Nothing Special   »   [go: up one dir, main page]

JP3952308B2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner Download PDF

Info

Publication number
JP3952308B2
JP3952308B2 JP2004152382A JP2004152382A JP3952308B2 JP 3952308 B2 JP3952308 B2 JP 3952308B2 JP 2004152382 A JP2004152382 A JP 2004152382A JP 2004152382 A JP2004152382 A JP 2004152382A JP 3952308 B2 JP3952308 B2 JP 3952308B2
Authority
JP
Japan
Prior art keywords
evaporator
heat
air
condenser
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004152382A
Other languages
Japanese (ja)
Other versions
JP2005331214A (en
Inventor
恵一 木村
満津雄 森田
Original Assignee
木村工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村工機株式会社 filed Critical 木村工機株式会社
Priority to JP2004152382A priority Critical patent/JP3952308B2/en
Publication of JP2005331214A publication Critical patent/JP2005331214A/en
Application granted granted Critical
Publication of JP3952308B2 publication Critical patent/JP3952308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)

Description

本発明はヒートポンプ式空調機に関するものである。   The present invention relates to a heat pump type air conditioner.

電子工場や農業工場、飼育室、穀物倉庫などの特殊環境の空調では、空調用空気に対して加熱と冷却を所定順序で行い適宜加湿して温湿度調整をする必要がある。そのため、たとえば冷水コイル(冷却コイル)と温水コイル(加熱コイル)や加湿器などを備え、熱源水回路を4管式として冷水コイルと温水コイルに冷水と温水を別々に流して運転する方式があるが、4管式の熱源水回路では配管距離が長くて設備コストがかかり、冷水と温水を同時に作る必要があるため熱源機の運転コストもかかる問題がある。   In air conditioning in special environments such as electronic factories, agricultural factories, breeding rooms, and grain warehouses, it is necessary to adjust the temperature and humidity by heating and cooling the air-conditioning air in a predetermined order and appropriately humidifying it. Therefore, for example, there is a system in which a cold water coil (cooling coil), a hot water coil (heating coil), a humidifier, and the like are provided, and the heat source water circuit is a four-pipe type, and the cold water and the hot water coil are separately supplied with cold water and hot water. However, the four-pipe heat source water circuit has a problem that the piping distance is long and the equipment cost is high, and it is necessary to make cold water and hot water at the same time.

また、冷水コイルと温水コイルの替わりに水冷ヒートポンプを使用するとなると、たとえば水冷ヒートポンプのプレート式水熱交換器などは能力維持のため定期的に分解清掃が必要でメンテナンスに手間がかかる問題がある。また、ヒートポンプは空気加熱温度(冷媒凝縮温度)に上限があるため、所望の給気温湿度(特に高温高湿)に対して空気温湿度が低く加湿量を多く必要とする条件では、気化方式で加湿すると蒸発潜熱により所望の給気温度に達しない場合がある。そのため、空調可能な温湿度範囲が狭くなり、圧縮効率ひいては成績係数(COP)が低下する問題がある。また、寒冷地や暑地では外気などの空調用空気の予熱や予冷を行う場合があるが、空調機とは別個に冷温水コイルなどの加熱器や冷却器が必要となる。   In addition, when a water-cooled heat pump is used instead of the cold-water coil and the hot-water coil, for example, the plate-type water heat exchanger of the water-cooled heat pump has a problem that it requires periodic disassembly and cleaning for maintenance of the capacity and takes time and maintenance. In addition, since the heat pump has an upper limit on the air heating temperature (refrigerant condensation temperature), the vaporization method is used under conditions where the air temperature / humidity is low and a large amount of humidification is required with respect to the desired temperature and humidity (especially high temperature and high humidity). When humidified, the desired supply air temperature may not be reached due to latent heat of vaporization. Therefore, there is a problem that the temperature / humidity range in which air conditioning can be performed becomes narrow, and the compression efficiency and consequently the coefficient of performance (COP) decrease. In cold and hot areas, air conditioning air such as outside air may be preheated or precooled, but a heater or a cooler such as a cold / hot water coil is required separately from the air conditioner.

特開昭63−233244号公報JP-A-63-233244 特開平11−14296号公報Japanese Patent Laid-Open No. 11-14296

解決しようとする問題点は、設備コストや運転コストが高くなる点と、水熱交換器のメンテナンスが面倒な点であり、各種の特殊環境の空調に幅広く対応でき、コンパクトでCOPの良いヒートポンプ式空調機を提供する。   The problem to be solved is that the equipment and operating costs are high and the maintenance of the water heat exchanger is troublesome. It can be widely used for air conditioning in various special environments, and it is a compact and good COP heat pump type Provide air conditioners.

本発明は、上記課題を解決するため、第1と第2の圧縮式のヒートポンプを備えたヒートポンプ式空調機において、第3の圧縮式のヒートポンプを付設し、前記第3ヒートポンプの冷媒−空気熱交換用第3蒸発器と前記第1ヒートポンプの冷媒−空気熱交換用第1蒸発器と前記第2ヒートポンプの冷媒−空気熱交換用第2蒸発器とを送風方向へ順に配設すると共に、第1凝縮器を前記第1ヒートポンプと前記第2ヒートポンプにて共用し、前記第1と第2と第3のヒートポンプの各蒸発器を冷媒蒸発・冷媒凝縮切換え自在に構成し、前記第1蒸発器と前記第2蒸発器の間と、前記第2蒸発器の風下の、一方又は両方に加湿器を配設したことを最も主要な特徴とする。   In order to solve the above problems, the present invention provides a heat pump air conditioner including first and second compression heat pumps, and is provided with a third compression heat pump, and the refrigerant-air heat of the third heat pump. The third evaporator for replacement, the first evaporator for refrigerant-air heat exchange of the first heat pump, and the second evaporator for refrigerant-air heat exchange of the second heat pump are sequentially arranged in the blowing direction, and the first 1 condenser is shared by the 1st heat pump and the 2nd heat pump, each evaporator of the 1st, 2nd, and 3rd heat pump is constituted so that change of refrigerant evaporation and refrigerant condensation is possible, and the 1st evaporator The most important feature is that a humidifier is disposed between the second evaporator and one or both of the second evaporator and the lee of the second evaporator.

請求項1と2の発明によれば、空調用空気に対して加熱と冷却が必要な特殊環境の空調運転が冷温水コイルを使わずにヒートポンプのみででき、設備コストと運転コストの削減を図り得る。動物飼育室や病院治療室等の外気処理、農業工場や美術館等での恒温恒湿空調運転、食品売場でのコールドエイル解消やレストランでのドライ厨房などの除湿乾燥空調運転、穀物倉庫での保存や電子工場での静電気防止等のための低温加湿空調運転ができる。第1と第2のヒートポンプの凝縮器を共用しているので部品点数の削減とコンパクト化を図れる。第1蒸発器と第2蒸発器の間と第2蒸発器の風下の両方に加湿器を配設すれば、二段階に分けて加熱と加湿を行えるので、空調可能な温湿度範囲(特に高温高湿側)が広がり、圧縮効率ひいてはCOPが良くなる。第1と第2のヒートポンプを主として空調運転し、第3ヒートポンプで予冷や予熱ができるので、温湿度制御幅が広がり、特に外気処理をして給気する場合に有効で、空調機と別個の予冷・予熱用機器が不要となる。
請求項1の発明によれば、空調用空気を第1蒸発器と第2蒸発器により加熱する場合、第1凝縮器に着霜が発生するような空気条件でも第1と第2のヒートポンプの運転を停止することなく、凝縮器除霜回路により第1凝縮器の着霜を防止でき、快適な空調を行える。第1と第2の凝縮器の熱交換用空気が還気の場合、熱回収によりCOPの向上を図れる。第1凝縮器はフィン群を共用してあるので伝熱面積が大きくなって第1と第2のヒートポンプの一方のみの運転でも熱交換能力が高くなる。共用の第1凝縮器において冷媒の一方が蒸発で他方が凝縮する場合、冷媒同士の熱交換も行えてCOPが高まり省エネとなる。
請求項2の発明によれば、第1と第2の凝縮器がいわゆる水冷式のため熱交換能力とCOPが高く性能が安定するので、生外気を温湿度調整して給気する場合でも気象・気候に影響されず精度良く空調が行えて、寒冷地から暑地まで広範囲の地域で使用できる。共用の第1凝縮器において冷媒の一方が蒸発で他方が凝縮する場合、冷媒同士の熱交換も行えてCOPが高まり省エネとなる。プレート式の冷媒−熱源水熱交換器を分解せずに洗浄による清掃ができメンテナンスが容易となる。部品が少なく簡単な構造で通水機構を構成でき、製作が容易でコスト節減を図れ、スペースをとらなくて済み、洗浄流路への熱源水の流入を遮断して薬品洗浄でき、洗浄効果が大となる。ストレーナを熱源流路と洗浄流路の異物除去に兼用でき、個別にストレーナを設ける必要がなくコストダウンを図れる。
請求項3の発明によれば、圧力損失が減少して熱交換効率が向上するので小型の送風機を用いることができ騒音低減を図れる。冷媒−空気熱交換用熱交換器も小型化でき空調機をコンパクト化できる。
According to the first and second aspects of the present invention, air conditioning operation in a special environment that requires heating and cooling of air conditioning air can be performed only by a heat pump without using a cold / hot water coil, thereby reducing equipment costs and operating costs. obtain. Outdoor air treatment in animal breeding rooms and hospital treatment rooms, constant temperature and humidity air conditioning operation in agricultural factories and museums, cold air elimination in food departments, dehumidification drying air conditioning operation in dry kitchens in restaurants, storage in grain warehouses And low-temperature humidification air conditioning operation to prevent static electricity at electronic factories. Since the condensers of the first and second heat pumps are shared, the number of parts can be reduced and the size can be reduced. If a humidifier is provided between the first evaporator and the second evaporator and on the leeward side of the second evaporator, heating and humidification can be performed in two stages. The high humidity side) spreads, and the compression efficiency and thus COP are improved. The first and second heat pumps are mainly air-conditioned, and the third heat pump can be pre-cooled and pre-heated, so the temperature and humidity control range is widened. Pre-cooling and pre-heating equipment is not required.
According to the present invention, when heating the air-conditioning air by the first evaporator and the second evaporator, in the air condition as frost in the first condenser occurs first and the second heat pump Without stopping the operation, the condenser defrosting circuit can prevent the first condenser from frosting and can perform comfortable air conditioning. When the heat exchange air of the first and second condensers is return air, the COP can be improved by heat recovery. Since the first condenser shares the fin group, the heat transfer area is increased, and the heat exchanging capacity is increased even when only one of the first and second heat pumps is operated. When one of the refrigerants evaporates and the other condenses in the shared first condenser, heat exchange between the refrigerants can also be performed, resulting in an increase in COP and energy saving.
According to the second aspect of the present invention, since the first and second condensers are so-called water-cooled, the heat exchange capacity and COP are high and the performance is stable. -Air conditioning can be performed accurately without being affected by the climate, and it can be used in a wide range of areas from cold to hot. When one of the refrigerants evaporates and the other condenses in the shared first condenser, heat exchange between the refrigerants can be performed, resulting in an increase in COP and energy saving. The plate-type refrigerant-heat source water heat exchanger can be cleaned by washing without disassembling, and maintenance is facilitated. The water flow mechanism can be configured with a simple structure with few parts, making it easy and cost-saving, eliminating the need for space, and cleaning the chemicals by blocking the flow of heat source water into the cleaning flow path. Become big. The strainer can also be used to remove foreign matter from the heat source flow path and the cleaning flow path, and it is not necessary to provide a separate strainer, thereby reducing costs.
According to the invention of claim 3 , since the pressure loss is reduced and the heat exchange efficiency is improved, a small blower can be used and noise can be reduced. The heat exchanger for refrigerant-air heat exchange can also be miniaturized and the air conditioner can be made compact.

図1と図2は、本発明のヒートポンプ式空調機の一実施例を示しており、実線及び点線の白抜き矢印は送風方向を示す。この空調機は、ケーシング1内に、給気送風路9と、第1と第2の圧縮式のヒートポンプA、Bと、加湿器5、5と、空調用空気を被空調空間へ給気する送風機6と、送風路8と、外気や還気あるいはその混合空気などの熱交換用空気を送風する凝縮用送風機7と、を備えており、第3の圧縮式のヒートポンプCを付設してある。この第3ヒートポンプCの冷媒−空気熱交換用第3蒸発器2cと第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bとを送風方向へ順に配設すると共に、第1凝縮器3aを第1ヒートポンプAと第2ヒートポンプBにて共用し、第1蒸発器2aと第2蒸発器2bの間と、第2蒸発器2bの風下の、両方に加湿器5を配設する。   1 and 2 show an embodiment of the heat pump type air conditioner of the present invention, and the solid and dotted white arrows indicate the blowing direction. This air conditioner supplies air to the air-conditioned space in the casing 1 with an air supply air passage 9, first and second compression heat pumps A and B, humidifiers 5 and 5, and air for air conditioning. A blower 6, a blower path 8, and a condensing blower 7 that blows heat exchange air such as outside air, return air, or mixed air thereof are provided, and a third compression heat pump C is provided. . The third evaporator 2c for refrigerant-air heat exchange of the third heat pump C, the first evaporator 2a for refrigerant-air heat exchange of the first heat pump A, and the second evaporator for refrigerant-air heat exchange of the second heat pump B 2b are arranged in order in the blowing direction, and the first condenser 3a is shared by the first heat pump A and the second heat pump B, and the second evaporation is performed between the first evaporator 2a and the second evaporator 2b. Humidifiers 5 are disposed on both sides of the lee of the vessel 2b.

第1と第2と第3のヒートポンプA、B、Cの各蒸発器2a、2b、2cは冷媒蒸発・冷媒凝縮切換え自在に構成し、たとえば、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aにて冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。通常は上記サイクルにて空調し、寒冷地や暑地などのように熱負荷が大きい場合には、第3蒸発器2cにて冷媒蒸発又は冷媒凝縮させるサイクルを付加する。たとえば、第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒蒸発させるサイクルと第3蒸発器2cと第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第3蒸発器2cと第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒蒸発させるサイクルと第3蒸発器2cと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。   The evaporators 2a, 2b, 2c of the first, second, and third heat pumps A, B, and C are configured to be capable of switching between refrigerant evaporation and refrigerant condensation. For example, the first evaporator 2a and the second evaporator 2b Refrigerant condensation in both or one of the cycle of evaporating the refrigerant in both or one and the cycle of evaporating the refrigerant in the first evaporator 2a and condensing the refrigerant in the second evaporator 2b and / or the first evaporator 2a and the second evaporator 2b At least one cycle can be switched between the first and second cycles, or the first and second evaporators 2a and 2b and / or the first and second evaporators 2a and 2b and / or the first and second evaporators 2b and 2b, respectively. It is possible to switch at least between the cycles to be condensed, or the refrigerant is condensed in the first evaporator 2a and the first evaporator 2a, and the refrigerant is condensed in the first evaporator 2a and / or the second evaporator 2b. Evaporate the refrigerant Freely at least switching on and cycle, constituting the. Usually, air conditioning is performed in the above-described cycle, and when the heat load is large such as in a cold region or a hot region, a cycle in which the refrigerant is evaporated or condensed in the third evaporator 2c is added. For example, the refrigerant is evaporated in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b, the refrigerant is evaporated in the third evaporator 2c and the first evaporator 2a, and the refrigerant in the second evaporator 2b. It is possible to switch at least between the cycle for condensation and the cycle for refrigerant condensation in the third evaporator 2c, the first evaporator 2a and the second evaporator 2b, or the refrigerant evaporation in the third evaporator 2c and the first evaporator 2a. In addition, it is possible to switch at least between the cycle for condensing the refrigerant in the second evaporator 2b and the cycle for condensing the refrigerant in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b, or the third evaporator 2c It is possible to switch at least between a cycle in which the refrigerant is evaporated by the first evaporator 2a and the second evaporator 2b and a cycle in which the refrigerant is condensed by the third evaporator 2c and the first evaporator 2a and the refrigerant is evaporated by the second evaporator 2b. Configure.

第1凝縮器3a及び第3ヒートポンプCの第2凝縮器3cは冷媒−空気熱交換器とすると共に、すくなくとも第3ヒートポンプCにホットガス方式の凝縮器除霜回路Gを設ける。第1凝縮器3a内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路とを互いに熱交換自在として配設し、第1凝縮器3aにおいて第1ヒートポンプAの冷媒と第2ヒートポンプBの冷媒の一方が蒸発で他方が凝縮する状態でこの異なる両冷媒が対向状に流通するように構成し、カウンタフローによる熱伝達の均一化と効率化を図る。さらに第1凝縮器3aを、フィンチューブ1列毎、フィンチューブ1段毎又はフィンチューブ1本毎に、流れる冷媒が異なるように構成し、空気との熱交換ムラをなくし性能の安定化を図る。第1ヒートポンプAは、熱交換用空気で循環冷媒の熱交換をする共用の第1凝縮器3aと、循環冷媒で空調用空気の熱交換をする第1蒸発器2aと、第1の圧縮機4aと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第1凝縮器3aと第1蒸発器2aの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第2ヒートポンプBは、共用の第1凝縮器3aと、循環冷媒で空調用空気の熱交換をする第2蒸発器2bと、第2の圧縮機4bと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第1凝縮器3aと第2蒸発器2bの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第3ヒートポンプCは、熱交換用空気で循環冷媒の熱交換をする第2凝縮器3cと、循環冷媒で空調用空気の熱交換をする第3蒸発器2cと、圧縮機4cと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第2凝縮器3cと第3蒸発器2cの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第3ヒートポンプCには、三方弁10により第3蒸発器2cへの冷媒循環を停止して第2凝縮器3cのみに圧縮機4cのホットガスを循環させ除霜させる凝縮器除霜回路Gを設けているが、この凝縮器除霜回路Gを、他のヒートポンプA、Bに設けるも自由である。加湿器5は、気化方式や蒸気吹出し方式など各種方式のものを用いることができるが、蒸気吹出し方式とすれば、温度降下せず無段階制御が可能で精度良く温湿度制御を行えて、蒸発器の負荷を少なくできる。   The first condenser 3a and the second condenser 3c of the third heat pump C are refrigerant-air heat exchangers, and at least the third heat pump C is provided with a hot gas type condenser defrosting circuit G. The refrigerant flow passage of the first heat pump A and the refrigerant flow passage of the second heat pump B in the first condenser 3a are arranged so as to be able to exchange heat with each other. In the first condenser 3a, the refrigerant of the first heat pump A and the second The heat pump B is configured such that one of the refrigerants of the heat pump B evaporates and the other is condensed, and the two different refrigerants circulate in an opposing manner to achieve uniform and efficient heat transfer by the counter flow. Further, the first condenser 3a is configured so that the flowing refrigerant is different for each row of fin tubes, for each stage of fin tubes, or for each fin tube, thereby eliminating uneven heat exchange with air and stabilizing the performance. . The first heat pump A includes a common first condenser 3a for exchanging heat of the circulating refrigerant with heat exchange air, a first evaporator 2a for exchanging heat of air-conditioning air with the circulation refrigerant, and a first compressor. 4a, an expansion valve, a forward / reverse switching valve (four-way valve) in the refrigerant circulation direction, a liquid receiver (not shown), etc., which are connected by piping to form a refrigerant circulation circuit and The heat absorption and heat release (evaporation function and condensation function) of the first condenser 3a and the first evaporator 2a are configured to be switchable. The second heat pump B includes a common first condenser 3a, a second evaporator 2b for exchanging heat of air-conditioning air using a circulating refrigerant, a second compressor 4b, an expansion valve, and a positive refrigerant circulation direction. A reverse switching valve (four-way valve), a liquid receiver (not shown) and the like are provided, and these are connected by piping to form a refrigerant circulation circuit, and the first condenser 3a and the second evaporator 2b are connected by the switching valve. The heat absorption and heat dissipation (evaporation function and condensation function) can be switched. The third heat pump C includes a second condenser 3c that exchanges heat of the circulating refrigerant using heat exchange air, a third evaporator 2c that exchanges heat of the air-conditioning air using circulation refrigerant, a compressor 4c, and an expansion valve. And a switching valve (four-way valve) for forward and reverse of the refrigerant circulation direction, a liquid receiver (not shown), etc., which are connected by piping to form a refrigerant circulation circuit, and the second condenser 3c is constituted by the switching valve. The heat absorption and heat release (evaporation function and condensation function) of the third evaporator 2c are configured to be switchable. The third heat pump C includes a condenser defrost circuit G that stops the refrigerant circulation to the third evaporator 2c by the three-way valve 10 and circulates the hot gas of the compressor 4c only in the second condenser 3c to defrost. Although it is provided, it is also free to provide this condenser defrost circuit G in the other heat pumps A and B. The humidifier 5 can be of various types such as a vaporization method and a steam blowing method. However, if the steam blowing method is used, the temperature and humidity control can be performed with high accuracy and the temperature and humidity can be controlled without any temperature drop. The load on the vessel can be reduced.

給気送風路9の空調用空気入口と空調用空気出口はケーシング1に設け、空調用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、空調用空気出口は給気用としてダクトなどを介して室内などの被空調空間に連通させる。送風路8の熱交換用空気入口と熱交換用空気出口はケーシング1に設け、熱交換用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、熱交換用空気出口は排気用としてダクトなどを介して屋外などに連通させる。この第1凝縮器3aと第2凝縮器3cに送風すると共に、送風機6で送風することにより第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて空調用空気を熱交換(冷却・加熱)して被空調空間に給気し、各種環境に応じた空調運転を行う。第1蒸発器2aと第2蒸発器2bと第3蒸発器2cと第1凝縮器3aと第2凝縮器3cのフィンチューブは圧損の少ない楕円管にするのが好ましいが円形管でもよい。   The air-conditioning air inlet and air-conditioning air outlet of the air supply air passage 9 are provided in the casing 1, and the air-conditioning air inlet is used for intake of return air, intake of outside air or mixed air intake of return air and outside air, etc. The air-conditioning air outlet is communicated with the air-conditioned space such as the room via the duct and the air-conditioned air outlet is communicated with the air-conditioned space such as the room via the duct. An air inlet for heat exchange and an air outlet for heat exchange in the air passage 8 are provided in the casing 1, and the air inlet for heat exchange is a duct for intake of return air, intake of outside air, or intake of mixed air of return air and outside air. The air outlet for heat exchange is communicated with an air-conditioned space such as a room or the outside via a duct, and the air outlet for heat exchange is communicated with the outside via a duct or the like for exhaust. While air is blown to the first condenser 3a and the second condenser 3c, and air is blown by the blower 6, the air for air conditioning is exchanged in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b ( Cooled and heated) to supply air to the air-conditioned space and perform air-conditioning operation according to various environments. The fin tubes of the first evaporator 2a, the second evaporator 2b, the third evaporator 2c, the first condenser 3a, and the second condenser 3c are preferably elliptical tubes with little pressure loss, but may be circular tubes.

図例の空調機は、第1と第2と第3のヒートポンプA、B、Cと送風機6、7と風上側と風下側の加湿器5、5の各々の容量制御をすると共に給気送風路入口空気温湿度に応じて第3蒸発器2cと第1蒸発器2aと第2蒸発器2bの冷媒蒸発・冷媒凝縮を切換する制御手段(図示省略)を、備える。被空調空間の外気処理を行うには、たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は、第1蒸発器2aにて加熱してから風上側加湿器5にて加湿し、さらに、第2蒸発器2bにて加熱してから風下側加湿器5にて加湿し、所定の給気温湿度に制御する。この場合、所望の給気温湿度にするのに必要な加熱量と加湿量に応じて、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し風上側加湿器5と風下側加湿器5のいずれか一方のみで加湿して所定の給気温湿度に制御することもできる。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却し、風上側加湿器5と風下側加湿器5の両方又は一方にて加湿し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。前記の制御手段は凝縮器負荷に応じて送風機7による凝縮器面風速制御も行う。たとえば、凝縮器負荷が大きくなると凝縮器面風速を増加させ、凝縮器負荷が小さくなると凝縮器面風速を減少させる。この凝縮器3の面風速を4.0〜6.0m/sに設定することにより、圧縮機性能限界以上に熱量を確保でき、COPが向上する。このように高風速で凝縮器の熱交換をすることによりCOPが向上して省エネを図れ、小型の凝縮器を使用できて空調機のコンパクト化を図れ、凝縮器面風速制御により細かく空調機の能力調整ができ、圧縮機を大型化せずとも寒冷地から暑地まで広範囲の地域で使用できる。   The illustrated air conditioner controls the capacity of the first, second, and third heat pumps A, B, and C, the blowers 6 and 7, the upwind and leeward humidifiers 5 and 5, and supplies air. Control means (not shown) for switching between refrigerant evaporation and refrigerant condensation of the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b according to the road inlet air temperature and humidity is provided. In order to perform the outside air treatment of the air-conditioned space, for example, when the air supply / airway inlet air temperature / humidity is higher than the desired air supply / humidity, either or both of the first evaporator 2a and the second evaporator 2b are used. Then, it is cooled and dehumidified, or cooled and dehumidified by the first evaporator 2a, then heated by the second evaporator 2b to adjust the temperature, and is controlled to a predetermined temperature and humidity. When the temperature of the supply air supply passage inlet air is low and the humidity is high with respect to the desired supply air temperature and humidity, the air is cooled and dehumidified by the first evaporator 2a and then heated by the second evaporator 2b to adjust the temperature. Control to a predetermined temperature and humidity. When the air supply / airway inlet air temperature / humidity is lower than the desired air supply / humidity, the air is heated by the first evaporator 2a and then humidified by the windward humidifier 5, and further supplied to the second evaporator 2b. Then, the air is humidified by the leeward humidifier 5 and controlled to a predetermined temperature and humidity. In this case, the upwind humidifier 5 and the downwind side are heated by heating or humidifying both or one of the first evaporator 2a and the second evaporator 2b in accordance with the heating amount and humidification amount necessary to obtain a desired temperature and humidity. It is also possible to control to a predetermined temperature and humidity by humidifying only one of the humidifiers 5. When the temperature of the supply air supply passage inlet air is high and the humidity is low with respect to the desired supply air temperature and humidity, the air is supplied to the upside humidifier 5 by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b. Humidification is performed by both or one of the leeward side humidifiers 5 and controlled to a predetermined temperature and humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above. The control means also performs condenser surface wind speed control by the blower 7 in accordance with the condenser load. For example, when the condenser load increases, the condenser surface wind speed increases, and when the condenser load decreases, the condenser surface wind speed decreases. By setting the surface wind speed of the condenser 3 to 4.0 to 6.0 m / s, the amount of heat can be secured above the compressor performance limit, and the COP is improved. By exchanging heat with the condenser at high wind speeds in this way, COP can be improved and energy can be saved, and a compact condenser can be used to make the air conditioner compact. Capability can be adjusted, and it can be used in a wide range of areas from cold to hot without increasing the size of the compressor.

また、被空調空間を恒温恒湿に空調するには、たとえば、風下側加湿器5を蒸気吹出し方式とした場合を例示すると、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合と所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。この場合、第1蒸発器2aにて加熱してから風上側加湿器5にて加湿し、さらに、第2蒸発器2bにて加熱してから風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御することもできる。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。   In order to air-condition the air-conditioned space at a constant temperature and humidity, for example, when the leeward side humidifier 5 is a steam blowing system, the air supply / airway inlet air temperature / humidity is set to a desired air supply / humidity. When the temperature is high and when the temperature of the supply air passage inlet air is low and the humidity is high with respect to the desired air temperature and humidity, the air is cooled and dehumidified by the first evaporator 2a and then heated by the second evaporator 2b. Or after cooling and dehumidifying with the first evaporator 2a and heating with the second evaporator 2b to adjust the temperature, the leeward humidifier 5 is humidified without lowering the temperature with steam, Control temperature and humidity. When the air supply / airway inlet air temperature / humidity is lower than the desired air supply / humidity, the leeward side humidifier 5 is heated and adjusted in both or one of the first evaporator 2a and the second evaporator 2b, and then the leeward side humidifier 5. The steam is humidified without reducing the temperature with steam and controlled to a predetermined temperature and humidity. In this case, the first evaporator 2a is heated and then humidified by the windward humidifier 5, and further heated by the second evaporator 2b and then the temperature is not lowered by the steam in the leeward humidifier 5 It is also possible to control to a predetermined temperature and humidity. When the temperature of the supply air passage inlet air is high and the humidity is low relative to the desired air temperature and humidity, the temperature is controlled by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b, and then the leeward side. The humidifier 5 is humidified without lowering the temperature with steam, and is controlled to a predetermined temperature and humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above.

この場合、風上側と風下側の加湿器5、5を止めて加湿せずに被空調空間を除湿乾燥することができる。たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合と所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱し、所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。   In this case, the air-conditioned space can be dehumidified and dried without stopping the humidifiers 5 and 5 on the windward and leeward sides. For example, when the air supply / airway inlet air temperature / humidity is higher than the desired air temperature / humidity, and when the air supply / airway inlet air temperature is lower and the humidity is higher than the desired air temperature / humidity, the first evaporator 2a. When the air is cooled and dehumidified at the second evaporator 2b and heated by the second evaporator 2b, and the air temperature / humidity at the inlet of the supply air passage is lower than the desired temperature and humidity, both the first evaporator 2a and the second evaporator 2b are used. Or it heats by one side and it controls to predetermined supply air temperature humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above.

また、被空調空間を低温加湿するには、たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿し、所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は第1蒸発器2aで加熱してから風上側加湿器5にて加湿しそののち第2蒸発器2bにて乾き冷却し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は風上側加湿器5にて加湿してから第2蒸発器2bのみにて乾き冷却し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。また、上述の各空調例において、第1蒸発器2aと第2蒸発器2bの一方又は両方で加熱し第1凝縮器3aに着霜が発生するような場合、第3蒸発器2cへの冷媒循環を停止して第2凝縮器3cのみにホットガスを循環させ、第2凝縮器3cにて加熱された空気で、第1と第2のヒートポンプA、Bの運転を止めることなく第1凝縮器3aの除霜を行なうことができる。なお、加湿器5は、第1蒸発器2aと第2蒸発器2bの間と、第2蒸発器2bの風下の、いずれか一方に配設するも自由である。   In order to humidify the air-conditioned space at a low temperature, for example, when the air supply / airway inlet air temperature / humidity is higher than the desired air supply / humidity, either or both of the first evaporator 2a and the second evaporator 2b are used. If the air temperature / humidity at the inlet of the supply air passage is lower than the desired air temperature and humidity, the air is heated by the first evaporator 2a and then humidified by the windward humidifier 5 and then the second evaporation. It is dried and cooled in the vessel 2b and controlled to a predetermined temperature and humidity. When the temperature of the supply air passage inlet air is high and the humidity is low relative to the desired air supply humidity, the air is humidified by the windward humidifier 5 and then dried and cooled only by the second evaporator 2b. Control to humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above. Further, in each of the above air conditioning examples, when one or both of the first evaporator 2a and the second evaporator 2b are heated and frost formation occurs in the first condenser 3a, the refrigerant to the third evaporator 2c The circulation is stopped, the hot gas is circulated only in the second condenser 3c, and the first condensation is performed by the air heated by the second condenser 3c without stopping the operation of the first and second heat pumps A and B. The device 3a can be defrosted. Note that the humidifier 5 can be freely disposed between the first evaporator 2a and the second evaporator 2b and on the lee of the second evaporator 2b.

図3〜図5は、他の実施例を示しており、実線及び点線の白抜き矢印は送風方向を示す。この空調機は、ケーシング1内に、給気送風路9と、第1と第2の圧縮式のヒートポンプA、Bと、加湿器5、5と、空調用空気を被空調空間へ給気する送風機6と、を備えており、第3の圧縮式のヒートポンプCを付設してある。この第3ヒートポンプCの冷媒−空気熱交換用第3蒸発器2cと第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bとを送風方向へ順に配設すると共に、第1凝縮器3aを第1ヒートポンプAと第2ヒートポンプBにて共用し、第1蒸発器2aと第2蒸発器2bの間と、第2蒸発器2bの風下の、両方に加湿器5を配設する。   3-5 has shown the other Example, The solid line and the dotted white arrow show the ventilation direction. This air conditioner supplies air to the air-conditioned space in the casing 1 with an air supply air passage 9, first and second compression heat pumps A and B, humidifiers 5 and 5, and air for air conditioning. And a third compression heat pump C is provided. The third evaporator 2c for refrigerant-air heat exchange of the third heat pump C, the first evaporator 2a for refrigerant-air heat exchange of the first heat pump A, and the second evaporator for refrigerant-air heat exchange of the second heat pump B 2b are arranged in order in the blowing direction, and the first condenser 3a is shared by the first heat pump A and the second heat pump B, and the second evaporation is performed between the first evaporator 2a and the second evaporator 2b. Humidifiers 5 are disposed on both sides of the lee of the vessel 2b.

第1と第2と第3のヒートポンプA、B、Cの各蒸発器2a、2b、2cは冷媒蒸発・冷媒凝縮切換え自在に構成し、たとえば、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aで冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷媒蒸発させるサイクルと第1蒸発器2aにて冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。通常は上記サイクルにて空調し、寒冷地や暑地などのように熱負荷が大きい場合には、第3蒸発器2cにて冷媒蒸発又は冷媒凝縮させるサイクルを付加する。たとえば、第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒蒸発させるサイクルと第3蒸発器2cと第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第3蒸発器2cと第1蒸発器2aにて冷媒蒸発かつ第2蒸発器2bにて冷媒凝縮させるサイクルと第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒凝縮させるサイクルとにすくなくとも切換自在、又は、第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて冷媒蒸発させるサイクルと第3蒸発器2cと第1蒸発器2aで冷媒凝縮かつ第2蒸発器2bにて冷媒蒸発させるサイクルとにすくなくとも切換自在、に構成する。   The evaporators 2a, 2b, 2c of the first, second, and third heat pumps A, B, and C are configured to be capable of switching between refrigerant evaporation and refrigerant condensation. For example, the first evaporator 2a and the second evaporator 2b Refrigerant condensation in both or one of the cycle of evaporating the refrigerant in both or one and the cycle of evaporating the refrigerant in the first evaporator 2a and condensing the refrigerant in the second evaporator 2b and / or the first evaporator 2a and the second evaporator 2b At least one cycle can be switched between the first and second cycles, or the first and second evaporators 2a and 2b and / or the first and second evaporators 2a and 2b and / or the first and second evaporators 2b and 2b, respectively. It is possible to switch at least between the cycles to be condensed, or the refrigerant is condensed in the first evaporator 2a and the first evaporator 2a, and the refrigerant is condensed in the first evaporator 2a and / or the second evaporator 2b. Evaporate the refrigerant Freely at least switching on and cycle, constituting the. Usually, air conditioning is performed in the above-described cycle, and when the heat load is large such as in a cold region or a hot region, a cycle in which the refrigerant is evaporated or condensed in the third evaporator 2c is added. For example, the refrigerant is evaporated in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b, the refrigerant is evaporated in the third evaporator 2c and the first evaporator 2a, and the refrigerant in the second evaporator 2b. It is possible to switch at least between the cycle for condensation and the cycle for refrigerant condensation in the third evaporator 2c, the first evaporator 2a and the second evaporator 2b, or the refrigerant evaporation in the third evaporator 2c and the first evaporator 2a. In addition, it is possible to switch at least between the cycle for condensing the refrigerant in the second evaporator 2b and the cycle for condensing the refrigerant in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b, or the third evaporator 2c It is possible to switch at least between a cycle in which the refrigerant is evaporated by the first evaporator 2a and the second evaporator 2b and a cycle in which the refrigerant is condensed by the third evaporator 2c and the first evaporator 2a and the refrigerant is evaporated by the second evaporator 2b. Configure.

第1凝縮器3a及び第3ヒートポンプCの第2凝縮器3cはプレート式の冷媒−熱源水熱交換器とし、第1凝縮器3a内の第1ヒートポンプAの冷媒流通路と第2ヒートポンプBの冷媒流通路と熱源水流通路とを互いに熱交換自在として配設する。プレート式の第1凝縮器3a及び第2凝縮器3cは、たとえば幾枚もの伝熱板(プレート)を重ねその伝熱板と伝熱板の間を熱源水と2つの冷媒が交互に流れて互いに熱交換するように構成する。第1凝縮器3a及び第2凝縮器3cは、熱源機11で温度調整された熱源水が流れる熱源水回路12に接続される。(図5参照)第1ヒートポンプAは、熱源水で循環冷媒の熱交換をする共用の第1凝縮器3aと、循環冷媒で空調用空気の熱交換をする第1蒸発器2aと、第1の圧縮機4aと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第1凝縮器3aと第1蒸発器2aでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第2ヒートポンプBは、共用の第1凝縮器3aと、循環冷媒で空調用空気の熱交換をする第2蒸発器2bと、第2の圧縮機4bと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第1凝縮器3aと第2蒸発器2bでの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。第3ヒートポンプCは、熱源水で循環冷媒の熱交換をする第2凝縮器3cと、循環冷媒で空調用空気の熱交換をする第3蒸発器2cと、圧縮機4cと、膨張弁と、冷媒循環方向の正逆の切換弁(四方弁)と、図示省略の受液器等と、を備え、これらを配管接続して冷媒循環回路を構成しかつ切換弁により第2凝縮器3cと第3蒸発器2cの吸熱と放熱(蒸発機能と凝縮機能)を切換自在に構成する。加湿器5は、気化方式や蒸気吹出し方式など各種方式のものを用いることができるが、蒸気吹出し方式とすれば、温度降下せず無段階制御が可能で精度良く温湿度制御を行えて、蒸発器の負荷を少なくできる。   The first condenser 3a and the second condenser 3c of the third heat pump C are plate-type refrigerant-heat source water heat exchangers, and the refrigerant flow path of the first heat pump A and the second heat pump B in the first condenser 3a The refrigerant flow path and the heat source water flow path are arranged so that they can exchange heat with each other. The plate-type first condenser 3a and the second condenser 3c are formed by, for example, stacking a number of heat transfer plates (plates), and heat source water and two refrigerants alternately flow between the heat transfer plates and the heat transfer plates to heat each other. Configure to replace. The first condenser 3a and the second condenser 3c are connected to a heat source water circuit 12 through which the heat source water whose temperature has been adjusted by the heat source unit 11 flows. (Refer FIG. 5) The 1st heat pump A is the 1st evaporator 3a which heat-exchanges the air for air for a common 1st condenser 3a which exchanges heat of circulating refrigerant with heat source water, and 1st, Compressor 4a, an expansion valve, a forward / reverse switching valve (four-way valve) in the refrigerant circulation direction, a liquid receiver (not shown), and the like, which are connected to form a refrigerant circuit. The switching valve is configured to switch between heat absorption and heat dissipation (evaporation function and condensation function) in the first condenser 3a and the first evaporator 2a. The second heat pump B includes a common first condenser 3a, a second evaporator 2b for exchanging heat of air-conditioning air using a circulating refrigerant, a second compressor 4b, an expansion valve, and a positive refrigerant circulation direction. A reverse switching valve (four-way valve), a liquid receiver (not shown) and the like are provided, these are connected by piping to form a refrigerant circulation circuit, and the first condenser 3a and the second evaporator 2b are connected by the switching valve. The heat absorption and heat release (evaporation function and condensation function) can be switched freely. The third heat pump C includes a second condenser 3c for exchanging heat of the circulating refrigerant with heat source water, a third evaporator 2c for exchanging heat of air-conditioning air with the circulating refrigerant, a compressor 4c, an expansion valve, A refrigerant recirculation direction forward / reverse switching valve (four-way valve), a liquid receiver (not shown), and the like, are connected to form a refrigerant circulation circuit, and the second condenser 3c and the second condenser valve are connected by the switching valve. 3 The heat absorption and heat dissipation (evaporation function and condensation function) of the evaporator 2c are configured to be switchable. The humidifier 5 can be of various types such as a vaporization method and a steam blowing method. However, if the steam blowing method is used, the temperature and humidity control can be performed with high accuracy and the temperature and humidity can be controlled without any temperature drop. The load on the vessel can be reduced.

空調用空気入口と空調用空気出口はケーシング1に設け、空調用空気入口は還気取入用や外気取入用あるいは還気と外気の混合空気取入用としてダクトなどを介して室内などの被空調空間や屋外と連通させ、空調用空気出口は給気用としてダクトなどを介して室内などの被空調空間に連通させる。第1凝縮器3a及び第2凝縮器3cに熱源水を流し、送風機6で送風することにより第3蒸発器2cと第1蒸発器2aと第2蒸発器2bにて空調用空気を熱交換(冷却・加熱)して被空調空間に給気し、各種環境に応じた空調運転を行う。第1と第2と第3のヒートポンプA、B、Cで冷却と加熱を行うときの熱源水の使用限界水温範囲はたとえば10℃〜45℃なので、エアハンなどの冷温水コイルでは冷却・加熱できないような温度の熱源水を用いて、第1と第2と第3のヒートポンプA、B、Cで冷却と加熱を切換自在に行え、熱源水回路12が2管式ですむ。第1蒸発器2aと第2蒸発器2bと第3蒸発器2cのフィンチューブは圧損の少ない楕円管にするのが好ましいが円形管でもよい。   The air conditioning air inlet and the air conditioning air outlet are provided in the casing 1, and the air conditioning air inlet is used for returning air, for taking outside air, or for taking mixed air of returning air and outside air through a duct or the like. The air-conditioned air outlet is connected to an air-conditioned space such as a room through a duct or the like for air supply. Heat source water is passed through the first condenser 3a and the second condenser 3c and blown by the blower 6, whereby the air for air conditioning is exchanged in the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b ( Cooled and heated) to supply air to the air-conditioned space and perform air-conditioning operation according to various environments. Since the use limit water temperature range of the heat source water when performing cooling and heating with the first, second and third heat pumps A, B and C is, for example, 10 ° C. to 45 ° C., cooling and heating cannot be performed with a cold / hot water coil such as an air hanger. Using the heat source water at such a temperature, the first, second, and third heat pumps A, B, and C can be switched between cooling and heating, and the heat source water circuit 12 is a two-pipe type. The fin tubes of the first evaporator 2a, the second evaporator 2b, and the third evaporator 2c are preferably elliptical tubes with little pressure loss, but may be circular tubes.

ケーシング1内には、熱源水回路12からの熱源水と洗浄装置13からの洗浄液とを選択的に第1凝縮器3aに流通自在とする第1の通水機構D1と、熱源水回路12からの熱源水と洗浄装置13からの洗浄液とを選択的に第2凝縮器3cに流通自在とする第2の通水機構D2と、を設ける。この第1と第2の通水機構D1、D2は同様の構成なので図5においてあわせて説明する。図5(b)は、第1凝縮器3a(第2凝縮器3c)を清掃する洗浄装置13を接続した状態を示し、図5(a)は洗浄装置13を外した状態を示している。通水機構D1(通水機構D2)は、熱源水回路12と第1凝縮器3a(第2凝縮器3c)を接続する熱源水入口路16a及び熱源水出口路16bと、熱源水入口路16aと熱源水出口路16bに個別に設けられて洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続・分離自在なプラグ付接続口17、17と、洗浄装置13と第1凝縮器3a(第2凝縮器3c)を洗浄液入口路20a及び洗浄液出口路20bで接続することにより構成される洗浄流路Eへの熱源水の流入を遮断する開閉弁18、18と、を備えている。このように、部品が少なく簡単な構造で通水機構D1(通水機構D2)を構成でき、製作が容易でコスト節減を図れ、スペースをとらなくて済み、洗浄流路Eへの熱源水の流入を遮断して薬品洗浄でき、洗浄効果が大となる。熱源水回路12と第1凝縮器3a(第2凝縮器3c)を熱源水入口路16a及び熱源水出口路16bで接続して成る熱源流路Fと、洗浄流路Eとの共用部にはストレーナ19を設ける。これにより、ストレーナ19を熱源流路Fと洗浄流路Eの異物除去に兼用でき、個別にストレーナを設ける必要がなくコストダウンを図れる。空調運転時は図5(a)の状態で接続口17、17のプラグを閉め、開閉弁18、18を開いて熱源水を流し、ストレーナ19は適宜清掃する。第1凝縮器3a(第2凝縮器3c)の清掃時はケーシング1内を露出させ、図5(b)のように接続口17、17のプラグを外して洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続し、開閉弁18、18を閉じて第1凝縮器3a(第2凝縮器3c)に洗浄液を流して洗浄し、洗浄後にストレーナ19を清掃する。なお、ストレーナ19は図例以外の位置に変更自由である。また、通水機構D1(通水機構D2)は、ケーシング1内でなく、全て外部に設けたり、一部を外部に設けるも自由である。   In the casing 1, there are a first water flow mechanism D 1 that allows the heat source water from the heat source water circuit 12 and the cleaning liquid from the cleaning device 13 to selectively flow to the first condenser 3 a, and the heat source water circuit 12. And a second water passage mechanism D2 that selectively allows the heat source water and the cleaning liquid from the cleaning device 13 to flow through the second condenser 3c. Since the first and second water passage mechanisms D1 and D2 have the same configuration, they will be described together with FIG. FIG. 5B shows a state where a cleaning device 13 for cleaning the first condenser 3a (second condenser 3c) is connected, and FIG. 5A shows a state where the cleaning device 13 is removed. The water flow mechanism D1 (water flow mechanism D2) includes a heat source water inlet path 16a and a heat source water outlet path 16b that connect the heat source water circuit 12 and the first condenser 3a (second condenser 3c), and a heat source water inlet path 16a. Connection ports 17 and 17 with plugs 17 and 17 which are separately provided in the heat source water outlet channel 16b and can be connected to and separated from the cleaning liquid inlet channel 20a and the cleaning liquid outlet channel 20b of the cleaning device 13, and the cleaning device 13 and the first condenser 3a ( On-off valves 18 and 18 for shutting off the inflow of heat source water into the cleaning flow path E constituted by connecting the second condenser 3c) with the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b. In this way, the water flow mechanism D1 (water flow mechanism D2) can be configured with a simple structure with few parts, can be manufactured easily and cost can be saved, no space is required, and heat source water to the cleaning flow path E can be saved. The inflow can be shut off and chemical cleaning can be performed, and the cleaning effect is increased. The heat source flow path F formed by connecting the heat source water circuit 12 and the first condenser 3a (second condenser 3c) by the heat source water inlet path 16a and the heat source water outlet path 16b, and the washing flow path E have a common part. A strainer 19 is provided. As a result, the strainer 19 can be used for removing foreign matter from the heat source flow path F and the cleaning flow path E, and it is not necessary to provide a strainer separately, thereby reducing costs. During the air-conditioning operation, the plugs of the connection ports 17 and 17 are closed in the state shown in FIG. 5A, the on-off valves 18 and 18 are opened, the heat source water is allowed to flow, and the strainer 19 is appropriately cleaned. When cleaning the first condenser 3a (second condenser 3c), the inside of the casing 1 is exposed, and the plugs of the connection ports 17 and 17 are removed as shown in FIG. The cleaning liquid outlet path 20b is connected, the on-off valves 18 and 18 are closed, the cleaning liquid is allowed to flow through the first condenser 3a (second condenser 3c), and the strainer 19 is cleaned after the cleaning. The strainer 19 can be freely changed to a position other than the illustrated example. In addition, the water flow mechanism D1 (water flow mechanism D2) is not provided inside the casing 1, but can be provided entirely outside or partially provided outside.

図3の空調機は、第1と第2と第3のヒートポンプA、B、Cと送風機6と風上側と風下側の加湿器5、5の各々の容量制御をすると共に給気送風路入口空気温湿度に応じて第3蒸発器2cと第1蒸発器2aと第2蒸発器2bの冷媒蒸発・冷媒凝縮を切換する制御手段(図示省略)を、備える。被空調空間の外気処理を行うには、たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は、第1蒸発器2aにて加熱してから風上側加湿器5にて加湿し、さらに、第2蒸発器2bにて加熱してから風下側加湿器5にて加湿し、所定の給気温湿度に制御する。この場合、所望の給気温湿度にするのに必要な加熱量と加湿量に応じて、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し風上側加湿器5と風下側加湿器5のいずれか一方のみで加湿して所定の給気温湿度に制御することもできる。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却し、風上側加湿器5と風下側加湿器5の両方又は一方にて加湿し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。   The air conditioner of FIG. 3 controls the capacities of the first, second, and third heat pumps A, B, and C, the blower 6, the windward and leeward humidifiers 5 and 5, and the intake air passage inlet. Control means (not shown) for switching between refrigerant evaporation and refrigerant condensation of the third evaporator 2c, the first evaporator 2a, and the second evaporator 2b according to the air temperature humidity is provided. In order to perform the outside air treatment of the air-conditioned space, for example, when the air supply / airway inlet air temperature / humidity is higher than the desired air supply / humidity, either or both of the first evaporator 2a and the second evaporator 2b are used. Then, it is cooled and dehumidified, or cooled and dehumidified by the first evaporator 2a, then heated by the second evaporator 2b to adjust the temperature, and is controlled to a predetermined temperature and humidity. When the temperature of the supply air supply passage inlet air is low and the humidity is high with respect to the desired supply air temperature and humidity, the air is cooled and dehumidified by the first evaporator 2a and then heated by the second evaporator 2b to adjust the temperature. Control to a predetermined temperature and humidity. When the air supply / airway inlet air temperature / humidity is lower than the desired air supply / humidity, the air is heated by the first evaporator 2a and then humidified by the windward humidifier 5, and further supplied to the second evaporator 2b. Then, the air is humidified by the leeward humidifier 5 and controlled to a predetermined temperature and humidity. In this case, the upwind humidifier 5 and the downwind side are heated by heating or humidifying both or one of the first evaporator 2a and the second evaporator 2b in accordance with the heating amount and humidification amount necessary to obtain a desired temperature and humidity. It is also possible to control to a predetermined temperature and humidity by humidifying only one of the humidifiers 5. When the temperature of the supply air supply passage inlet air is high and the humidity is low with respect to the desired supply air temperature and humidity, the air is supplied to the upside humidifier 5 by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b. Humidification is performed by both or one of the leeward side humidifiers 5 and controlled to a predetermined temperature and humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above.

また、被空調空間を恒温恒湿に空調するには、たとえば、風下側加湿器5を蒸気吹出し方式とした場合を例示すると、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合と所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調、又は、第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は、第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。この場合、第1蒸発器2aにて加熱してから風上側加湿器5にて加湿し、さらに、第2蒸発器2bにて加熱してから風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御することもできる。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて乾き冷却して温調したのち風下側加湿器5にて蒸気により温度を下げずに加湿し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。   In order to air-condition the air-conditioned space at a constant temperature and humidity, for example, when the leeward side humidifier 5 is a steam blowing system, the air supply / airway inlet air temperature / humidity is set to a desired air supply / humidity. When the temperature is high and when the temperature of the supply air passage inlet air is low and the humidity is high with respect to the desired air temperature and humidity, the air is cooled and dehumidified by the first evaporator 2a and then heated by the second evaporator 2b. Or after cooling and dehumidifying with the first evaporator 2a and heating with the second evaporator 2b to adjust the temperature, the leeward humidifier 5 is humidified without lowering the temperature with steam, Control temperature and humidity. When the air supply / airway inlet air temperature / humidity is lower than the desired air supply / humidity, the leeward side humidifier 5 is heated and adjusted in both or one of the first evaporator 2a and the second evaporator 2b, and then the leeward side humidifier 5. The steam is humidified without reducing the temperature with steam and controlled to a predetermined temperature and humidity. In this case, the first evaporator 2a is heated and then humidified by the windward humidifier 5, and further heated by the second evaporator 2b and then the temperature is not lowered by the steam in the leeward humidifier 5 It is also possible to control to a predetermined temperature and humidity. When the temperature of the supply air passage inlet air is high and the humidity is low relative to the desired air temperature and humidity, the temperature is controlled by drying and cooling in both or one of the first evaporator 2a and the second evaporator 2b, and then the leeward side. The humidifier 5 is humidified without lowering the temperature with steam, and is controlled to a predetermined temperature and humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above.

この場合、風上側と風下側の加湿器5、5を止めて加湿せずに被空調空間を除湿乾燥することができる。たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合と所望の給気温湿度に対して給気送風路入口空気の温度が低く湿度が高い場合は第1蒸発器2aで冷却減湿してから第2蒸発器2bにて加熱し、所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて加熱し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。   In this case, the air-conditioned space can be dehumidified and dried without stopping the humidifiers 5 and 5 on the windward and leeward sides. For example, when the air supply / airway inlet air temperature / humidity is higher than the desired air temperature / humidity, and when the air supply / airway inlet air temperature is lower and the humidity is higher than the desired air temperature / humidity, the first evaporator 2a. When the air is cooled and dehumidified at the second evaporator 2b and heated by the second evaporator 2b, and the air temperature / humidity at the inlet of the supply air passage is lower than the desired temperature and humidity, both the first evaporator 2a and the second evaporator 2b are used. Or it heats by one side and it controls to predetermined supply air temperature humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above.

また、被空調空間を低温加湿するには、たとえば、所望の給気温湿度に対して給気送風路入口空気温湿度が高い場合は第1蒸発器2aと第2蒸発器2bの両方又は一方にて冷却減湿し、所望の給気温湿度に対して給気送風路入口空気温湿度が低い場合は第1蒸発器2aで加熱してから風上側加湿器5にて加湿しそののち第2蒸発器2bにて乾き冷却し、所定の給気温湿度に制御する。所望の給気温湿度に対して給気送風路入口空気の温度が高く湿度が低い場合は風上側加湿器5にて加湿してから第2蒸発器2bのみにて乾き冷却し、所定の給気温湿度に制御する。熱負荷が大きい場合には、第3蒸発器2cにて予冷又は予熱を行ってから上述のごとく所定の給気温湿度に制御する。なお、加湿器5は、第1蒸発器2aと第2蒸発器2bの間と、第2蒸発器2bの風下の、いずれか一方に配設するも自由である。   In order to humidify the air-conditioned space at a low temperature, for example, when the air supply / airway inlet air temperature / humidity is higher than the desired air supply / humidity, either or both of the first evaporator 2a and the second evaporator 2b are used. If the air temperature / humidity at the inlet of the supply air passage is lower than the desired air temperature and humidity, the air is heated by the first evaporator 2a and then humidified by the windward humidifier 5 and then the second evaporation. It is dried and cooled in the vessel 2b and controlled to a predetermined temperature and humidity. When the temperature of the supply air passage inlet air is high and the humidity is low relative to the desired air supply humidity, the air is humidified by the windward humidifier 5 and then dried and cooled only by the second evaporator 2b. Control to humidity. When the heat load is large, precooling or preheating is performed in the third evaporator 2c, and then control is performed to a predetermined temperature and humidity as described above. Note that the humidifier 5 can be freely disposed between the first evaporator 2a and the second evaporator 2b and on the lee of the second evaporator 2b.

なお、本発明は前記実施例に限定されず、本発明の要旨を逸脱しない範囲で設計変更自由であり、たとえば、第1と第2と第3のヒートポンプA、B、Cや制御手段の構成、第1蒸発器2aと第2蒸発器2bと第3蒸発器2cの冷媒蒸発と冷媒凝縮のサイクルの変更や増減は自由である。   The present invention is not limited to the above-described embodiment, and can be freely changed in design without departing from the gist of the present invention. For example, the first, second, and third heat pumps A, B, C and the configuration of the control means The cycle of refrigerant evaporation and refrigerant condensation of the first evaporator 2a, the second evaporator 2b, and the third evaporator 2c can be freely changed and increased / decreased.

ヒートポンプ式空調機の実施例を示す正面図。The front view which shows the Example of a heat pump type air conditioner. ヒートポンプの簡略説明図。The simplified explanatory drawing of a heat pump. ヒートポンプ式空調機の他の実施例を示す正面図。The front view which shows the other Example of a heat pump type air conditioner. 図3のヒートポンプの簡略説明図。The simplified explanatory drawing of the heat pump of FIG. 通水機構の簡略説明図。The simplified explanatory drawing of a water flow mechanism.

符号の説明Explanation of symbols

1 ケーシング
2a 第1蒸発器
2b 第2蒸発器
2c 第3蒸発器
3a 第1凝縮器
5 加湿器
12 熱源水回路
13 洗浄装置
A 第1ヒートポンプ
B 第2ヒートポンプ
C 第3ヒートポンプ
D1 第1通水機構
D2 第2通水機構
G 凝縮器除霜回路
DESCRIPTION OF SYMBOLS 1 Casing 2a 1st evaporator 2b 2nd evaporator 2c 3rd evaporator 3a 1st condenser 5 humidifier 12 heat source water circuit 13 washing | cleaning apparatus A 1st heat pump B 2nd heat pump C 3rd heat pump
D1 1st water flow mechanism
D2 Second water flow mechanism G Condenser defrost circuit

Claims (3)

第1と第2の圧縮式のヒートポンプA、Bを備えたヒートポンプ式空調機において、第3の圧縮式のヒートポンプCを付設し、前記第3ヒートポンプCの冷媒−空気熱交換用第3蒸発器2cと前記第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと前記第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bとを送風方向へ順に配設すると共に、第1凝縮器3aを前記第1ヒートポンプAと前記第2ヒートポンプBにて共用し、前記第1と第2と第3のヒートポンプA、B、Cの各蒸発器2a、2b、2cを冷媒蒸発・冷媒凝縮切換え自在に構成し、前記第1蒸発器2aと前記第2蒸発器2bの間と、前記第2蒸発器2bの風下の、両方に加湿器5を配設し、前記第1凝縮器3a及び前記第3ヒートポンプCの第2凝縮器3cを冷媒−空気熱交換器とすると共に、前記第1凝縮器3a内の前記第1ヒートポンプAの冷媒流通路と前記第2ヒートポンプBの冷媒流通路とを互いに熱交換自在として配設し、すくなくとも前記第3ヒートポンプCに、三方弁10により前記第3蒸発器2cへの冷媒循環を停止して前記第2凝縮器3cのみに前記第3ヒートポンプCの圧縮機4cのホットガスを循環させ除霜させる凝縮器除霜回路Gを、設けたことを特徴とするヒートポンプ式空調機。 A heat pump air conditioner having first and second compression heat pumps A and B is provided with a third compression heat pump C, and the third evaporator for refrigerant-air heat exchange of the third heat pump C 2c and the first evaporator 2a for refrigerant-air heat exchange of the first heat pump A and the second evaporator 2b for refrigerant-air heat exchange of the second heat pump B are arranged in order in the blowing direction, and the first The condenser 3a is shared by the first heat pump A and the second heat pump B, and the evaporators 2a, 2b, and 2c of the first, second, and third heat pumps A, B, and C are used as refrigerant evaporation / refrigerant. Condensation switching is possible, and a humidifier 5 is disposed both between the first evaporator 2a and the second evaporator 2b and on the lee of the second evaporator 2b , and the first condenser 3a And the second condenser 3c of the third heat pump C is cooled. And an air heat exchanger, and the refrigerant flow passage of the first heat pump A and the refrigerant flow passage of the second heat pump B in the first condenser 3a are arranged so that they can exchange heat with each other, and at least the first heat pump A Condensation that causes the three heat pump C to stop the refrigerant circulation to the third evaporator 2c by the three-way valve 10 and circulate the hot gas of the compressor 4c of the third heat pump C only to the second condenser 3c to defrost it. the vessel defrosting circuit G, a heat pump air conditioner which is characterized by comprising. 第1と第2の圧縮式のヒートポンプA、Bを備えたヒートポンプ式空調機において、第3の圧縮式のヒートポンプCを付設し、前記第3ヒートポンプCの冷媒−空気熱交換用第3蒸発器2cと前記第1ヒートポンプAの冷媒−空気熱交換用第1蒸発器2aと前記第2ヒートポンプBの冷媒−空気熱交換用第2蒸発器2bとを送風方向へ順に配設すると共に、第1凝縮器3aを前記第1ヒートポンプAと前記第2ヒートポンプBにて共用し、前記第1と第2と第3のヒートポンプA、B、Cの各蒸発器2a、2b、2cを冷媒蒸発・冷媒凝縮切換え自在に構成し、前記第1蒸発器2aと前記第2蒸発器2bの間と、前記第2蒸発器2bの風下の、両方に加湿器5を配設し、前記第1凝縮器3a及び前記第3ヒートポンプCの第2凝縮器3cをプレート式の冷媒−熱源水熱交換器とすると共に、前記第1凝縮器3a内の前記第1ヒートポンプAの冷媒流通路と前記第2ヒートポンプBの冷媒流通路と熱源水流通路とを互いに熱交換自在として配設し、熱源水回路12からの熱源水と洗浄装置13からの洗浄液とを選択的に前記第1凝縮器3aに流通自在とする第1の通水機構D1と、前記熱源水回路12からの熱源水と前記洗浄装置13からの洗浄液とを選択的に前記第2凝縮器3cに流通自在とする第2の通水機構D2と、を設け、前記第1通水機構D1は、前記熱源水回路12と前記第1凝縮器3aを接続する第1の熱源水入口路及び第1の熱源水出口路と、前記第1熱源水入口路と前記第1熱源水出口路に個別に設けられて前記洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続・分離自在な第1のプラグ付接続口と、前記洗浄装置13と前記第1凝縮器3aを前記洗浄液入口路20a及び前記洗浄液出口路20bで接続することにより構成される洗浄流路Eへの熱源水の流入を遮断する第1の開閉弁と、を備えると共に、前記熱源水回路12と前記第1凝縮器3aを前記第1熱源水入口路及び前記第1熱源水出口路で接続して成る第1の熱源流路と、前記洗浄流路Eとの共用部には第1のストレーナを設け、前記第2通水機構D2は、前記熱源水回路12と前記第2凝縮器3cを接続する第2の熱源水入口路及び第2の熱源水出口路と、前記第2熱源水入口路と前記第2熱源水出口路に個別に設けられて前記洗浄装置13の洗浄液入口路20a及び洗浄液出口路20bを接続・分離自在な第2のプラグ付接続口と、前記洗浄装置13と前記第2凝縮器3cを前記洗浄液入口路20a及び前記洗浄液出口路20bで接続することにより構成される洗浄流路Eへの熱源水の流入を遮断する第2の開閉弁と、を備えると共に、前記熱源水回路12と前記第2凝縮器3cを前記第2熱源水入口路及び前記第2熱源水出口路で接続して成る第2の熱源流路と、前記洗浄流路Eとの共用部には第2のストレーナを設けたことを特徴とするヒートポンプ式空調機。 A heat pump air conditioner having first and second compression heat pumps A and B is provided with a third compression heat pump C, and the third evaporator for refrigerant-air heat exchange of the third heat pump C 2c and the first evaporator 2a for refrigerant-air heat exchange of the first heat pump A and the second evaporator 2b for refrigerant-air heat exchange of the second heat pump B are arranged in order in the blowing direction, and the first The condenser 3a is shared by the first heat pump A and the second heat pump B, and the evaporators 2a, 2b, and 2c of the first, second, and third heat pumps A, B, and C are used as refrigerant evaporation / refrigerant. Condensation switching is possible, and a humidifier 5 is disposed both between the first evaporator 2a and the second evaporator 2b and on the lee of the second evaporator 2b, and the first condenser 3a And the second condenser 3c of the third heat pump C And a refrigerant flow path of the first heat pump A, a refrigerant flow path of the second heat pump B, and a heat source water flow path in the first condenser 3a. A first water flow mechanism D1 which is arranged so as to be exchangeable, and allows the heat source water from the heat source water circuit 12 and the cleaning liquid from the cleaning device 13 to selectively flow to the first condenser 3a; and the heat source water A second water passage mechanism D2 that selectively allows the heat source water from the circuit 12 and the cleaning liquid from the cleaning device 13 to flow to the second condenser 3c, and the first water passage mechanism D1 The first heat source water inlet passage and the first heat source water outlet passage connecting the heat source water circuit 12 and the first condenser 3a, and the first heat source water inlet passage and the first heat source water outlet passage individually. The cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b of the cleaning device 13 are provided. To the cleaning flow path E configured by connecting the first plug-attaching port that can be connected / separated, the cleaning device 13 and the first condenser 3a through the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b. A first on-off valve that shuts off the inflow of the heat source water, and connects the heat source water circuit 12 and the first condenser 3a through the first heat source water inlet passage and the first heat source water outlet passage. The first strainer is provided in a shared portion of the first heat source flow path and the cleaning flow path E, and the second water flow mechanism D2 includes the heat source water circuit 12 and the second condenser 3c. The second heat source water inlet path and the second heat source water outlet path to be connected, the second heat source water inlet path and the second heat source water outlet path are provided separately, and the cleaning liquid inlet path 20a of the cleaning device 13 and A second connection port with a plug that can be connected and separated to the cleaning liquid outlet channel 20b; A second on-off valve that shuts off the inflow of heat source water into the cleaning flow path E constituted by connecting the cleaning device 13 and the second condenser 3c through the cleaning liquid inlet path 20a and the cleaning liquid outlet path 20b; A second heat source flow path formed by connecting the heat source water circuit 12 and the second condenser 3c through the second heat source water inlet path and the second heat source water outlet path, and the washing flow path. A heat pump type air conditioner characterized in that a second strainer is provided in a shared part with E. 請求項1又は2記載のヒートポンプ式空調機において、第1と第2と第3のヒートポンプA、B、Cの熱交換器であって冷媒−空気熱交換用のもののフィンチューブを楕円管にしたことを特徴とするヒートポンプ式空調機。 The heat pump type air conditioner according to claim 1 or 2, wherein the fin tubes of the first, second and third heat pumps A, B and C for refrigerant-air heat exchange are elliptical tubes. A heat pump type air conditioner.
JP2004152382A 2004-05-21 2004-05-21 Heat pump air conditioner Expired - Fee Related JP3952308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004152382A JP3952308B2 (en) 2004-05-21 2004-05-21 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004152382A JP3952308B2 (en) 2004-05-21 2004-05-21 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JP2005331214A JP2005331214A (en) 2005-12-02
JP3952308B2 true JP3952308B2 (en) 2007-08-01

Family

ID=35485999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004152382A Expired - Fee Related JP3952308B2 (en) 2004-05-21 2004-05-21 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP3952308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107806683B (en) * 2017-12-03 2023-11-07 卡林热泵技术有限公司 Grain depot grain pile environment control system with multi-energy source and heat pump in cold and hot two-way coupling
CN112197469A (en) * 2020-10-15 2021-01-08 赛诺浦新能源(江苏)有限公司 Air source heat pump system with split type evaporator assembly and operation method thereof

Also Published As

Publication number Publication date
JP2005331214A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP4207166B2 (en) Dehumidifying air conditioner
CN108800375B (en) Air heat source heat pump type air conditioner
US20120012285A1 (en) Dehumidification system
KR20150120568A (en) Dehumidifying system with refrigerator using the waste heat of outdoor condensor
KR20070074301A (en) Air conditioner
JP4505486B2 (en) Heat pump air conditioner
JP4045551B2 (en) Heat pump air conditioner
CN101307963A (en) Heat pump air conditioner
JP3614775B2 (en) Heat pump air conditioner
JP3952308B2 (en) Heat pump air conditioner
JP2006153321A (en) Heat pump air conditioner
JP4096890B2 (en) Heat pump air conditioner
JP2010243005A (en) Dehumidification system
CN217442192U (en) Low-temperature dehumidifier for freeze drying
JP2007333378A (en) Heat pump type air conditioner
CN111006336B (en) Composite air conditioning system and air conditioning room
JP4099718B2 (en) Heat pump air conditioner
JP2018054255A (en) Air conditioner
KR100728590B1 (en) Energy-efficient high efficiency heat pump ventilator
CN201302240Y (en) Heat pump air conditioner
JP3485181B2 (en) Air-cooled heat pump type external controller for agricultural industry
JP2005106303A (en) Water source heat pump air conditioner
JP2005172264A (en) Water source heat pump air conditioner
JP2005283037A (en) Water source heat pump air conditioner
JP4016346B2 (en) Air source heat pump air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Ref document number: 3952308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees