based on the above-described findings.
That is, the present invention provides, as a sulfur compound, an inorganic salt of an ammonium salt and an alkali metal on the surface of a high-tensile steel sheet having a composition containing, by mass%, Si less than 0.2%, Mn 0.8% or more, and further containing P less than 0.02%. A method for producing a hot dip galvanized steel sheet, characterized by comprising combining sulfate and depositing 0.1 to 1000 mg / m 2 in terms of S, followed by heat treatment and then hot dip galvanizing treatment. Then, it is preferable to perform an alloying treatment immediately after the hot dip galvanizing treatment.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described. Unless otherwise specified, mass% in the composition is simply expressed as%.
In the present invention, a high-tensile steel plate containing Si of less than 0.2 %, Mn of 0.8% or more, and P of less than 0.02% is used as a base steel plate for plating. If the Mn content is less than 0.8%, the Mn surface concentration during annealing is small, the plating property is good, the alloying is not delayed and the powdering resistance is good, and the effects of the present invention are clearly shown. Therefore, it is excluded from the scope of the present invention. In the present invention, Mn is preferably 5% or less from the viewpoint of cold rollability. The excessive Mn content exceeding 5% makes the steel plate hard and makes cold rolling difficult.
[0017]
In the present invention, the P content is less than 0.02%. If the P content exceeds 0.02%, spot weldability deteriorates and member breakage occurs from the welded portion, so P is limited to less than 0.02%. In the present invention, the Si content is less than 0.2 %.
The chemical components other than those described above are not particularly limited as long as they are elements that do not inhibit Mn and S concentration, more preferably MnS formation on the steel sheet surface and the lower side of the steel plate during the heat treatment, It can be contained as appropriate according to the desired properties. For example, C: 0.0005 to 0.5% , S : 0.05 or less, Nb: 0.001 to 0.20% or less, Ti: 0.1 or less, B: 0.005% or less, and Cr: 0.05% or less are individually acceptable.
[0018]
In the present invention, a sulfur compound (S component) is adhered to the surface of a high-tensile steel sheet containing Si, Mn, and P having the above composition. The surface of the steel plate is preferably a hydrophilic surface, preferably by alkali degreasing, pickling or the like. By setting it as the hydrophilic surface, S component adheres uniformly.
The sulfur compounds, sodium sulfate is a sulfur compound, sodium thiosulfate, sodium sulfate, and the alkali metal inorganic sulfates such as sodium sulfite, ammonium sulfate, ammonium sulfite, ammonium thiosulfate, ammonium ferrous sulfate, ferric ammonium sulfate In combination with an ammonium salt such as In addition, when chemicals containing alkali metals such as Na and K are used, a metal oxide having a low melting point is formed on the surface of the steel sheet, and may adhere to the roll in the heat treatment furnace and damage the roll surface. .
[0019]
The These sulfur compounds, or dissolved or mixed in water or an organic solvent, or mixture pretreatment liquid (e.g. degreasing solution or washing solution) or mixed into, or rust oil in cold rolling Can be used. Further, a surfactant may be added in order to increase adhesion, and a reaction accelerator may be added in order to increase reactivity. The concentration of sulfur compound in the solution is determined by a relationship of the deposited film thickness Prefecture, most 50% or less, preferably from the ease of drying and 1% to 30%.
[0020]
Further, attachment method of the steel sheet of the sulfur compound, not particularly limited, may be used facilities intended or cost-effective way. For example, a solution prepared by dissolving sulfur compound, a method of adhering by applying a roll coater, a method of adhering by applying a cloth-like material, a method for adhering by spraying with a spray or electroplating method, electroless plating method A method of attaching by vapor deposition or the like is preferable.
[0021]
Adhesion amount of the surface of the steel sheet sulfur compound, and 0.1 1000 mg / m 2 in S terms. If the adhesion amount is less than 0.1 mg / m 2 , it is insufficient to suppress Mn surface enrichment during heat treatment, resulting in reduced plating properties, non-plating, and a delay in alloying during alloying treatment. .
According adhesion amount is increased, although the effect of suppressing the surface segregation is enhanced, when depositing a sulfur compound exceeds 1000 mg / m 2 in S terms, the effect is saturated and can not be expected the effect commensurate with the deposition amount In addition to being economically disadvantageous, the plating property may be adversely affected. In addition, Preferably it is 5-200 mg / m < 2 >. More preferably 10~120mg / m 2. In addition, since the suitable range of adhesion amount changes with manufacturing conditions, such as the gas flow rate in a heat processing furnace, hydrogen concentration, and line speed, it is preferable to employ | adopt the optimal adhesion amount for manufacturing equipment within the above-mentioned range. The amount of adhesion is preferably adjusted by adjusting the concentration of the solution, pressing pressure of the ringer roll, or the like.
[0022]
As described above, the surface, then the steel sheet was deposited sulfur compounds, before subjecting the hot-dip galvanizing, is subjected to a heat treatment. Note that before the heat treatment, natural drying, forced drying, or heating for drying may be performed. Alternatively, it may be immediately subjected to heat treatment later by adhering sulfur compounds.
In the heat treatment, the heating temperature is 600 ° C. or higher, preferably 950 ° C. or lower. If the heating temperature is less than 600 ° C., the concentration of Mn and S on the surface layer of the steel sheet and the generation of sulfur compounds such as MnS are slow, which requires heating for a long period of time and lowers the production efficiency, which is not economical. When the heating temperature exceeds 950 ° C., there is a problem that it is too high for recrystallization and is economically disadvantageous. The atmosphere during the heat treatment is preferably non-oxidizing or reducing. An oxidation treatment may be performed in advance. The heat holding time in the heat treatment is preferably 0 to 120 s from the viewpoint of recrystallization. As the heating method, any conventionally known method such as an all radiant tube method, a gas heating method, a continuous method such as an induction heating method, or a batch heating method can be applied.
[0023]
After depositing a sulfur compound on the surface of the steel sheet, heat treatment is performed, S component adhering to the surface of the steel sheet is diffused into the base steel of the steel sheet reacts with uniformly dispersed Mn or the like in the steel sheet MnS To produce sulfur compounds. This sulfur compound is generated not only within the steel plate crystal grains but also at the crystal grain boundaries, and forms a sulfur concentrated layer. As a result, surface concentration of Mn (generation of Mn oxide on the surface layer) is suppressed, and this sulfur-enriched layer becomes a kind of barrier layer. The diffusion path in the steel plate is blocked, and the surface concentration of Mn (generation of Mn oxide on the surface layer) is suppressed. A part of the sulfur compound may be contained in the plating layer.
[0024]
The steel plate subjected to the above heat treatment is immediately subjected to hot dip galvanizing treatment.
The hot dip galvanizing treatment is preferably performed by immersing a steel plate (underlying steel plate) in a hot dip zinc bath having a bath temperature of 450 to 550 ° C.
As the molten zinc bath, it is preferable to use a conventionally used molten zinc bath having a composition containing 0.1 to 0.2% by mass of Al or further 0.005 to 0.05% by mass of Fe. If the Al content in the molten zinc bath is less than 0.1% by mass, the steel sheet and zinc are likely to react in the plating treatment, and a large amount of Fe—Zn alloy phase is generated. For this reason, plating adhesion deteriorates. Moreover, when Al content exceeds 0.2 mass%, a steel plate and Al will react and a thick Fe-Al alloy phase will be produced | generated. For this reason, alloying after the plating treatment is significantly delayed.
[0025]
The bath temperature of the hot dip zinc bath during the plating process may be 450 to 550 ° C. When the bath temperature is less than 450 ° C., generation of an appropriate Fe—Al alloy phase during the plating treatment is suppressed. On the other hand, when the bath temperature exceeds 550 ° C., the formation of the Fe—Zn alloy phase is promoted, the plating adhesion is deteriorated, and erosion by zinc is promoted in the melting furnace holding the zinc bath, so that the wall surface of the melting furnace is to degrade. Moreover, there is no problem even if the plating bath contains inevitable impurities such as Fe, Si, Mg, Mn, Ni, Pb, Sb, Sn, La, In, Ce, Cd, and Co.
[0026]
Adjustment of the adhesion amount of hot dip galvanizing may be performed by a generally known method such as gas wiping. The adhesion amount of the plating layer is about 20 to 120 g / m 2 from the viewpoint of rust prevention of the plating layer and adhesion of the plating layer. Is preferable.
It is good also as an alloyed hot-dip galvanized steel sheet by performing an alloying process after a plating process. The average Fe content of the plated layer after the alloying treatment is preferably 7 to 13% by mass. If the average Fe content of the plating layer is less than 7% by mass, a part of η phase (Zn phase) remains and alloying is not completed, or the surface layer is relatively soft ζ phase (Fe— with low Fe content). A large amount of (Zn alloy phase) remains, and the flaking resistance during press molding deteriorates. On the other hand, if the average Fe content of the plating layer exceeds 13% by mass, a hard and brittle Γ phase (Fe-Zn alloy phase having a high Fe content) remains at the interface between the plating layer and the underlying steel plate, Deteriorates the powdering resistance.
[0027]
The heating temperature of the steel sheet in the alloying treatment is preferably 450 to 600 ° C. If the heating temperature is less than 450 ° C, a long heat treatment, a long alloying furnace is required to reduce the Fe content of the plating layer to 7 mass% or more, or the conveying speed of the steel sheet is reduced. Treatment is required and productivity is reduced. On the other hand, when the heating temperature exceeds 600 ° C., a hard and brittle Γ phase is generated by heating for a short time, and the powdering resistance deteriorates.
[0028]
In addition, the steel plate heating method at the time of alloying treatment is not particularly limited, and any of a gas heating method, an induction heating method, an electric heating method, and the like can be applied.
The hot-dip galvanized steel sheet obtained by the above-described manufacturing method has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface of the steel plate of the steel sheet, and further, the hot-dip galvanized layer or the alloyed hot-dip galvanized layer And a steel plate having a sulfur-concentrated layer on the side of the steel from the interface between the steel and the steel. MnS is precipitated as a sulfur compound in the sulfur-concentrated layer. Needless to say, the sulfur-enriched layer may simply be enriched with S.
[0029]
【Example】
Immediately after the cold rolled steel sheet having the composition shown in Table 1 is subjected to alkaline degreasing and pickling, an aqueous solution containing the chemicals (sulfur compounds) of the types and concentrations shown in Table 2 is uniformly applied to the steel sheet surface by a bar coater. The dryer was dried. The sulfur compounds were used ammonium sulfate and sodium thiosulfate, ammonium sulfate and sodium sulfate, the sodium sulphate. In addition, the density | concentration of the sulfur compound in aqueous solution was 3%, 10%, and 30%. In addition, it implemented also about the case where a chemical | medical agent was not attached at all as a comparative example. The amount of drug adhered was determined by immersing the steel sheet with the drug in 80 ° C. heated water and stirring to dissolve the adhered substance, and then quantifying the amount of S in the solution by atomic absorption spectrometry.
[0030]
Next, these steel sheets were subjected to heat treatment and hot dip galvanizing treatment using a hot dipping simulator. The heat treatment conditions are
Plate temperature: 850 ℃
Holding time: 60 seconds Atmosphere: N 2 -5 vol% H 2 (dew point: -40 ° C)
It was. Moreover, the hot dip galvanizing treatment conditions are
Bath composition: 0.14 mass% Al-Zn
Bath temperature: 470 ° C (≒ plating plate temperature)
Immersion time: 2 seconds Adhesion amount: 30g / m 2 on one side
It was.
[0031]
In addition, about all the steel plates, the alloying process was further performed after the hot dip galvanization process. Alloying conditions are:
Plate temperature: Three levels of 460, 490, and 520 ° C. were used, and the holding time was adjusted so that the average Fe content in the hot-dip galvanized layer was 9 to 11% by mass.
[0032]
First, the steel sheet after the hot dip galvanizing treatment was subjected to a plating test and a ball impact test to evaluate the plating property and plating adhesion. The test method was as follows.
(1) Plating property test The plating surface of the hot-dip galvanized steel sheet was magnified 10 times, and the unplating occurrence state was visually observed to evaluate the plating property. In addition, the case where there were 5 or more non-plated locations per 1 m 2 was rated as “X”, the case where it was less than 5 locations to 1 or more locations was evaluated as “Δ”, and the case where no plating was present as “◯”.
(2) Ball impact test (plating adhesion test)
In the ball impact test, a 1 kg weight was dropped from a height of 1 m onto a hot-dip galvanized steel sheet placed on a hemispherical protrusion with a diameter of 1/2 inch (12.7 mm), and then cellophane adhesive tape was applied. The peeled state of the plating layer was investigated. The plating adhesiveness was evaluated with x for plating peeling, Δ for plating peeling, Δ for plating cracking, and ○ for plating peeling and no cracking.
[0033]
Next, an appearance test, a powdering resistance test, a cup squeeze test, and a spot welding test were performed on the galvannealed steel sheet.
(3) Appearance test The appearance of each alloyed hot-dip galvanized steel sheet was visually observed, and the situation of foreign matter adhesion, color tone unevenness, alloying unevenness, etc. was investigated. The observation results are as follows: ◯: Good with no foreign matter adhesion, color tone unevenness and alloying unevenness, △: Fine foreign matter adhesion or light color tone unevenness or fine streaky alloying unevenness, ×: Clear foreign matter adhesion or clear It was evaluated as occurrence of uneven color tone, clear streaky alloying unevenness, and local burn unevenness.
(4) Anti-powdering test Bending test pieces (30mm width x 40mm length) collected from each alloyed hot-dip galvanized steel sheet were bent back 90 °, and then cellophane adhesive tape was applied to the plated surface and pulled. The powdering resistance was evaluated by the amount of Zn adhered to the tape after peeling off. Evaluation was made by assuming that the amount of Zn adhering to a tape having a width of 24 mm was 1000 cps or less, ◯ exceeding 1000 cps or less, and Δ exceeding 2000 cps.
(5) Cup squeezing test After applying cleaning oil to both sides of a test piece (φ73mm disc) taken from each alloyed hot-dip galvanized steel sheet, punch diameter: 33mm, wrinkle presser pressure: 500kgf (4.90kN) A cup with a drawing ratio of 2.0 was formed. The cellophane adhesive tape was applied to the side wall portions of these cups, peeled off, and the amount of Zn adhering to the tape was measured to evaluate the slidability. Evaluation was made by assuming that the amount of Zn adhering to a tape having a width of 24 mm was 200 cps or less, ○ was over 200 cps or less, Δ, and over 300 cps was x.
(6) Spot welding test For some alloyed hot-dip galvanized steel sheets (thickness: 0.8 mm), each plated steel sheet is overlapped and a cone-top electrode made of Cu-Cr alloy (tip diameter: 5 mmφ) is used. , Applied pressure: 200 kgf (1.96 kN), Initial pressurization time: 30 cycles, Energizing time: 10 cycles, Holding time: 5 cycles, Welding current: 9 kA Was used as one index of spot weldability. The number of consecutive hit points was 3,000, more than 3,000, less than 2,000 to more than 2,000 points, and less than 2,000 points ×. Further, the tensile shear strength of the spot welded portion was obtained and used as one index of spot weldability. A tensile shear strength of 15 kN or more was evaluated as “◯”, and a tensile shear strength of less than 15 kN was evaluated as “×”.
[0034]
These results are shown in Table 2.
[0035]
[Table 1]
Figure 0003966670
[0036]
[Table 2]
Figure 0003966670
[0037]
[Table 3]
Figure 0003966670
[0039]
Each of the examples of the present invention is a hot-dip galvanized steel sheet excellent in plating quality such as plating appearance, plating property, plating adhesion, and weldability.
To this, comparative examples out of the scope of the present invention, any one of the plating quality or weldability is deteriorated. In addition, it can be seen that all the examples of the present invention have a high alloying speed and promote alloying. On the other hand, alloying is delayed in the comparative example that is out of the scope of the present invention. In addition, when the chemical | medical agent containing Na which is a comparative example was apply | coated independently, the some defect considered to be a crease by a roll was seen by the plating external appearance.
[0040]
【The invention's effect】
As described above, according to the present invention, Si less than 0.2%, Mn 0.8% by mass or more, galvanized or further alloyed high-tensile steel sheet containing P less than 0.02% as an underlying steel sheet However, there is no delay of unplating and alloying, etc., and it is possible to produce plated steel sheets with excellent plating appearance, plating adhesion, plating properties and weldability with high productivity, and for automobiles with a high level of required plating quality. As a result, it is possible to expand the application as an industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the distribution in the depth direction of each element in a cross section of a steel plate after heat treatment to which the method of the present invention is applied.
FIG. 2 is a graph showing the distribution in the depth direction of each element in the cross section of the steel sheet after the hot dip galvanizing treatment-alloying treatment to which the method of the present invention is applied.
FIG. 3 is a graph showing the distribution in the depth direction of each element in the cross section of the steel sheet after heat treatment of a comparative example.

Claims (2)

質量%で、Siを0.2 %未満、Mnを0.8 %以上含み、さらにPを0.02%未満含む組成の高張力鋼板の表面に、硫黄化合物としてアンモニウム塩とアルカリ金属の無機硫酸塩を複合してS換算で0.1 〜1000mg/m2 付着させたのち、熱処理を施し、ついで溶融亜鉛めっき処理を施すことを特徴とする溶融亜鉛めっき鋼板の製造方法。By mass%, Si less than 0.2%, including Mn 0.8% or more, further on the surface of the high-tensile steel sheet having a composition containing less than 0.02% P, in combination with ammonium salts and alkali metal inorganic sulfate as a sulfur compound S A method for producing a hot dip galvanized steel sheet, characterized by depositing 0.1 to 1000 mg / m 2 in terms of conversion, followed by heat treatment and then hot dip galvanizing. 前記溶融亜鉛めっき処理後、直ちに合金化処理を施すことを特徴とする請求項1に記載の溶融亜鉛めっき鋼板の製造方法。  2. The method for producing a hot dip galvanized steel sheet according to claim 1, wherein an alloying treatment is performed immediately after the hot dip galvanizing treatment.
JP2000091246A 2000-03-29 2000-03-29 Method for producing hot-dip galvanized steel sheet Expired - Fee Related JP3966670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091246A JP3966670B2 (en) 2000-03-29 2000-03-29 Method for producing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091246A JP3966670B2 (en) 2000-03-29 2000-03-29 Method for producing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2001279411A JP2001279411A (en) 2001-10-10
JP3966670B2 true JP3966670B2 (en) 2007-08-29

Family

ID=18606726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091246A Expired - Fee Related JP3966670B2 (en) 2000-03-29 2000-03-29 Method for producing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3966670B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696656B2 (en) * 2005-04-15 2011-06-08 Jfeスチール株式会社 High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion
JP4747656B2 (en) * 2005-04-20 2011-08-17 Jfeスチール株式会社 Method for producing high-tensile hot-dip galvanized steel sheet and method for producing high-tensile alloyed hot-dip galvanized steel sheet
JP4734073B2 (en) * 2005-09-30 2011-07-27 新日本製鐵株式会社 Manufacturing method of hot dip galvanized steel
JP4810980B2 (en) * 2005-11-09 2011-11-09 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP4816068B2 (en) * 2005-12-26 2011-11-16 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
WO2017017961A1 (en) * 2015-07-29 2017-02-02 Jfeスチール株式会社 Cold rolled steel sheet, plated steel sheet and methods for producing same

Also Published As

Publication number Publication date
JP2001279411A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
CN100540718C (en) Surface treated steel plate and manufacture method thereof
AU2007258462A2 (en) High-aluminum alloy for general galvanizing
KR100883245B1 (en) Hot-dip galvanized steel sheet and method for manufacturing same
JP2008144264A (en) High-strength hot-dip galvannealed steel sheet, and method for manufacturing high-strength hot-dip galvannealed steel sheet
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
JP5040093B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3966670B2 (en) Method for producing hot-dip galvanized steel sheet
JP3675290B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP3480357B2 (en) Method for producing high strength galvanized steel sheet containing Si and high strength galvannealed steel sheet
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JP4816068B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating adhesion
JPH0565612A (en) Hot-dip galvanizing method for si-containing steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JP5194702B2 (en) Method for producing galvannealed steel sheet
JP4747656B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet and method for producing high-tensile alloyed hot-dip galvanized steel sheet
JP4469055B2 (en) Hot-dip Zn-Mg-Al alloy plating method
JP5103759B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JPH0657390A (en) Production of hot dip zinc-coated steel sheet
JP4696656B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating adhesion
JPH05247614A (en) Galvanizing method for silicon-containing steel sheet
JP2007262544A (en) Method for manufacturing hot-dip galvanized steel sheet
JP3480348B2 (en) Method for producing high-strength galvanized steel sheet containing P and high-strength galvannealed steel sheet
JP3694481B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
JP3191660B2 (en) Galvanized steel sheet and method for producing the same
JP2765078B2 (en) Alloyed hot-dip coated steel sheet and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees