Nothing Special   »   [go: up one dir, main page]

JP3957663B2 - Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin - Google Patents

Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin Download PDF

Info

Publication number
JP3957663B2
JP3957663B2 JP2003287618A JP2003287618A JP3957663B2 JP 3957663 B2 JP3957663 B2 JP 3957663B2 JP 2003287618 A JP2003287618 A JP 2003287618A JP 2003287618 A JP2003287618 A JP 2003287618A JP 3957663 B2 JP3957663 B2 JP 3957663B2
Authority
JP
Japan
Prior art keywords
aromatic vinyl
unsaturated dicarboxylic
parts
mass
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003287618A
Other languages
Japanese (ja)
Other versions
JP2005054097A (en
Inventor
勉 高橋
淳 高橋
秀樹 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003287618A priority Critical patent/JP3957663B2/en
Publication of JP2005054097A publication Critical patent/JP2005054097A/en
Application granted granted Critical
Publication of JP3957663B2 publication Critical patent/JP3957663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明はABS樹脂に対して耐熱付与効果が極めて高く、色相が良好で、メタノール可溶分の少ない耐熱性熱可塑性樹脂の製造方法とその熱可塑性樹脂とABS樹脂を混合することにより得られる、ABS樹脂に対して分散性が良好でかつ耐熱付与性能の高い耐熱付与材とそれを用いた樹脂組成物に関するものである。   The present invention has an extremely high heat resistance imparting effect on the ABS resin, has a good hue, and is obtained by mixing the thermoplastic resin and the ABS resin with a method for producing a heat resistant thermoplastic resin having a small amount of methanol soluble matter, The present invention relates to a heat resistance imparting material having good dispersibility with respect to ABS resin and high heat resistance imparting performance, and a resin composition using the same.

従来からABS樹脂等の耐熱性を改良する目的で、マレイミド系共重合樹脂を耐熱付与材として用いる事が行われている。マレイミド系共重合樹脂を得る方法の一つとして、先ず中間原料の芳香族ビニル−不飽和ジカルボン酸無水物共重合体を製造し、更に第1級アミンにてイミド化して得る方法、いわゆる後イミド化法による製法が数多く提案されている。マレイミド系共重合樹脂は高価である故、少ない配合量で高耐熱化できるような耐熱付与材が求められている。後イミド化法からなるべく耐熱性の高いマレイミド系共重合樹脂を得る場合、中間体として不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸無水物共重合体を用いることが望まれている。   Conventionally, a maleimide copolymer resin has been used as a heat resistance imparting material for the purpose of improving the heat resistance of an ABS resin or the like. As one method for obtaining a maleimide copolymer resin, a method of first producing an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer as an intermediate raw material, and further imidizing with a primary amine, so-called post-imide Many production methods using chemical methods have been proposed. Since maleimide copolymer resins are expensive, there is a demand for heat-resistance imparting materials that can increase the heat resistance with a small amount. When obtaining a maleimide copolymer resin having as high heat resistance as possible by post-imidization, it is desirable to use an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a high unsaturated dicarboxylic acid anhydride group content as an intermediate. It is rare.

しかしながら、組成分布が均一な不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸無水物共重合体の工業的かつ生産性の高い製造方法についてはこれまでに殆ど検討されていなかった。また、不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸無水物共重合体を用いて得られたマレイミド系樹脂は耐熱性が高い反面、溶融粘度が高すぎるため流動性が悪くABS樹脂との混合が困難であり、単なる高耐熱化だけでは十分ではなかった。   However, there has been little research on an industrial and highly productive method for producing an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a uniform unsaturated dicarboxylic acid anhydride group with a uniform composition distribution. It was. The maleimide resin obtained using an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a high unsaturated dicarboxylic acid anhydride group content has high heat resistance, but its melt viscosity is too high, so it has fluidity. Unfortunately, mixing with ABS resin was difficult, and mere high heat resistance was not sufficient.

本発明者らは、かかる目的を達成すべく鋭意研究を重ねた結果、不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸無水物共重合体を製造する際、用いる芳香族ビニル単量体及び不飽和ジカルボン酸無水物の原料組成を特定の範囲に規定し、不飽和ジカルボン酸無水物を主体とする溶液中に芳香族ビニル単量体を主体とする溶液を分割または連続的に添加しながら溶液重合させることにより初めて、不飽和ジカルボン酸無水物基含量が多く、かつ組成分布が均一な芳香族ビニル−不飽和ジカルボン酸無水物共重合体を工業的に生産性の高い製造方法で得ることができた。そしてその共重合体を第一級アミンまたは/及びアンモニアでイミド化し、その後、例えば脱揮押出機等で、揮発分を除去して得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の製造方法を見出した。
また、この製造方法により得られたマレイミド樹脂は色相が良好で、メタノール可溶分が少なく、更には重量平均分子量を特定範囲に規定した該マレイミド樹脂とABS樹脂とを特定の組成範囲で混合した樹脂組成物が、ABS樹脂に対して分散性が良好でかつ耐熱付与性能の極めて高い耐熱付与材として使用できる事を見出し本発明に至った。
As a result of intensive studies to achieve such an object, the present inventors have used an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a high unsaturated dicarboxylic acid anhydride group content. The raw material composition of the vinyl monomer and the unsaturated dicarboxylic acid anhydride is defined within a specific range, and the solution mainly composed of the aromatic vinyl monomer is divided or continuously in the solution mainly composed of the unsaturated dicarboxylic acid anhydride. For the first time, by carrying out solution polymerization while adding the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a high unsaturated dicarboxylic acid anhydride group content and a uniform composition distribution, the industrial productivity is high. It could be obtained by the manufacturing method. Then, the copolymer is imidized with a primary amine or / and ammonia, and then (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid obtained by removing volatile components with, for example, a devolatilizing extruder or the like. The manufacturing method of the acid anhydride type heat resistant thermoplastic resin was discovered.
In addition, the maleimide resin obtained by this production method has a good hue, a small amount of methanol-soluble matter, and further, the maleimide resin and the ABS resin whose weight average molecular weight is specified in a specific range are mixed in a specific composition range. The present inventors have found that the resin composition can be used as a heat imparting material having good dispersibility with respect to the ABS resin and having extremely high heat imparting performance.

すなわち、本発明は不飽和ジカルボン酸無水物及び芳香族ビニル単量体の合計量が100質量部であって、(1)不飽和ジカルボン酸無水物45〜48質量部を含む溶液が、不飽和ジカルボン酸無水物45〜48質量部、連鎖移動剤0.25〜0.8質量部、及び非重合性溶剤から成る溶液であり、(2)芳香族ビニル単量体55〜52質量部を含む溶液が、芳香族ビニル単量体55〜52質量部、重合開始剤0.1〜1.5質量部、及び非重合性溶剤から成る溶液であり、(1)の溶液中に(2)の溶液を分割または連続的に添加しながら非重合性溶剤中で溶液重合させることにより得た芳香族ビニル−不飽和ジカルボン酸無水物共重合体に対し、第一級アミンまたは/及びアンモニアでイミド化し、その後揮発分を除去して得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の製造方法、その製造方法から得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂、それを用いた耐熱付与材に関する。 That is, in the present invention, the total amount of unsaturated dicarboxylic acid anhydride and aromatic vinyl monomer is 100 parts by weight, and (1) a solution containing 45 to 48 parts by weight of unsaturated dicarboxylic acid anhydride is unsaturated. dicarboxylic anhydride 45-48 parts by weight, a chain transfer agent 0.25 to 0.8 parts by weight, and a solution consisting of a non-polymerizable solvent comprises (2) an aromatic vinyl monomer 55 to 52 parts by weight The solution is a solution comprising 55 to 52 parts by mass of an aromatic vinyl monomer, 0.1 to 1.5 parts by mass of a polymerization initiator, and a non-polymerizable solvent, and the solution of (2) An aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer obtained by solution polymerization in a non-polymerizable solvent while dividing or continuously adding the solution is imidized with a primary amine or / and ammonia. Then obtained by removing volatiles (N-substituted ) Maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin, (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant heat obtained from the production method The present invention relates to a plastic resin and a heat resistance imparting material using the same.

本発明の不飽和ジカルボン酸無水物基含量の多い芳香族ビニル−不飽和ジカルボン酸無水物共重合体は、大部分の分子構造が芳香族ビニル単量体と不飽和ジカルボン酸無水物による交互共重合構造を有している。
芳香族ビニル単量体としては、例えばスチレン、α−メチルスチレン、ビニルトルエン、t−ブチルスチレン、クロロスチレン等が挙げられるが、これらの芳香族ビニル単量体は単独で用いてもよいし、2種類以上を併用しても差し支えないが、スチレンを単独で使用する事が特に好ましい。
不飽和ジカルボン酸無水物としては、例えばマレイン酸、イタコン酸、シトラコン酸、アコニット酸等の無水物があり、これらの酸無水物等を使用する事ができるが、これらの中で入手が容易である点、さらに廉価であるという点からマレイン酸無水物が特に好ましい。また、これらの酸無水物は単独で用いてもよいし、2種類以上を併用しても差し支えないが、マレイン酸無水物を単独で使用する事が特に好ましい。
The aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a high unsaturated dicarboxylic acid anhydride group content of the present invention is composed of an alternating copolymer of an aromatic vinyl monomer and an unsaturated dicarboxylic acid anhydride. Has a polymerized structure.
Examples of the aromatic vinyl monomer include styrene, α-methyl styrene, vinyl toluene, t-butyl styrene, chlorostyrene, and the like. These aromatic vinyl monomers may be used alone, Two or more types may be used in combination, but it is particularly preferable to use styrene alone.
Examples of the unsaturated dicarboxylic acid anhydride include maleic acid, itaconic acid, citraconic acid, aconitic acid, and the like, and these acid anhydrides can be used. Maleic anhydride is particularly preferred because it is inexpensive and inexpensive. These acid anhydrides may be used alone or in combination of two or more, but it is particularly preferable to use maleic anhydride alone.

これら単量体群の合計量を100質量部とすると、不飽和ジカルボン酸無水物基含量の多く、かつ組成分布が均一な芳香族ビニル−不飽和ジカルボン酸無水物共重合体を得るためには、不飽和ジカルボン酸無水物45〜48質量部を主体とする溶液中に芳香族ビニル単量体55〜52質量部を主体とする溶液を分割または連続的に添加しながら非重合性溶剤中で溶液重合させることが必要であり、本発明の特徴である。好ましくは、ポリマー中の芳香族ビニル−芳香族ビニル−芳香族ビニル三連連鎖の存在割合と芳香族ビニル−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合の和が10.0モル%以下であり、不飽和ジカルボン酸無水物−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合が90.0モル%以上であることを満足する芳香族ビニル−不飽和ジカルボン酸無水物共重合体を得るには、不飽和ジカルボン酸無水物45〜48質量部を主体とする溶液中に芳香族ビニル単量体55〜52質量部を主体とする溶液を分割または連続的に添加しながら非重合性溶剤中で溶液重合させることが必要である。   In order to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a large unsaturated dicarboxylic acid anhydride group content and a uniform composition distribution, assuming that the total amount of these monomer groups is 100 parts by mass. In a non-polymerizable solvent, a solution mainly composed of 55 to 52 parts by weight of an aromatic vinyl monomer is added to a solution mainly composed of 45 to 48 parts by weight of an unsaturated dicarboxylic acid anhydride while being divided or continuously added. Solution polymerization is required and is a feature of the present invention. Preferably, the sum of the abundance ratio of aromatic vinyl-aromatic vinyl-aromatic vinyl triple chain and aromatic vinyl-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain in the polymer is 10.0. Aromatic vinyl-unsaturated dicarboxylic acid satisfying that the proportion of unsaturated dicarboxylic acid anhydride-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain is 90.0 mol% or more In order to obtain an anhydride copolymer, a solution mainly composed of 55 to 52 parts by weight of an aromatic vinyl monomer is divided or continuously divided into a solution mainly composed of 45 to 48 parts by weight of an unsaturated dicarboxylic acid anhydride. It is necessary to perform solution polymerization in a non-polymerizable solvent while adding.

これら単量体群の合計量を100質量部とすると、好ましい組成は不飽和ジカルボン酸無水物46〜48質量部、芳香族ビニル単量体54〜52質量部、さらに好ましい組成は不飽和ジカルボン酸47〜48質量部、芳香族ビニル単量体53〜52質量部である。
不飽和ジカルボン酸が45質量部未満であると、重合中に芳香族ビニル単量体含量の多い、組成分布を有する芳香族ビニル−不飽和ジカルボン酸無水物共重合体が生成し、イミド化後に得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の耐熱付与性能が低下する。また48質量部を超えると重合終了後の不飽和ジカルボン酸無水物の残存量が多くなり、イミド化の工程でイミド化単量体を生成し、イミド化後に得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の色相が著しく悪くなる。
When the total amount of these monomer groups is 100 parts by mass, a preferred composition is 46 to 48 parts by mass of an unsaturated dicarboxylic acid anhydride, 54 to 52 parts by mass of an aromatic vinyl monomer, and a more preferred composition is an unsaturated dicarboxylic acid. 47 to 48 parts by mass and 53 to 52 parts by mass of the aromatic vinyl monomer.
When the unsaturated dicarboxylic acid is less than 45 parts by mass, an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer having a composition distribution with a large aromatic vinyl monomer content is formed during polymerization, and after imidization The heat resistance imparting performance of the obtained (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin is lowered. On the other hand, when the amount exceeds 48 parts by mass, the amount of unsaturated dicarboxylic acid anhydride remaining after the polymerization is increased, an imidized monomer is produced in the imidization step, and (N-substituted) maleimide- obtained after imidization. The hue of the aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin is remarkably deteriorated.

また、本発明の芳香族ビニル−不飽和ジカルボン酸無水物共重合体中の芳香族ビニル三連連鎖と芳香族ビニル−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合の和は10.0モル%以下が好ましく、さらに好ましくは5.0モル%以下、さらにいっそう好ましくは2.0モル%以下である。
ポリマー中の芳香族ビニル三連連鎖の存在割合と芳香族ビニル−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合の和が10.0モル%以上となると、イミド化後に得られる目的共重合体の耐熱付与性能が不十分となる場合がある。ポリマー中の芳香族ビニル−芳香族ビニル−芳香族ビニル三連連鎖の存在割合と芳香族ビニル−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合の和は、単量体の仕込み組成、仕込み方法等により制御する事ができる。また、これらの存在割合はDEPT法NMRにより求める事ができる。
Further, the sum of the abundance ratios of the aromatic vinyl triple chain and the aromatic vinyl-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain in the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer of the present invention is 10.0 mol% or less is preferable, more preferably 5.0 mol% or less, and still more preferably 2.0 mol% or less.
When the sum of the abundance ratio of the aromatic vinyl triple chain in the polymer and the abundance ratio of the aromatic vinyl-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain is 10.0 mol% or more, the polymer is obtained after imidization. The target copolymer may have insufficient heat resistance. The sum of the abundance ratio of aromatic vinyl-aromatic vinyl-aromatic vinyl triple chain in the polymer and the abundance ratio of aromatic vinyl-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain is determined by charging the monomer. It can be controlled by composition, preparation method, and the like. These abundance ratios can be determined by DEPT NMR.

本重合で使用される重合開始剤としてはアゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスメチルプロピオニトリル、アゾビスメチルブチロニトリル等の公知のアゾ化合物や、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、エチル−3,3−ジ−(t−ブチルパーオキシ)ブチレート等の公知の有機過酸化物を用いることができる。これらの重合開始剤は2種類以上を併用しても差し支えないが、従来のスチレン系樹脂の製造において常用されているもの、例えば10時間半減期温度が70〜120℃であるアゾ化合物や有機過酸化物を用いるのが好ましい。   As polymerization initiators used in the main polymerization, known azo compounds such as azobisisobutyronitrile, azobiscyclohexanecarbonitrile, azobismethylpropionitrile, azobismethylbutyronitrile, benzoyl peroxide, t -Butyl peroxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate, Known organic peroxides such as di-t-butyl peroxide, dicumyl peroxide, ethyl-3,3-di- (t-butylperoxy) butyrate can be used. These polymerization initiators may be used in combination of two or more, but those commonly used in the production of conventional styrene resins, such as azo compounds and organic peroxides having a 10-hour half-life temperature of 70 to 120 ° C. It is preferable to use an oxide.

重合開始剤の使用量は、単量体合計量100質量部とした場合、芳香族ビニル単量体55〜52質量部を主体とする溶液中に0.1〜1.5質量部含ませることが好ましい。さらに好ましくは0.1〜1.0質量部、さらにいっそう好ましくは0.1〜0.5質量部である。0.1質量部未満であると十分な重合速度が得られない場合がある。また、1.5質量部以上であると重合速度が増大し反応制御が困難になったり、目的とする共重合体の分子量が不十分となる場合がある。   The polymerization initiator is used in an amount of 0.1 to 1.5 parts by mass in a solution mainly composed of 55 to 52 parts by mass of the aromatic vinyl monomer when the total amount of monomers is 100 parts by mass. Is preferred. More preferably, it is 0.1-1.0 mass part, More preferably, it is 0.1-0.5 mass part. If the amount is less than 0.1 part by mass, a sufficient polymerization rate may not be obtained. On the other hand, when the amount is 1.5 parts by mass or more, the polymerization rate may increase, making it difficult to control the reaction, or the molecular weight of the target copolymer may be insufficient.

本重合では、連鎖移動剤としてはn−ドデシルメルカプタン、t−ドデシルメルカプタンや2,4−ジフェニル−4−メチル−1−ペンテン等の公知の連鎖移動剤を用いることができる。   In this polymerization, a known chain transfer agent such as n-dodecyl mercaptan, t-dodecyl mercaptan or 2,4-diphenyl-4-methyl-1-pentene can be used as the chain transfer agent.

連鎖移動剤の使用量は、単量体合計量100質量部とした場合、不飽和ジカルボン酸無水物45〜48質量部を主体とする溶液中には0.25〜0.8質量部含ませることが好ましい。さらに好ましくは0.35〜0.65質量部、さらにいっそう好ましくは0.45〜0.55質量部である。0.25質量部以下であると本発明の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の分子量が大きくなり、ABS樹脂との混合性が悪化する。0.8質量部以上であると本発明の共重合樹脂の十分な分子量が得られない場合がある。   The chain transfer agent is used in an amount of 0.25 to 0.8 parts by mass in a solution mainly composed of 45 to 48 parts by mass of unsaturated dicarboxylic anhydride when the total amount of monomers is 100 parts by mass. It is preferable. More preferably, it is 0.35-0.65 mass part, More preferably, it is 0.45-0.55 mass part. When the amount is 0.25 parts by mass or less, the molecular weight of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin of the present invention is increased, and the miscibility with the ABS resin is deteriorated. . If the amount is 0.8 parts by mass or more, the sufficient molecular weight of the copolymer resin of the present invention may not be obtained.

本発明における共重合方法は溶液重合、塊状重合等公知の方法が採用できるが、溶液重合が好ましい。また、重合プロセスは回分式重合法、連続式重合法のいずれの方式であっても差し支えない。
使用する溶剤は非重合性であることが好ましく、非重合性溶剤の量は、単量体群100質量部に対し、100〜400質量部が好ましく、更に好ましくは100〜200質量部である。100質量部未満であると、重合により得られる重合液が高粘度となり、取り扱いが困難になる場合がある。また400質量部以上であると重合体混合物は低粘度となり取り扱いが容易にはなるが、生産性の面から十分でない場合がある。
As the copolymerization method in the present invention, known methods such as solution polymerization and bulk polymerization can be adopted, but solution polymerization is preferred. The polymerization process may be either a batch polymerization method or a continuous polymerization method.
The solvent to be used is preferably non-polymerizable, and the amount of the non-polymerizable solvent is preferably 100 to 400 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the monomer group. If the amount is less than 100 parts by mass, the polymerization solution obtained by the polymerization may have a high viscosity and may be difficult to handle. On the other hand, if it is 400 parts by mass or more, the polymer mixture has a low viscosity and is easy to handle, but it may not be sufficient in terms of productivity.

非重合性溶剤の種類としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン等のケトン類、テトラヒドロフラン、1、4−ジオキサン等のエーテル類、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素、N、N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン等の溶剤があり、揮発性、共重合体の溶解性等の取り扱い易さ等からメチルエチルケトン、メチルイソブチルケトンが特に好ましい。   Examples of the non-polymerizable solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and acetophenone, ethers such as tetrahydrofuran and 1,4-dioxane, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, There are solvents such as N, N-dimethylformamide, dimethyl sulfoxide, and N-methyl-2-pyrrolidone, and methyl ethyl ketone and methyl isobutyl ketone are particularly preferable from the viewpoint of easiness in handling such as volatility and solubility of the copolymer.

本重合における重合温度は好ましくは60〜150℃であり、さらに好ましくは80〜130℃である。60℃未満では十分な重合速度が得られず、重合に要する時間が長くなる事から生産性の面から好ましくない場合がある。重合温度が150℃を超えると、熱重合の割合が増加するために十分な分子量が得られない場合がある。   The polymerization temperature in the main polymerization is preferably 60 to 150 ° C, more preferably 80 to 130 ° C. If it is less than 60 ° C., a sufficient polymerization rate cannot be obtained, and the time required for the polymerization becomes long, which is not preferable from the viewpoint of productivity. When the polymerization temperature exceeds 150 ° C., a sufficient molecular weight may not be obtained because the rate of thermal polymerization increases.

本重合における、芳香族ビニル単量体の重合率は97%以上が好ましく、99%以上がさらに好ましい。本発明における重合率とは、重合に使用した単量体に対して実際に単量体が重合した割合を表しており、ガスクロマトグラフィー等により未反応単量体を定量する事により求める事ができる。97%未満であると、イミド化の工程で芳香族ビニル単量体の単独重合体が生成し、目的とする共重合樹脂に混在するために物性が悪化する場合があり、さらに目的とする共重合樹脂の収率が低下する場合があり好ましくない。芳香族ビニル単量体の重合率は重合時間、重合温度、重合開始剤量、連鎖移動剤量等により制御する事ができる。   In the main polymerization, the polymerization rate of the aromatic vinyl monomer is preferably 97% or more, and more preferably 99% or more. The polymerization rate in the present invention represents the ratio of actual polymerization of the monomer to the monomer used for the polymerization, and can be obtained by quantifying the unreacted monomer by gas chromatography or the like. it can. If it is less than 97%, a homopolymer of an aromatic vinyl monomer is formed in the imidization step, and the physical properties may deteriorate due to mixing with the target copolymer resin. The yield of the polymerization resin may decrease, which is not preferable. The polymerization rate of the aromatic vinyl monomer can be controlled by the polymerization time, polymerization temperature, amount of polymerization initiator, amount of chain transfer agent and the like.

本重合における不飽和ジカルボン酸無水物の重合率は99%以上が好ましく、99.8%以上がさらに好ましい。不飽和ジカルボン酸無水物の重合率とは、重合に使用した不飽和ジカルボン酸無水物に対して実際に単量体が重合した割合を表しており、ガスクロマトグラフィー等により未反応単量体を定量する事により求める事ができる。99%未満であると、イミド化の工程でイミド化単量体を生成し、目的とする共重合樹脂の外観が著しく悪くなる場合がある。不飽和ジカルボン酸無水物の重合率は重合時間、重合温度、重合開始剤量、連鎖移動剤量等により制御する事ができる。   The polymerization rate of the unsaturated dicarboxylic acid anhydride in the main polymerization is preferably 99% or more, and more preferably 99.8% or more. The polymerization rate of the unsaturated dicarboxylic acid anhydride represents the ratio of the actual monomer polymerization with respect to the unsaturated dicarboxylic acid anhydride used for the polymerization. It can be obtained by quantifying. If it is less than 99%, an imidized monomer is generated in the imidization step, and the appearance of the target copolymer resin may be remarkably deteriorated. The polymerization rate of the unsaturated dicarboxylic acid anhydride can be controlled by the polymerization time, polymerization temperature, amount of polymerization initiator, amount of chain transfer agent and the like.

本重合においては、重合は6時間以内に完結する事が好ましく、5時間以内で完結する事がさらに好ましい。6時間以上であると生産性の面から好ましくない。   In the main polymerization, the polymerization is preferably completed within 6 hours, and more preferably within 5 hours. If it is 6 hours or more, it is not preferable from the viewpoint of productivity.

さらに、重合に際しては必要に応じて公知の可塑剤、熱安定剤、酸化防止剤等の添加剤を添加しても差し支えない。   Furthermore, during polymerization, additives such as known plasticizers, heat stabilizers, antioxidants and the like may be added as necessary.

得られた芳香族ビニル−不飽和ジカルボン酸無水物共重合体を第一級アミンまたは/及びアンモニアによってイミド化反応を行うが、本発明におけるイミド化反応は、非重合性溶剤存在下で芳香族ビニル−不飽和ジカルボン酸無水物共重合体と第一級アミンまたは/及びアンモニアとを溶液状態で反応させることである。
第1級アミンの具体例としてメチルアミン、エチルアミン、n−プロピルアミン、iso−プロピルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−オクチルアミン、シクロヘキシルアミン、デシルアミン等のアルキルアミン及びクロル又はブロム置換アルキルアミン、アニリン、トルイジン、ナフチルアミン等の芳香族アミンおよびクロル又はブロム置換芳香族アミンが挙げられ、これらの中でアニリン、シクロヘキシルアミンが特に好ましい。また、これらの第1級アミンは単独で用いてもよいし、2種類以上を併用しても差し支えない。
The obtained aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer is subjected to an imidization reaction with a primary amine or / and ammonia, and the imidization reaction in the present invention is carried out in the presence of a non-polymerizable solvent. This is to react a vinyl-unsaturated dicarboxylic acid anhydride copolymer with a primary amine and / or ammonia in a solution state.
Specific examples of primary amines include alkylamines such as methylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, n-pentylamine, n-hexylamine, n-octylamine, cyclohexylamine and decylamine. And aromatic amines such as chloro or bromo-substituted alkylamine, aniline, toluidine, naphthylamine, and the like, and chloro or bromo-substituted aromatic amines, among which aniline and cyclohexylamine are particularly preferable. Moreover, these primary amines may be used alone or in combination of two or more.

アミンの添加量は芳香族ビニル−不飽和ジカルボン酸無水物共重合体の不飽和ジカルボン酸無水物基に対して好ましくは0.92〜1.1モル当量、さらに好ましくは0.95〜1.05モル当量である。0.9モル当量以下であると、目的を達せられない場合がある。また、1.1モル当量以上であると、得られる目的とする共重合樹脂中の残存する第1級アミンが多くなり好ましくない場合がある。また、イミド化に用いる第1級アミン或いはアンモニアは無水である事が好ましい。アミン中に多量に水分が含まれると、イミド化反応の際、芳香族ビニル−不飽和ジカルボン酸無水物共重合体中の不飽和ジカルボン酸無水物基が加水分解しイミド化反応の支障となったり目的とする共重合樹脂の物性が悪化する場合がある。   The amount of amine added is preferably 0.92 to 1.1 molar equivalents, more preferably 0.95 to 1.1, based on the unsaturated dicarboxylic anhydride group of the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer. 05 molar equivalents. If the amount is 0.9 mole equivalent or less, the purpose may not be achieved. On the other hand, if it is 1.1 molar equivalents or more, the remaining primary amine in the intended copolymer resin to be obtained may increase, which may be undesirable. The primary amine or ammonia used for imidization is preferably anhydrous. If a large amount of water is contained in the amine, the unsaturated dicarboxylic acid anhydride group in the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer is hydrolyzed during the imidation reaction, which hinders the imidization reaction. In some cases, the physical properties of the intended copolymer resin may deteriorate.

イミド化の触媒として第3級アミンを使用する事が好ましい。使用する第3級アミンとしてはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、N、N−ジメチルアニリン、N、N−ジエチルアニリン等が挙げられる。   It is preferable to use a tertiary amine as a catalyst for imidization. The tertiary amine used includes trimethylamine, triethylamine, tripropylamine, tributylamine, N, N-dimethylaniline, N, N-diethylaniline and the like.

第3級アミンの添加量は芳香族ビニル−不飽和ジカルボン酸無水物共重合体中の不飽和ジカルボン酸無水物基に対し、0.01モル当量以上が好ましい。0.01モル当量未満であるとイミド化反応の触媒効果が不十分となりイミド化反応に長時間を要しかつイミド化反応を完結させる事が困難となる場合がある。   The addition amount of the tertiary amine is preferably 0.01 molar equivalent or more with respect to the unsaturated dicarboxylic anhydride group in the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer. If it is less than 0.01 molar equivalent, the catalytic effect of the imidization reaction may be insufficient, and it may take a long time for the imidation reaction and it may be difficult to complete the imidation reaction.

本発明におけるイミド化反応の温度は好ましくは80〜250℃であり、さらに好ましくは100〜200℃である。80℃未満の場合には反応速度が遅く反応完結までに長時間を要し生産性の面から好ましくない場合がある。一方、250℃を越える場合には芳香族ビニル−不飽和ジカルボン酸無水物共重合樹脂の熱劣化による物性低下をきたし好ましくない場合がある。   The temperature of the imidization reaction in the present invention is preferably 80 to 250 ° C, more preferably 100 to 200 ° C. When the temperature is lower than 80 ° C., the reaction rate is slow, and it takes a long time to complete the reaction, which is not preferable from the viewpoint of productivity. On the other hand, when the temperature exceeds 250 ° C., the physical properties of the aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer resin may deteriorate due to thermal deterioration, which may be undesirable.

本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂は、脱揮装置付押出機を用いてイミド化反応溶液から揮発分を除去することにより得ることができる。   The (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin in the present invention is obtained by removing volatile components from an imidization reaction solution using an extruder with a devolatilizer. be able to.

本発明の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の重量平均分子量は7〜12万であることが好ましい。さらに好ましくは8〜11万であり、いっそう好ましくは9〜10万である。12万を超える場合、(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂等との混合性が悪くなり、混合後に得られる組成物の物性や外観が悪化する場合がある。重量平均分子量が7万未満の場合は、得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の溶融張力が著しく低下するため、脱揮押出後にストランド及びペレットを得る際のハンドリング性が著しく悪化し、更にABS樹脂との組成物の機械的特性が悪化する場合がある。重量平均分子量は、連鎖移動剤量、重合開始剤量、重合温度等によって制御できる。   The weight average molecular weight of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin of the present invention is preferably from 7 to 120,000. More preferably, it is 8-1110,000, More preferably, it is 9-100,000. When exceeding 120,000, the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride-based heat-resistant thermoplastic resin and the ABS resin, etc. are poorly mixed, and the physical properties of the composition obtained after mixing Appearance may deteriorate. If the weight average molecular weight is less than 70,000, the melt tension of the resulting (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin is significantly reduced. In addition, handling properties in obtaining pellets may be significantly deteriorated, and mechanical properties of the composition with the ABS resin may be further deteriorated. The weight average molecular weight can be controlled by the amount of chain transfer agent, the amount of polymerization initiator, the polymerization temperature, and the like.

本発明の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の黄色度は3.0未満であることが好ましい。3.0を超えるとABS樹脂との混合後の耐熱付与材の色相が著しく悪化する場合がある。   The yellowness of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin of the present invention is preferably less than 3.0. If it exceeds 3.0, the hue of the heat-resistance-imparting material after mixing with the ABS resin may be significantly deteriorated.

本発明の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂のメタノール可溶分は1.5質量%未満である事が好ましい。1.5質量%以上であると、ABS樹脂と混合する際の耐熱付与効果が低下する場合がある。メタノール可溶分は、重合時の連鎖移動剤量、開始剤量、及びイミド化後脱揮押出時の脱揮条件等により制御する事ができる。   The (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin of the present invention preferably has a methanol soluble content of less than 1.5% by mass. When it is 1.5% by mass or more, the heat resistance imparting effect when mixed with the ABS resin may be lowered. The methanol soluble component can be controlled by the amount of chain transfer agent during polymerization, the amount of initiator, the devolatilization conditions during devolatilization extrusion after imidization, and the like.

本発明の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の酸価は、15mgKOH/g未満である事が好ましく、さらに好ましくは12mgKOH/g未満である。
本発明における酸価とは、(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂中の、不飽和ジカルボン酸基、カルボン酸基、およびイミド化反応の中間体のマレアミド酸基を主体とする官能基群に由来する数値を表す。15mgKOH/g以上であると、目的とする共重合体をABS樹脂等に混合して組成物を得る際、成形後の成形品外観に成形不良が見られる場合がある。本発明における酸価は、イミド化反応において不飽和ジカルボン酸基に対する第1級アミンの添加量等によって制御できる。
The acid value of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin of the present invention is preferably less than 15 mgKOH / g, more preferably less than 12 mgKOH / g. .
The acid value in the present invention is an intermediate between the unsaturated dicarboxylic acid group, the carboxylic acid group, and the imidization reaction in the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin. This represents a numerical value derived from a functional group mainly composed of maleamic acid groups of the body. When it is 15 mg KOH / g or more, when the composition is obtained by mixing the target copolymer with ABS resin or the like, molding defects may be observed in the appearance of the molded product after molding. The acid value in the present invention can be controlled by the amount of primary amine added to the unsaturated dicarboxylic acid group in the imidization reaction.

本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂のイミド化率は好ましくは90モル%以上、さらに好ましくは94モル%以上である。
本発明におけるイミド化率とは、芳香族ビニル−不飽和ジカルボン酸無水物共重合体中の不飽和ジカルボン酸無水物基のイミド基への転化率を表しており、NMR等から求めることができる。イミド化率90モル%未満の共重合樹脂は目的を達せられない場合がある。イミド化率は不飽和ジカルボン酸無水物基に対する第1級アミンの添加割合、イミド化反応温度、第3級アミンの添加量等によって制御できる。
The imidation ratio of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride heat-resistant thermoplastic resin in the present invention is preferably 90 mol% or more, more preferably 94 mol% or more.
The imidization rate in the present invention represents the conversion rate of the unsaturated dicarboxylic anhydride group to the imide group in the aromatic vinyl-unsaturated dicarboxylic anhydride copolymer, and can be determined from NMR or the like. . A copolymer resin having an imidation ratio of less than 90 mol% may not achieve its purpose. The imidization rate can be controlled by the ratio of the primary amine added to the unsaturated dicarboxylic anhydride group, the imidization reaction temperature, the amount of tertiary amine added, and the like.

本発明における耐熱付与材は、(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂50〜80質量部とABS樹脂50〜20質量部とを混合機等を使用して樹脂同士を混合して得られる。混合方法としては単軸押出機や二軸押出機等の公知の混合機を使用する事ができる。また、これらの混合機には脱揮装置が付属しても差し支えない。用いる混合機としては二軸押出機が好ましい。
(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂が50質量部未満であると、得られる耐熱付与材の耐熱付与効果が十分でなくなる。また80質量部を超えると、得られる耐熱付与材の耐熱付与効果が高くなるが、その耐熱付与材とABS樹脂との溶融粘度差が大きくなるため、混合性が悪化する場合がある。
In the present invention, the heat resistance-imparting material is prepared by mixing 50 to 80 parts by mass of an (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin and 50 to 20 parts by mass of an ABS resin. It is obtained by mixing the resins together. As a mixing method, a known mixer such as a single screw extruder or a twin screw extruder can be used. These mixers may be attached with a devolatilizer. As the mixer to be used, a twin screw extruder is preferable.
When the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin is less than 50 parts by mass, the heat-resistance imparting effect of the resulting heat-resistance imparting material becomes insufficient. On the other hand, when the amount exceeds 80 parts by mass, the heat resistance imparting effect of the obtained heat imparting material is enhanced, but the difference in melt viscosity between the heat imparting material and the ABS resin is increased, so that the mixing property may be deteriorated.

本発明における樹脂組成物は、(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂とを混合して得られた耐熱付与材5〜40質量部、ABS樹脂95〜60質量部とを混合機等を利用して樹脂同士を混合して得られる。混合方法としては単軸押出機や二軸押出機等の公知の混合機を使用する事ができる。また、これらの混合機には脱揮装置が付属しても差し支えない。用いる混合機としては、廉価で操作が容易な単軸押出機が好ましい。
(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂を直接混合する場合は、双方の樹脂の溶融粘度差が極めて大きいため、例えば二軸押出機のような操作の煩雑な混合機を用いなければならない。しかし、本発明のように(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂を一旦混合する事で、ABS樹脂との溶融粘度差を改善されたABS樹脂への分散性の良好な耐熱付与材が得られ、耐熱付与材とABS樹脂との混合には廉価で操作が容易な単軸押出機のような混合機を採用する事ができる。
The resin composition in the present invention comprises (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin and ABS resin, obtained by mixing 5 to 40 parts by mass of the heat-resistance imparting material. It is obtained by mixing the resins with 95 to 60 parts by mass of ABS resin using a mixer or the like. As a mixing method, a known mixer such as a single screw extruder or a twin screw extruder can be used. These mixers may be attached with a devolatilizer. As the mixer to be used, a single screw extruder which is inexpensive and easy to operate is preferable.
When (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin and ABS resin are directly mixed, the difference in melt viscosity between the two resins is extremely large. It is necessary to use a complicated mixer such as that described above. However, once the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride heat-resistant thermoplastic resin and ABS resin are mixed as in the present invention, the difference in melt viscosity from the ABS resin can be improved. In addition, a heat imparting material having good dispersibility in the ABS resin can be obtained, and a mixer such as a single screw extruder that is inexpensive and easy to operate can be used for mixing the heat imparting material and the ABS resin.

本発明における耐熱付与材のビカット軟化温度は150〜185℃である必要がある。150℃未満であると、耐熱付与効果が十分でなく本発明の目的を達せられない。また、185℃を超える場合は耐熱付与材とABS樹脂との混合性が悪化する場合がある。   The Vicat softening temperature of the heat-resistance imparting material in the present invention needs to be 150 to 185 ° C. If it is less than 150 ° C., the effect of imparting heat resistance is not sufficient and the object of the present invention cannot be achieved. Moreover, when it exceeds 185 degreeC, the mixability of a heat-resistant provision material and an ABS resin may deteriorate.

このようにして得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を用いた耐熱付与材はスチレン−アクリロニトリル共重合樹脂(SAN樹脂)、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、アクリロニトリル−ブタジエン−スチレン−α−メチルスチレン共重合樹脂、アクリロニリル−アクリル系ゴム−スチレン共重合樹脂、アクリロニトリル−エチレン・プロピレン系ゴム−スチレン共重合樹脂、スチレン−メチルメタクリレート共重合樹脂、メチルメタクリレート−ブタジエン−スチレン共重合樹脂、芳香族ポリカーボネート、芳香族ポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリウレタン、及びナイロンと混合することもでき、これら樹脂への耐熱付与材として用いる事ができる。   The heat resistance imparting material using the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin thus obtained is styrene-acrylonitrile copolymer resin (SAN resin), acrylonitrile-butadiene. -Styrene copolymer resin (ABS resin), acrylonitrile-butadiene-styrene-α-methylstyrene copolymer resin, acrylonitrile-acrylic rubber-styrene copolymer resin, acrylonitrile-ethylene-propylene rubber-styrene copolymer resin, styrene- Can be mixed with methyl methacrylate copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, aromatic polycarbonate, aromatic polyester, polyphenylene sulfide, polyamide, polyurethane, and nylon, and these resins It can be used as the heat imparting material.

これらの中でABS樹脂とは特に良く相溶する。また、混合時にさらに安定剤、紫外線吸収剤、難燃剤、可塑剤、滑剤、ガラス等の繊維、無機充填剤、着色剤、帯電防止剤等を添加しても差し支えない。   Among these, the ABS resin is particularly well compatible. In addition, stabilizers, ultraviolet absorbers, flame retardants, plasticizers, lubricants, fibers such as glass, inorganic fillers, colorants, antistatic agents and the like may be added during mixing.

以下本発明を参考例及び実施例によって説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the present invention will be described by reference examples and examples. Note that the present invention is not limited to these examples.

参考例:芳香族ビニル−不飽和ジカルボン酸無水物共重合体の製造
[参考例1]
攪拌機を備えたオートクレーブ中に無水マレイン酸45.0質量部、メチルエチルケトン11.2質量部、2,4−ジフェニル−4−メチル−1−ペンテンを0.3質量部を仕込み、系内を窒素ガスで十分置換した後、温度を92℃に昇温した。別容器に調製したスチレン55.0質量部、t−ブチルパーオキシ−2−エチルヘキサノエート0.15質量部をメチルエチルケトン126質量部に溶解した溶液を均一な添加速度で4時間30分かけて添加した。添加後116℃に昇温し、更に30分反応させて、芳香族ビニル−不飽和ジカルボン酸無水物共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は98.2%であり、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
Reference Example: Production of an aromatic vinyl-unsaturated dicarboxylic anhydride copolymer [Reference Example 1]
An autoclave equipped with a stirrer was charged with 45.0 parts by weight of maleic anhydride, 12.2 parts by weight of methyl ethyl ketone, and 0.3 parts by weight of 2,4-diphenyl-4-methyl-1-pentene, and the system was filled with nitrogen gas. After sufficiently substituting with, the temperature was raised to 92 ° C. A solution prepared by dissolving 55.0 parts by mass of styrene and 0.15 parts by mass of t-butylperoxy-2-ethylhexanoate in 126 parts by mass of methyl ethyl ketone was prepared at a uniform addition rate over 4 hours and 30 minutes. Added. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 30 minutes to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin solution was sampled, the amount of unreacted monomer was determined by gas chromatography, and the polymerization rate of the monomer was calculated. The polymerization rate of styrene was 98.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例2]
スチレンを53.5質量部、無水マレイン酸を46.5質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は98.6%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 2]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 1 except that styrene was changed to 53.5 parts by mass and maleic anhydride was changed to 46.5 parts by mass. The polymerization rate of styrene was 98.6%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例3]
スチレンを52.5質量部、無水マレイン酸を47.5質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 3]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 1, except that styrene was changed to 52.5 parts by mass and maleic anhydride was changed to 47.5 parts by mass. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例4]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテンを0.4質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 4]
By the same method as in Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.4 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were changed. Then, polymerization and quantification of unreacted monomers were carried out. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例5]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテンを0.46質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 5]
By the same method as in Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.46 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were changed. Then, polymerization and quantification of unreacted monomers were carried out. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例6]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテンを0.27質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 6]
By the same method as in Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.27 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were changed. Then, polymerization and quantification of unreacted monomers were carried out. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例7]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテンを0.78質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 7]
By the same method as Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.78 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were changed. Then, polymerization and quantification of unreacted monomers were carried out. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例8]
攪拌機を備えたオートクレーブ中にスチレン60質量部、メチルエチルケトン11.2質量部、2,4−ジフェニル−4−メチル−1−ペンテン0.3質量部を仕込み、系内を窒素ガスで十分置換した後、温度を92℃に昇温した。別容器に調整した無水マレイン酸40質量部、t−ブチルパーオキシ−2−エチルヘキサノエート0.15部をメチルエチルケトン126質量部に溶解した溶液を均一な添加速度で5時間かけて添加した。添加後116℃に昇温し、更に1時間反応させて、芳香族ビニル−不飽和ジカルボン酸無水物共重合体を得た。粘調な樹脂液の一部をサンプリングして、ガスクロマトグラフィーにより未反応の単量体の定量を行い、単量体の重合率を算出した。スチレンの重合率は97.4%であり、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 8]
After charging 60 parts by mass of styrene, 12.2 parts by mass of methyl ethyl ketone, and 0.3 parts by mass of 2,4-diphenyl-4-methyl-1-pentene in an autoclave equipped with a stirrer, and sufficiently replacing the system with nitrogen gas The temperature was raised to 92 ° C. A solution prepared by dissolving 40 parts by mass of maleic anhydride and 0.15 part of t-butylperoxy-2-ethylhexanoate in 126 parts by mass of methyl ethyl ketone was added over 5 hours at a uniform addition rate. After the addition, the temperature was raised to 116 ° C., and the mixture was further reacted for 1 hour to obtain an aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer. A part of the viscous resin solution was sampled, the amount of unreacted monomer was determined by gas chromatography, and the polymerization rate of the monomer was calculated. The polymerization rate of styrene was 97.4%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例9]
スチレンを58質量部、無水マレイン酸を42質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は95.6%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 9]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 1 except that styrene was changed to 58 parts by mass and maleic anhydride was changed to 42 parts by mass. The polymerization rate of styrene was 95.6%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例10]
スチレンを50質量部、無水マレイン酸を50質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は93.0%であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 10]
Polymerization and quantification of unreacted monomers were carried out in the same manner as in Reference Example 1 except that styrene was changed to 50 parts by mass and maleic anhydride was changed to 50 parts by mass. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 93.0%. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例11]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、t−ブチルパーオキシ−2−エチルヘキサノエート0.08質量部に変更した以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は96.2%、無水マレイン酸の重合率は98.3%であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 11]
Polymerization was carried out in the same manner as in Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.08 parts by mass of t-butylperoxy-2-ethylhexanoate were changed. The unreacted monomer was quantified. The polymerization rate of styrene was 96.2%, and the polymerization rate of maleic anhydride was 98.3%. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例12]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテン0.2質量部にした以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 12]
Polymerization was carried out in the same manner as in Reference Example 1, except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were used. The unreacted monomer was quantified. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

[参考例13]
スチレンを52.5質量部、無水マレイン酸を47.5質量部、2,4−ジフェニル−4−メチル−1−ペンテン0.85質量部にした以外は参考例1と同様の方法により、重合、未反応単量体の定量を実施した。スチレンの重合率は99.2%、無水マレイン酸の重合率は99.8%以上であった。三連連鎖分布の測定は後記に示す方法により行った。重合方法を表1に、その結果を表2に示した。
[Reference Example 13]
Polymerization was carried out in the same manner as in Reference Example 1 except that 52.5 parts by mass of styrene, 47.5 parts by mass of maleic anhydride, and 0.85 parts by mass of 2,4-diphenyl-4-methyl-1-pentene were used. The unreacted monomer was quantified. The polymerization rate of styrene was 99.2%, and the polymerization rate of maleic anhydride was 99.8% or more. The triple chain distribution was measured by the method described below. The polymerization methods are shown in Table 1, and the results are shown in Table 2.

Figure 0003957663
Figure 0003957663

Figure 0003957663
Figure 0003957663

参考例1で得られた共重合体を用い、無水マレイン酸基に対して0.97モル当量のアニリン及び無水マレイン酸基に対して0.014モル当量のトリエチルアミンを仕込んだ。そして155℃で5時間反応を行った。イミド化反応液を脱揮押出機に投入し、揮発分を除去してペレット状の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表3に示した。   Using the copolymer obtained in Reference Example 1, 0.97 molar equivalents of aniline with respect to maleic anhydride groups and 0.014 molar equivalents of triethylamine with respect to maleic anhydride groups were charged. And reaction was performed at 155 degreeC for 5 hours. The imidization reaction liquid was charged into a devolatilizing extruder, and volatile components were removed to obtain a pellet-like (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin. Mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 3.

参考例2で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表3に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 2 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 3.

参考例3で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表3に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 3 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 3.

参考例4で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表3に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 4 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 3.

参考例5で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表4に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 5 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 4.

参考例6で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表4に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 6 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 4.

参考例7で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表4に示した。
[比較例1]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 7 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 4.
[Comparative Example 1]

参考例8で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表5に示した。
[比較例2]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 8 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 5.
[Comparative Example 2]

参考例9で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表5に示した。
[比較例3]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 9 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 5.
[Comparative Example 3]

参考例10で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表5に示した。
[比較例4]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 10 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 5.
[Comparative Example 4]

参考例5で得られた共重合体を用い、無水マレイン酸基に対して0.80モル当量のアニリンを用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表5に示した。
[比較例5]
(N-substituted) maleimide-aromatic vinyl in the same manner as in Example 1 except that the copolymer obtained in Reference Example 5 was used and 0.80 molar equivalent of aniline was used with respect to the maleic anhydride group. -An unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin was obtained. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 5.
[Comparative Example 5]

参考例11で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表6に示した。
[比較例6]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 11 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 6.
[Comparative Example 6]

参考例12で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表6に示した。
[比較例7]
A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 12 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 6.
[Comparative Example 7]

参考例13で得られた共重合体を用いた以外は実施例1と同様の方法により(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂を得た。また、実施例1と同様に、得られた樹脂とABS樹脂との混合および得られた耐熱付与材とABS樹脂との混合は後記した方法で実施し、結果を表6に示した。   A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin was obtained in the same manner as in Example 1 except that the copolymer obtained in Reference Example 13 was used. Further, in the same manner as in Example 1, mixing of the obtained resin and ABS resin and mixing of the obtained heat-imparting material and ABS resin were carried out by the methods described later, and the results are shown in Table 6.

Figure 0003957663
Figure 0003957663

Figure 0003957663
Figure 0003957663

Figure 0003957663
Figure 0003957663

Figure 0003957663
Figure 0003957663

(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂との混合
得られた(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂と一般に市販されているABS樹脂(GR−3000、電気化学工業製)を表2、表3記載の配合にて20リットルヘンシェルに投入してブレンド後、二軸押出機を用い、以下に示す条件で混合を実施し、耐熱付与材を得た。
二軸押出機による混合
押出機:TEM−35B(東芝機械社製二軸押出機、スクリュー径37mm、L/D=32)
シリンダー温度:260℃
スクリュー回転数:200rpm(回転方向は二軸同方向)
原料フィード:20kg/hr
耐熱付与材とABS樹脂との混合
得られた耐熱付与材と一般に市販されているABS樹脂(GR−3000、電気化学工業製)を表2、表3記載の配合にて20リットルヘンシェルに投入してブレンド後、単軸押出機を用い、以下に示す条件で混合を実施し、樹脂組成物をを得た。
単軸押出機による混合
押出機:VS40m/m押出機(田辺プラスチック機械製単軸押出機)
シリンダー温度:260℃
スクリュー回転数:200rpm
原料フィード:20kg/hr
(N-Substituted) Maleimide-Aromatic Vinyl-Unsaturated Dicarboxylic Anhydride Mixture of Heat Resistant Thermoplastic Resin and ABS Resin Obtained (N-Substituted) Maleimide-Aromatic Vinyl-Unsaturated Dicarboxylic Anhydride System Heat-resistant thermoplastic resin and commercially available ABS resin (GR-3000, manufactured by Denki Kagaku Kogyo Co., Ltd.) are charged into a 20-liter Henschel with the composition shown in Tables 2 and 3, blended, and then a twin screw extruder is used. Then, mixing was performed under the conditions shown below to obtain a heat resistance imparting material.
Mixing with a twin screw extruder Extruder: TEM-35B (Toshiba Machine's twin screw extruder, screw diameter 37 mm, L / D = 32)
Cylinder temperature: 260 ° C
Screw rotation speed: 200 rpm (rotating direction is the same direction of two axes)
Raw material feed: 20 kg / hr
Mixing of heat resistance material and ABS resin The obtained heat resistance material and a commercially available ABS resin (GR-3000, manufactured by Denki Kagaku Kogyo Co., Ltd.) were charged into a 20-liter Henschel with the composition shown in Tables 2 and 3. After blending, mixing was carried out using a single screw extruder under the following conditions to obtain a resin composition.
Mixing with single screw extruder Extruder: VS40m / m extruder (single screw extruder made by Tanabe Plastic Machine)
Cylinder temperature: 260 ° C
Screw rotation speed: 200rpm
Raw material feed: 20 kg / hr

なお参考例、実施例、比較例の評価は以下のように行った。
(1)芳香族ビニル−不飽和ジカルボン酸無水物共重合体の重合率
下記記載の測定条件で未反応の単量体の定量を行い、重合率を算出した。
装置名:Agilent6890series(Agilent社製)
カラム:キャピラリーカラム(ジメチルポリシロキサン、架橋タイプ)
温度:オーブン:50℃、注入口:200℃、検出器:250℃
検出器:FID
試料重合液0.50g、n−オクタン0.001gを秤量しメチルエチルケトンに溶解させ全体を25.0gにし、n−オクタンを内部標準として測定した。
In addition, evaluation of the reference example, the example, and the comparative example was performed as follows.
(1) Polymerization rate of aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer Unreacted monomers were quantified under the measurement conditions described below to calculate the polymerization rate.
Device name: Agilent 6890 series (manufactured by Agilent)
Column: Capillary column (dimethylpolysiloxane, cross-linked type)
Temperature: Oven: 50 ° C, inlet: 200 ° C, detector: 250 ° C
Detector: FID
A sample polymerization solution of 0.50 g and n-octane of 0.001 g were weighed and dissolved in methyl ethyl ketone to make 25.0 g of the whole, and n-octane was measured as an internal standard.

(2)芳香族ビニル−不飽和ジカルボン酸無水物共重合体の三連連鎖分布の測定
本発明における芳香族ビニル−不飽和ジカルボン酸無水物共重合体の三連連鎖分布の測定は以下の条件で測定した。なお、共重合体は予め揮発分を除去して精製したものを測定に用いた。
装置名:AVANCE−300(BRUKER社製)
測定核種:C13
測定方法:DEPT45とDEPT135の差スペクトル
測定温度:23℃±2℃
試料濃度:10質量部
使用溶媒:アセトン−d6
積算回数:
DEPT45・・・2万回
DEPT135・・・2万回
三連連鎖分布の解析方法:
DEPT45とDEPT135の差スペクトルよりスチレン−スチレン−無水マレイン酸三連連鎖に由来するメチレンシグナル、スチレン−スチレン−スチレン三連連鎖に由来するメチレンシグナル、及び無水マレイン酸−スチレン−無水マレイン酸三連連鎖に由来するメチレンシグナルをそれぞれ積分して、それらの積分比から三連連鎖分布を算出した。
(2) Measurement of triple chain distribution of aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer The measurement of triple chain distribution of aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer in the present invention is performed under the following conditions. Measured with In addition, the copolymer used for the measurement what removed the volatile matter beforehand and refine | purified.
Device name: AVANCE-300 (manufactured by BRUKER)
Measurement nuclide: C13
Measuring method: difference spectrum between DEPT45 and DEPT135 Measuring temperature: 23 ° C. ± 2 ° C.
Sample concentration: 10 parts by mass Solvent used: Acetone-d6
Integration count:
DEPT45 ... 20,000 times DEPT135 ... 20,000 times Analysis method of triple chain distribution:
From the difference spectrum of DEPT45 and DEPT135, methylene signal derived from styrene-styrene-maleic anhydride triple chain, methylene signal derived from styrene-styrene-styrene triple chain, and maleic anhydride-styrene-maleic anhydride triple chain The methylene signals derived from were integrated, and the triple chain distribution was calculated from their integration ratio.

(3)(N−置換)マレイミド−スチレン−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の組成
下記記載の測定条件でNMRを測定し、イミド基のカルボニル炭素の積分値と未反応ジカルボン酸無水物基およびイミド化反応中間体のマレアミド酸中間体のカルボニル炭素の積分値の比等から(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の組成を求めた。
装置名:AVANCE−300(BRUKER社製)
測定核種:C13
測定温度:110℃
試料濃度:10質量部
使用溶媒:DMSO−d6
積算回数:1万回
(3) Composition of (N-substituted) maleimide-styrene-unsaturated dicarboxylic anhydride type heat-resistant thermoplastic resin NMR was measured under the measurement conditions described below, and the integrated value of carbonyl carbon of imide group and unreacted dicarboxylic acid The composition of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride-based heat-resistant thermoplastic resin from the ratio of the carbonyl carbon integral value of the anhydride group and the imidization reaction intermediate maleamic acid intermediate, etc. Asked.
Device name: AVANCE-300 (manufactured by BRUKER)
Measurement nuclide: C13
Measurement temperature: 110 ° C
Sample concentration: 10 parts by mass Solvent used: DMSO-d6
Integration count: 10,000 times

(4) 重量平均分子量
本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の重量平均分子量は、下記記載のGPC測定条件で測定した。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラハイドロフラン
濃度:2質量部
検量線:標準ポリスチレン(PS)(PL社製)を用いて作製し、重量平均分子量はPS換算値で表した。
(4) Weight average molecular weight The weight average molecular weight of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride heat-resistant thermoplastic resin in the present invention was measured under the GPC measurement conditions described below.
Device name: SYSTEM-21 Shodex (manufactured by Showa Denko)
Column: 3 series PL gel MIXED-B Temperature: 40 ° C
Detection: Differential refractive index Solvent: Tetrahydrofuran Concentration: 2 parts by mass Calibration curve: Prepared using standard polystyrene (PS) (manufactured by PL), and weight average molecular weight was expressed in terms of PS.

(5)黄色度
本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の黄色度は次に示すような方法により実施した。
装置:SZ−IIシグマ80 測色色差計(日本電色社製)
温度:23℃±2℃
溶媒:テトラヒドロフラン
測定モード:透過法
(5) Yellowness The yellowness of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin in the present invention was determined by the following method.
Apparatus: SZ-II Sigma 80 colorimetric color difference meter (manufactured by Nippon Denshoku)
Temperature: 23 ° C ± 2 ° C
Solvent: Tetrahydrofuran Measurement mode: Permeation method

(6) 酸価
本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の酸価測定は、次に示すような滴定法により実施した。
先ず共重合体を溶媒に溶解し、指示薬を加えて試料溶液を作成した。そこへアルカリ溶液を滴下し、良く攪拌させて中和反応を促進させた。試料溶液が淡紫色を呈した点を終点とした。また、溶媒のみを試料としてブランク滴定を実施した。酸価(mgKOH/g)は下記式1により算出した。
酸価={アルカリ濃度(N)×(滴下量合計−ブランク値)(ml)×56.11(g/mol)}/サンプル秤量値(g) 式1

使用器具:25cm3ビュレット、100cm3共栓付三角フラスコ
温度:23℃±2℃
溶媒:メチルエチルケトン
試料溶液濃度:1質量部
アルカリ溶液:0.1N水酸化カリウムエタノール溶液(和光純薬製)
指示薬:フェノールフタレイン0.5質量部エタノール溶液
(6) Acid value The acid value of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin in the present invention was measured by the titration method as shown below.
First, the copolymer was dissolved in a solvent, and an indicator was added to prepare a sample solution. The alkaline solution was dropped therein and stirred well to promote the neutralization reaction. The point at which the sample solution was light purple was used as the end point. Further, blank titration was performed using only the solvent as a sample. The acid value (mgKOH / g) was calculated by the following formula 1.
Acid value = {alkaline concentration (N) × (total dripping amount−blank value) (ml) × 56.11 (g / mol)} / sample weighing value (g) Formula 1

Equipment used: Erlenmeyer flask with 25 cm3 burette and 100 cm3 stopper Temperature: 23 ° C ± 2 ° C
Solvent: Methyl ethyl ketone Sample solution concentration: 1 part by mass Alkaline solution: 0.1 N potassium hydroxide ethanol solution (manufactured by Wako Pure Chemical Industries)
Indicator: 0.5 parts by mass ethanol solution of phenolphthalein

(7)メタノール可溶分
本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂のメタノール可溶分は次に示すような方法により行った。
予め重量を測定した樹脂をメチルエチルケトンに溶解し、約5質量部の溶液を作成した。その溶液を大過剰のメタノールに滴下してポリマーを析出させた。析出物を濾過で回収した後、100℃で6時間乾燥させた。乾燥後の析出物の重量を測定した。重量測定は析出物の乾燥終了直後に行った。メタノール可溶分(質量部)は下記式2により算出した。
メタノール可溶分=100−{乾燥後析出物重量(g)/析出前樹脂重量(g)×100} 式2
(7) Methanol-soluble content The methanol-soluble content of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin in the present invention was measured by the following method.
The resin weighed in advance was dissolved in methyl ethyl ketone to prepare a solution of about 5 parts by mass. The solution was dropped into a large excess of methanol to precipitate a polymer. The precipitate was collected by filtration and then dried at 100 ° C. for 6 hours. The weight of the precipitate after drying was measured. The weight measurement was performed immediately after the drying of the precipitate. The methanol soluble part (parts by mass) was calculated by the following formula 2.
Methanol-soluble matter = 100− {precipitate weight after drying (g) / resin weight before precipitation (g) × 100} Formula 2

(8) ビカット軟化温度
JIS K7206に従った。荷重50N、昇温速度50℃/hrで測定した。
(8) Vicat softening temperature According to JIS K7206. The measurement was performed at a load of 50 N and a heating rate of 50 ° C./hr.

(9) シャルピー衝撃強さ
JIS K7211に従った。なお、シャルピー衝撃強さはノッチタイプAを有するタイプ1試験片を用い、打撃方向はエッジワイズを採用して測定した。
(9) Charpy impact strength According to JIS K7211. The Charpy impact strength was measured using a type 1 test piece having a notch type A, and the striking direction was measured using edgewise.

(10)成形品外観
本発明における(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂とABS樹脂からなる耐熱付与材と、ABS樹脂とを混合して得られた樹脂組成物の成形品外観は、以下の条件で成形して外観評価を実施した。
装置:射出成形機(K−125−1、川口鉄工社製)
成形温度:250℃
プレート形状:9cm×5cm
評価方法:成形品の目視による評価
◎:成形不良が見られない場合。
○:成形不良が見られるが、殆ど目立たない。
△:成形不良が見られ、若干目立つ。
×:成形不良が見られ、著しく目立つ。
(10) Appearance of molded product Obtained by mixing (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin and heat-resisting material composed of ABS resin with ABS resin. The appearance of the molded product of the obtained resin composition was evaluated under the following conditions.
Apparatus: Injection molding machine (K-125-1, manufactured by Kawaguchi Tekko)
Molding temperature: 250 ° C
Plate shape: 9cm x 5cm
Evaluation method: Visual evaluation of molded product A: When molding defects are not observed.
○: Molding defects are observed, but are hardly noticeable.
Δ: Molding defects are seen and slightly noticeable.
X: Molding defects are observed and are noticeable.

本発明はABS樹脂に対して耐熱付与効果が極めて高く、色相が良好で、メタノール可溶分の少ない耐熱性熱可塑性樹脂の製造方法とその熱可塑性樹脂とABS樹脂を混合することにより得られる、ABS樹脂に対して分散性が良好でかつ耐熱付与性能の高い耐熱付与材とそれを用いた樹脂組成物に関するものであり、該樹脂組成物は自動車内装部品、車載用音響機器、家電・OA機器等、広範囲に使用する事ができる。また、本発明のマレイミド系樹脂は耐熱付与性能が極めて高いため、該樹脂組成物を得る際のマレイミド系樹脂の使用量を削減する事ができ、低コスト化を実現する事ができるため、極めて有用である。
The present invention has an extremely high heat resistance imparting effect on the ABS resin, has a good hue, and is obtained by mixing the thermoplastic resin and the ABS resin with a method for producing a heat resistant thermoplastic resin having a small amount of methanol soluble matter, BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat imparting material having good dispersibility with respect to ABS resin and high heat imparting performance and a resin composition using the same, and the resin composition is used for automobile interior parts, in-vehicle acoustic equipment, home appliances and OA equipment. It can be used in a wide range. In addition, since the maleimide resin of the present invention has extremely high heat resistance imparting performance, the amount of maleimide resin used in obtaining the resin composition can be reduced, and the cost can be reduced. Useful.

Claims (6)

不飽和ジカルボン酸無水物及び芳香族ビニル単量体の合計量が100質量部であって、(1)不飽和ジカルボン酸無水物45〜48質量部を含む溶液が、不飽和ジカルボン酸無水物45〜48質量部、連鎖移動剤0.25〜0.8質量部、及び非重合性溶剤から成る溶液であり、(2)芳香族ビニル単量体55〜52質量部を含む溶液が、芳香族ビニル単量体55〜52質量部、重合開始剤0.1〜1.5質量部、及び非重合性溶剤から成る溶液であり、(1)の溶液中に(2)の溶液を分割または連続的に添加しながら非重合性溶剤中で溶液重合させることにより得た芳香族ビニル−不飽和ジカルボン酸無水物共重合体に対し、第一級アミンまたは/及びアンモニアでイミド化し、その後揮発分を除去して得られる(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の製造方法。 The total amount of unsaturated dicarboxylic acid anhydride and aromatic vinyl monomer is 100 parts by weight, and (1) a solution containing 45 to 48 parts by weight of unsaturated dicarboxylic acid anhydride is unsaturated dicarboxylic acid anhydride 45. -48 parts by mass, a chain transfer agent of 0.25-0.8 parts by mass, and a solution comprising a non-polymerizable solvent, (2) a solution containing 55-52 parts by mass of an aromatic vinyl monomer is aromatic A solution comprising 55 to 52 parts by weight of a vinyl monomer, 0.1 to 1.5 parts by weight of a polymerization initiator, and a non-polymerizable solvent, and the solution of (2) is divided or continuously into the solution of (1). Aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer obtained by solution polymerization in a non-polymerizable solvent while being added to the mixture is imidized with a primary amine and / or ammonia, and then the volatile content is reduced. (N-substituted) maleimide-fragrance obtained by removal For producing a heat-resistant thermoplastic resin based on an aromatic vinyl-unsaturated dicarboxylic acid anhydride. 芳香族ビニル−不飽和ジカルボン酸無水物共重合体が、その共重合体中の芳香族ビニル−芳香族ビニル−芳香族ビニル三連連鎖の存在割合と芳香族ビニル−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合の和が10.0モル%以下であり、不飽和ジカルボン酸無水物−芳香族ビニル−不飽和ジカルボン酸無水物三連連鎖の存在割合が90.0モル%以上であることを特徴とする請求項1記載の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂の製造方法。 Aromatic vinyl-unsaturated dicarboxylic acid anhydride copolymer contains aromatic vinyl-aromatic vinyl-aromatic vinyl triple chain existing ratio and aromatic vinyl-aromatic vinyl-unsaturated dicarboxylic acid in the copolymer. The sum of the presence ratios of the acid anhydride triple chain is 10.0 mol% or less, and the presence ratio of the unsaturated dicarboxylic acid anhydride-aromatic vinyl-unsaturated dicarboxylic anhydride triple chain is 90.0 mol%. The method for producing a (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin according to claim 1, which is as described above. 請求項1または2記載の製造方法で製造される(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂。 A (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic anhydride-based heat-resistant thermoplastic resin produced by the production method according to claim 1 or 2 . 重量平均分子量(Mw)7〜12万、黄色度が3.0未満、メタノール可溶分が1.5質量%未満でかつ、酸価が15mgKOH/g未満であることを特徴とする請求項記載の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂。 The weight average molecular weight (Mw) 7 to 12 million in less than yellowness of 3.0, and a methanol-soluble fraction is less than 1.5 mass%, according to claim 3, acid value and less than 15 mgKOH / g The (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin described. 樹脂組成物総質量100質量部とした場合、請求項または記載の(N−置換)マレイミド−芳香族ビニル−不飽和ジカルボン酸無水物系耐熱性熱可塑性樹脂50〜80質量部及びABS樹脂50〜20質量部から成る樹脂組成物であって、そのビカット軟化温度が150〜185℃であることを特徴とする耐熱付与材。 When the total mass of the resin composition is 100 parts by mass, 50 to 80 parts by mass of the (N-substituted) maleimide-aromatic vinyl-unsaturated dicarboxylic acid anhydride heat-resistant thermoplastic resin according to claim 3 or 4 and an ABS resin A resin composition comprising 50 to 20 parts by mass, wherein the Vicat softening temperature is 150 to 185 ° C. 樹脂組成物総質量100質量部とした場合、請求項記載の耐熱付与材5〜40質量部及びABS樹脂95〜60質量部から成る樹脂組成物。 The resin composition which consists of 5-40 mass parts of heat-resistant provision materials of Claim 5, and 95-60 mass parts of ABS resin when it is set as 100 mass parts of resin composition total mass .
JP2003287618A 2003-08-06 2003-08-06 Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin Expired - Fee Related JP3957663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287618A JP3957663B2 (en) 2003-08-06 2003-08-06 Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287618A JP3957663B2 (en) 2003-08-06 2003-08-06 Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin

Publications (2)

Publication Number Publication Date
JP2005054097A JP2005054097A (en) 2005-03-03
JP3957663B2 true JP3957663B2 (en) 2007-08-15

Family

ID=34366551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287618A Expired - Fee Related JP3957663B2 (en) 2003-08-06 2003-08-06 Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin

Country Status (1)

Country Link
JP (1) JP3957663B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038857A1 (en) 2006-09-28 2008-04-03 Korea Kumho Petrochemical Co., Ltd Maleimide-alpha-alkylstyrene-based tetrapolymer with low molten viscosity and continuous bulk process for producing it
JP7025834B2 (en) * 2015-02-25 2022-02-25 東洋スチレン株式会社 Styrene-based resin composition and molded article made of the styrene resin composition
ES2822166T3 (en) * 2015-05-19 2021-04-29 Denka Company Ltd Heat resistant resin composition and method of producing it

Also Published As

Publication number Publication date
JP2005054097A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP5639480B2 (en) Maleimide copolymer, process for producing the same, and heat resistant resin composition using the same
KR100275972B1 (en) Process for producing a maleimide-modified heat-resistant abs resin
JPS6126936B2 (en)
JP7191858B2 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
JPS6023438A (en) Thermoplastic resin composition
JPS6045642B2 (en) Thermoplastic resin manufacturing method
KR20230052941A (en) A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
KR20230052943A (en) A maleimide-based copolymer and a chlorine-containing polymer-based resin composition comprising the maleimide-based copolymer and a chlorine-containing polymer
JPWO2016186142A1 (en) Copolymer and resin composition for polymer blend compatibilizer
JP3957663B2 (en) Method for producing heat-resistant thermoplastic resin and heat-imparting material comprising the heat-resistant thermoplastic resin
JP7245334B2 (en) Maleimide-based copolymer, method for producing the same, and resin composition using the same
JP3471830B2 (en) Glass fiber reinforced thermoplastic resin composition
JPH0438776B2 (en)
JP3989403B2 (en) Method for producing copolymer resin
JP3923359B2 (en) Thermoplastic styrene resin composition
JPH0347814A (en) Imidated copolymer and resin modifier and resin compatibilizing agent produced by using the same
JP7545482B2 (en) Maleimide copolymer, maleimide copolymer composition, resin composition, and injection molded article
JP3953438B2 (en) Method for producing heat-resistant and stable thermoplastic resin
TWI732307B (en) Vinylidene substituted aromatic monomer and cyclic (meth)acrylate ester polymers
CN104530287A (en) Aromatic vinyl copolymer, method for preparing the same, and molded article including the same
JPS6046122B2 (en) Method for producing thermoplastic polymer
JP2006176578A (en) Maleimide copolymer composition, its preparation method and molded product thereof
JPH0737550B2 (en) Heat resistant resin composition
JPS6345740B2 (en)
JPH0122844B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3957663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees