Nothing Special   »   [go: up one dir, main page]

JP3959097B2 - Vibration gyro tuning fork type vibrator mounting structure - Google Patents

Vibration gyro tuning fork type vibrator mounting structure Download PDF

Info

Publication number
JP3959097B2
JP3959097B2 JP2005092384A JP2005092384A JP3959097B2 JP 3959097 B2 JP3959097 B2 JP 3959097B2 JP 2005092384 A JP2005092384 A JP 2005092384A JP 2005092384 A JP2005092384 A JP 2005092384A JP 3959097 B2 JP3959097 B2 JP 3959097B2
Authority
JP
Japan
Prior art keywords
support member
vibration
tuning fork
vibrator
gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005092384A
Other languages
Japanese (ja)
Other versions
JP2006275630A (en
Inventor
健次 倉本
光浩 中島
武志 細川
篤 越智
嵩梓 井上
満 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
NEC Corp
Original Assignee
Japan Aviation Electronics Industry Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd, NEC Corp filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2005092384A priority Critical patent/JP3959097B2/en
Priority to PCT/JP2006/306255 priority patent/WO2006104134A1/en
Publication of JP2006275630A publication Critical patent/JP2006275630A/en
Application granted granted Critical
Publication of JP3959097B2 publication Critical patent/JP3959097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Description

本発明は、駆動脚および検出脚を胴部で結合してなる音叉型振動子をパッケージへ収容してなる音叉型振動ジャイロに関し、特にパッケージを支点としてその胴部を支持することにより、音叉型振動子をパッケージへ搭載する振動子搭載構造に関する。   The present invention relates to a tuning fork-type vibrating gyroscope in which a tuning fork type vibrator in which a driving leg and a detection leg are coupled by a body part is accommodated in a package, and more particularly to a tuning fork type by supporting the body part with a package as a fulcrum The present invention relates to a vibrator mounting structure for mounting a vibrator on a package.

この種の音叉型振動ジャイロは、特許文献1又は特許文献2に記載されている。特許文献1又は特許文献2に記載の音叉型振動ジャイロの基本構造及びその作動を、図10を参照して説明する。図10は振動ジャイロ用音叉型振動子を示す図であり、同図(A)は音叉型振動ジャイロに対する回転の入力がないときの状態を表し、同図(B)は音叉型振動ジャイロに対し回転の入力があるときの状態を表す。図において、111a,111bは励振用駆動脚(特許文献1における励振用駆動側アーム)、112a,112bは振動用検出脚(特許文献1における振動用検出側アーム)である。励振用駆動脚111a及び111bは、互いに対をなし、逆位相で振動する。励振用駆動脚111a及び111bは、駆動脚(特許文献1では、駆動側アーム)111と称する。振動用検出脚112a及び112bは、互いに対をなし、逆位相で振動する。振動用検出脚112a及び112bは、検出脚(特許文献1では、検出側アーム)112と称する。胴部10は、直方体であり、その平面形(上面10aの形)は正方形である(正方形である必要は必ずしもない)。胴部10における各面は、上面を符号10aで現し、底面(図に現れていない)を符号10bで現し、駆動脚111側の端面を符号10cで現し、検出脚112側の端面(図に現れていない)を符号10dで現し、一方の側面を符号10eで現し、他方の側面(図に現れていない)を符号10fで現すこととする。上面10a及び底面10bを主面と称する。なお、特許文献1及び特許文献2の音叉型振動ジャイロには、励振用駆動脚111a及び111bの間に1つの非励振用駆動脚(特許文献1における非励振用駆動側アーム)が設けてあり、また振動用検出脚112a及び112bの間に1つの非振動用検出脚(特許文献1における非振動用検出側アーム)が設けてあるが、非励振用駆動脚および非振動用検出脚は、振動の安定化のために設けてあり、原理説明においては必要でないので、図10の音叉型振動ジャイロでは省略した。 This type of tuning fork type vibration gyro is described in Patent Document 1 or Patent Document 2. The basic structure and operation of the tuning fork type vibration gyro described in Patent Document 1 or Patent Document 2 will be described with reference to FIG. FIG. 10 is a diagram showing a tuning fork type vibrator for a vibration gyro. FIG. 10 (A) shows a state when there is no rotation input to the tuning fork type vibration gyro, and FIG. 10 (B) shows a tuning fork type vibration gyro. Represents the state when there is a rotation input. In the figure, 111a and 111b are excitation drive legs (excitation drive side arms in Patent Document 1), and 112a and 112b are vibration detection legs (vibration detection side arms in Patent Document 1). The excitation drive legs 111a and 111b are paired with each other and vibrate in opposite phases. The drive legs 111a and 111b for excitation are referred to as drive legs 111 (drive side arms in Patent Document 1). The vibration detection legs 112a and 112b are paired with each other and vibrate in opposite phases. The vibration detection legs 112a and 112b are referred to as detection legs 112 (detection side arms in Patent Document 1). The trunk | drum 10 is a rectangular parallelepiped, The planar shape (shape of the upper surface 10a) is a square (it does not necessarily need to be a square). Each surface of the body 10 has a top surface represented by reference numeral 10a, a bottom surface (not shown in the figure) represented by reference numeral 10b, an end surface on the drive leg 111 side represented by reference numeral 10c, and an end surface on the detection leg 112 side (in the figure). (Not shown) is represented by reference numeral 10d, one side is represented by reference numeral 10e, and the other side (not shown) is represented by reference numeral 10f. The upper surface 10a and the bottom surface 10b are called main surfaces. The tuning fork type vibration gyro in Patent Document 1 and Patent Document 2 is provided with one non-excitation drive leg (non-excitation drive side arm in Patent Document 1) between the excitation drive legs 111a and 111b. Further, one non-vibration detection leg (non-vibration detection side arm in Patent Document 1) is provided between the vibration detection legs 112a and 112b, but the non-excitation drive leg and the non-vibration detection leg are Since it is provided for stabilization of vibration and is not necessary in the explanation of the principle, it is omitted in the tuning fork type vibration gyro of FIG.

胴部10、励振用駆動脚111a及び111b並びに振動用検出脚112a及び112bは、1つの圧電単結晶体でなり、一枚の板状の圧電単結晶から切り出された形をなす。圧電単結晶としては、水晶、ニオブ酸リチウム、ランガサイト等がある。胴部10、励振用駆動脚111a,111b及び振動用検出脚112a,112bの厚みは同一である。励振用駆動脚111a及び111bが励振されていない状態、即ち静止状態では、励振用駆動脚111a,111bの軸及び振動用検出脚112a,112bの軸は、胴部10の端面10c及び10dにそれぞれ垂直である。励振用駆動脚111a及び振動用検出脚112aの軸は同一の軸線上にある。同様に、励振用駆動脚111b及び振動用検出脚112bの軸も同一の軸線上にある。また、胴部10の重心を通り、側面10eに平行な面に関し、励振用駆動脚111a及び111bは対称であり、また振動用検出脚112a及び112bも対称である。励振用駆動脚111a,111b及び振動用検出脚112a,112bには駆動用電極及び検出用電極がそれぞれ設けてある(これら電極の図示は省略されている。)   The body 10, the excitation drive legs 111 a and 111 b, and the vibration detection legs 112 a and 112 b are made of one piezoelectric single crystal, and are cut out from a single plate-like piezoelectric single crystal. Examples of the piezoelectric single crystal include quartz crystal, lithium niobate, and langasite. The body 10, the excitation drive legs 111 a and 111 b and the vibration detection legs 112 a and 112 b have the same thickness. In a state where the excitation driving legs 111a and 111b are not excited, that is, in a stationary state, the axes of the excitation driving legs 111a and 111b and the axes of the vibration detection legs 112a and 112b are respectively on the end surfaces 10c and 10d of the trunk portion 10. It is vertical. The axes of the excitation drive leg 111a and the vibration detection leg 112a are on the same axis. Similarly, the axes of the excitation drive leg 111b and the vibration detection leg 112b are on the same axis. Further, the excitation drive legs 111a and 111b are symmetrical and the vibration detection legs 112a and 112b are also symmetrical with respect to a plane that passes through the center of gravity of the body portion 10 and is parallel to the side surface 10e. Excitation drive legs 111a and 111b and vibration detection legs 112a and 112b are provided with drive electrodes and detection electrodes, respectively (the illustration of these electrodes is omitted).

このような図10の構造の音叉型振動ジャイロにおける駆動用電極に励振用の交流電圧を印加すると、励振用駆動脚111a及び111bは、上面10aに平行な平面内において互いに反対方向に、即ち逆位相に、振動する。この振動が、音叉型振動ジャイロにおける駆動振動である。駆動振動は、胴部10の主面(上面10a及び底面10b)に平行な平面内における振動であり、このような主面に平行な平面内における振動を面内振動と称する。面内振動は、図10(A)において矢印Ha及びHbで現してある。この状態で、角速度ωの回転が図10(B)の入力軸回りに入力されると、脚振動による脚端速度に比例してコリオリ力が発生するので、コリオリ力は脚振動と90度位相がずれた同じ周波数の振動になる。この振動は、コリオリ力に基づく振動という意味で、コリオリ振動と称することにする。脚端の変位が±aの範囲になるように脚が振動をしているとき、その脚端速度の絶対値は、脚端の変位が±aの時にゼロであり、脚端の変位がゼロの時に最大となる。図10の構造の音叉型振動ジャイロでは、角速度ωの回転が図10(B)の入力軸回りに入力されたとき、励振用駆動脚111a及び111bにコリオリ力が作用し、コリオリ振動Ca及びCbがそれぞれ生じる。コリオリ振動Ca及びCbは、胴部10の主面に直交する方向の振動であり、その位相は互いに逆である。胴部10の主面に直交する方向の振動を面垂直振動と称する。   When an AC voltage for excitation is applied to the drive electrode in the tuning fork type vibration gyro having the structure shown in FIG. 10, the excitation drive legs 111a and 111b are opposite to each other in the plane parallel to the upper surface 10a, that is, reverse. Vibrates in phase. This vibration is drive vibration in the tuning fork type vibration gyro. The drive vibration is vibration in a plane parallel to the main surface (the upper surface 10a and the bottom surface 10b) of the trunk portion 10, and such vibration in a plane parallel to the main surface is referred to as in-plane vibration. In-plane vibration is represented by arrows Ha and Hb in FIG. In this state, when the rotation of the angular velocity ω is input around the input shaft in FIG. 10B, a Coriolis force is generated in proportion to the leg end velocity due to the leg vibration. It becomes the vibration of the same frequency. This vibration is referred to as Coriolis vibration in the sense of vibration based on Coriolis force. When the leg vibrates so that the displacement of the leg end is in the range of ± a, the absolute value of the leg end velocity is zero when the displacement of the leg end is ± a, and the displacement of the leg end is zero. It becomes the maximum at the time of. In the tuning fork type vibration gyro having the structure of FIG. 10, when the rotation of the angular velocity ω is input around the input shaft of FIG. 10B, Coriolis force acts on the driving legs 111a and 111b for excitation, and Coriolis vibrations Ca and Cb. Each occurs. The Coriolis vibrations Ca and Cb are vibrations in a direction perpendicular to the main surface of the body portion 10, and their phases are opposite to each other. The vibration in the direction perpendicular to the main surface of the body portion 10 is referred to as surface vertical vibration.

胴部10は、板状であるので、その主面に平行な方向の振動、即ち面内振動に対しては極めて高い剛性を有し、他方主面に直交する方向の振動、即ち面垂直振動に対しては相対的に低い剛性を示す。そこで、励振用駆動脚111a,111bに生じる振動のうちで、面内振動である駆動振動Ha及びHbは、振動用検出脚112a,112bには殆ど伝搬せず、他方面垂直振動であるコリオリ振動Ca及びCbは高い効率で振動用検出脚112a,112bに伝搬する。振動用検出脚112a及び112bに伝搬したコリオリ振動が、音叉型振動ジャイロにおける検出振動Da及びDbである。音叉型振動ジャイロは、検出振動Da及びDbにより振動用検出脚112a及び112bに現れる電圧を検出用電極で電気信号として取り出すことにより、角速度ωを検出する。   Since the body portion 10 is plate-shaped, it has extremely high rigidity against vibration in a direction parallel to the main surface, that is, in-plane vibration, and vibration in a direction perpendicular to the other main surface, that is, surface vertical vibration. Shows relatively low rigidity. Therefore, among the vibrations generated in the excitation drive legs 111a and 111b, the drive vibrations Ha and Hb that are in-plane vibrations hardly propagate to the vibration detection legs 112a and 112b, and the other surface vertical vibrations are Coriolis vibrations. Ca and Cb propagate to the vibration detection legs 112a and 112b with high efficiency. The Coriolis vibrations propagated to the vibration detection legs 112a and 112b are detected vibrations Da and Db in the tuning fork type vibration gyro. The tuning fork type vibration gyro detects the angular velocity ω by taking out the voltage appearing in the vibration detection legs 112a and 112b as an electric signal by the detection electrodes by the detection vibrations Da and Db.

音叉型振動ジャイロでは、振動用検出脚112a,112bに現れる駆動振動成分がノイズであり、検出振動成分(Da,Db)が信号である。そこで、振動用検出脚112a,112bにおける検出振動成分(Da,Db)に対する駆動振動成分の比が信号対雑音比(S/N比)となるので、角速度ωを高い精度で検出するには、振動用検出脚112a,112bに漏れ、現れる駆動振動成分を低減する必要がある。振動用検出脚112a,112bに漏れる駆動振動成分は、信号成分[検出振動成分(Da,Db)]に対するバイアスとなり、このバイアスが不安定であれば、角速度ωの検出精度は低下する。   In the tuning fork type vibration gyro, the drive vibration component appearing on the vibration detection legs 112a and 112b is noise, and the detected vibration component (Da, Db) is a signal. Therefore, since the ratio of the drive vibration component to the detected vibration component (Da, Db) in the vibration detection legs 112a, 112b becomes a signal-to-noise ratio (S / N ratio), in order to detect the angular velocity ω with high accuracy, It is necessary to reduce the drive vibration component that leaks and appears in the vibration detection legs 112a and 112b. The drive vibration component leaking to the vibration detection legs 112a and 112b becomes a bias for the signal component [detected vibration component (Da, Db)]. If this bias is unstable, the detection accuracy of the angular velocity ω is lowered.

特許文献1および特許文献2の音叉型振動ジャイロでは、石英ガラス製の支持部材(特許文献1における保持体)によって音叉型振動子をその重心で支持している。その重心は、胴部の中央にある。
特開2001-255152 特開2001-208545 特許第2518600号公報 特開平11-173857
In the tuning fork type vibrating gyroscopes of Patent Document 1 and Patent Document 2, the tuning fork vibrator is supported at the center of gravity by a support member made of quartz glass (the holding body in Patent Document 1). Its center of gravity is in the center of the torso.
JP 2001-255152 A JP 2001-208545 A Japanese Patent No. 2518600 JP-A-11-173857

図5は、音叉型振動子の胴部を支持部材で支持したときに、振動子に現れる歪の変動を示す模式図である。図5(A),(B)は、支持部材で支持しない状態において、駆動振動が胴部に加えられたときに胴部10に表れる歪を現す。図5(C),(D)は、胴部10の重心を支持部材2で支持し、胴部10をパッケージ基板30に搭載した状態において、駆動振動が胴部10に加えられたときに胴部に表れる歪を現す。図5(C),(D)において、支持部材2は胴部10の重心及びパッケージ基板30に固着されている。   FIG. 5 is a schematic diagram showing fluctuations in distortion appearing in the vibrator when the body of the tuning fork vibrator is supported by a support member. FIGS. 5A and 5B show distortions appearing on the body 10 when drive vibration is applied to the body in a state where it is not supported by the support member. 5C and 5D show the case where the center of gravity of the body portion 10 is supported by the support member 2 and when the body portion 10 is mounted on the package substrate 30 and driving vibration is applied to the body portion 10. The distortion that appears in the part appears. 5C and 5D, the support member 2 is fixed to the center of gravity of the body portion 10 and the package substrate 30.

図5(A)は、駆動脚に励振された駆動振動により、互いに反対向きの脚の振動変位α1及びβ1による応力が胴部10に生じたとき、胴部10の上部には互いに反対向きの歪a1及びb1が生じ、胴部10の下部には互いに反対向きの歪c1及びd1が生じ、a1=b1=c1=d1であることを現している。図5(B)は、駆動脚に励振された駆動振動により、互いに反対向きの脚の振動変位α2及びβ2による応力が胴部10に生じたとき、胴部10の上部には互いに反対向きの歪a2及びb2が生じ、胴部10の下部には互いに反対向きの歪c2及びd2が生じ、a2=b2=c2=d2であることを現している。   FIG. 5 (A) shows that when the stress due to the vibration displacements α1 and β1 of the legs in the opposite directions is generated in the trunk portion 10 by the driving vibration excited by the driving legs, the upper portions of the trunk portion 10 are opposite to each other. Strains a1 and b1 are generated, and strains c1 and d1 in opposite directions are generated in the lower portion of the body portion 10, indicating that a1 = b1 = c1 = d1. FIG. 5B shows that when the vibration due to the vibration displacements α2 and β2 of the legs opposite to each other is generated in the trunk part 10 by the driving vibration excited by the driving legs, the upper part of the trunk part 10 is opposite to each other. Strains a2 and b2 are generated, and strains c2 and d2 in opposite directions are generated in the lower portion of the body portion 10, indicating that a2 = b2 = c2 = d2.

これに対し、図5(C)は、駆動脚に励振された駆動振動により、互いに反対向きの脚の振動変位α1及びβ1による応力が胴部10に生じたとき、胴部10の上部には互いに反対向きの歪a1及びb1が生じ、胴部10の下部には互いに反対向きの歪c1及びd1が生じるが、a1=b1>c1=d1であることを現している。また、図5(D)は、駆動脚に励振された駆動振動により、互いに反対向きの脚の振動変位α2及びβ2による応力が胴部10に生じたとき、胴部10の上部には互いに反対向きの歪a2及びb2が生じ、胴部10の下部には互いに反対向きの歪c2及びd2が生じるが、a2=b2>c2=d2であることを現している。   On the other hand, FIG. 5C shows a case where stress due to the vibration displacements α1 and β1 of the legs opposite to each other is generated in the upper portion of the trunk portion 10 by the driving vibration excited by the driving legs. Strains a1 and b1 that are opposite to each other are generated, and strains c1 and d1 that are opposite to each other are generated at the lower portion of the body portion 10. This indicates that a1 = b1> c1 = d1. FIG. 5D shows that when stress is generated in the trunk portion 10 due to the vibration displacements α2 and β2 of the legs in opposite directions due to the drive vibration excited by the drive legs, the upper portion of the trunk portion 10 is opposite to each other. Directional strains a2 and b2 are generated, and strains c2 and d2 in opposite directions are generated in the lower portion of the body portion 10, which indicates that a2 = b2> c2 = d2.

図5(C),(D)に示されるように、音叉型振動子の胴部10を支持部材2で支持したとき、胴部10の上部における歪とその下部における歪とは大きさが相違し、胴部歪の上下非対称性が生じる。胴部10の歪に上下非対称性が生じると、駆動振動に直交する方向の振動、即ち面垂直振動成分が胴部に生じる。この面垂直振動成分は、漏れ駆動振動として振動用検出脚に現れ、検出振動と同じ振動方向であるから、検出振動に対し雑音成分となり、角速度の検出精度を低下させる。   As shown in FIGS. 5C and 5D, when the body 10 of the tuning fork vibrator is supported by the support member 2, the strain at the upper part of the body 10 and the distortion at the lower part thereof are different in magnitude. As a result, the upper and lower asymmetry of the trunk distortion occurs. When a vertical asymmetry is generated in the distortion of the body portion 10, vibration in a direction orthogonal to the drive vibration, that is, a plane vertical vibration component is generated in the body portion. This surface vertical vibration component appears on the vibration detection leg as leakage drive vibration and is in the same vibration direction as the detection vibration. Therefore, the surface vertical vibration component becomes a noise component with respect to the detection vibration and reduces the detection accuracy of the angular velocity.

図6乃至図9は、音叉型振動子の胴部10の重心を支持しないときと、支持部材2で支持したときにおける胴部歪のシミュレーション図である。図6乃至図9において、10は胴部、11a,11bは励振用駆動脚、11cは非励振用駆動脚、12a,12bは振動用検出脚、12cは非振動用検出脚である。これらシミュレーション図は、胴部10および胴部10近傍の駆動脚および検出脚における変位の分布図である。図6乃至図9はコンピュータシミュレーションにより作図したが、レーザドップラー変位計によって計測した変位分布図も同様なパターンとなる。図6は胴部10を支持しないときにおける駆動振動方向(面内振動方向)の変位の分布図、図7は胴部10を支持しないときにおける駆動振動と直交する方向(面垂直振動方向)の変位の分布図である。図8は胴部10の重心を支持部材2で支持したときにおける駆動振動方向(面内振動方向)の変位の分布図、図9は胴部10の重心を支持部材2で支持したときにおける駆動振動と直交する方向(面垂直振動方向)の変位の分布図である。図9を図7と比較すると、胴部10の重心を支持部材2で支持したときには、検出脚12a,12b,12c側の胴部10および検出脚12に面垂直振動が大きく現れていることが分かる。   6 to 9 are simulation diagrams of trunk distortion when the center of gravity of the trunk 10 of the tuning-fork vibrator is not supported and when it is supported by the support member 2. 6 to 9, reference numeral 10 denotes a trunk, 11a and 11b are excitation drive legs, 11c is a non-excitation drive leg, 12a and 12b are vibration detection legs, and 12c is a non-vibration detection leg. These simulation diagrams are distribution diagrams of displacements in the trunk portion 10 and the drive legs and detection legs in the vicinity of the trunk portion 10. 6 to 9 are drawn by computer simulation, the displacement distribution charts measured by the laser Doppler displacement meter have the same pattern. FIG. 6 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the trunk portion 10 is not supported, and FIG. 7 is a direction perpendicular to the driving vibration (plane vertical vibration direction) when the trunk portion 10 is not supported. It is a distribution map of displacement. FIG. 8 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the body 10 is supported by the support member 2, and FIG. 9 is a drive when the center of gravity of the body 10 is supported by the support member 2. It is a distribution map of the displacement of the direction (plane perpendicular vibration direction) orthogonal to vibration. When FIG. 9 is compared with FIG. 7, when the center of gravity of the trunk portion 10 is supported by the support member 2, large surface vertical vibration appears in the trunk portion 10 and the detection leg 12 on the detection legs 12 a, 12 b, 12 c side. I understand.

音叉型振動ジャイロでは、振動子をパッケージに搭載する振動子搭載構造の採用は不可避である。特許文献1及び2では、音叉型振動子の重心に円柱型の支持部材を接着剤等で固着し、振動子を支持する構造が示されている。特許文献1及び2の音叉型振動ジャイロで採用されている振動子搭載構造では、図5の模式図で示す振動子搭載構造と同じ原理で音叉型振動子を支持しており、胴部歪の上下非対称性が生じ、漏れ駆動振動として振動用検出脚に現れ、検出振動に対し雑音成分となり、角速度の検出精度を低下させる。駆動振動が振動用検出脚に漏れるのを抑制する構造として、特許文献3および特許文献4に記載のものが提案されている。   In a tuning fork type vibration gyro, it is inevitable to employ a vibrator mounting structure in which a vibrator is mounted on a package. Patent Documents 1 and 2 show a structure in which a cylindrical support member is fixed to the center of gravity of a tuning fork vibrator with an adhesive or the like to support the vibrator. In the vibrator mounting structure adopted in the tuning fork type vibration gyro of Patent Documents 1 and 2, the tuning fork type vibrator is supported on the same principle as the vibrator mounting structure shown in the schematic diagram of FIG. Asymmetry occurs in the vertical direction and appears on the vibration detection leg as leakage drive vibration, which becomes a noise component with respect to the detected vibration, and decreases the accuracy of angular velocity detection. As a structure for suppressing drive vibration from leaking to the vibration detection leg, those described in Patent Document 3 and Patent Document 4 have been proposed.

図11(特許文献3における図1)は特許文献3に記載の回転速度センサ10(音叉型振動ジャイロ)を示す。この回転速度センサ10は、ハウジング11と、両側(double ended)(即ちH型)音叉(tuning fork) 13と、回転速度検出回路21とを有する。ハウジング11は、蓋12と、基部14と、取付け構造体15とを有する。音叉13は、圧電材料の単結晶からエッチングされる。この材料は、水晶、ニオブ酸リチウム(Lithium
Niobate) 或いは他の圧電物質であるのが良い。
FIG. 11 (FIG. 1 in Patent Document 3) shows a rotational speed sensor 10 (tuning fork type vibration gyro) described in Patent Document 3. The rotational speed sensor 10 includes a housing 11, double ended (ie, H-type) tuning fork 13, and a rotational speed detection circuit 21. The housing 11 includes a lid 12, a base portion 14, and a mounting structure 15. The tuning fork 13 is etched from a single crystal of piezoelectric material. This material is made of quartz, lithium niobate (Lithium
Niobate) or other piezoelectric material.

図12(特許文献3における図3)は、特許文献3に記載の音叉13を示す。音叉13の本体16は、周囲のフレーム30と内部キャビティ33とを有する。音叉13は、励振枝(drive tine)31,32及びピックアップ枝(pickup tine) 44,45を有する。また、音叉13は、キャビティ33内に単一専用取付け基部57を有する。取付け基部57は、フレーム30の内周面18から間隔を隔てられ、これで囲まれ、且つその中の中央に配置されている。取付け基部57は、クロスブリッジ61,62及びサスペンションブリッジ64乃至67によって形成されたサスペンション装置59によって内周面18に結合されている。取付け基部57の周面71は、本体16の内周面18から、+Y方向では開口73によって、−Y方向では開口74によって間隔を隔てられている。   FIG. 12 (FIG. 3 in Patent Document 3) shows the tuning fork 13 described in Patent Document 3. The main body 16 of the tuning fork 13 has a surrounding frame 30 and an internal cavity 33. The tuning fork 13 includes excitation tines 31 and 32 and pickup tines 44 and 45. The tuning fork 13 also has a single dedicated mounting base 57 in the cavity 33. The mounting base 57 is spaced from the inner peripheral surface 18 of the frame 30, is surrounded by the mounting base 57, and is disposed at the center thereof. The mounting base 57 is coupled to the inner peripheral surface 18 by a suspension device 59 formed by cross bridges 61 and 62 and suspension bridges 64 to 67. The peripheral surface 71 of the mounting base 57 is spaced from the inner peripheral surface 18 of the main body 16 by an opening 73 in the + Y direction and by an opening 74 in the −Y direction.

図13(特許文献3における図4)は、特許文献3に記載されたハウジング11の基部14及び取付構造体15を示す。取付構造体15はペデスタル94である。このペデスタル94は、音叉13の取付け面59とほぼ同じ寸法を有する。図11、図12に戻ると、音叉13はペデスタル94に取付けられている。取付け基部57の裏面70は、音叉13の単一専用取付面である。この面は、ペデスタル94の取付け面76に固定されている。この固定は、従来の熱可塑性接着剤或いはエポキシ樹脂によって行われるのがよい。かくして、音叉13は、単一専用取付面70のところだけでハウジング11内に取付けられる。サスペンション装置59が、取付け基部57をフレーム30に結合する。ペデスタル94は、ステンレス鋼、アルミニウム、ニッケル合金モネル(Monel)400或いはセラミックスで作られるのがよい。研磨したシリコン或いは水晶のウエハから別に「けがい」て、そして、エポキシ樹脂を用いて基部14に固定してもよい。特許文献3の音叉型振動ジャイロでは、振動子搭載構造はペデスタル94、サスペンション装置59、取付け基部57でなる。   FIG. 13 (FIG. 4 in Patent Document 3) shows the base portion 14 and the mounting structure 15 of the housing 11 described in Patent Document 3. The attachment structure 15 is a pedestal 94. The pedestal 94 has substantially the same dimensions as the mounting surface 59 of the tuning fork 13. Returning to FIGS. 11 and 12, the tuning fork 13 is attached to the pedestal 94. The back surface 70 of the mounting base 57 is a single dedicated mounting surface of the tuning fork 13. This surface is fixed to the mounting surface 76 of the pedestal 94. This fixing is preferably performed by a conventional thermoplastic adhesive or epoxy resin. Thus, the tuning fork 13 is mounted in the housing 11 only at the single dedicated mounting surface 70. A suspension device 59 couples the mounting base 57 to the frame 30. The pedestal 94 may be made of stainless steel, aluminum, nickel alloy monel 400 or ceramics. It may be “garded” separately from the polished silicon or quartz wafer and then fixed to the base 14 using an epoxy resin. In the tuning fork type vibration gyro of Patent Document 3, the vibrator mounting structure is composed of a pedestal 94, a suspension device 59, and a mounting base 57.

このような特許文献3に記載の振動子搭載構造では、音叉13の本体16に内部キャビティ33を設けるので、音叉13の本体16に深いエッチング加工を施す必要がある。音叉13が、効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなるときは、引用文献3の振動子搭載構造は適用できない。また、引用文献3の振動子搭載構造は、内部キャビティ33内にサスペンション装置59を備えるので、複雑な構造であり、高価であり、小型化も難しい。   In the vibrator mounting structure described in Patent Document 3, since the internal cavity 33 is provided in the main body 16 of the tuning fork 13, it is necessary to perform a deep etching process on the main body 16 of the tuning fork 13. When the tuning fork 13 is made of a material for which an efficient etching method has not been established, for example, langasite, the vibrator mounting structure of the cited document 3 cannot be applied. Further, the vibrator mounting structure of the cited document 3 is provided with a suspension device 59 in the internal cavity 33. Therefore, the structure is complicated, expensive, and difficult to downsize.

図14は、特許文献4の振動型ジャイロスコープにおいて、振動子50を支持する支持手段を示す図である。この支持手段も、振動子50をパッケージに搭載する振動子搭載構造の一例である。図14における51a,51b,52,53は支持手段である。図14(a)においては、突起51Aと51Bとを、振動子50の支持孔47を挟むように上下に配置し、突起51Aと51Bとによって上下方向から振動子50を圧着している。図14(b),(c)においては、突起52の方にピン52aを設け、他方の突起53の方に孔53aを設ける。突起52と53とを、振動子50の支持孔47を挟むように上下に配置し、ピン52aを支持孔47に挿入し、貫通させ、更に孔53aに挿入し、突起52と53とによって上下方向から振動子50を圧着している。   FIG. 14 is a view showing a support means for supporting the vibrator 50 in the vibration gyroscope of Patent Document 4. As shown in FIG. This support means is also an example of a vibrator mounting structure in which the vibrator 50 is mounted on a package. Reference numerals 51a, 51b, 52 and 53 in FIG. 14 denote support means. In FIG. 14A, the protrusions 51A and 51B are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, and the vibrator 50 is pressure-bonded from above and below by the protrusions 51A and 51B. 14B and 14C, a pin 52a is provided toward the protrusion 52, and a hole 53a is provided toward the other protrusion 53. The protrusions 52 and 53 are arranged vertically so as to sandwich the support hole 47 of the vibrator 50, and the pin 52 a is inserted into the support hole 47, penetrated, and further inserted into the hole 53 a. The vibrator 50 is pressure-bonded from the direction.

図14の特許文献4の振動子搭載構造も、特許文献3の振動子搭載構造と同様に、振動子50に支持孔47を形成する必要がある。そこで、振動子50が効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなるときは、引用文献4の振動子搭載構造は適用できない。また引用文献4の振動子搭載構造では、支持孔47は、検出振動が最小となる領域に設けているが、駆動脚と検出脚とを胴部を介して結合する図10のような振動子では、図6乃至図9の変位分布図で示されているように、検出振動(面垂直振動)が小さい領域でも駆動振動(面内振動)は小さくないので、検出振動が最小となる領域に支持孔47を設けても、その領域では駆動振動が小さくないので、突起51A及び51Bよって上下方向から振動子を圧着すると、駆動振動のエネルギー損失が大きく、音叉型振動ジャイロとして実用化は難しい。   Similarly to the vibrator mounting structure of Patent Document 3, the vibrator mounting structure of Patent Document 4 in FIG. 14 needs to form the support hole 47 in the vibrator 50. Therefore, when the vibrator 50 is made of a material for which an efficient etching method has not been established, for example, langasite, the vibrator mounting structure of the cited document 4 cannot be applied. Further, in the vibrator mounting structure of the cited document 4, the support hole 47 is provided in a region where the detection vibration is minimized, but the vibrator as shown in FIG. 10 that couples the drive leg and the detection leg via the trunk. 6 to 9, the drive vibration (in-plane vibration) is not small even in the region where the detected vibration (surface vertical vibration) is small, so that the detection vibration is minimized. Even if the support hole 47 is provided, the drive vibration is not small in that region. Therefore, when the vibrator is pressure-bonded from above and below by the projections 51A and 51B, the energy loss of the drive vibration is large and practical application as a tuning fork type vibration gyro is difficult.

以上に挙げた特許文献1及び2の振動子搭載構造では、図5に示すように、音叉型振動子の胴部10を支持部材2で支持することにより、胴部10に歪の上下非対称性が発生するので、駆動振動が検出脚に漏れ、ひいては音叉型振動ジャイロの角速度検出精度の向上が妨げられ、また検出精度の安定性も損なわれていた。また、特許文献3に記載の振動子搭載構造は、効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなる音叉型振動子には、適用できないし、構造が複雑で高価であり、小型化も難しい。また、特許文献4に記載の振動子搭載構造は、効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなる音叉には、やはり適用できないし、駆動脚と検出脚とを胴部を介して結合する図10のような音叉型振動子では振動エネルギーの損失が大きく、実用できない。   In the vibrator mounting structure disclosed in Patent Documents 1 and 2 described above, as shown in FIG. 5, by supporting the body 10 of the tuning fork vibrator by the support member 2, the upper and lower asymmetry of the strain on the body 10 is achieved. As a result, the drive vibration leaks to the detection legs, which hinders the improvement of the angular velocity detection accuracy of the tuning fork type vibration gyro, and the stability of the detection accuracy is also impaired. Further, the vibrator mounting structure described in Patent Document 3 cannot be applied to a tuning fork vibrator made of a material for which an efficient etching method has not been established, such as Langasite, and the structure is complicated and expensive. Also, miniaturization is difficult. Further, the vibrator mounting structure described in Patent Document 4 cannot be applied to a tuning fork made of a material for which an efficient etching method has not been established, for example, langasite. The tuning fork type vibrator as shown in FIG.

そこで、本発明の目的は、音叉型振動子を支持部材で支持することによる振動子に生じる歪の上下非対称性の発生を抑制することにより、検出脚に漏れる駆動振動を低減し、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定化を図ることにある。また、本発明の別の目的は、効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなる音叉型振動子にも適用でき、振動エネルギーの損失が少なく、簡単な構造であり、小型化が可能な振動子搭載構造の提供にある。   Therefore, an object of the present invention is to reduce the drive vibration leaking to the detection leg by suppressing the occurrence of vertical asymmetry of the distortion generated in the vibrator due to the tuning fork vibrator supported by the support member, and thus the tuning fork vibrator. The purpose is to improve and stabilize the angular velocity detection accuracy of the vibrating gyroscope. Another object of the present invention is applicable to a tuning fork vibrator made of a material for which an efficient etching method has not been established, such as langasite, and has a simple structure with little loss of vibration energy, It is to provide a vibrator mounting structure that can be miniaturized.

前述の課題を解決するために本発明は次の手段を提供する。   In order to solve the above-mentioned problems, the present invention provides the following means.

(1)一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあることを特徴とする振動子搭載構造。
(1) A pair of excitation drive legs, a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection leg, and is interposed between the body part and the package, the body part In a vibrator mounting structure of a tuning fork vibrator having a support member fixed region on the bottom surface of the substrate and a support member fixed to a support member mounting region of the package,
When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on a longitudinal line of the tuning fork vibrator passing through the bottom surface center of gravity position. The vibrator mounting structure, wherein the vibrator mounting structure is located at a position close to the detection leg side from the bottom surface gravity center position.

(2)前記支持部材固着領域の重心位置と前記底面重心位置との間の距離は、前記長手方向における前記支持部材固着領域の長さの30%以上であることを特徴とする前記(1)に記載の振動子搭載構造。 (2) The distance between the gravity center position of the support member fixing region and the bottom surface gravity center position is 30% or more of the length of the support member fixing region in the longitudinal direction. The vibrator mounting structure described in 1.

(3)一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあり、
前記支持部材固着領域の形状が、前記長手方向線に関し対称であり、前記駆動脚側に向けて尖鋭となっている
ことを特徴とする振動子搭載構造。
(3) a pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection leg, and is interposed between the body part and the package; In a vibrator mounting structure of a tuning fork vibrator having a support member fixed region on the bottom surface of the substrate and a support member fixed to a support member mounting region of the package,
When a point where the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on the longitudinal line of the tuning fork vibrator passing through the bottom surface center of gravity position. , At the position close to the detection leg side from the bottom center of gravity position,
The vibrator mounting structure, wherein a shape of the support member fixing region is symmetrical with respect to the longitudinal direction line and is sharpened toward the drive leg side.

(4)前記支持部材固着領域の形状が、6角形であるか、又は前記検出脚側を底辺とする台形若しくは三角形であることを特徴とする前記(3)に記載の振動子搭載構造。   (4) The vibrator mounting structure according to (3), wherein the shape of the support member fixing region is a hexagon, or a trapezoid or a triangle with the detection leg side as a base.

(5)一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、前記支持部材固着領域の重心位置が前記底面重心位置にあり、
前記支持部材固着領域の形が、前記底面重心位置を通る前記音叉型振動子の長手方向線に関し対称であり、前記駆動脚側に向けて尖鋭となっており、
前記底面重心位置を通り前記長手方向線に直交する短手方向線より前記検出脚側の前記支持部材固着領域の面積が、該短手方向線より前記駆動脚側の前記支持部材固着領域の面積より広い
ことを特徴とする振動子搭載構造。
(5) a pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection leg, and is interposed between the body part and the package; In a vibrator mounting structure of a tuning fork vibrator having a support member fixed region on the bottom surface of the substrate and a support member fixed to a support member mounting region of the package,
When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface gravity center position, the gravity center position of the support member fixing region is at the bottom surface gravity center position,
The shape of the support member fixing region is symmetric with respect to the longitudinal direction line of the tuning fork vibrator passing through the bottom center of gravity, and is sharpened toward the drive leg side,
The area of the support member fixing region on the detection leg side from the short direction line passing through the bottom surface center of gravity and orthogonal to the longitudinal direction line is the area of the support member fixing region on the drive leg side from the short direction line. A vibrator mounting structure characterized by a wider area.

上記本発明によれば、音叉型振動子を支持部材で支持することに起因して、振動子に生じる歪の上下非対称性の発生を抑制することにより、検出脚に漏れる駆動振動を低減し、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定化を可能にする振動子搭載構造が提供できる。さらに、本発明によれば、効率的なエッチング方法が確立されていない材料、例えばランガサイト、でなる音叉型振動子にも適用でき、振動エネルギーの損失が少なく、簡単な構造であり、小型化が可能であり、また制作費も低廉な振動子搭載構造を提供できる。   According to the present invention, due to the tuning fork vibrator supported by the support member, by suppressing the occurrence of vertical asymmetry of distortion generated in the vibrator, driving vibration leaking to the detection leg is reduced, As a result, it is possible to provide a vibrator mounting structure that can improve and stabilize the angular velocity detection accuracy of a tuning fork type vibration gyro. Furthermore, according to the present invention, the present invention can be applied to a tuning fork vibrator made of a material for which an efficient etching method has not been established, for example, langasite, and has a simple structure and a small size with less vibration energy loss. It is possible to provide a vibrator mounting structure that can be manufactured at low cost.

次に本発明の実施の形態を挙げ、図面を参照し、本発明を一層具体的に説明する。図1は、本発明の第1の実施の形態の振動子支持構造を有する音叉型振動ジャイロを示す分解斜視図である。図2は、図1の音叉型振動子における支持部材固着領域の中心点が、前記音叉型振動子の重心位置から検出脚側に30%以上寄った位置であること(本発明の第1の実施の形態)を示す前記音叉型振動子の底面の平面図である。図3は、前記音叉型振動子表面の前記支持部材固着領域の形状が、前記駆動脚側に向けて尖鋭となっていること(本発明の第2の実施の形態)を説明する図であり、同図(A)は前記音叉型振動子の底面の平面図、同図(B)は6角形をした支持部材固着領域の平面図、同図(C)は5角形をした支持部材固着領域の平面図である。図4は、前記音叉型振動子表面の前記支持部材固着領域の形状が、前記検出脚側を底辺とする台形または三角形であること(本発明の第3の実施の形態)を説明する図であり、同図(A)は前記音叉型振動子の底面の平面図、同図(B)は台形をした支持部材固着領域の平面図、同図(C)は3角形をした支持部材固着領域の平面図である。   Next, embodiments of the present invention will be described, and the present invention will be described more specifically with reference to the drawings. FIG. 1 is an exploded perspective view showing a tuning fork type vibrating gyroscope having a vibrator support structure according to a first embodiment of the present invention. FIG. 2 shows that the center point of the support member fixing region in the tuning fork vibrator of FIG. 1 is a position that is more than 30% closer to the detection leg side from the center of gravity of the tuning fork vibrator (the first embodiment of the present invention). It is a top view of the bottom face of the tuning fork type vibrator showing an embodiment. FIG. 3 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork type vibrator is sharp toward the drive leg side (second embodiment of the present invention). (A) is a plan view of the bottom surface of the tuning fork vibrator, (B) is a plan view of a hexagonal support member fixing region, and (C) is a pentagonal support member fixing region. FIG. FIG. 4 is a diagram for explaining that the shape of the support member fixing region on the surface of the tuning fork vibrator is a trapezoid or a triangle with the detection leg side as a base (third embodiment of the present invention). 1A is a plan view of the bottom surface of the tuning fork type vibrator, FIG. 1B is a plan view of a trapezoidal support member fixing region, and FIG. 1C is a triangular support member fixing region. FIG.

図1乃至図4において、1は音叉型振動子、1aは音叉型振動子1における支持部材固着領域、2は支持部材、3はパッケージ、10は胴部、10cは胴部10の重心、11は駆動脚、11a,11bは励振用駆動脚、11cは非励振用駆動脚、12は検出脚、12a,12bは振動用検出脚、12cは非振動用検出脚、20cは支持部材固着領域1aの中心、30はパッケージ基板、30aは支持部材搭載領域、31a,31b,32a,32b,33a,33b,34a,34b,35a,35b,36a,36b,37a,37bは端子である。   1 to 4, 1 is a tuning fork type vibrator, 1 a is a support member fixing region in the tuning fork type vibrator 1, 2 is a support member, 3 is a package, 10 is a body part, 10 c is a center of gravity of the body part 10, 11 Is a drive leg, 11a and 11b are excitation drive legs, 11c is a non-excitation drive leg, 12 is a detection leg, 12a and 12b are vibration detection legs, 12c is a non-vibration detection leg, and 20c is a support member fixing region 1a. , 30 is a package substrate, 30a is a support member mounting area, 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, 37b are terminals.

図1には、音叉型振動子1、支持部材2およびパッケージ3が分解して示してある。音叉型振動子1、支持部材2およびパッケージ3が組み合わされた状態では、支持部材2の下面はパッケージ基板30の上面における支持部材搭載領域30aに接着剤で固着され、支持部材2の上面は音叉型振動子1の胴部10の底面の支持部材固着領域1aに接着剤で固着されている。符号1,2,3の部材が結合された状態は、支持部材2が、支持部材搭載領域30aを支点として、音叉型振動子1の固着領域1aを支持している状態であり、音叉型振動子1が支持部材2を介してパッケージ3に搭載された状態である。   In FIG. 1, the tuning fork vibrator 1, the support member 2, and the package 3 are shown in an exploded manner. In a state where the tuning fork vibrator 1, the support member 2, and the package 3 are combined, the lower surface of the support member 2 is fixed to the support member mounting region 30a on the upper surface of the package substrate 30 with an adhesive, and the upper surface of the support member 2 is the tuning fork. The type vibrator 1 is fixed to the support member fixing region 1a on the bottom surface of the body 10 with an adhesive. The state in which the members denoted by reference numerals 1, 2 and 3 are coupled is a state in which the support member 2 supports the fixing region 1a of the tuning fork type vibrator 1 with the support member mounting region 30a as a fulcrum. The child 1 is mounted on the package 3 via the support member 2.

音叉型振動子1における駆動脚11は、図10の駆動脚111における励振用駆動脚111a,111bに対応する励振用駆動脚11a,11bに加え、非励振用駆動脚11cを備える。同様に、音叉型振動子1における検出脚12は、図10の検出脚112における振動用検出脚112a,112bに対応する振動用検出脚12a,12bに加え、非振動用検出脚12cを備える。非励振用駆動脚11c及び非振動用検出脚12cは、特許文献1及び2の音叉型振動ジャイロにも非励振用駆動側アーム及び非振動用検出側アームとして設けてあるものであり、駆動脚11および検出脚12の振動を安定化するために備えてあるが、本発明の作用には重要でないし、図10のようにこれら脚11c及び12cを欠いても本実施の形態は実施できるので、以下では非励振用駆動脚11c及び非振動用検出脚12cについてはこれ以上の説明は省略する。図1の音叉型振動ジャイロにおける音叉型振動子1の作用は、図10に示す音叉型振動子の作用と同様である。   The drive leg 11 in the tuning fork vibrator 1 includes a non-excitation drive leg 11c in addition to the excitation drive legs 11a and 11b corresponding to the excitation drive legs 111a and 111b in the drive leg 111 of FIG. Similarly, the detection leg 12 in the tuning fork vibrator 1 includes a non-vibration detection leg 12c in addition to the vibration detection legs 12a and 12b corresponding to the vibration detection legs 112a and 112b in the detection leg 112 of FIG. The non-excitation drive leg 11c and the non-vibration detection leg 12c are also provided as the non-excitation drive side arm and the non-vibration detection side arm in the tuning fork type vibration gyro in Patent Documents 1 and 2. 11 and the detection leg 12 are provided for stabilizing the vibration, but it is not important for the operation of the present invention, and the present embodiment can be implemented even if these legs 11c and 12c are omitted as shown in FIG. Hereinafter, further description of the non-excitation drive leg 11c and the non-vibration detection leg 12c will be omitted. The operation of the tuning fork vibrator 1 in the tuning fork vibrator gyro shown in FIG. 1 is the same as that of the tuning fork vibrator shown in FIG.

図1の音叉型振動子1は、ランガサイトからなる単結晶圧電体である。音叉型振動子1における励振用駆動脚11a及び11bの少なくとも一方には駆動用電極が、振動用検出脚12a及び12bの少なくとも一方には検出用電極がそれぞれ設けてあるが、図示は省略してある。また、駆動用電極および検出用電極は、端子31a,31b,32a,32b,33a,33b,34a,34b,35a,35b,36a,36b,37a又は37bの内のいずれかへボンディングワイヤで接続されているが、それらボンディングワイヤも図示が省略してある。   The tuning fork vibrator 1 of FIG. 1 is a single crystal piezoelectric body made of langasite. In the tuning fork vibrator 1, at least one of the drive legs 11a and 11b for excitation is provided with a drive electrode, and at least one of the vibration detection legs 12a and 12b is provided with a detection electrode. is there. The drive electrode and the detection electrode are connected to any of the terminals 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, or 37b by bonding wires. However, these bonding wires are also not shown.

図2は、図1の音叉型振動子1における支持部材固着領域1aの中心点20cが、音叉型振動子1の重心位置10cから検出脚12側にDだけ寄った位置であること(本発明の第1の実施の形態)を示す平面図である。重心位置10cは、音叉型振動子1の重心を胴部10の底面に投射した位置であり、前述の底面重心位置に相当する。ここで、図8を参照し、胴部10における面内振動による面内振動方向の変位(駆動振動による変位)の分布を見ると、面内歪は駆動脚11側で大きく、検出脚12側で小さい。また、図9を参照し、胴部10における面垂直振動による変位(検出振動による面垂直変位)の分布を見ると、面内振動方向の変位は、やはり駆動脚11側で大きく、検出脚12側で小さい。そこで、駆動振動と検出振動の合成振動による胴部10の歪が最小となる点は、音叉型振動子1の重心位置10cよりも検出脚12側に寄った所にある。図2では支持部材固着領域1aの中心(領域1aの重心に一致)20cが、1aの長さLの30%以上、重心位置10cから距離D(D≧0.3L)だけ離れて検出脚12側にあるので、支持部材固着領域1aの中心20cが振動子重心10cと同じ位置にある従来の場合に比べると、胴部10における駆動振動に対する支持部材2の拘束は著しく小となる。従って、胴部10の上側(支持部材2に接しない側)と下側(支持部材2に接する側、支持部材固着領域1a側)とで、歪の上下非対称性は著しく小となり、検出脚12に漏れる駆動振動が低減し、ひいては音叉型振動ジャイロの角速度検出精度が向上し、また安定化する。   FIG. 2 shows that the center point 20c of the support member fixing region 1a in the tuning fork vibrator 1 of FIG. 1 is a position shifted from the center of gravity position 10c of the tuning fork vibrator 1 by D toward the detection leg 12 (the present invention). 1 is a plan view showing a first embodiment of FIG. The center-of-gravity position 10c is a position where the center of gravity of the tuning fork vibrator 1 is projected onto the bottom surface of the trunk portion 10, and corresponds to the above-described bottom-surface center of gravity position. Here, referring to FIG. 8, when looking at the distribution of displacement in the in-plane vibration direction due to in-plane vibration in the body 10 (displacement due to drive vibration), the in-plane distortion is large on the drive leg 11 side and the detection leg 12 side. It is small. Further, referring to FIG. 9, when looking at the distribution of displacement due to surface vertical vibration (surface vertical displacement due to detection vibration) in the trunk portion 10, the displacement in the in-plane vibration direction is still large on the drive leg 11 side, and the detection leg 12. Small on the side. Therefore, the point where the distortion of the body 10 due to the combined vibration of the drive vibration and the detection vibration is minimized is located closer to the detection leg 12 side than the center of gravity position 10c of the tuning fork vibrator 1. In FIG. 2, the center of the support member fixing region 1a (coincidence with the center of gravity of the region 1a) 20c is 30% or more of the length L of 1a and is separated from the center of gravity 10c by a distance D (D ≧ 0.3L). Therefore, as compared with the conventional case where the center 20c of the support member fixing region 1a is located at the same position as the vibrator center of gravity 10c, the restraint of the support member 2 with respect to the drive vibration in the body portion 10 is significantly reduced. Accordingly, the upper and lower asymmetry of the strain is remarkably reduced between the upper side (the side not in contact with the support member 2) and the lower side (the side in contact with the support member 2 and the support member fixing region 1a side) of the trunk portion 10. The driving vibration that leaks into the vibration is reduced, and the angular velocity detection accuracy of the tuning fork type vibration gyro is improved and stabilized.

以上に説明したように、図1、図2の実施の形態(第1の実施の形態)では、胴部10の支持部材固着領域1aの中心は、振動歪の分布の中で歪が小となる点にある。そこで第1の実施の形態では、支持部材2の拘束が胴部10の駆動振動に与える影響が小さく、胴部10の上側(支持部材2に接しない側)と下側(支持部材2に接する側、支持部材固着領域1a側)とで歪大きさが異なるという、いわゆる歪の上下非対称性は著しく小となり、検出脚に漏れる駆動振動が低減し、ひいては音叉型振動ジャイロの角速度検出精度が向上し、また安定化する。   As described above, in the embodiment of FIG. 1 and FIG. 2 (first embodiment), the center of the support member fixing region 1a of the trunk portion 10 is less strained in the distribution of vibration strain. It is in the point. Therefore, in the first embodiment, the influence of the restraint of the support member 2 on the drive vibration of the trunk portion 10 is small, and the upper side (side not in contact with the support member 2) and the lower side (in contact with the support member 2) of the trunk portion 10. The so-called vertical asymmetry of the strain, in which the magnitude of the distortion differs between the side and the support member fixing region 1a side), is significantly reduced, driving vibration leaking to the detection leg is reduced, and the angular velocity detection accuracy of the tuning fork type vibration gyro is improved. And stabilize.

図1、図2の実施の形態では音叉型振動子1を構成する圧電結晶材料としてランガサイトを用いた。ランガサイトは、効率的なエッチング方法が確立されていない材料であるが、本実施の形態の製造における振動子1および支持部材2の成形は、ワイヤーソーまたは砥石による機械加工で可能であり、エッチングにより成形を要する工程がないので、本実施の形態は容易に実現できる。   In the embodiment shown in FIGS. 1 and 2, langasite is used as the piezoelectric crystal material constituting the tuning fork vibrator 1. Langasite is a material for which an efficient etching method has not been established. However, the vibrator 1 and the support member 2 in the production of the present embodiment can be formed by machining with a wire saw or a grindstone. Therefore, the present embodiment can be easily realized because there is no process requiring molding.

図3は、本発明の第2の実施の形態の振動子搭載構造を示す平面図である。図3(A)、(B)では、音叉型振動子1における支持部材固着領域1aの形状が6角形であり、駆動脚11側に向けて尖鋭な頂点を有している。図3(C)では、音叉型振動子1における支持部材固着領域1aの形状が5角形であり、該5角形は駆動脚11側に向けて尖鋭な頂点を有している。図3の実施の形態において、支持部材固着領域1aの長さをL、音叉型振動子1の重心位置10c(前述の底面重心位置に相当)と支持部材固着領域1aの重心20cとの距離をDとするとき、D≧0とする。   FIG. 3 is a plan view showing the vibrator mounting structure according to the second embodiment of the present invention. 3A and 3B, the shape of the support member fixing region 1a in the tuning fork vibrator 1 is a hexagon and has a sharp apex toward the drive leg 11 side. In FIG. 3C, the shape of the support member fixing region 1a in the tuning fork vibrator 1 is a pentagon, and the pentagon has a sharp apex toward the drive leg 11 side. In the embodiment shown in FIG. 3, the length of the support member fixing region 1a is L, and the distance between the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-mentioned bottom center of gravity position) and the center of gravity 20c of the support member fixing region 1a. When D, D ≧ 0.

図8に示すとおり、駆動脚11と胴部10との境界付近から胴部10の重心にかけての領域は、胴部10の底面で駆動振動の変位が大きい分布を示す領域である。図3の実施の形態では、支持部材固着領域1aの面積のうち、駆動振動の変位が大きい分布を示す領域の面積が小さく、一方では駆動振動変位が小さい胴部10の重心から検出脚12側の面積が大きい。そこで、支持部材固着領域1aが長方形である従来の場合に比べると、胴部10における駆動振動に対する支持部材2の拘束は著しく小となるので、図5を参照して説明した胴部10における歪の上下非対称性が軽減され、検出脚12に漏れる駆動振動が軽減され、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定化が可能となる。本実施の形態の製造における振動子1及び支持部材2の成形は、ワイヤーソーまたは砥石による機械加工で可能であり、エッチングにより成形を要する工程がないので、本実施の形態は容易に実現できる。   As shown in FIG. 8, the region from the vicinity of the boundary between the driving leg 11 and the trunk portion 10 to the center of gravity of the trunk portion 10 is a region showing a distribution in which the displacement of the driving vibration is large on the bottom surface of the trunk portion 10. In the embodiment shown in FIG. 3, the area of the support member fixing region 1a is small in the region showing the distribution in which the displacement of the driving vibration is large, and on the other hand, from the center of gravity of the body 10 where the displacement of the driving vibration is small. The area of is large. Therefore, as compared with the conventional case where the support member fixing region 1a is rectangular, the restraint of the support member 2 with respect to the driving vibration in the trunk portion 10 is remarkably small. Therefore, the distortion in the trunk portion 10 described with reference to FIG. As a result, the driving vibration leaking to the detection leg 12 is reduced, and as a result, the angular velocity detection accuracy of the tuning fork type vibration gyro can be improved and stabilized. The vibrator 1 and the support member 2 in the manufacturing of the present embodiment can be formed by machining with a wire saw or a grindstone, and since there is no process that requires forming by etching, the present embodiment can be easily realized.

図4は、本発明の第3の実施の形態の振動子搭載構造を示す図であり、図3と同様な図の構成となっている。図4の実施の形態において、支持部材固着領域1aの長さをL、音叉型振動子1の重心位置10c(前述の底面重心位置に相当)と支持部材固着領域1aの重心20cとの距離をDとするとき、D≧0とする。   FIG. 4 is a diagram showing a vibrator mounting structure according to the third embodiment of the present invention, and has a configuration similar to FIG. In the embodiment shown in FIG. 4, the length of the support member fixing region 1a is L, and the distance between the center of gravity position 10c of the tuning fork vibrator 1 (corresponding to the above-mentioned bottom center of gravity position) and the center of gravity 20c of the support member fixing region 1a. When D, D ≧ 0.

図4の振動子搭載構造では、支持部材固着領域1aの形状は、検出脚12側を底辺とする台形または三角形である。支持部材固着領域1aの面積のうち、胴部10の駆動振動歪が大きい分布を示す領域である、駆動脚11と胴部10との境界付近から重心10cにかけての面積が小さく、一方では駆動振動歪が小さい分布を示す重心10cから検出脚12側の面積が大きい。そこで全体として、支持部材の拘束が減少するので、図5を参照して説明した胴部10における歪の上下非対称性が軽減され、検出脚12に漏れる駆動振動が軽減され、ひいては音叉型振動ジャイロの角速度検出精度の向上と安定化が可能となる。本実施の形態の製造における振動子1および支持部材2の成形は、ワイヤーソーまたは砥石による機械加工で可能であり、エッチングにより成形を要する工程がないので、本実施の形態は容易に実現できる。   In the vibrator mounting structure of FIG. 4, the shape of the support member fixing region 1a is a trapezoid or a triangle with the detection leg 12 side as a base. Of the area of the support member fixing region 1a, the area from the vicinity of the boundary between the driving leg 11 and the body portion 10 to the center of gravity 10c, which is a region showing a distribution in which the driving vibration distortion of the body portion 10 is large, is small. The area on the detection leg 12 side from the center of gravity 10c showing a distribution with small distortion is large. Accordingly, since the restraint of the support member is reduced as a whole, the vertical asymmetry of the distortion in the trunk portion 10 described with reference to FIG. 5 is reduced, the drive vibration leaking to the detection leg 12 is reduced, and consequently the tuning fork type vibration gyroscope. It is possible to improve and stabilize the angular velocity detection accuracy. The vibrator 1 and the support member 2 in the manufacturing of the present embodiment can be formed by machining with a wire saw or a grindstone, and since there is no process that requires forming by etching, the present embodiment can be easily realized.

以上には本発明の実施の形態を、図面を参照して、具体的に説明したが、本発明がこれらの実施の形態に限定されるものでないことは勿論である。   Although the embodiments of the present invention have been specifically described above with reference to the drawings, it goes without saying that the present invention is not limited to these embodiments.

本発明の第1の実施の形態の振動子支持構造を有する音叉型振動ジャイロを示す分解斜視図である。1 is an exploded perspective view showing a tuning fork type vibration gyro having a vibrator support structure according to a first embodiment of the present invention. 図1に示した本発明の第1の実施の形態を示す図であり、音叉型振動ジャイロの支持部材固着領域1aの中心位置20cと胴部10の重心10cの関係を示す音叉型振動子1の底面の平面図である。FIG. 2 is a diagram showing the first embodiment of the present invention shown in FIG. 1, and a tuning fork vibrator 1 showing a relationship between a center position 20c of a support member fixing region 1a of a tuning fork type vibration gyro and a center of gravity 10c of a trunk portion 10; It is a top view of the bottom face. 本発明の第2の実施の形態(振動子支持構造)を示す図であり、支持部材固着領域1aの形状が駆動脚11側に向けて尖鋭となっている6角形頂点(A,B)または5角形頂点(C)であることを示す音叉型振動子1の底面の平面図である。It is a figure which shows the 2nd Embodiment (vibrator support structure) of this invention, and the hexagonal vertex (A, B) or the shape where the shape of the support member fixation area | region 1a is sharp toward the drive leg 11 side or FIG. 3 is a plan view of the bottom surface of the tuning fork vibrator 1 showing a pentagonal vertex (C). 本発明の第3の実施の形態(振動子支持構造)を示す図であり、支持部材固着領域1aの形状が、前記検出脚12側を底辺とする台形(B)または三角形(A、C)であることを示す音叉型振動子1の底面の平面図である。It is a figure which shows the 3rd Embodiment (vibrator support structure) of this invention, and the shape of the support member fixation area | region 1a is a trapezoid (B) or a triangle (A, C) which makes the said detection leg 12 side a base. 4 is a plan view of the bottom surface of the tuning fork vibrator 1 showing that 音叉型振動子の胴部を支持部材で支持したときに、振動子に現れる歪の変動を示す模式図である。FIG. 6 is a schematic diagram showing a variation in distortion appearing in a vibrator when the body of the tuning fork vibrator is supported by a support member. 胴部10を支持しないときにおける駆動振動方向(面内振動方向)の変位の分布図である。It is a distribution map of the displacement of the drive vibration direction (in-plane vibration direction) when the trunk | drum 10 is not supported. 胴部10を支持しないときにおける駆動振動と直交する方向(面垂直振動方向)の変位の分布図である。FIG. 6 is a distribution diagram of displacement in a direction (plane vertical vibration direction) orthogonal to drive vibration when the body portion 10 is not supported. 胴部10の重心を支持部材2で支持したときにおける駆動振動方向(面内振動方向)の変位の分布図である。FIG. 6 is a distribution diagram of displacement in the driving vibration direction (in-plane vibration direction) when the center of gravity of the body portion 10 is supported by the support member 2. 胴部10の重心を支持部材2で支持したときにおける駆動振動と直交する方向(面垂直振動方向)の変位の分布図である。FIG. 6 is a distribution diagram of displacement in a direction orthogonal to driving vibration (plane vertical vibration direction) when the center of gravity of the trunk portion is supported by the support member. 駆動脚と検出脚とを胴部で結合した構造の音叉型振動子の作動原理を説明する図である。It is a figure explaining the operation principle of the tuning fork type vibrator of the structure which combined the drive leg and the detection leg with the trunk. 特許文献3に記載の回転速度センサ10(音叉型振動ジャイロ)を示す図である。It is a figure which shows the rotational speed sensor 10 (tuning fork type vibration gyro) of patent document 3. FIG. 特許文献3に記載の音叉13を示す図である。It is a figure which shows the tuning fork 13 of patent document 3. FIG. 特許文献3に記載されたハウジング11の基部14及び取付構造体15を示す図である。It is a figure which shows the base 14 and the attachment structure 15 of the housing 11 described in patent document 3. FIG. 特許文献4の振動型ジャイロスコープにおいて、振動子50を支持する支持手段を示す図である。6 is a view showing a support means for supporting a vibrator 50 in the vibration gyroscope of Patent Document 4. FIG.

符号の説明Explanation of symbols

1 音叉型振動子
1a 音叉型振動子1における支持部材固着領域
2 支持部材
3 パッケージ
10 胴部
10c 振動子重心
11 駆動脚
11a,11b,111a,111b 励振用駆動脚
11c 非励振用駆動脚
12 検出脚
12a,12b,112a,112b 振動用検出脚
12c 非振動用検出脚
20c 支持部材固着領域重心
30 パッケージ基板
30a 支持部材搭載領域
31a,31b,32a,32b,33a,33b,34a,34b,35a,35b,36a,36b,37a,37b 端子
α1,β1,α2,β2 駆動脚の振動変位
a1,b1,a2,b2 胴部の上側(支持部材が固着されていない側)における歪
c1,d1,c2,d2 胴部の下側(支持部材が固着されている側)における歪
DESCRIPTION OF SYMBOLS 1 Tuning fork type vibrator 1a Support member fixed area | region in the tuning fork type vibrator 1 2 Support member 3 Package 10 trunk | drum 10c vibrator center of gravity 11 Drive leg 11a, 11b, 111a, 111b Excitation drive leg 11c Non-excitation drive leg 12 Detection Leg 12a, 12b, 112a, 112b Vibration detection leg 12c Non-vibration detection leg 20c Support member fixing area center of gravity 30 Package substrate 30a Support member mounting area 31a, 31b, 32a, 32b, 33a, 33b, 34a, 34b, 35a, 35b, 36a, 36b, 37a, 37b Terminals α1, β1, α2, β2 Vibration displacement of drive legs a1, b1, a2, b2 Distortion on the upper side of the trunk (the side where the support member is not fixed) c1, d1, c2 , D2 Strain on the lower side of the trunk (the side to which the support member is fixed)

Claims (5)

一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、 前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあることを特徴とする振動子搭載構造。
A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection legs, and is interposed between the body part and the package; In the vibrator mounting structure of a tuning fork vibrator having a support member fixed region and a support member fixed to the support member mounting region of the package,
When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on a longitudinal line of the tuning fork vibrator passing through the bottom surface center of gravity position. The vibrator mounting structure, wherein the vibrator mounting structure is located at a position close to the detection leg side from the bottom surface gravity center position.
前記支持部材固着領域の重心位置と前記底面重心位置との間の距離は、前記長手方向における前記支持部材固着領域の長さの30%以上であることを特徴とする請求項1に記載の振動子搭載構造。   2. The vibration according to claim 1, wherein a distance between the gravity center position of the support member fixing region and the bottom surface gravity center position is 30% or more of the length of the support member fixing region in the longitudinal direction. Child mounting structure. 一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、前記支持部材固着領域の重心位置が、前記底面重心位置を通る前記音叉型振動子の長手方向線上であって、該底面重心位置から前記検出脚側に寄った位置にあり、
前記支持部材固着領域の形状が、前記長手方向線に関し対称であり、前記駆動脚側に向けて尖鋭となっている
ことを特徴とする振動子搭載構造。
A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection legs, and is interposed between the body part and the package; In the vibrator mounting structure of a tuning fork vibrator having a support member fixed region and a support member fixed to the support member mounting region of the package,
When a point where the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface center of gravity position, the center of gravity position of the support member fixing region is on the longitudinal line of the tuning fork vibrator passing through the bottom surface center of gravity position. , At the position close to the detection leg side from the bottom center of gravity position,
The shape of the support member fixing region is symmetrical with respect to the longitudinal direction line, and is sharpened toward the drive leg side.
前記支持部材固着領域の形状が、6角形であるか、又は前記検出脚側を底辺とする台形若しくは三角形であることを特徴とする請求項3に記載の振動子搭載構造。   4. The vibrator mounting structure according to claim 3, wherein a shape of the support member fixing region is a hexagon, or a trapezoid or a triangle with the detection leg side as a base. 5. 一対の励振用駆動脚および一対の振動用検出脚並びに該励振用駆動脚および該振動用検出脚を結合する胴部でなり、該胴部とパッケージの間に介在し、該胴部の底面の支持部材固着領域および該パッケージの支持部材搭載領域に固着された支持部材を有する音叉型振動子の振動子搭載構造において、
前記音叉型振動子の重心を前記底面に投影した点を底面重心位置と称するとき、前記支持部材固着領域の重心位置が前記底面重心位置にあり、
前記支持部材固着領域の形が、前記底面重心位置を通る前記音叉型振動子の長手方向線に関し対称であり、前記駆動脚側に向けて尖鋭となっており、
前記底面重心位置を通り前記長手方向線に直交する短手方向線より前記検出脚側の前記支持部材固着領域の面積が、該短手方向線より前記駆動脚側の前記支持部材固着領域の面積より広い
ことを特徴とする振動子搭載構造。
A pair of excitation drive legs and a pair of vibration detection legs, and a body part that couples the excitation drive legs and the vibration detection legs, and is interposed between the body part and the package; In the vibrator mounting structure of a tuning fork vibrator having a support member fixed region and a support member fixed to the support member mounting region of the package,
When a point at which the center of gravity of the tuning fork vibrator is projected onto the bottom surface is referred to as a bottom surface gravity center position, the gravity center position of the support member fixing region is at the bottom surface gravity center position,
The shape of the support member fixing region is symmetric with respect to the longitudinal direction line of the tuning fork vibrator passing through the bottom center of gravity, and is sharpened toward the drive leg side,
The area of the support member fixing region on the detection leg side from the short direction line passing through the bottom surface center of gravity and orthogonal to the longitudinal direction line is the area of the support member fixing region on the drive leg side from the short direction line. A vibrator mounting structure characterized by a wider area.
JP2005092384A 2005-03-28 2005-03-28 Vibration gyro tuning fork type vibrator mounting structure Expired - Fee Related JP3959097B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005092384A JP3959097B2 (en) 2005-03-28 2005-03-28 Vibration gyro tuning fork type vibrator mounting structure
PCT/JP2006/306255 WO2006104134A1 (en) 2005-03-28 2006-03-28 Tuning fork type oscillator mounting structure of oscillating gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092384A JP3959097B2 (en) 2005-03-28 2005-03-28 Vibration gyro tuning fork type vibrator mounting structure

Publications (2)

Publication Number Publication Date
JP2006275630A JP2006275630A (en) 2006-10-12
JP3959097B2 true JP3959097B2 (en) 2007-08-15

Family

ID=37053390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092384A Expired - Fee Related JP3959097B2 (en) 2005-03-28 2005-03-28 Vibration gyro tuning fork type vibrator mounting structure

Country Status (2)

Country Link
JP (1) JP3959097B2 (en)
WO (1) WO2006104134A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112198B2 (en) * 2007-07-13 2013-01-09 日本航空電子工業株式会社 Tuning fork type vibration gyro
JP5016652B2 (en) * 2009-10-14 2012-09-05 日本航空電子工業株式会社 Tuning fork type vibration gyro

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101223U (en) * 1989-01-31 1990-08-13
JPH02101221U (en) * 1989-01-31 1990-08-13
JPH1038579A (en) * 1996-07-19 1998-02-13 Fujitsu Ltd Piezoelectric gyroscope
JP4038276B2 (en) * 1997-06-23 2008-01-23 日本碍子株式会社 Vibrating gyroscope
JP4364385B2 (en) * 1999-02-17 2009-11-18 日本碍子株式会社 Vibrating gyroscope and manufacturing method thereof

Also Published As

Publication number Publication date
WO2006104134A1 (en) 2006-10-05
JP2006275630A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US8633637B2 (en) Resonator element, resonator, physical quantity sensor, and electronic equipment that have steps on a side surface of a vibrating arm
US5585562A (en) Vibration-sensing gyro
US6046531A (en) Vibrator, vibratory gyroscope, and linear accelerometer
JP2001255152A (en) Piezoelectric vibrating gyroscope and its frequency adjusting method
JP2006201053A (en) Piezoelectric vibrating gyroscope element, support structure of same, and gyro sensor
JP4911690B2 (en) Vibrating gyro vibrator
WO2017056222A1 (en) Gyroscope
JP2012149961A (en) Vibration gyro
JP4295233B2 (en) Tuning fork type vibrator for vibration gyro
JP2006201118A (en) Piezoelectric vibrating gyroscope element and gyro sensor
JP3959097B2 (en) Vibration gyro tuning fork type vibrator mounting structure
JP4256322B2 (en) Vibrating gyro vibrator mounting structure
JP2007064662A (en) Vibration gyro
JP6623767B2 (en) Gyro element and angular velocity sensor using the same
JP4319998B2 (en) Vibrating gyro vibrator
JP3355998B2 (en) Vibrating gyro
JP2009264863A (en) Gyro sensor vibrating body
JP2007163200A (en) Vibrating reed and angular velocity sensor
JP4262691B2 (en) Vibrating gyro
JP2006266984A (en) Vibrating gyroscope element
JP2009085808A (en) Acceleration sensor and acceleration measurement device
JP2008145325A (en) Vibration gyro
JP2006266969A (en) Tuning fork type piezo-electric oscillating gyroscope
JP2005043306A (en) Oscillating gyro sensor
JP2002372421A (en) Angular velocity sensor and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees