JP3963739B2 - 磁場印加ユニット - Google Patents
磁場印加ユニット Download PDFInfo
- Publication number
- JP3963739B2 JP3963739B2 JP2002057045A JP2002057045A JP3963739B2 JP 3963739 B2 JP3963739 B2 JP 3963739B2 JP 2002057045 A JP2002057045 A JP 2002057045A JP 2002057045 A JP2002057045 A JP 2002057045A JP 3963739 B2 JP3963739 B2 JP 3963739B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- substrate
- main
- insulating substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/48—Variable attenuator
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Coils Or Transformers For Communication (AREA)
Description
【発明の属する技術分野】
本発明は磁気光学効果を利用した磁場印加ユニットに関し、特に磁気光学結晶に任意の磁場分布を与えることができる磁場印加ユニットに関する。
【0002】
【従来の技術】
近年、通信分野では、高品質画像や高品質映像等の大容量データをリアルタイムに伝送するため、大容量・高速データ通信の研究開発が盛んに行われている。特にインターネットを利用したデータ伝送は急成長を続け、同時にネットワークトラフィック急増が課題となってきている。そこで、インターネットの急成長に伴うネットワークトラフィック急増に対応するため、光ファイバを利用した光通信技術が開発されている。この中で、1本の光ファイバに波長の異なる複数の光信号を伝送することで、更に大容量のデータ伝送が可能となる波長分割多重(WDM:Wavelength Division Multiplexing)という技術がある。そして、この技術を実用化するためにWDMが可能な長距離通信網の整備が進められている。
【0003】
このような長距離通信では、光ファイバにおける損失を補償するために、光信号を増幅する光増幅器が必須である。この増幅方式としては、光信号を一度電気信号に変換してから増幅するものと、光信号のまま増幅するものと2通りの方式が存在する。これらの方式のうち後者が低コストで実現できるため、特に注目されている。
【0004】
しかしながら、この後者の方式を利用した光増幅器には、各波長の光信号の増幅に対して非線形性があり、この光増幅器が複数段接続されると各波長の光信号に対する強度偏差が大きくなり、クロストークなどの影響が大きくなる。その結果、信号の復元が困難となる。換言すれば、一般にゲインチルト(利得傾斜)と呼ばれる利得の波長依存性が存在し、これがWDMシステムにおいて伝送距離を制限する要因となっている。
【0005】
そこで、利得の波長依存性を抑圧するために、波長多重信号を一度分波し、各チャンネルの光信号毎に適切な減衰を与え強度を平坦にした後、再度波長多重する方法が必要となる。従来、これを実現するために、複数の光アッテネータで各チャンネルの光信号毎に任意の減衰を与える方式をとっていた。しかしながら、この方式では、光アッテネータがWDMのチャンネル数分だけ必要になり、複雑な構成あるいは大型な装置になるという課題があった。
【0006】
これを解決する手段として、特開平11−119178号公報には磁気光学効果を利用した可変光アッテネータが提案されている。この光デバイスは、磁気光学結晶と、磁気光学結晶に任意の磁界(以下、表現を磁場に統一する)分布を与える手段とを備え、1台の光デバイスでチャンネル毎に任意の減衰を与えることが可能である。
【0007】
ここで、従来の可変光アッテネータについて、図17を参照して説明する。
図17は、従来の可変光アッテネータの原理図である。図17によると、光の波長多重信号は、光ファイバ410の内部を進行し、分散素子420,430で一次元(X)方向に波長分波される。そして、磁気光学結晶455に入射し、反射膜456により反射して同様の経路で帰還する。ここで、磁気光学結晶455には、永久磁石457a(S極),永久磁石457b(N極)により磁気光学結晶455の磁化の強さが飽和させられ、更に制御回路460からの電気信号(電流)を受けた主磁極454により任意の磁場分布が与えられる。これにより、分波された光信号はそれぞれの磁場強度に応じてファラデー回転を受ける。そして、このファラデー回転角(磁場強度)に応じて、光信号が減衰するように複屈折結晶440が配置されており、チャンネル毎に任意の減衰を与えることが可能となる。
【0008】
また、上記した磁場印加ユニット450を類推できる従来例として、磁気表示媒体に垂直磁場を作用させる磁気書き込み用ヘッド(以下、磁気ヘッドユニットと称する)があり、例えば以下に示す2つの技術が知られている。
【0009】
まず、従来例1として特開平8−167112号公報に記載されている磁場印加ユニットの構成について、図13を参照して説明する。
図13は、従来例1の磁気ヘッドユニットを示す図である。図13によると、従来例1の磁気ヘッドユニットは、磁性材料で形成された磁性芯208と、コイル端子214a,214bを備え磁性芯208の周囲に巻回するコイル206と、保持部(以下、保持孔と称する)210、スリット溝212、フレキシブル回路基板216を備え、保持孔210内にコイル206と共に磁性芯208を収納させる非磁性材料で形成された保持板(保持部材)204と、から構成される。各保持孔210は、保持板204の端面部に開口された孔であって、その側面部には開口部としてスリット溝212が形成されている。各保持孔210には、空芯状をなすコイル206が挿入され、その内部には磁性芯208が挿入される。そして、コイル206のコイル端子214a,214bは、スリット溝212から保持孔210の外部に引き出されて、配線部材として設置されたフレキシブル回路基板216にあるスルーホール217を通り、フレキシブル回路基板216の導体に半田付け等によって電気的に接続される。このような構成により、コイル206には、フレキシブル回路基板216を通して独立した駆動電流が与えられ、選択的に所望の磁場が磁性芯208に発生する。
【0010】
次に、従来例2として特開平11−219507号公報に記載されている磁気ヘッドユニットの構成について、図14および図15を参照して説明する。
図14は、従来例2の磁気ヘッドユニットを示す図であり、図15は、図14のC部における拡大断面図である。図14および図15によると、従来例2の磁気ヘッドユニットは、微小なコイルユニット320が直線状に配置された磁気書き込み用ヘッドであり、フレキシブル基板304、電気絶縁性基板311、端面311a、電気絶縁性基板312、端子313、共通電極314、個別電極315、コイルユニット320から構成される。コイルユニット320は、磁性芯として機能する細長形状の磁性層323と、磁性層323の長手方向を中心軸として巻回されるコイル線を構成するコイル層321,322,324,325とを有し、基板の端面311aに沿って複数配置される。また、コイルユニット320は、2つの電気絶縁性基板311,312で挟まれ支持される。電気絶縁性基板311には、端子313、共通電極314、個別電極315が形成される。各コイルユニット320のコイル線の一端は、共通電極314に共通接続され、共通電極314は2つの端子313に接続される。一方、コイル線の他端は個別電極315に個別接続され、個別電極315は複数の端子313にそれぞれ接続される。フレキシブル基板304は、電気絶縁性基板311の一端側に配置された端子313と電気接続をとるように接着固定される。このような構成により、各コイルユニット320は、電気絶縁性基板311の端面311aに対して、略垂直な方向に磁場Hを発生する。
【0011】
次に、上記したコイルユニット320の基板製造方法について、図16を参照して説明する。
図16は、従来例2におけるコイルユニット320の基板製造方法を示す工程図である。まず、図16(a)に示すように、電気絶縁性基板311上に銅を蒸着した後、エッチングによって所定パターンに形成し、矩形コイルの下側部分となるコイル層321を形成する。このとき、端子、共通電極および個別電極も同時に形成する(図示せず)。次に、図16(b)に示すように、スクリーン印刷によって絶縁材である合成樹脂をコイル層321の上に塗布して、下側の電気絶縁層326を所定パターンに形成する。次に、図16(c)に示すように、Fe−Niを所定パターンのマスクを用いて電気絶縁層326の上に蒸着して、磁性層323を形成する。次に、図16(d)に示すように、スクリーン印刷によって合成樹脂を磁性層323の上側面および左右側面に塗布して、電気絶縁層327〜329を形成する。こうして、磁性層323の周囲は電気絶縁層によって覆われる。次に、図16(e)に示すように、無電解銅メッキによって電気絶縁層326〜329を挟み込むようにコイル層321の露出部分の上に銅膜を析出させ、矩形コイルの側面部分となるコイル層324,325を形成する。次に、図16(f)に示すように、電気絶縁層327〜329の上にコイル層324,325と電気接続が得られるように銅を蒸着した後、エッチングによって所定パターンに形成し、矩形コイルの上側部分となるコイル層322を形成する。こうして1個のコイルユニット320が完成する。次に、図16(g)に示すように、各コイルユニット間の隙間を電気絶縁材である合成樹脂で充填して、充填層330を形成する。その後、電気絶縁性基板312を載せて固定することにより、磁気書き込み用ヘッドが完成する。
【0012】
【発明が解決しようとする課題】
本発明で実現しようとする磁場印加ユニットは、前述した図17に示されるような光通信デバイスへの適用を目的としている。したがって、図17において、磁気光学結晶455に任意の磁場分布を与える磁場印加ユニット450は、一次元(X)方向に連続的な磁場分布を発生し、且つ、高さ(Y)方向には、少なくとも磁気光学結晶に入射する光ビーム幅(励振幅)と同等の範囲で均一磁場分布を発生する機能を必要とする。また、その特性の安定性、信頼性に加え、小型化と低コスト化の実現も不可欠である。
【0013】
しかしながら、前述した従来例では以下のような課題があり、これら要求の実現が困難であった。
まず、従来例1の磁気ヘッドユニットは、磁性芯208およびコイル206から成るコイルユニットを個別部品として1個ずつ組み立てた後、スリット溝212に平行、且つ直線状に多数配列して構成される。コイルユニットを個別部品で構成した場合、各磁性芯208にそれぞれコイル206を巻く作業や、コイル端子214a,214bの半田付け処理等、多大な労力を要するため量産性・低コスト化が困難であった。また、ヘッドの小型化のために、磁性芯208およびコイル206の寸法やコイルユニットの配列ピッチを小さく設計すると、コイル206の細線化や巻数減、磁性芯208の細径化を余儀なくされ、その結果、途端に部品加工が困難になり、加工精度や組立精度、部品強度等が不十分となり、コスト増加をもたらす。また、当然ながら小型化にも限界があった。
【0014】
次に、従来例2の磁気ヘッドユニットは、コイルユニット320を構成する磁性層323、電気絶縁層326〜329、およびコイル層321,322,324,325を薄膜技術や厚膜技術を用いて形成しているため、小型で高精度のコイルユニット320を再現性良く製作することが可能である。しかしながら、ここで用いられる磁性芯(磁性層323)は蒸着による成膜で形成されるため、その厚みはたかだか数十μmが限界である。このため、このコイルユニット320を配列した磁気ヘッドユニットでは、一次元(X)方向の連続的な磁場分布を発生することは可能であるが、高さ(Y)方向の均一磁場範囲は数十μm以下に制限されることになる。通常、光ファイバから出射する光をレンズでコリメートした光ビームの幅(励振幅)は、数百μm(〜500μm)程度であり、本発明の目的も例外では無い。すなわち、従来例2のようなプロセスによる成膜技術は、高さ(Y)方向に数百μmの均一磁場をつくるのに十分な厚みの磁性層をつくることが非常に困難であった。
【0015】
また、従来例1,2ともに、コイルユニットは磁性体を介在した閉磁路が形成されていないため、磁性芯から発生した磁場が分散しやすい。コイルユニットを複数、高密度に配列した場合、ある磁性芯を励磁させると、被磁化体を通して、隣接するコイルユニットへ磁場の回り込みが生じ、また、隣接コイルユニットの励磁状況により磁場の回り込み方も変化するといった、特性の不安定性を招きやすい。さらに外部ノイズにも弱くなるといった課題があった。
【0016】
本発明はこのような点に鑑みてなされたものであり、小型化しても最適な磁場分布を形成し、且つ隣接磁場の干渉を低減することができる磁場印加ユニット、磁場印加ユニットの基板製造方法、光デバイス、および光減衰器を提供することを目的とする。
【0017】
また、本発明は、生産性に優れた実装方法を実現することができる磁場印加ユニット、磁場印加ユニットの基板製造方法、光デバイス、および光減衰器を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明では上記課題を解決するために、光信号の減衰を制御するための磁場印加ユニットにおいて、非磁性材料からなり、凹部を有する絶縁基板と、前記絶縁基板上に、前記凹部を囲むように、導電性材料の膜からなる少なくとも1層以上のスパイラル状パターンで形成されるコイルと、磁場発生部を有し、一部を前記凹部に嵌合して前記絶縁基板上に複数整列配置され、任意の合成磁場分布を発生する磁性材料からなる主磁極と、前記磁場発生部に対向して配置され、前記磁場発生部と対向する側と反対の側から光ビームが入射されると共に、前記任意の合成磁場分布の磁場を複数の前記主磁極により印加される被磁化体と、前記被磁化体の前記磁場発生部と対向する側と反対の側に配置されて、前記光ビームが通過可能に構成された磁性体と、前記絶縁基板上に保持され、前記被磁化体に対し磁場を印加し、前記被磁化体の磁化の強さを飽和させる永久磁石と、を有し、前記主磁極の前記磁場発生部から前記被磁化体を前記光ビームが入射する側へ貫通し前記磁性体を介して前記主磁極に戻る経路の閉磁路が形成されていることを特徴とする磁場印加ユニットが提供される。
【0019】
このような磁場印加ユニットによれば、非磁性材料からなる絶縁基板上に導電性材料の膜からなる、少なくとも1層以上のスパイラル状パターンで形成されるコイルに所定の電気信号が印加される。磁性材料からなる主磁極は、絶縁基板上のコイルで囲まれた凹部に、その一部を嵌合して絶縁基板上に複数整列配置され、印加された電気信号によって、任意の合成磁場分布を発生する。この合成磁場分布の磁場は、光ビームが入射される被磁化体に印加される。ここで、永久磁石は、被磁化体に対し、磁場を印加し被磁化体の磁化の強さを飽和させる。磁場印加ユニットでは、被磁化体の光ビーム入射側へ貫通する閉磁路が形成される。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明の磁場印加ユニットの平面図であり、図2は図1のA−A矢視断面図である。図1によると、磁場印加ユニット30は、非磁性材料からなるベース基板(以下、絶縁基板と称する)31と、絶縁基板31上に形成され導電性材料の膜からなるスパイラル状コイル32aと、スパイラル状コイル32aの中心部に設けられる凹部33aと、その一部を凹部33aに嵌合し磁性材料からなる主磁極34aと、主磁極34aにより磁場を印加される被磁化体35と、から構成される。磁場発生部34a1は、主磁極34aの被磁化体35側先端を示し磁場を発生させる。なお、スパイラル状コイル32a、凹部33a、主磁極34a、および磁場発生部34a1は、図1に示すように同様のものが複数配置されている。ただし、本発明の説明においては、便宜上それらを代表し主磁極34b〜34nとして図示している。また、本発明の構成要素として、図11に示すように永久磁石36a,36bがあるが、永久磁石36a,36bの用途においては一般的に周知であり、特に形状、配置位置などは限定しない。ただし、後述する効果を実現するための必要要素となるので、詳細は図11にて説明する。
【0027】
ここで、磁場印加ユニット30において、非磁性材料からなる絶縁基板31上には、導電性材料の膜からなる少なくとも1層以上のスパイラル状コイル32aが形成されている。(図1にはスパイラルパターンの詳細は図示せず。)なお、スパイラルパターンの形状は、磁場を発生させるコイルの特性を持つものであれば、どのような形状でもよい。そして、絶縁基板31上の、スパイラル状コイル32aの中心部には、角錐形状の凹部33aが設けられている。また、その凹部33aとの嵌合部と同一形状で磁性材料からなる主磁極34aが、その一部を凹部33aに嵌合して絶縁基板31上に整列配置される。さらに、被磁化体35は、複数配列した主磁極34aの磁場発生部34a1直近に配置される。そこで、スパイラル状コイル32aに電気信号(電流)を流すことで、主磁極34aより発生する磁場Hが被磁化体35に印加される。なお、絶縁基板31は、半導体材料であればどのような材料でもよく、例えばシリコン等を使用することができる。そこで、絶縁基板31にシリコンを使用した場合の製造方法について、図3を参照して説明する。
【0028】
図3は、シリコン基板を用いた絶縁基板の製造方法を示す図である。
まず、図3(a)に示すように、シリコン基板111表面に絶縁膜112a,112bを形成し、凹溝形成位置の裏面に絶縁膜112bを除去した開口部113を設ける。次に、図3(b)のように、絶縁膜112bをマスクとして、異方性エッチングにより凹部33aを形成する。このとき、凹部33aの底面には絶縁膜112aが残る。この際、薄いシリコン層が残っていても良い(図示せず)。その後、図3(c)のように、シリコン基板111表面に導電材料薄膜でスパイラルパターン114を形成する。その上に絶縁材料薄膜115を積層し、コイル端子位置116a,116b、次層スパイラルパターンとの電気的コンタクト位置117a,117b、および凹溝形成位置118、それぞれの位置の絶縁材料薄膜115を除去する。次に、図3(d)のように、2層目(ここでは最終層)のスパイラルパターン119を形成し、さらにその上に絶縁材料で薄膜120を積層する。その後、同様にコイル端子位置116a,116bおよび凹溝形成位置118、それぞれの位置の薄膜120を除去する。その後、図3(e)のように、シリコン基板111表面に保護膜121を成膜し凹溝形成位置118の保護膜121を除去する。最後に、保護膜121をマスクとして、凹部33aの底面に残った絶縁膜112a(異方性エッチング時に残ったシリコン層を含む)を除去することで、図3(f)のように、絶縁基板31を完成する。ここで、凹部33aの底面の絶縁膜除去工程は、シリコン基板111の裏面側(各図の下側)からRIE(リアクティブイオンエッチング)等のエッチング手段で実施することもでき、この場合、シリコン基板111表面の保護膜121は必ずしも必要ではない。
【0029】
図4は、本発明の磁場印加ユニットから発生する磁場の分布図である。図4において、縦軸は磁場強度を示し、横軸は磁場発生部34a1の配列位置を示す。ここで、磁場発生部34a1は、主磁極34aに対応した磁場発生部位であるが、図1にて前述した34b〜34nの磁場発生部位も磁場発生部34a1に代表して説明する。また、破線で示した各分布曲線は、それぞれ磁場発生部34a1から発生した個別磁場分布を示している。この個別磁場分布は、磁場発生部34a1の横幅の大きさに比例する。例えば、横幅が狭い場合には磁場強度は中央に集中分布し、横幅が広い場合には磁場強度は広範囲に分布している。そして、これらの個別磁場分布を合成することによって、合成した分布曲線である合成磁場分布Cmが得られる。すなわち、複数の主磁極から発生する磁場を合成することによって、合成磁場分布Cmが得られる。この合成磁場分布Cmの分布曲線形状は、前述した磁場発生部34a1に比例するだけでなく、各磁場発生部の間の距離である配列ピッチd1,d2,d3をそれぞれ変えることによっても変化させることができる。したがって、このような合成磁場分布Cmを利用することによって、入力された光信号に対して、磁場強度を任意に設定できる合成磁場を印加することができる。つまり、入力された光信号には、光信号強度の分布に対応した合成磁場を印加、具体的には光信号強度が大きいところに対して、磁場強度の大きい磁場を印加することができる。
【0030】
また、絶縁基板31上に配置される複数の主磁極34aは、その磁場発生部34a1の先端形状および配列ピッチd1,d2,d3が個別に異なっていても良く、図4のように、合成磁場分布Cmが所望の形状となるように最適化される。
【0031】
このように、本発明では、非磁性材料からなる絶縁基板31にある、スパイラル状コイル32aの中心部分に凹部33aを設け、これに主磁極34aを嵌合するので、主磁極34aの位置が容易に定まり、簡易組立で主磁極34aを所望のピッチで配列することができる。また、主磁極34a(磁性芯)単体を個別部品として扱い、コイルを絶縁基板上にプロセスで一括形成する(図3参照)ことにより、従来のように磁性芯およびコイルから成るコイルユニットを1個ずつ組み立てる必要が無くなる。このため、磁性芯にコイルを巻く作業やコイル端子の半田付け処理等が不要となり、製造の簡易化が図れる。さらに、主磁極34aを個別部品とすれば、プロセスでは不可能な、広い断面積の磁場発生部34a1を容易に実現できる。また、コイルをプロセスで形成すれば細径化が可能であり、高密度化にも対応できる。
【0032】
また、凹部33aとスパイラル状コイル32aを形成する絶縁基板31は、図3の製造工程に従えば、シリコン基板111を用いることで容易に作製できる。すなわち、凹部33aは異方性エッチングにより容易に形成でき、その位置も精度良く決めることができる。このとき図3(b)のように凹部33a底面に絶縁膜112a(シリコン層があっても良い)を残すことで、シリコン基板111表面は平坦面が確保されるのでスパイラル状コイル32a等の微細パターニングも可能となる。最後に凹部33a底面を除去すれば、所望の絶縁基板31が実現できる。また、全ての工程がプロセスに依るため、量産も容易となる。また、シリコンは熱伝導性に優れた材料であり、絶縁基板31としてシリコンを選択することにより、スパイラル状コイル32aの通電に伴う発熱を抑えることができる。その結果、発生磁場の特性安定化やコイルの焼き切れ防止の効果を、大きくすることができる。
【0033】
さらに、主磁極34aの先端(磁場発生部34a1)形状および配列ピッチd1,d2,d3を個別に異なるものとし、所望の合成磁場分布Cmを形成するためにそれぞれのパラメータを最適化すれば、最小の主磁極数で磁場印加ユニット30を構成することができる。その結果、磁場発生に必要な消費電力を、最小にすることができる。
【0034】
次に、本発明の他の実施の形態(第2〜第6)について、図5〜図10を参照して説明する。
[第2の実施の形態]
図5は、本発明の第2の実施の形態における磁場印加ユニットの平面図であり、図6は図5のB−B矢視断面図である。図5および図6において、磁場印加ユニット40は、非磁性材料からなる絶縁基板41と、絶縁基板41上に形成され導電性材料の膜からなるスパイラル状コイル42a1,42a2と、スパイラル状コイル42a1,42a2の中心部に設けられる凹部(以下、本図において貫通孔と称する)43a1,43a2と、その一部を貫通孔43a1,43a2に嵌合し磁性材料からなる主磁極44aと、主磁極44aにより磁場を印加される被磁化体45と、少なくとも表面に磁性を有し絶縁基板41を載置した第2の基板46(絶縁基板41を第1の基板と考える)と、から構成される。磁場発生部44a1は、主磁極44aの被磁化体45側先端を示し、被磁化体45への磁場の印加口である。また、絶縁基板41の中央には、被磁化体45を収納する収納孔47を備えている。さらに、第2の基板46は、光ビームPbを入出射する開口48を備えている。なお、スパイラル状コイル42a1,42a2、貫通孔43a1,43a2、主磁極44a、および磁場発生部44a1は、図5に示すように同様のものが複数配置されている。ただし、本実施の形態では、図6のように主磁極44aに関連した部位で代表して説明する。また、第3〜第4の実施の形態、ならびに実施例においても、同様に各図を代表部位とする。
【0035】
ここで、磁場印加ユニット40には、非磁性材料からなる絶縁基板41上に、導電性材料の膜からなる少なくとも1層以上のスパイラル状コイル42a1,42a2が形成されている。(図5にはスパイラルパターンの詳細は図示せず。)そして、絶縁基板41上の、スパイラル状コイル42a1,42a2の中心部には、貫通孔43a1,43a2が設けられ、磁性材料からなる主磁極44aは、その一部を貫通孔43a1,43a2に嵌合して絶縁基板41上に整列配置される。この絶縁基板41は少なくとも表面に磁性を有する第2の基板46上に搭載され、また主磁極44aは貫通孔43a1,43a2を通って第2の基板46の磁性表面と接触する。また、絶縁基板41の中央には被磁化体45を収納する収納孔47が設けられており、図6のように、被磁化体45が第2の基板46の磁性面で接触保持される。この被磁化体45は、主磁極44aの磁場発生部44a1直下に位置する。そこで、スパイラル状コイル42a1,42a2に電流を流すことで、主磁極44aより発生する磁場Hが被磁化体45に印加されるとともに、“主磁極44a−被磁化体45−第2の基板46の磁性面”の経路で閉磁路Cm40aを形成する。このような状態で、第2の基板46の開口48では、被磁化体45への光ビームPbが入出射され、光ビームPbは被磁化体45内で磁場Hを受けることになる。
【0036】
また、図6のように、主磁極44aを2つ以上のスパイラル状コイル42a1,42a2と磁気的に結合させ、複数のコイルから生じる磁束が主磁極の磁場発生部44a1に集中するように構成しているが、1つあるいは3つ以上のコイルにより構成することもできる。さらに、1つの主磁極44aに結合する複数のスパイラル状コイル42a1,42a2を電気的に直列接続しても良い(図示せず)。また、スパイラル状コイル42a1,42a2を絶縁基板41上で千鳥状交互に密集配置することもできる。
【0037】
このように、閉磁路Cm40aを形成して被磁化体45に磁場Hを印加することにより、主磁極44aから発生する磁場の分散や、隣接する主磁極への磁場の回り込み等が生じにくくなり、被磁化体45に印加される合成磁場分布を安定させることができる。また、外部ノイズに対しても強くすることができる。
【0038】
また、主磁極44aを2つ以上のスパイラル状コイル42a1,42a2と磁気的に結合させることにより、複数のスパイラル状コイル42a1,42a2から生じる磁束を主磁極44aの磁場発生部34a1に集中することができ、磁場印加効率の向上が図れる。また、一般に、コイルから発生する磁束はコイルの巻数に比例し、コイルの占有面積はコイルの巻数の2乗に比例する。すなわち、コイルの磁束を2倍にしようとして巻数を2倍にすると、4倍のコイル面積が必要となる。しかしながら、図6のように、主磁極44aと結合するスパイラル状コイル42a1,42a2を複数とし、例えば同じ巻数のコイルを1個から2個に増やせばコイルから発生するトータルの磁束を2倍にでき、且つ、コイル占有面積も2倍で済むといったメリットがある。このため、複数のスパイラル状コイル42a1,42a2を主磁極44aと結合する構成とすれば、狭いコイル面積で高い磁場印加効率を得ることができ、また、主磁極間の間隔をより挟ピッチ化することができる。このとき、1つの主磁極に結合する複数のコイルを電気的に直列接続すれば、コイル端子数が削減できるので、ワイヤボンディング等の電気接続工程が簡易化できる。さらに、スパイラル状コイル42a1,42a2を図6のように千鳥状交互に配置すれば、主磁極の挟ピッチ化に大きく寄与することができる。
[第3の実施の形態]
図7は、本発明の第3の実施の形態における磁場印加ユニットの側断面図である。図7において、磁場印加ユニット50は、非磁性材料からなる絶縁基板51と、絶縁基板51上に形成され導電性材料の膜からなるスパイラル状コイル52aと、スパイラル状コイル52aの中心部に設けられる凹部(以下、本図において貫通孔と称する)53aと、その一部を貫通孔53aに嵌合し磁性材料からなる主磁極54aと、主磁極54aにより磁場を印加される被磁化体55と、少なくとも表面に磁性を有し絶縁基板51を載置した第2の基板56と、第2の基板56に載置され磁性体からなる第3の基板57と、から構成される。磁場発生部54a1は、主磁極54aの被磁化体55側先端を示し、被磁化体55への磁場Hの印加口である。また、第3の基板57は、光ビームPbを入出射する開口58を備えている。
【0039】
ここで、磁場印加ユニット50において、非磁性材料からなる絶縁基板51には、スパイラル状コイル52aおよびコイル中心部の貫通孔53aが設けられている。この絶縁基板51は、少なくとも表面に磁性を有する第2の基板56上に搭載され、主磁極54aは貫通孔53aを通って第2の基板56の磁性表面と接触するように取り付けられる。この主磁極54aの磁場発生部54a1直近の絶縁基板51上には、被磁化体55が配置される。また、磁性体からなる第3の基板57が、被磁化体55の主磁極54aと対向する面の反対側に、且つ、第2の基板56の磁性表面と接触するように配置される。そこで、スパイラル状コイル52aに電流を流すことで主磁極54aより発生する磁場Hが被磁化体55に印加され、“主磁極54a−被磁化体55−第3の基板57(磁性体)−第2の基板56の磁性面”の経路で閉磁路Cm50aを形成する。このような状態で、第3の基板57(磁性体)に設けられた開口58では、被磁化体55への光ビームPbが入出射され、光ビームPbは被磁化体55内で磁場Hを受けることになる。
【0040】
このように、磁性体からなる第3の基板57を、被磁化体55の主磁極54aと対向する面の反対側に、且つ、第2の基板56の磁性表面と接触するように配置すれば、図6と違った構成で閉磁路Cm50aが形成できるので、アプリケーションに合わせた磁場印加ユニットの設計が可能となる。
[第4の実施の形態]
図8のように、少なくとも表面に磁性を有する第2の基板として、磁性ガラス66を選択することもできる。
【0041】
図8は、本発明の第4の実施の形態における磁場印加ユニットの側断面図である。なお、図8の構成部位の機能は、一部を除いて図6と同様であるため、図6との差異を中心に説明する。図8において、磁場印加ユニット60は、磁場発生部位を中心にして、対称的な経路からなる二つの閉磁路を形成する磁場発生部64a1(図6の磁場発生部44a1に対応)と、図6における開口48を無くし、少なくとも表面に磁性を有する磁性ガラス66(図6の第2の基板46に対応)と、に図6の構成に対して変更したものである。
【0042】
ここで、磁場印加ユニット60において、被磁化体65は、ベース基板(被磁性材料からなる絶縁基板61+磁性ガラス66)に保持され、主磁極64a直下に配置されている。そこで、スパイラル状コイル62a1,62a2に電流を流すことで、主磁極64aより発生する磁場Hが印加され、“主磁極64a−被磁化体65−磁性ガラス66”の経路で閉磁路Cm60aを形成する。なお、この閉磁路Cm60aは、磁場発生部64a1を中心にして、対称的な経路からなる二つの閉磁路である。このような状態で、磁性ガラス66には、被磁化体65への光ビームPbが入出射され、光ビームPbは被磁化体65内で磁場Hを受けることになる。ここで、被磁化体65への光ビームPbの入出射は、磁性ガラス66を通して行うので開口は必要としない。
【0043】
このように、少なくとも表面に磁性を有する第2の基板として、磁性ガラス66を選択すれば、図6のように光ビームPbの入出射のための開口48を設ける必要が無く、絶縁基板61と第2の基板(磁性ガラス66)の張り合わせも相対位置を気にしないので、より簡単に磁場印加ユニットを組み立てることができる。また、主磁極64aから発生する磁場Hを主磁極64aに対向する面全体で受ける閉磁路Cm60aを形成できるので、図6のように被磁化体65内部の磁場が磁場方向(Z方向)に一様でない、いわゆる磁場ムラが生じにくく、特性安定化が可能となる。
[第5の実施の形態]
図9のように、磁性を有する第3の基板77が、光学部品78を保持するホルダを兼ねることもできる。
【0044】
図9は、本発明の第5の実施の形態における磁場印加ユニットの側断面図である。なお、図9の構成部位の機能は、一部を除いて図7と同様であるため、図7との差異を中心に説明する。図9において、磁場印加ユニット70は、図7における開口58に光学部品78(レンズ)を固定した第3の基板77(図7の第3の基板57に対応)に、図7の構成に対して変更したものである。
【0045】
ここで、磁場印加ユニット70において、スパイラル状コイル72aに電流を流すことで、主磁極74aより発生する磁場Hが被磁化体75に印加され、“主磁極74a−被磁化体75−第3の基板77(磁性体)−第2の基板76の磁性面”の経路で閉磁路Cm70aを形成する。このような状態で、光ビームPbは光学部品78を通過して、被磁化体75へ入出射され、光ビームPbは被磁化体75内で磁場Hを受けることになる。
【0046】
このように、磁性体からなる第3の基板77が光学部品78を保持するホルダを兼ねれば、被磁化体75に入出射する光ビームPbに他の光学的制御を与えることができるので、光学機能を集積した複合機能型磁場印加ユニットを容易に構成することができる。また、部品削減にも効果がある。
[第6の実施の形態]
また、図10のように、磁性を有する第3の基板が、磁性ガラスからなるレンズ部品87であっても良い。
【0047】
図10は、本発明の第6の実施の形態における磁場印加ユニットの側断面図である。なお、図10の構成部位の機能は、一部を除いて図7と同様であるため、図7との差異を中心に説明する。図10において、磁場印加ユニット80は、図7における第3の基板57を、磁性ガラスからなるレンズ部品87に変更したものである。ここで、磁場印加ユニット70において、スパイラル状コイル82a1,82a2に電流を流すことで、主磁極84aより発生する磁場Hが被磁化体85に印加され、“主磁極84a−被磁化体85−レンズ部品87−第2の基板86の磁性面”の経路で閉磁路Cm80aを形成する。このような状態で、光ビームPbはレンズ部品87で集光され、被磁化体85へ入出射する。そして、光ビームPbは被磁化体85内で磁場Hを受けることになる。
【0048】
このように、図7における磁性体からなる第3の基板を、磁性ガラスからなるレンズ部品87とすれば、被磁化体85に入出射する光ビームPbに集光機能を付加できるとともに、主磁極84aから発生する磁場Hを主磁極84aに対向する面全体で受ける閉磁路Cm80aを形成できるので、被磁化体85に磁場ムラが生じにくく特性安定化が可能となる。
[第7の実施の形態]
上述の全ての磁場印加ユニットにおいて、被磁化体を磁気光学結晶とし、磁気光学結晶に光ビームPbが通過(入出射)するように光学系配置すれば、図11および図12のように、磁気光学効果を利用した光減衰器(図11、図12において、可変光アッテネータと称する)、および光デバイスを構成することができる。
【0049】
図11は、本発明の第7の実施の形態における可変光アッテネータの構成図である。図11において、可変光アッテネータ20は、入射した多重光信号を平行にするコリメータ21と、平行になった多重光信号を波長別の光信号に分波(分散)させる分散素子22と、波長別光信号の分散を抑え平方向にする分散素子23と、光信号を偏光分離する複屈折結晶24と、光信号に磁場を印加する磁場印加ユニット30と、から構成される。ここで、磁場印加ユニット30は、主磁極34(主磁極34a〜34nで構成)、磁気光学結晶35a、反射膜35b、永久磁石36a,36bを有する。なお、可変光アッテネータ20は、光サーキュレータ16により光信号が入出射される。また、可変光アッテネータ20は、制御回路15により磁場強度調節のための電気信号が入力される。
【0050】
このような構成により、光ファイバを通って光サーキュレータ16のポート16aに入射した多重光信号は、光サーキュレータ16のポート16b、光ファイバ11eを通過してコリメータ21により平行な多重光信号に調整される。平行に調整された多重光信号は、分散素子22により波長別に分波(分散)される。分散された各光信号は、分散素子23により、分散を抑えるように平方向化される。平方向となった各光信号は、複屈折結晶24により偏光分離される。偏光分離された各光信号には、制御回路15から所定の電気信号が印加された磁場印加ユニット30により、磁気光学結晶35a内にて磁場を印加されることで、各光信号の偏光面に対しファラデー回転が与えられる。ここで、磁気光学結晶35a内にて印加される磁場は、永久磁石36a(S極),永久磁石36b(N極)により磁気光学結晶35aの磁化の強さを飽和させ、主磁極34により磁化の方向および強さを任意に変化させたものである。このように偏光回転を任意に変化させられた各光信号は、再び複屈折結晶24の通過時に所定の減衰が与えられる。すなわち、各光信号の入出射時において、偏光回転の変化の大きさに応じた減衰が与えられる。そして、入射経路を逆に進み、光サーキュレータ16のポート16bに出射した光信号は、光サーキュレータ16のポート16cから、光信号強度が平坦な多重光信号として出射される。
【0051】
図12は、本発明の第7の実施の形態における光デバイスの構成図である。図12において、光デバイス1は、多重伝送された各光信号の強度を平坦にするものであり、光信号を伝送する光ファイバ11a〜11fと、光信号を増幅する光アンプ12と、光信号を分岐する光カプラ13と、光信号の光信号強度を測定するマルチチャンネル光モニタ14と、光信号強度に応じた電気信号を印加する制御回路15と、光信号の経路を変更する光サーキュレータ16と、光信号の光信号強度を調整する可変光アッテネータ20と、から構成される。
【0052】
このような構成により、光ファイバ11a内を進行する多重光信号(弱)Piは、光アンプ12により増幅され、光ファイバ11bへ出射される。増幅された多重光信号は、光カプラ13により一部が分岐され、光ファイバ11cへ出射される。また残りの多重光信号は、光ファイバ11dへ出射される。この光ファイバ11cへ出射された一部の多重光信号は、マルチチャンネル光モニタ14により光信号強度を測定され、強度測定値が制御回路15へ出力される。一方、光ファイバ11dへ出射された多重光信号は、光サーキュレータ16により経路変更され、光ファイバ11eへ出射される。光ファイバ11eへ出射された多重光信号は、可変光アッテネータ20により所望の減衰が与えられ、光信号強度が平坦化された多重光信号として光ファイバ11eへ出射される。この減衰は、可変光アッテネータ20にて、制御回路15により強度測定値に応じた電気信号が与えられ、磁場強度を可変調整することにより行われる。そして、光信号強度が平坦化された多重光信号は、再び光サーキュレータ16に戻り経路変更され、光ファイバ11fへ出射されて多重光信号(強)Poとして長距離伝送される。
【0053】
このように、被磁化体を磁気光学結晶とすれば、磁気光学結晶内を通過する光ビームに対して、磁場強度の分布に応じたファラデー効果を生じさせることができる。このため、図11、図12のような可変光アッテネータおよび光デバイスが実現可能となる。
【0054】
これにより、特性の優れた磁場印加ユニットを小型で、且つ、量産に適した構成で提供できるとともに、磁場印加ユニットを用いた光デバイスおよび光減衰器を低コスト、小型で実現することができる。
[実施例]
次に、本発明の磁場印加ユニットにおける実施例について、図を参照して説明する。なお、実施例の説明は、前述した実施の形態において説明した図1〜図11を参照する。
【0055】
図1は、前述したように本発明による磁場印加ユニットの構成例であり、図2はその断面を示している。本実施例において、非磁性材料からなる絶縁基板31はシリコンで構成され、前述した図3の工程に従い製造することができる。
【0056】
まず、図3(a)のように、シリコン基板111の表面(両面)にSiO2からなる非磁性の絶縁層(以下、本図においてSiO2膜と称する)112a,112bを熱酸化工程により成膜後、シリコン基板111裏面の凹溝形成位置118にシリコンが露出した開口部113を設ける。SiO2膜112bの除去は、例えばRIE(リアクティブイオンエッチング)で実施される。ここで、シリコン基板111表面に形成する非磁性絶縁層は、SiO2の他、Al2O3を用いても良く、スパッタリング等の他の成膜方法を適用することもできる。次に、水酸化カリウム(KOH)水溶液による異方性エッチングで、図3(b)のように、凹部33aを形成する。このとき、凹部33a底面にはSiO2膜112aが残る。この際、薄いシリコン層が残っていても良い(図示せず)。その後、図3(c)のように、シリコン基板111表面にCr/Cu/Cr(Cr:接合層)の3層からなるスパイラルパターン114(コイル)を蒸着等により形成する。その上に、例えばSiO2からなる絶縁材料薄膜115をスパッタリングや蒸着等により積層し、コイル端子位置116a,116b、次層スパイラルパターンとの電気的コンタクト位置117a,117b、および凹溝形成位置118のSiO2層をエッチングで除去する。さらに、図3(d)のように、2層目(ここでは最終層)のスパイラルパターン119、および、その上にSiO2からなる薄膜(以下、本図においてSiO2膜と称する)120を同様に形成する。SiO2膜120は、コイル端子位置116a,116bおよび凹溝形成位置118がエッチングで除去される。その後、図3(e)のように、シリコン基板111表面に、例えばポリイミドの保護膜121を成膜し、凹溝形成位置118の保護膜をエッチングで除去する。最後に、保護膜121をマスクとして、凹部33a底面に残ったSiO2膜112a(異方性エッチング時に残ったシリコン層を含む)をエッチングで除去することで、図3(f)のように、絶縁基板31を完成する。ここで、凹部33a底面のSiO2層除去工程は、シリコン基板111裏面側からRIE(リアクティブイオンエッチング)等のエッチング手段で実施することもでき、この場合、シリコン基板111表面の保護膜は必ずしも必要ではない。また、ここでは非磁性材料からなるベース基板としてシリコンを選択したが、この他に、例えばInP(インジウム燐)のように異方性エッチングが可能な半導体材料を選択することもできる。
【0057】
磁性材料からなる主磁極34aは、例えば、材料としてパーマロイ(Fe−Ni)を選択し型による打ち抜きで形成することができる。主磁極34aは、その一部が絶縁基板31の凹部33aに嵌合するように、絶縁基板31上に搭載され接着剤で固定される。これにより、主磁極の磁場発生部34a1が一列に整列する。被磁化体35は、複数配列した主磁極の磁場発生部34a1直近に配置され、スパイラル状コイル32aに電流を流すことで各主磁極より発生する合成磁場が被磁化体35に印加される。
【0058】
ここで、絶縁基板31上に搭載される複数の主磁極は、その先端形状および配列ピッチが個別に異なっていても良い。例えば、図4に示される合成磁場分布Cmを作るために、形状の異なる2種類の主磁極34aを使用する。すなわち、形成したい合成磁場分布Cmに対し、変化が大きい領域には、急峻な磁場分布を発生する幅の狭い主磁極34aを挟ピッチ間隔で配置し、変化の小さい領域には、緩やかな磁場分布を発生する幅の広い主磁極34aを広ピッチで配置する。これにより、所望の合成磁場分布Cmを最小の主磁極数で効率良く形成することができる。
【0059】
図5〜6は、前述したように磁場印加ユニットの他の構成例を示している。本実施例において、絶縁基板41は、シリコンを用い前述と同様の工程でスパイラル状コイル42a1,42a2および凹部43a1,43a2を形成している。ここで、凹部43a1,43a2は、特に貫通孔であることを必須とする。また、被磁化体45を収納する収納孔47は異方性エッチングで凹部43a1,43a2と同時に形成される。絶縁基板41は、例えばMn−Znフェライトからなる第2の基板(以下、本図において磁性基板と称する)46上に搭載され、接着固定される。被磁化体45は、収納孔47内で底面の一部が磁性基板46と接触するように保持され、側面が収納孔47(凹部状)の壁で保持される。ここで、磁性基板46の被磁化体直下にあたる部分は開口48とし、被磁化体45への光ビームPbの入出射口としている。主磁極44aは、その一端が凹部43a1,43a2と嵌合して磁性基板46と接触し、他端が被磁化体45と対向するように、形状を略J字型とし、且つ、2つのスパイラル状コイル42a1,42a2と磁気的に結合するように設計されている。これは、例えばパーマロイ(Fe−Ni)の型打ち抜き等により形成される。主磁極44aは、図5のように交互に向きを変えて絶縁基板41上に搭載され、接着固定される。これにより、主磁極の磁場発生部44a1が被磁化体45に対峙して一列に整列する。スパイラル状コイル42a1,42a2に電流を流すことで、複数のコイルから生じる磁束が主磁極の磁場発生部44a1に集中し、各主磁極より発生する合成磁場が被磁化体45に印加される。また、“主磁極44a−被磁化体45−磁性基板46”の経路で閉磁路を形成する。
【0060】
ここで、1つの主磁極に結合する複数のスパイラル状コイルは電気的に直列接続しても良い。また、スパイラル状コイルは複数列、不等ピッチで、例えば千鳥やダイヤモンド、ハニカム状に配置しても良い。
【0061】
前述した図7のように、磁性体からなる第3の基板57を、被磁化体55の主磁極54aと対向する面の反対側に、且つ、第2の基板56の磁性表面と接触するように配置することもできる。本実施例において、第2の基板56および第3の基板57は、例えばMn−ZnフェライトやNi−Znフェライトで構成され、磁性を示す表面同士が接触するようにして接着固定される。第3の基板に開口58を設ければ、被磁化体55への光ビームPbの入出射口が確保できる。この構成で、スパイラル状コイル52aに電流を流すことで主磁極54aより発生する磁場Hが被磁化体55に印加され、“主磁極54a−被磁化体55−第3の基板57(磁性体)−第2の基板56の磁性面”の経路で閉磁路Cm50aが形成される。
【0062】
また、前述した図8のように、少なくとも表面に磁性を有する第2の基板として、磁性ガラス66を選択することもできる。本実施例において、磁性ガラス66は、例えば酸化テルビウムを含むガラスで構成される。被磁化体65は、収納孔67内で底面が磁性ガラス66と接触するように保持され、側面が収納孔67(凹部状)の壁で保持される。被磁化体65へ光ビームPbの入出射は、磁性ガラス66を通して行われる。主磁極64aは、被磁化体65をまたがるように凹部63a1,63a2に差し込まれ、磁性ガラス66と接触する。同時に、主磁極の磁場発生部64a1と被磁化体65が対向する。絶縁基板61上のスパイラル状コイル62a1,62a2は、発生した磁束が主磁極の磁場発生部64a1に集中するように、その向きが予め設定されている。この構成で、“主磁極64a−被磁化体65−磁性ガラス66”の経路で閉磁路Cm60aが形成され、被磁化体65に磁場Hが印加される。
【0063】
さらに、前述した図9および図10は、磁性を有する第3の基板を使用した他の実施例を示している。本実施例では、図9のように磁性を有する第3の基板をレンズホルダ(以下、本図において単に第3の基板と称する)77とし、光ビームPbを被磁化体75に集光する位置に光学部品78(レンズ)を配置することもできる。ここで、保持する部品はレンズに限定されない。閉磁路は、“主磁極74a−被磁化体75−第3の基板77(磁性体)−第2の基板76の磁性面”の経路で形成され、被磁化体75に磁場Hが印加される。また、磁性ガラスでレンズ部品87を形成し、図10のように光ビームPbを被磁化体85に集光する位置にレンズ部品87を配置しても良い。ここで、磁性ガラスで形成する光学部品はレンズに限定されない。閉磁路は、“主磁極84a−被磁化体85−レンズ部品87(磁性ガラスレンズ)−第2の基板86の磁性面”の経路で形成され、被磁化体85に磁場Hが印加される。
【0064】
図11は、上記磁場印加ユニットを用いた可変光アッテネータの実施例を示している。上述の全ての磁場印加ユニットにおいて、被磁化体として磁気光学結晶35aを選択し、主磁極34(主磁極34a〜34nで構成)と対向する面に光ビームの反射膜35bを形成する。この磁場印加ユニットに対して図11のように、光ビームが開口あるいは磁性ガラスを通って磁気光学結晶35aに入出射するように光学系を配置すれば、磁気光学効果を利用した可変光アッテネータ20を構成することができる。すなわち、本実施例において、光ファイバ11eより入射した波長多重信号光は、分散素子(グレーティング)22,23で空間的に分波され、複屈折結晶24で常光線、異常光線に偏向分離された後、磁気光学結晶35aに入射する。磁気光学結晶35a内では、磁場印加ユニット30(主磁極34)から与える合成磁場の強度分布を調整することで、各チャンネルの光信号に任意の偏向回転を与えることができる。磁気光学結晶35a内を反射往復後、再び複屈折結晶24を通過する際に、各チャンネルの光信号は与えられた偏向回転に応じてその一部が屈折し光路からはずれる。その後、再度分散素子22,23で合波され光ファイバ11eに結合するとき、光路から外れた一部の光信号は光ファイバに結合できないため、出力光信号は入力光信号に比べて減衰することになる。この原理により、任意の磁場分布を与えられる本発明の磁場印加ユニットを用いて、チャンネル毎に任意の減衰を与える可変光アッテネータが可能となる。
【0065】
(付記1) 光信号の減衰を制御するための磁場印加ユニットにおいて、
非磁性材料からなり、凹部を有する絶縁基板と、
前記絶縁基板上に、前記凹部に位置を合わせて、導電性材料の膜からなる少なくとも1層以上のスパイラル状パターンで形成されるコイルと、
一部を前記凹部に嵌合して前記絶縁基板上に複数整列配置し、任意の合成磁場分布を発生する磁性材料からなる主磁極と、
前記絶縁基板上に保持され、前記任意の合成磁場分布の磁場を複数の前記主磁極により印加される被磁化体と、
前記絶縁基板上に保持され、前記被磁化体に対し磁場を印加し、前記被磁化体の磁化の強さを飽和させる永久磁石と、
を有することを特徴とする磁場印加ユニット。
【0066】
(付記2) 前記絶縁基板は、表面に絶縁膜を施したシリコン基板であることを特徴とする付記1記載の磁場印加ユニット。
(付記3) 前記凹部は、角錐形状の穴であることを特徴とする付記1記載の磁場印加ユニット。
【0067】
(付記4) 前記主磁極は、先端形状および配列間隔が個別に異なることを特徴とする付記1記載の磁場印加ユニット。
(付記5) 前記主磁極は、少なくとも2つ以上の前記コイルと磁気的に接続し、2つ以上の前記コイルから発生する磁束が、前記主磁極の磁場発生部に集中するように構成されていることを特徴とする付記1記載の磁場印加ユニット。
【0068】
(付記6) 前記2つ以上のコイルは、前記主磁極の磁場発生部に磁束が集中するように、前記絶縁基板上で、相互に直接接続されていることを特徴とする付記5記載の磁場印加ユニット。
【0069】
(付記7) 前記複数のスパイラル状コイルは、前記絶縁基板上で千鳥状交互に配列していることを特徴とする付記1記載の磁場印加ユニット。
(付記8) 前記絶縁基板と前記主磁極は、前記絶縁基板が少なくとも表面に磁性を有する第2の基板の上に搭載され、前記絶縁基板の前記凹溝を貫通穴とし、前記主磁極が前記貫通穴を通って前記第2の基板の磁性表面と接触するように取り付けられ、且つ、前記第2の基板の磁性表面は、主磁極と対向する前記被磁化体の面に対し、閉磁路が反対側に回り込むように配置されていることを特徴とする付記1記載の磁場印加ユニット。
【0070】
(付記9) 前記閉磁路は、“主磁極−被磁化体−第2の基板”の経路でループしていることを特徴とする付記8記載の磁場印加ユニット。
(付記10) 前記絶縁基板と前記主磁極は、前記絶縁基板が少なくとも表面に磁性を有する第2の基板の上に搭載され、前記絶縁基板の前記凹溝を貫通穴とし、前記主磁極が前記貫通穴を通って前記第2の基板の磁性表面と接触するように取り付けられ、且つ、磁性体からなる第3の基板を、主磁極と対向する前記被磁化体の面に対して反対側に配置し、前記第2の基板の磁性表面と接触させることにより閉磁路を形成することを特徴とする付記1記載の磁場印加ユニット。
【0071】
(付記11) 前記閉磁路は、“主磁極−被磁化体−第3の基板−第2の基板”の経路でループしていることを特徴とする付記10記載の磁場印加ユニット。
(付記12) 少なくとも前記第2の基板もしくは前記第3の基板が磁性ガラスであることを特徴とする付記10記載の磁場印加ユニット。
【0072】
(付記13) 前記第2の基板もしくは前記第3の基板が、光学部品を保持するホルダを兼ねることを特徴とする付記10記載の磁場印加ユニット。
(付記14) 前記第2の基板もしくは前記第3の基板が磁性ガラスからなり、レンズ機能を有することを特徴とする付記10記載の磁場印加ユニット。
【0073】
(付記15) 磁性部材の嵌合部を形成し、且つ、基板上にコイルを形成する磁場印加ユニットの基板製造方法において、
シリコン基板の両面に表面の絶縁膜と裏面の絶縁膜を形成し、凹溝形成位置である前記裏面の絶縁膜の一部を除去した開口部を設ける工程、
前記表面の絶縁膜をマスクとして、エッチングにより凹部を形成し、前記凹部の底面には前記表面の絶縁膜を残す工程、
前記シリコン基板の表面に導電材料薄膜でスパイラルパターンを形成し、その上に絶縁材料薄膜を積層し、コイル端子位置、次層スパイラルパターンとの電気的コンタクト位置、および凹溝形成位置の前記絶縁材料薄膜を除去する工程、
次層のスパイラルパターンを形成し、さらにその上に絶縁材料で薄膜を積層し、コイル端子位置および凹溝形成位置の前記薄膜を除去する工程、
前記凹部の底面に残った前記絶縁膜を除去する工程、
からなることを特徴とする磁場印加ユニットの基板製造方法。
【0074】
(付記16) 前記絶縁基板は、少なくとも前記凹部の一部を異方性エッチングで形成することを特徴とする付記15記載の磁場印加ユニットの基板製造方法。
【0075】
(付記17) 前記凹溝底面の絶縁膜を除去する工程は、シリコン裏面側からRIE(リアクティブイオンエッチング)によりエッチングすることを特徴とする付記15記載の磁場印加ユニットの基板製造方法。
【0076】
(付記18) 前記凹溝底面の絶縁膜を除去する工程は、前記シリコン基板の表面に保護膜を成膜し凹溝形成位置の前記保護膜を除去し、前記保護膜をマスクとして、前記絶縁膜を除去することを特徴とする付記15記載の磁場印加ユニットの基板製造方法。
【0077】
(付記19) 多重伝送された各光信号の強度を減衰させる光減衰器において、
入射した多重光信号を平行にするコリメータと、
平行になった前記多重光信号を波長別の光信号に分散させる第1の分散素子と、
前記波長別の光信号の分散を抑えて各光信号を平方向にする第2の分散素子と、
前記各光信号を偏光分離する複屈折結晶と、
非磁性材料からなり、凹部を有する絶縁基板と、前記絶縁基板上に、前記凹部に位置を合わせて導電性材料の膜からなる少なくとも1層以上のスパイラル状パターンで形成されるコイルと、一部を前記凹部に嵌合して前記絶縁基板上に複数整列配置し、任意の合成磁場分布を発生する磁性材料からなる主磁極と、前記絶縁基板上に保持され、前記任意の合成磁場分布の磁場を複数の前記主磁極により印加される被磁化体と、前記絶縁基板上に保持され、前記被磁化体に対し磁場を印加し、前記被磁化体の磁化の強さを飽和させる永久磁石と、を備え、前記偏光分離された各光信号に磁場を印加し出射する磁場印加ユニットと、
を有し逆経路で前記多重光信号を出射することを特徴とする光減衰器。
【0078】
(付記20) 多重伝送された各光信号の強度を平坦にする光デバイスにおいて、
多重光信号を伝送する光ファイバと、
前記多重光信号を増幅する光アンプと、
増幅された前記多重光信号を分岐する光カプラと、
前記多重光信号の分岐された一部の多重光信号に対し、光信号強度を測定するマルチチャンネル光モニタと、
前記光信号強度に応じた電気信号を制御対象デバイスに印加する制御回路と、
前記多重光信号と減衰された多重光信号の経路を変更する光サーキュレータと、
入射した前記多重光信号を平行にするコリメータと、平行になった前記多重光信号を波長別の光信号に分散させる第1の分散素子と、前記波長別の光信号の分散を抑えて各光信号を平方向にする第2の分散素子と、前記各光信号を偏光分離する複屈折結晶と、前記偏光分離された各光信号に磁場を印加し出射する磁場印加ユニットであって、非磁性材料からなり、凹部を有する絶縁基板と、前記絶縁基板上に、前記凹部に位置を合わせて、導電性材料の膜からなる少なくとも1層以上のスパイラル状パターンで形成されるコイル、一部を前記凹部に嵌合して前記絶縁基板上に複数整列配置し任意の合成磁場分布を発生する磁性材料からなる主磁極、前記絶縁基板上に保持され前記任意の合成磁場分布の磁場を複数の前記主磁極により印加される被磁化体、前記絶縁基板上に保持され前記被磁化体に対し磁場を印加し前記被磁化体の磁化の強さを飽和させる永久磁石、からなる磁場印加ユニットと、を備え、前記制御回路により所定の電気信号が印加され、前記多重光信号の光信号強度を平坦にして前記光サーキュレータへ出射する可変光アッテネータと、
を有することを特徴とする光デバイス。
【0079】
【発明の効果】
以上説明したように本発明では、任意(断面)形状の主磁極単体を個別部品として扱い製造するようにしたので、磁場印加ユニットを小型、量産性に優れた構造で提供できる。また、簡易組立において、主磁極を任意の間隔で嵌合するようにしたので、一次元(X)方向に任意の磁場分布を、高さ(Y)方向に任意の範囲で均一な磁場分布を発生させ、隣接磁場の干渉を低減することが可能となる。
【0080】
また、シリコンを利用して放熱性に優れた構成、閉磁路を形成する磁場印加構成としたことにより、発生磁場の特性安定化を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の磁場印加ユニットの平面図である。
【図2】図1のA−A矢視断面図である。
【図3】シリコン基板を用いた絶縁基板の製造方法を示す図である。
【図4】本発明の磁場印加ユニットから発生する磁場の分布図である。
【図5】本発明の第2の実施の形態における磁場印加ユニットの平面図である。
【図6】図5のB−B矢視断面図である。
【図7】本発明の第3の実施の形態における磁場印加ユニットの側断面図である。
【図8】本発明の第4の実施の形態における磁場印加ユニットの側断面図である。
【図9】本発明の第5の実施の形態における磁場印加ユニットの側断面図である。
【図10】本発明の第6の実施の形態における磁場印加ユニットの側断面図である。
【図11】本発明の第7の実施の形態における可変光アッテネータの構成図である。
【図12】本発明の第7の実施の形態における光デバイスの構成図である。
【図13】従来例1の磁気ヘッドユニットを示す図である。
【図14】従来例2の磁気ヘッドユニットを示す図である。
【図15】図14のB部における拡大断面図である。
【図16】従来例2におけるコイルユニットの基板製造方法を示す工程図である。
【図17】従来の可変光アッテネータの原理図である。
【符号の説明】
1 光デバイス
20 可変光アッテネータ
30 磁場印加ユニット
32a スパイラル状コイル
33a 凹部
34a〜34n 主磁極
34 主磁極
34a1 磁場発生部
35 被磁化体
35a 磁気光学結晶
35b 反射膜
36a,b 永久磁
Claims (5)
- 光信号の減衰を制御するための磁場印加ユニットにおいて、
非磁性材料からなり、凹部を有する絶縁基板と、
前記絶縁基板上に、前記凹部を囲むように、導電性材料の膜からなる少なくとも1層以上のスパイラル状パターンで形成されるコイルと、
磁場発生部を有し、一部を前記凹部に嵌合して前記絶縁基板上に複数整列配置され、任意の合成磁場分布を発生する磁性材料からなる主磁極と、
前記磁場発生部に対向して配置され、前記磁場発生部と対向する側と反対の側から光ビームが入射されると共に、前記任意の合成磁場分布の磁場を複数の前記主磁極により印加される被磁化体と、
前記被磁化体の前記磁場発生部と対向する側と反対の側に配置されて、前記光ビームが通過可能に構成された磁性体と、
前記絶縁基板上に保持され、前記被磁化体に対し磁場を印加し、前記被磁化体の磁化の強さを飽和させる永久磁石と、
を有し、
前記主磁極の前記磁場発生部から前記被磁化体を前記光ビームが入射する側へ貫通し前記磁性体を介して前記主磁極に戻る経路の閉磁路が形成されていることを特徴とする磁場印加ユニット。 - 前記絶縁基板および前記主磁極は、前記磁性体上に搭載され、前記絶縁基板の前記凹部は、貫通穴であり、前記主磁極の前記一部は、前記貫通穴を通って前記磁性体に接触し、
前記閉磁路は、前記主磁極の前記磁場発生部から前記被磁化体を前記光ビームが入射する側へ貫通し前記磁性体を通って前記磁性体から前記主磁極に戻る経路で形成されていることを特徴とする請求項1記載の磁場印加ユニット。 - 前記絶縁基板および前記主磁極は、磁性を有する基板上に搭載され、前記絶縁基板の前記凹部は、貫通穴であり、前記主磁極の前記一部が前記貫通穴を通って前記基板に接触すると共に、前記磁性体が前記基板に接触し、
前記閉磁路は、前記主磁極の前記磁場発生部から前記被磁化体を前記光ビームが入射する側へ貫通し前記磁性体および前記基板を順に通って前記基板から前記主磁極に戻る経路で形成されていることを特徴とする請求項1記載の磁場印加ユニット。 - 前記磁性体は、前記光ビームが通過可能な磁性ガラス、または前記光ビームを集光するレンズ機能を有する磁性ガラスであることを特徴とする請求項1記載の磁場印加ユニット。
- 前記磁性体は、前記光ビームが通過する部分に光学部品を保持するホルダを兼ねることを特徴とする請求項1記載の磁場印加ユニット。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057045A JP3963739B2 (ja) | 2002-03-04 | 2002-03-04 | 磁場印加ユニット |
US10/342,302 US6753997B2 (en) | 2002-03-04 | 2003-01-15 | Magnetic field generator for optical devices utilizing magneto-optical effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002057045A JP3963739B2 (ja) | 2002-03-04 | 2002-03-04 | 磁場印加ユニット |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003255290A JP2003255290A (ja) | 2003-09-10 |
JP3963739B2 true JP3963739B2 (ja) | 2007-08-22 |
Family
ID=27800107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002057045A Expired - Fee Related JP3963739B2 (ja) | 2002-03-04 | 2002-03-04 | 磁場印加ユニット |
Country Status (2)
Country | Link |
---|---|
US (1) | US6753997B2 (ja) |
JP (1) | JP3963739B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060056793A1 (en) * | 2004-02-12 | 2006-03-16 | Panorama Flat Ltd. | System, method, and computer program product for structured waveguide including nonlinear effects |
EP2309829A1 (en) * | 2009-09-24 | 2011-04-13 | Harman Becker Automotive Systems GmbH | Multilayer circuit board |
JP2013210582A (ja) * | 2012-03-30 | 2013-10-10 | Fujitsu Ltd | 光送信器、光モジュールおよび光コネクタ |
US10020631B2 (en) * | 2016-03-22 | 2018-07-10 | Nec Corporation | 3-dimensional inscripted WDM coupler for optical amplifiers and methods for using 3-dimensional inscripted WDM couplers in networks |
CN110190508B (zh) * | 2019-05-27 | 2021-12-14 | 深港产学研基地(北京大学香港科技大学深圳研修院) | 一种小型化窄线宽半导体激光器 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3739471B2 (ja) * | 1996-03-01 | 2006-01-25 | 富士通株式会社 | 光可変減衰器 |
-
2002
- 2002-03-04 JP JP2002057045A patent/JP3963739B2/ja not_active Expired - Fee Related
-
2003
- 2003-01-15 US US10/342,302 patent/US6753997B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20030165002A1 (en) | 2003-09-04 |
US6753997B2 (en) | 2004-06-22 |
JP2003255290A (ja) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3862995B2 (ja) | 光スイッチモジュール | |
US6718082B2 (en) | Solid-State optical wavelength switches | |
JP3883901B2 (ja) | 光路変換デバイスおよびその製造方法 | |
WO2018131227A1 (ja) | 半導体光増幅器およびその製造方法、光位相変調器 | |
KR970008229B1 (ko) | 자기-광학 재생 헤드 | |
JP2003294964A (ja) | 光通信モジュール | |
JP3963739B2 (ja) | 磁場印加ユニット | |
JP2009087499A (ja) | 熱アシスト磁気記録用素子とこれを用いた磁気ヘッド及び磁気記録装置 | |
US8094979B2 (en) | Polarization-based optical switching | |
US9437229B2 (en) | Isolator element for heat-assisted magnetic recording | |
US10788690B2 (en) | Optical isolator array for use in an optical subassembly module | |
JP2004170924A (ja) | 導波路埋め込み型光回路及びこれに用いる光学素子 | |
US6785431B2 (en) | Miniature circulator array devices and methods for making the same | |
JP4090286B2 (ja) | 光スイッチ | |
Kawashima et al. | Development of autocloned photonic crystal devices | |
JP2003270597A (ja) | 光可変減衰装置 | |
US10025122B2 (en) | Optical device | |
JPH07234333A (ja) | レーザ光結合装置 | |
JP4090295B2 (ja) | 光スイッチモジュールおよびその製造方法 | |
JP3587302B2 (ja) | フォトニック結晶作製方法およびフォトニック結晶を用いた光デバイス | |
US20050013580A1 (en) | Variable optical attenuator | |
US20050089275A1 (en) | Optical device module | |
US20050094272A1 (en) | Wavelength characteristic variable filter, optical amplifier, and optical communications apparatus | |
JP5123155B2 (ja) | 光スイッチ | |
JP2004177649A (ja) | 可変光減衰器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070522 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |