Nothing Special   »   [go: up one dir, main page]

JP3960776B2 - Blower impeller for air conditioning - Google Patents

Blower impeller for air conditioning Download PDF

Info

Publication number
JP3960776B2
JP3960776B2 JP2001343941A JP2001343941A JP3960776B2 JP 3960776 B2 JP3960776 B2 JP 3960776B2 JP 2001343941 A JP2001343941 A JP 2001343941A JP 2001343941 A JP2001343941 A JP 2001343941A JP 3960776 B2 JP3960776 B2 JP 3960776B2
Authority
JP
Japan
Prior art keywords
blade
impeller
radial cross
section
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001343941A
Other languages
Japanese (ja)
Other versions
JP2003148395A (en
Inventor
善樹 泉
孝 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001343941A priority Critical patent/JP3960776B2/en
Priority to CN02284732U priority patent/CN2581734Y/en
Priority to CNB021499896A priority patent/CN100386529C/en
Publication of JP2003148395A publication Critical patent/JP2003148395A/en
Application granted granted Critical
Publication of JP3960776B2 publication Critical patent/JP3960776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機になどの送風機に用いられる翼を備えた空調用送風機羽根車に関するもので、特に、同羽根車の翼の形状に関する。
【0002】
【従来の技術】
従来の薄翼の羽根を有する空調用送風機羽根車21は図6および図7に示すような構成になっていた。同じように略円錐台状のハブ25の周囲に複数枚の薄翼でできた翼24を放射状に設けて構成していた。
【0003】
翼24の前縁22を、空調用送風機羽根車21の回転軌跡の形状図である図6において、ハブ25の外周部と翼24の外周端23との中点付近(F−F)より外周側では風上側に対して凹形状の曲線に、この中点付近よりハブ側では風上側に対して凸形状の曲線になるように構成している。さらに、翼24の前縁22だけでなく、翼24の半径方向の断面形状を、上記中点付近より外周側では風上側に対して凹形状の曲線で、上記中点付近よりハブ26側は風上側に対して凸形状の曲線にて構成している。しかし、上記中点付近より外周側では風上側に対して凹形状である曲線の図7に示される曲率半径r4が、空調用送風機羽根車21のどの半径方向断面部においても、おおよそ同じ値にて、羽根車が構成されていた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、翼24の半径方向の断面形状において、中点付近(F−F)より外周側では風上側に対して凹形状である曲線の曲率半径r4が、空調用送風機羽根車21のどの半径方向断面部においても、おおよそ同じ値にて、羽根車が構成されていたために、送風機運転時に、翼24の外周端23側の付近で発生し後縁付近で翼の負圧面から剥離する翼端渦の制御には限界があった。
【0005】
本発明は、このような従来の課題を解決するものであり、羽根車の静圧効率の向上を図る空調用送風機羽根車を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明は、後縁付近で翼の負圧面から剥離する翼端渦を拘束しないような羽根車形状にしたものである。すなわち、ハブの周囲に複数枚の翼を設け、翼の半径方向の断面形状を外周側では風上側に対して凹形状の曲線にし、ハブ側では風上側に対して凸形状の曲線し構成した空調用送風機羽根車において、外周側における凹形状曲線は略円弧状をなし、半径方向断面が翼の前縁側から後縁側に向かうにつれて、その曲率半径の値が大きくなることを特徴とするものである。
【0007】
また半径方向断面の代表値として、翼前縁側、翼弦長中央付近および翼後縁側の断面部を取り上げたとき、それぞれの曲率半径がこの順に大きく構成するものである。
【0008】
また、翼後縁側と翼前縁側における曲率半径の比率は少なくとも2倍としたものである。
さらに、翼の前縁を羽根車の回転軌跡の形状で外周側では風上側に対して凹形状の曲線にしたものである。
【0009】
翼外周端とケーシング間の隙間を通って翼風下側の圧力面から風上側の負圧面に向かう洩れ流れにより、翼の外周付近の負圧面で発生生成した翼端渦が翼回転の反対方向に前縁側から後縁側に流れる過程て後縁付近で負圧面から剥離するのであるが、上記構成により、後縁側で曲率を小さくした、すなわち曲率半径を大きくした本発明の羽根車形状では、後縁付近で翼端渦が負圧面から剥離するとき羽根車形状に干渉されずに翼端渦の剥離がおこる。すなわち、後縁寄りの凹部で翼端渦の剥離が阻害されないので、翼端渦の剥離に空力損失が発生しないのである。このため空調用送風機の効率向上が図れる。
【0010】
【発明の実施の形態】
本発明は、翼の前縁を、この空調用送風機羽根車の回転軌跡の形状でハブと翼の外周端との中点付近より外周側では風上側に対して凹形状の曲線に、中点付近よりハブ側では風上側に対して凸形状の曲線になるように構成し、かつ、翼の半径方向の断面形状を、中点付近より外周側では風上側に対して凹形状の曲線で、中点付近よりハブ側は風上側に対して凸形状の曲線にて構成してなる空調用送風機羽根車において、中点付近より外周側では風上側に対して凹形状である曲線の曲率半径が、翼の前縁側の半径方向断面部、翼の弦長の中央付近の半径方向断面部、翼の後縁付近の半径方向断面部の順に、その値が大きくなるようにして、構成したものである。
【0011】
上記構成によって、翼の圧力面から負圧面に向かう洩れ流れにより、翼の外周付近の負圧面に発生する翼端渦の生成を翼自体の上記の凹状の曲線部で促進させて低騒音化が図れるのである。すなわち、翼端渦は、翼の負圧面に発生するが、翼の弦長の中央付近より後縁よりの位置で、翼の負圧面から剥離するのであるが、この凹形状である曲線の曲率半径が、翼の前縁側の半径方向断面部、翼の弦長の中央付近の半径方向断面部、翼の後縁付近の半径方向断面部の順に、その値が大きくなるように構成されているので、この翼端渦の剥離現象が阻害されないのである。このことで、剥離損失が減少して更なる効率の向上が図れるのである。
【0012】
【実施例】
以下に本発明の空調用送風機羽根車について、図1〜図5を用いて説明する。図1は空調用送風機羽根車の平面図、図2は同羽根車の回転軌跡を示す部分図、図3(a)は同羽根車の前縁側半径方向断面図(図1のA−O断面)、図3(b)は同羽根車の翼の弦長の中央付近の半径方向断面図(図1のB−O断面図)、図3(c)は同羽根車の後縁側半径方向断面図(図1のC−O断面)、図4は同羽根車の動作状態を示す模式図、さらに図5は同羽根車の翼端渦の状態を示す模式図である。
【0013】
図1に示すように、空調用送風機羽根車1は、断面が略円錐台状のハブ3を中心にして薄断面の翼2を放射状に3枚設けている。そして、図4のように、空調用送風機羽根車1のハブ3の回転軸中心にモ−タ10のシャフトを固定して、翼外周端の回転軌跡に沿うような適切なケ−シング9に納め、モ−タ10により回転させることによって送風作用を生じるようにしている。この時、空気の殆どは図1に示す翼2の前縁4より流入して、後縁5より流出して空力仕事を行う。
【0014】
ここで、図2に示すように、翼2の前縁4を、この空調用送風機羽根車の回転軌跡の形状で翼2のハブ3への付け根部と翼2の外周端6との中点線E−E付近より外周側では風上側に対して凹形状の曲線に、中点線E−E付近よりハブ3側では風上側に対して凸形状の曲線になるように構成している。線D−Dは羽根車の回転中心線を示している。
【0015】
また、図3(a),(b)および(c)に示すように、翼2の半径方向の断面形状を、中点線E−E付近より外周端6側では風上側に対して凹形状の曲線で、中点線E−E付近よりハブ3側は風上側に対して凸形状の曲線にて構成している。かつ、中点線E−E付近より外周側では風上側に対して凹形状である曲線の曲率半径が、翼2の前縁4側の半径方向断面部、翼2の弦長の中央付近の半径方向断面部、翼2の後縁5付近の半径方向断面部の順に、その値が大きくなるようにして構成したものである。すなわち、翼2の前縁4側の半径方向断面部の曲率半径をr1、翼2の弦長の中央付近の半径方向断面部の曲率半径をr2、翼2の後縁5付近の半径方向断面部の曲率半径をr3としたとき、曲率半径の大きさの関係がr1<r2<r3となるように構成したものである。
【0016】
また以上の曲率半径の大きさの関係は3つの半径方向断面部で代表させて説明したが、任意の半径方向断面部における曲率半径は断面部位置との関係で上記3点を含み円滑に内挿されるものであることは空力の点から考えて当然である。
【0017】
そして、上記の構成によって、図3および図5に示すように、風下側である翼2の圧力面8から風上側である負圧面7に向かい、翼外周端6とケーシング9間を通過する洩れ流れが生じる。これにより翼2の外周付近の負圧面7に発生する翼端渦11の生成を翼2自体の上記の凹状の曲線部で促進させて低騒音化が図れるのである。しかし、翼端渦11は、翼の負圧面7に発生するが、従来の翼形状では、翼2の弦長の中心付近より後縁5よりの位置で、翼の負圧面7から剥離する傾向にある。しかし、本実施例では以上のように凹形状である曲線の曲率半径が、翼2の前縁4側の半径方向断面部、翼2の弦長の中心付近の半径方向断面部、翼2の後縁5付近の半径方向断面部の順に、その値が大きくなるようにして、翼2の後縁5付近の半径方向断面部側の曲率半径r3が充分に大きくしているので、後縁付近の凹部は、この翼端渦11の剥離現象が阻害されることはない。したがって、渦剥離による損失が減少して更なる効率の向上が図れるのである。
【0018】
熱交換器と前面グリルと圧縮機などから構成された空気調和機の室外機において、従来型の羽根車と本発明による羽根車とを比較したデータは下記のとおりである。
【0019】
従来型および本発明の羽根車とも、2翼で翼の外径が415mm、ボスの風上側の外径が104mm、ボスの風下側の外径が161mmのもので比較実験をした。
【0020】
従来型の羽根車の羽根形状は、半径方向断面部の前縁側、中央付近および後縁側における曲率半径は一定でいずれも約130mmとしたものを使用した。
本発明の構成による羽根車の羽根形状は、半径方向断面部の前縁側における曲率半径は比較のため従来のものと同じ約130mmとし、後縁側における曲率半径は約320mmとし、中央付近ではその中間の曲率半径としたものを使用した。
【0021】
以上の羽根車において動作点効率を実験で比較したところ、本発明による空調用送風機羽根車は従来型のものに比べて約10%の向上がみられた。
また、この空調用送風機羽根車1の翼枚数は、2枚でも3枚でも4枚でもよく、一般的に複数枚であればよい。
【0022】
【発明の効果】
上記実施例からも明らかなように、本発明は、翼の前縁を、この空調用送風機羽根車の回転軌跡の形状でハブと翼の外周端との中点付近より外周側では風上側に対して凹形状の曲線に、中点付近よりハブ側では風上側に対して凸形状の曲線になるように構成し、かつ、翼の半径方向の断面形状を、中心付近より外周側では風上側に対して凹形状の曲線で、中点付近よりハブ側は風上側に対して凸形状の曲線にて構成してなる空調用送風機羽根車において、中点付近より外周側では風上側に対して凹形状である曲線の曲率半径が、翼の前縁側の半径方向断面部から、翼の弦長の中央付近の半径方向断面部を経て翼の後縁付近の半径方向断面部に至るにつれ、その値が大きくなるよう構成したものである。
【0023】
上記構成によって、翼の圧力面から負圧面に向かう洩れ流れにより、翼の外周付近の負圧面に発生する翼端渦の生成を翼自体の上記の凹状の曲線部で促進させて低騒音化が図れるのである。翼端渦は、翼の負圧面に発生するが、翼の弦長の中央付近より後縁よりの位置で、翼の負圧面からの翼端渦の剥離現象が阻害されないので、剥離にともなう空力損失が減少して更なる効率の向上が図れるのである。
【図面の簡単な説明】
【図1】本発明の実施例の空調用送風機羽根車の平面図を示す。
【図2】同羽根車の回転軌跡を示す部分図である。
【図3】(a)は同羽根車の前縁側半径方向断面図(図1のA−O断面)を示し、(b)は同羽根車の翼の弦長の中央付近の半径方向断面図(図1のB−O断面)を示し、(c)は同羽根車の後縁側半径方向断面図(図1のC−O断面)を示す。
【図4】同羽根車の動作状態を示す模式図である。
【図5】同羽根車の翼端渦の状態を示す模式図である。
【図6】従来の空調用送風機羽根車の回転軌跡を示す部分図である。
【図7】従来の空調用送風機羽根車の半径方向断面図である。
【符号の説明】
1 空調用送風機羽根車
2 翼
3 ハブ
4 前縁
5 後縁
6 外周端
7 負圧面
8 圧力面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-conditioning blower impeller provided with blades used in a blower such as an air conditioner, and particularly relates to the shape of a blade of the impeller.
[0002]
[Prior art]
A conventional air-conditioning blower impeller 21 having thin blades has a configuration as shown in FIGS. Similarly, a plurality of thin blades 24 are radially provided around the substantially truncated cone-shaped hub 25.
[0003]
In FIG. 6, which is a shape diagram of the rotation trajectory of the air-conditioning fan impeller 21, the front edge 22 of the blade 24 is outer peripheral from the vicinity of the midpoint (FF) between the outer peripheral portion of the hub 25 and the outer peripheral end 23 of the blade 24. On the side, the curve is concave with respect to the windward side, and from the vicinity of this midpoint, the curve is convex with respect to the windward side on the hub side. Furthermore, not only the front edge 22 of the blade 24 but also the radial cross-sectional shape of the blade 24 is a curved curve that is concave with respect to the windward side from the vicinity of the middle point, and the hub 26 side from the vicinity of the middle point. Consists of a convex curve with respect to the windward side. However, the radius of curvature r 4 shown in FIG. 7 which is a concave shape with respect to the windward side near the midpoint is approximately the same in any radial cross section of the air-conditioning fan impeller 21. The impeller was constructed.
[0004]
[Problems to be solved by the invention]
However, in the conventional configuration, in the radial direction of the cross-sectional shape of the blade 24, the midpoint near (F-F) from the outer peripheral side curved radius of curvature r 4 in a concave shape with respect to the windward side, the air conditioning blower Since the impeller is configured with approximately the same value in any radial cross section of the impeller 21, it occurs in the vicinity of the outer peripheral end 23 side of the blade 24 during the operation of the fan, and the negative of the blade near the trailing edge. There was a limit to the control of the tip vortex separating from the pressure surface.
[0005]
This invention solves such a conventional subject, and it aims at providing the fan impeller for an air conditioning which aims at the improvement of the static pressure efficiency of an impeller.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has an impeller shape that does not restrain the blade tip vortex separating from the suction surface of the blade near the trailing edge. That is, a plurality of blades are provided around the hub, and the radial cross-sectional shape of the blades is a concave curve with respect to the windward side on the outer peripheral side, and a convex curve with respect to the windward side on the hub side. In the air-conditioning blower impeller, the concave curve on the outer peripheral side is substantially arc-shaped, and the radius of curvature increases as the radial cross section moves from the front edge side to the rear edge side of the blade. is there.
[0007]
Further, as representative values of the cross section in the radial direction, when the cross sections of the blade leading edge side, the vicinity of the center of the chord length, and the blade trailing edge side are taken up, the respective radii of curvature increase in this order.
[0008]
Further, the ratio of the radius of curvature at the blade trailing edge side and the blade leading edge side is at least doubled.
Further, the leading edge of the blade is formed in the shape of a rotational locus of the impeller and has a concave curve on the outer peripheral side with respect to the windward side.
[0009]
Due to the leakage flow from the pressure surface on the leeward side of the blade toward the suction surface on the windward side through the gap between the blade outer periphery and the casing, the blade tip vortex generated at the suction surface near the outer periphery of the blade is in the opposite direction of blade rotation. In the process of flowing from the leading edge side to the trailing edge side, it peels off from the suction surface in the vicinity of the trailing edge, but with the configuration described above, in the impeller shape of the present invention in which the curvature is reduced on the trailing edge side, that is, the radius of curvature is increased, When the blade tip vortex peels from the suction surface in the vicinity, the blade tip vortex peels off without interfering with the impeller shape. That is, since the wing tip vortex separation is not hindered by the concave portion near the trailing edge, no aerodynamic loss occurs in the blade tip vortex separation. For this reason, the efficiency improvement of the air conditioning fan can be achieved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the front edge of the wing has a concave curve with respect to the windward side on the outer circumferential side from the vicinity of the middle point between the hub and the outer circumferential edge of the blade in the shape of the rotation trajectory of the air blower impeller for air conditioning. It is configured to be a convex curve with respect to the windward side near the hub side, and the radial cross-sectional shape of the wing is a concave curve with respect to the windward side near the midpoint, In the air-conditioning fan impeller that is configured with a convex curve with respect to the windward side near the midpoint, the curvature radius of the curve that is concave with respect to the windward side on the outer peripheral side from near the midpoint is The radial cross section on the leading edge side of the wing, the radial cross section near the center of the chord length of the wing, and the radial cross section near the trailing edge of the wing are configured so that the values increase in this order. is there.
[0011]
With the above configuration, the leakage flow from the blade pressure surface to the suction surface promotes the generation of blade tip vortices generated on the suction surface near the outer periphery of the blade by the concave curved portion of the blade itself, thereby reducing noise. It can be planned. In other words, the tip vortex is generated on the suction surface of the blade, but peels from the suction surface of the blade at a position closer to the trailing edge than near the center of the chord length of the blade. The radius is configured so that the value increases in the order of the radial cross section on the leading edge side of the wing, the radial cross section near the center of the chord length of the wing, and the radial cross section near the trailing edge of the wing. Therefore, the separation phenomenon of the blade tip vortex is not hindered. As a result, the peeling loss is reduced and the efficiency can be further improved.
[0012]
【Example】
The air-conditioning blower impeller of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of an air-conditioning fan impeller, FIG. 2 is a partial view showing the rotation trajectory of the impeller, and FIG. 3A is a radial cross-sectional view of the front edge side of the impeller (A-O cross section in FIG. 1). 3 (b) is a radial sectional view near the center of the chord length of the blade of the impeller (B-O sectional view of FIG. 1), and FIG. 3 (c) is a radial sectional view of the trailing edge side of the impeller. FIG. 4 (C-O cross section in FIG. 1), FIG. 4 is a schematic diagram showing an operating state of the impeller, and FIG. 5 is a schematic diagram showing a state of a blade tip vortex of the impeller.
[0013]
As shown in FIG. 1, the air-conditioning fan impeller 1 is provided with three thin blades 2 radially with a hub 3 having a substantially frustoconical section in the center. Then, as shown in FIG. 4, the shaft of the motor 10 is fixed to the center of the rotation axis of the hub 3 of the air-conditioning fan impeller 1, so that the proper casing 9 along the rotation trajectory of the blade outer peripheral end is obtained. The air is blown by being rotated by the motor 10. At this time, most of the air flows in from the leading edge 4 of the blade 2 shown in FIG. 1 and flows out from the trailing edge 5 to perform aerodynamic work.
[0014]
Here, as shown in FIG. 2, the leading edge 4 of the blade 2 is formed with a midpoint line between the root of the blade 2 on the hub 3 and the outer peripheral end 6 of the blade 2 in the shape of the rotation trajectory of the air-conditioning fan impeller. It is configured to have a concave curve with respect to the windward side near the EE, and a convex curve with respect to the windward side near the middle dotted line EE on the hub 3 side. Line DD indicates the rotation center line of the impeller.
[0015]
Further, as shown in FIGS. 3A, 3B, and 3C, the cross-sectional shape in the radial direction of the wing 2 is concave with respect to the windward side on the outer peripheral end 6 side near the middle dotted line EE. In the curve, the hub 3 side is formed with a convex curve with respect to the windward side near the middle dotted line EE. Further, the radius of curvature of the curve that is concave with respect to the windward side on the outer peripheral side from the vicinity of the middle dotted line EE is a radial section on the leading edge 4 side of the blade 2 and the radius near the center of the chord length of the blade 2. The value is increased in the order of the directional cross section and the radial cross section near the trailing edge 5 of the blade 2. That is, the radius of curvature of the radial cross section on the leading edge 4 side of the wing 2 is r 1 , the radius of curvature of the radial cross section near the center of the chord length of the wing 2 is r 2 , and the radius near the trailing edge 5 of the wing 2 When the radius of curvature of the direction cross section is r 3 , the relationship between the magnitudes of the radius of curvature is r 1 <r 2 <r 3 .
[0016]
In addition, the relationship between the magnitudes of the above-described curvature radii has been described by using three radial cross sections, but the curvature radius in any radial cross section includes the above three points in relation to the position of the cross section and smoothly includes them. It is natural that it is inserted from the viewpoint of aerodynamics.
[0017]
With the above configuration, as shown in FIGS. 3 and 5, leakage from the pressure surface 8 of the blade 2 on the leeward side toward the suction surface 7 on the windward side and passing between the blade outer peripheral edge 6 and the casing 9 is performed. A flow occurs. As a result, the generation of the blade tip vortex 11 generated on the suction surface 7 near the outer periphery of the blade 2 is promoted by the concave curved portion of the blade 2 itself, thereby reducing noise. However, the blade tip vortex 11 is generated on the suction surface 7 of the blade. However, in the conventional blade shape, the tip vortex 11 tends to peel from the suction surface 7 of the blade at a position closer to the trailing edge 5 than near the center of the chord length of the blade 2. It is in. However, in the present embodiment, the curvature radius of the concave curve as described above is such that the radial cross section on the leading edge 4 side of the wing 2, the radial cross section near the center of the chord length of the wing 2, The curvature radius r 3 on the side of the radial cross section near the trailing edge 5 of the blade 2 is made sufficiently large so that the value increases in the order of the radial cross section near the trailing edge 5. In the vicinity of the concave portion, the separation phenomenon of the blade tip vortex 11 is not inhibited. Therefore, the loss due to vortex separation is reduced and the efficiency can be further improved.
[0018]
In an outdoor unit of an air conditioner composed of a heat exchanger, a front grille, a compressor, and the like, data comparing a conventional impeller and an impeller according to the present invention is as follows.
[0019]
The conventional type and the impeller of the present invention were comparatively tested with two blades having an outer diameter of 415 mm, an outer diameter of the boss on the windward side of 104 mm, and an outer diameter of the boss on the leeward side of 161 mm.
[0020]
The blade shape of the conventional impeller used a constant radius of curvature on the front edge side, near the center, and the rear edge side of the radial cross section and about 130 mm.
The blade shape of the impeller according to the configuration of the present invention has a radius of curvature on the front edge side of the radial cross section of about 130 mm, which is the same as the conventional one for comparison, and a radius of curvature on the rear edge side of about 320 mm. The curvature radius of was used.
[0021]
When the operating point efficiencies of the above impellers were compared by experiments, the air conditioner fan impeller according to the present invention was improved by about 10% compared to the conventional type.
In addition, the number of blades of the air-conditioning fan impeller 1 may be two, three, or four, and generally may be a plurality.
[0022]
【The invention's effect】
As is clear from the above embodiment, the present invention is such that the front edge of the blade is positioned on the windward side from the vicinity of the midpoint between the hub and the outer peripheral end of the blade in the shape of the rotation trajectory of the air blower impeller. Contrary to the concave curve, it is configured to be a convex curve on the hub side near the midpoint, and the radial cross-sectional shape of the wing is on the windward side near the center on the outer circumference side. In the air-conditioning fan impeller configured with a concave curve with respect to the windward side from the vicinity of the midpoint, and with respect to the windward side on the outer peripheral side from near the midpoint. As the radius of curvature of the concavely curved curve goes from the radial cross-section on the leading edge side of the wing, through the radial cross-section near the center of the wing chord length, to the radial cross-section near the wing trailing edge, It is configured to increase the value.
[0023]
With the above configuration, the leakage flow from the blade pressure surface to the suction surface promotes the generation of blade tip vortices generated on the suction surface near the outer periphery of the blade by the concave curved portion of the blade itself, thereby reducing noise. It can be planned. The tip vortex is generated on the suction surface of the wing, but the separation of the tip vortex from the suction surface of the wing is not hindered near the center of the wing chord length from the trailing edge. Loss is reduced and further efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a plan view of an air-conditioning fan impeller according to an embodiment of the present invention.
FIG. 2 is a partial view showing a rotation locus of the impeller.
3A is a radial sectional view (AO cross section in FIG. 1) of the leading edge side of the impeller, and FIG. 3B is a radial sectional view near the center of the chord length of the blade of the impeller. (B-O cross section of FIG. 1) is shown, and (c) is a radial cross-sectional view of the rear edge side of the impeller (C-O cross section of FIG. 1).
FIG. 4 is a schematic diagram showing an operating state of the impeller.
FIG. 5 is a schematic diagram showing a state of a blade tip vortex of the impeller.
FIG. 6 is a partial view showing a rotation locus of a conventional air-conditioning fan impeller.
FIG. 7 is a radial cross-sectional view of a conventional air-conditioning fan impeller.
[Explanation of symbols]
1 Blower impeller for air conditioning
2 wings
3 Hub
4 Leading edge
5 trailing edge
6 Outer edge
7 Suction surface
8 Pressure surface

Claims (4)

ハブの周囲に複数枚の翼を設け、前記翼の半径方向の断面形状を外周側では風上側に対して凹形状の曲線で、ハブ側では風上側に対して凸形状の曲線にて構成してなる空調用送風機羽根車において、
前記外周側における凹形状曲線は略円弧状をなし、半径方向断面が前記翼の前縁側から後縁側に向かうにつれて、その曲率半径の値が大きくなることを特徴とする空調用送風機羽根車。
A plurality of blades are provided around the hub, and the radial cross-sectional shape of the blades is configured with a concave curve with respect to the windward side on the outer peripheral side and with a convex curve with respect to the windward side on the hub side. In the air-conditioning fan impeller,
The air-conditioning fan impeller characterized in that the concave curve on the outer peripheral side is substantially arc-shaped, and the value of the radius of curvature increases as the radial cross section moves from the front edge side to the rear edge side of the blade.
前記曲率半径は、翼の前縁側の半径方向断面部、翼の弦長の中央付近の半径方向断面部、翼の後縁側の半径方向断面部の順にその値が大きくなることを特徴とする請求項1記載の空調用送風機羽根車。The radius of curvature increases in the order of a radial cross section on the leading edge side of the wing, a radial cross section near the center of the chord length of the wing, and a radial cross section on the trailing edge side of the wing. Item 1. A blower impeller for air conditioning according to Item 1. 翼の半径方向断面部における翼の後縁側の曲率半径が、翼の前縁側の曲率半径の少なくとも2倍であることを特徴とする請求項1記載の空調用送風機羽根車。2. The air-conditioning fan impeller according to claim 1, wherein a radius of curvature of a trailing edge side of the blade in a radial cross section of the blade is at least twice a curvature radius of a leading edge side of the blade. さらに、翼の前縁を羽根車の回転軌跡の形状で前記外周側では風上側に対して凹形状の曲線にしたことを特徴とする請求項1記載の空調用送風機羽根車。2. The air-conditioning fan impeller according to claim 1, wherein the leading edge of the blade has a concave curve with respect to the windward side on the outer peripheral side in the shape of the rotation trajectory of the impeller.
JP2001343941A 2001-11-09 2001-11-09 Blower impeller for air conditioning Expired - Fee Related JP3960776B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001343941A JP3960776B2 (en) 2001-11-09 2001-11-09 Blower impeller for air conditioning
CN02284732U CN2581734Y (en) 2001-11-09 2002-11-07 Fan vane for air conditioner
CNB021499896A CN100386529C (en) 2001-11-09 2002-11-07 Blower vane wheel for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001343941A JP3960776B2 (en) 2001-11-09 2001-11-09 Blower impeller for air conditioning

Publications (2)

Publication Number Publication Date
JP2003148395A JP2003148395A (en) 2003-05-21
JP3960776B2 true JP3960776B2 (en) 2007-08-15

Family

ID=19157537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343941A Expired - Fee Related JP3960776B2 (en) 2001-11-09 2001-11-09 Blower impeller for air conditioning

Country Status (2)

Country Link
JP (1) JP3960776B2 (en)
CN (2) CN100386529C (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3960776B2 (en) * 2001-11-09 2007-08-15 松下電器産業株式会社 Blower impeller for air conditioning
KR100547328B1 (en) * 2003-09-05 2006-01-26 엘지전자 주식회사 The fan of air-conditioner outdoor unit
CN1318765C (en) * 2003-12-15 2007-05-30 珠海格力电器股份有限公司 Impeller for fan, fan using impeller and air conditioner using fan
JP4501575B2 (en) * 2004-07-26 2010-07-14 三菱電機株式会社 Axial blower
JP2007247494A (en) * 2006-03-15 2007-09-27 Matsushita Electric Ind Co Ltd Diagonal flow blower impeller
JP5210852B2 (en) 2008-12-22 2013-06-12 山洋電気株式会社 Axial blower
KR101130632B1 (en) 2009-08-27 2012-03-30 (주)신도공조 air blower included impeller with curve line.
JP5263198B2 (en) * 2010-02-26 2013-08-14 パナソニック株式会社 Impeller, blower and air conditioner using the same
JP2011179331A (en) * 2010-02-26 2011-09-15 Panasonic Corp Blower, and air conditioner using the same
JP5593976B2 (en) * 2010-08-31 2014-09-24 ダイキン工業株式会社 Propeller fan
JP2012107538A (en) * 2010-11-16 2012-06-07 Panasonic Corp Axial-flow fan or diagonal-flow fan, and air conditioner mounted outdoor unit with the same
JP6035508B2 (en) * 2012-04-02 2016-11-30 パナソニックIpマネジメント株式会社 Blower and outdoor unit using it
WO2014010058A1 (en) 2012-07-12 2014-01-16 三菱電機株式会社 Propeller fan, and fan, air-conditioner and outdoor unit for hot-water supply provided with propeller fan
WO2014024305A1 (en) 2012-08-10 2014-02-13 三菱電機株式会社 Propeller fan, and fan, air conditioner and outdoor unit for supplying hot water provided with same
FR2999151B1 (en) * 2012-12-07 2017-01-27 Snecma PROPELLER BLADE FOR TURBOMACHINE
CN104154035B (en) * 2014-08-29 2017-11-14 珠海格力电器股份有限公司 Centrifugal fan and air conditioner with same
CN109312758B (en) * 2016-06-16 2021-01-15 三菱电机株式会社 Axial flow blower
WO2019069374A1 (en) * 2017-10-03 2019-04-11 三菱電機株式会社 Propeller fan and axial flow blower
WO2019214632A1 (en) 2018-05-09 2019-11-14 约克广州空调冷冻设备有限公司 Blade and axial flow impeller using same
CN108506247B (en) * 2018-05-09 2024-08-23 约克广州空调冷冻设备有限公司 Blade and axial flow impeller using same
JP6625291B1 (en) 2018-12-26 2019-12-25 三菱電機株式会社 Impeller, blower and air conditioner
WO2021111582A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Axial flow fan, blowing device, and refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906179A (en) * 1997-06-27 1999-05-25 Siemens Canada Limited High efficiency, low solidity, low weight, axial flow fan
JP3204208B2 (en) * 1998-04-14 2001-09-04 松下電器産業株式会社 Mixed-flow blower impeller
JP4035237B2 (en) * 1998-09-30 2008-01-16 東芝キヤリア株式会社 Axial blower
JP3473549B2 (en) * 2000-04-28 2003-12-08 松下電器産業株式会社 Blower impeller and air conditioner equipped with the blower impeller
JP3960776B2 (en) * 2001-11-09 2007-08-15 松下電器産業株式会社 Blower impeller for air conditioning

Also Published As

Publication number Publication date
CN1417481A (en) 2003-05-14
CN100386529C (en) 2008-05-07
JP2003148395A (en) 2003-05-21
CN2581734Y (en) 2003-10-22

Similar Documents

Publication Publication Date Title
JP3960776B2 (en) Blower impeller for air conditioning
JP3204208B2 (en) Mixed-flow blower impeller
US4531890A (en) Centrifugal fan impeller
JP3291654B2 (en) Axial fan
JP5263198B2 (en) Impeller, blower and air conditioner using the same
CN100374732C (en) Blower impeller
JPS6116298A (en) Fan
CN110914553B (en) Impeller, blower and air conditioner
JPH08240197A (en) Axial-flow fan
JP2007247494A (en) Diagonal flow blower impeller
JP2000018194A (en) Impeller for blower
CN1318765C (en) Impeller for fan, fan using impeller and air conditioner using fan
JP3855533B2 (en) Mixed flow fan
CN114412835B (en) Crescent forward and backward air supply impeller without disassembly
JP3473549B2 (en) Blower impeller and air conditioner equipped with the blower impeller
JP4492060B2 (en) Blower impeller
WO2018228066A1 (en) Axial flow wind turbine and air-conditioner
JP4233359B2 (en) Blower impeller for air conditioner
JP2000009083A (en) Impeller
JP5935033B2 (en) Axial fan
JP3831994B2 (en) Blower impeller
JP3938252B2 (en) Multi-blade blower
JP4797776B2 (en) Mixed flow blower impeller and air conditioner
CN211573863U (en) Axial flow fan blade, air interchanger and air conditioner
CN220505393U (en) Axial flow wind wheel, air conditioner external unit and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R151 Written notification of patent or utility model registration

Ref document number: 3960776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees