Nothing Special   »   [go: up one dir, main page]

JP3948076B2 - Estimation method of friction circle radius of wheel - Google Patents

Estimation method of friction circle radius of wheel Download PDF

Info

Publication number
JP3948076B2
JP3948076B2 JP27644897A JP27644897A JP3948076B2 JP 3948076 B2 JP3948076 B2 JP 3948076B2 JP 27644897 A JP27644897 A JP 27644897A JP 27644897 A JP27644897 A JP 27644897A JP 3948076 B2 JP3948076 B2 JP 3948076B2
Authority
JP
Japan
Prior art keywords
wheel
wheels
force
vehicle
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27644897A
Other languages
Japanese (ja)
Other versions
JPH1191538A (en
Inventor
健 鯉渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27644897A priority Critical patent/JP3948076B2/en
Publication of JPH1191538A publication Critical patent/JPH1191538A/en
Application granted granted Critical
Publication of JP3948076B2 publication Critical patent/JP3948076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the friction circle radii of respective wheels individually. SOLUTION: The longitudinal forces of right and left rear wheels Fxgrl, Fxgrr based on longitudinal acceleration are computed (S20), the longitudinal forces Fxtrl, Fxtrr of the right and left rear wheels based on the output torque of a torque converter are computed (S30), the longitudinal forces Fxrl, Fxrr of the right and left rear wheels are computed as weighted mean values (S90). The vertical load Fzj of four wheels is computed (S40), and the cornering force Fyj of the four wheels is computed based on these (S50). When an automatic transmission is not in gear changing (S60 to 80), friction circle radii Rmrl, Rmrr are computed as the root sum squares of the longitudinal forces Fxrl, Fxrr and the cornering forces Fyrl, Fyrr (S100), and when in gear changing, the weight of the longitudinal forces based on the output torque of the torque converter is set to zero (80).

Description

【0001】
【発明の属する技術分野】
本発明は、車輪の摩擦円半径の推定方法に係り、更に詳細には各輪毎に摩擦円半径を推定する方法に係る。
【0002】
【従来の技術】
自動車等の車輌に於ける車輪の摩擦円半径の推定方法の一つとして、例えば本願出願人の出願にかかる特開平4−331668号公報に記載されている如く、車輌の前後加速度及び横加速度を検出し、車輪のスリップが発生した際の前後加速度及び横加速度の二乗和平方根を車輪の摩擦円半径と推定する方法が従来より知られている。
【0003】
車輪がスリップしているときに路面と車輌との間に作用する水平方向の力は路面の摩擦係数に比例し、水平方向の力は車輌の前後加速度及び横加速度の二乗和平方根に比例するので、上述の方法によれば、路面の摩擦係数に対応する値として車輪の摩擦円半径を推定することができる。
【0004】
【発明が解決しようとする課題】
しかし上述の先の提案にかかる従来の摩擦円半径の推定方法に於いては、車輌全体の水平方向の力に基づき車輪の摩擦円半径が推定されるので、路面の摩擦係数に対応する値を求めることはできるが、各輪毎に個別に摩擦円半径を推定することができないという問題がある。
【0005】
本発明は、従来の摩擦円半径の推定方法に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、各輪毎に路面と車輪との間に作用する水平方向の力を推定することにより、各輪毎に個別に摩擦円半径を正確に推定することである。
【0006】
【課題を解決するための手段】
上述の如き主要な課題は、本発明によれば、請求項1の構成、即ち車輪の摩擦円半径を推定する方法にして、各輪の横力を推定する工程と、各輪の前後力を推定する工程と、各輪毎に前記横力及び前記前後力の二乗和平方根を演算する工程と、各輪毎に車輪スリップを検出する工程と、各輪毎に車輪スリップが検出されたときの前記二乗和平方根を当該車輪の摩擦円半径と推定する工程とを有し、前記各輪の横力を推定する工程に於いては車輌のヨーレート及び横加速度に基づき左右前輪の横力の合計及び左右後輪の横力の合計が演算され、車輌の前後加速度及び横加速度に基づき各輪の垂直荷重が演算され、各輪の横力がその車輪の垂直荷重に比例する値として前記左右前輪の横力の合計及び前記左右後輪の横力の合計に基づいて演算されることを特徴とする方法によって達成される。
【0007】
上記請求項1の構成によれば、各輪毎に横力及び前後力の二乗和平方根が演算され、各輪毎に車輪スリップが検出されたときの二乗和平方根が当該車輪の摩擦円半径と推定されるので、路面と各輪との間に作用する水平方向の力に基づき各輪毎に個別に摩擦円半径が正確に推定される。特に車輌のヨーレート及び横加速度に基づき左右前輪の横力の合計及び左右後輪の横力の合計が演算され、車輌の前後加速度及び横加速度に基づき各輪の垂直荷重が演算され、各輪の横力がその車輪の垂直荷重に比例する値として左右前輪の横力の合計及び左右後輪の横力の合計に基づいて演算されるので、各輪の横力が正確に推定され、これにより各輪の摩擦円半径が正確に推定される。
【0008】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於て、前記車輪は駆動輪であり、前記前後力を推定する工程は左右駆動輪の合計の駆動力を演算する工程と、左右駆動輪の制駆動力差及び左右駆動輪の車輪回転慣性力差に基づき左右駆動輪の駆動力差を演算する工程と、前記合計の駆動力及び前記駆動力差に基づき各駆動輪の前後力を演算する工程とを含むよう構成される(請求項2の構成)。
【0009】
この請求項2の構成によれば、左右駆動輪の合計の駆動力が演算され、左右駆動輪の制駆動力差及び左右駆動輪の車輪回転慣性力差に基づき左右駆動輪の駆動力差が演算され、合計の駆動力及び駆動力差に基づき各駆動輪の前後力が演算されるので、各駆動輪の前後力が正確に推定される。
【0010】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於て、前記左右駆動輪は後輪駆動車の左右後輪又は前輪駆動車の左右前輪であり、前記左右駆動輪の合計の駆動力は車輌の前後加速度と車輌の重量との積として演算されるよう構成される(請求項3の構成)。
【0011】
一般に、車輌が後輪駆動車又は前輪駆動車である場合には、車輌の前後加速度は左右駆動輪の合計の駆動力に等しい。上記請求項3の構成によれば、車輌の前後加速度と車輌の重量との積が左右駆動輪の合計の駆動力として演算されるので、左右駆動輪の合計の駆動力が確実に推定される。
【0012】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於て、前記左右駆動輪は後輪駆動車の左右後輪又は前輪駆動車の左右前輪であり、前記左右駆動輪の合計の駆動力はトルクコンバータの出力トルクに基づき演算されるよう構成される(請求項4の構成)。
【0013】
左右駆動輪はトルクコンバータの出力トルクにより駆動されるので、左右駆動輪の合計の駆動力はトルクコンバータの出力トルクに対応している。上記請求項4の構成によれば、トルクコンバータの出力トルクに基づき左右駆動輪の合計の駆動力が演算されるので、左右駆動輪の合計の駆動力が確実に推定される。
【0015】
【課題解決手段の好ましい態様】
本発明の一つの好ましい態様によれば、上記請求項1の構成に於いて、一方の駆動輪の前後力は合計の駆動力より駆動力差が減算された値の二分の一として演算され、他方の駆動輪の前後力は一方の駆動輪の前後力と駆動力差との和として演算されるよう構成される(好ましい態様)。
【0016】
本発明の他の一つの好ましい態様によれば、上記請求項3又は4の構成に於いて、左右駆動輪の合計の駆動力は車輌の前後加速度と車輌の重量との積として演算される駆動力及びトルクコンバータの出力トルクに基づき演算される駆動力の平均値として演算されるよう構成される(好ましい態様)。
【0017】
本発明の他の一つの好ましい態様によれば、上記好ましい態様の構成に於いて、変速中及び変速後の所定の時間はトルクコンバータの出力トルクに基づき演算される駆動力は0に設定されるよう構成される(好ましい態様)。
【0018】
【発明の実施の形態】
以下に添付の図を参照しつつ、本発明を好ましい実施形態について詳細に説明する。
【0019】
図1は自動変速機が搭載され本発明に従って左右後輪の摩擦円半径が推定される後輪駆動車を示す概略構成図(A)及び制御系のブロック線図(B)である。
【0020】
図1に於いて、10はエンジンを示しており、エンジン10の駆動力はトルクコンバータ12及びトランスミッション14を含む自動変速機16を介してプロペラシャフト18へ伝達される。プロペラシャフト18の駆動力はディファレンシャル20により左後輪車軸22L 及び右後輪車軸22R へ伝達され、これにより駆動輪である左右の後輪24RL及び24RRが回転駆動される。
【0021】
一方左右の前輪24FL及び24FRは従動輪であると共に操舵輪であり、図1には示されていないが、運転者によるステアリングホイールの転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置によりタイロッドを介して操舵される。
【0022】
左右の前輪24FL、24FR及び左右の後輪24RL、24RRの制動力は制動装置26の油圧回路28により対応するホイールシリンダ30FL、30FR、30RL、30RRの制動圧が制御されることによって制御される。図には示されていないが、油圧回路28はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル32の踏み込み操作に応じて駆動されるマスタシリンダ34により制御され、また必要に応じて後に詳細に説明する如く車輌運動制御コンピュータ36により制御される。
【0023】
車輌運動制御コンピュータ36には前後加速度センサ38より車輌の前後加速度Gx を示す信号、横加速度センサ40より車輌の横加速度Gy を示す信号、車速センサ42より車速Vを示す信号、ヨーレートセンサ44より車輌のヨーレートγを示す信号、車輪速度センサ46RL、46RRより左右後輪の車輪速度Vwrl、Vwrr を示す信号、圧力センサ48RL、48RRより左右後輪のホイールシリンダ30RL、30RR内の圧力Prl及びPrrを示す信号、シフトポジションセンサ50より自動変速機16のシフトポジションSPを示す信号、回転数センサ52よりエンジン回転数Neを示す信号、回転数センサ54よりトルクコンバータ12の出力回転数Nout を示す信号が入力される。
【0024】
尚車輌運動制御コンピュータ36は実際にはCPU、ROM、RAM、入出力ポート装置を含む周知の構成のマイクロコンピュータであってよい。また前後加速度センサ38は車輌の加速方向を正として前後加速度を検出し、横加速度センサ40及びヨーレートセンサ44は車輌の左旋回方向を正として横加速度等を検出するようになっている。更に左右後輪のホイールシリンダ30RL、30RR内の圧力Prl及びPrrは例えばマスタシリンダ34内の圧力等に基づき推定されてもよい。
【0025】
フローチャートとしては図示されていないが、車輌運動制御コンピュータ36は車速Vに基づき駆動輪である左右の後輪24RL及び24RRの目標車輪速度Vwtを演算し、実車輪速度と目標車輪速度との偏差として左右後輪の駆動スリップ量SLrl及びSLrrを演算し、駆動スリップ量SLrl及びSLrrに比例する値として左右後輪の目標制動力Ftrl 及びFtrr を演算し、左右後輪の制動力がそれぞれ対応する目標制動力になるようホイールシリンダ30RL、30RR内の圧力を制御する。
【0026】
また車輌運動制御コンピュータ36は前後加速度Gx に基づく左右後輪の前後力Fxgrl、Fxgrrを演算し、トルクコンバータの出力トルクに基づく左右後輪の前後力Fxtrl、Fxtrrを演算し、それらの平均値として左右後輪の前後力Fxrl 、Fxrr を演算する。またコンピュータ36は四輪の接地荷重Fzjを演算し、接地荷重に基づき四輪のコーナリングフォースFyjを演算し、左右後輪の前後力Fxrl 、Fxrr 及びコーナリングフォースFyrl 、Fyrr の二乗和平方根として左右後輪の摩擦円半径Rmrl 、Rmrr を演算する。
【0027】
この場合駆動スリップ量SLrl及びSLrrに比例する値として演算される左右後輪の目標制動力Ftrl 及びFtrr がそれぞれ摩擦円半径Rmrl 、Rmrr に照らし過剰であるときには、車輌運動制御コンピュータ36は目標制動力を摩擦円半径にてガード処理し、左右後輪の制動力が過剰になることを防止して左右後輪のトラクションを最適に制御する。
【0028】
次に図2に示されたフローチャートを参照して図示の実施形態に於ける車輪の摩擦円半径演算のメインルーチンについて説明する。尚図2に示されたフローチャートによる演算は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。
【0029】
まずステップ10に於いては、車輌の前後加速度Gx を示す信号等の読み込みが行われ、ステップ20に於いては、図3に示されたサブルーチンに従って前後加速度Gx に基づく左右後輪の前後力Fxgrl、Fxgrrが演算され、ステップ30に於いては、図4に示されたサブルーチンに従ってトルクコンバータ12の出力トルクに基づく左右後輪の前後力Fxtrl、Fxtrrが演算される。
【0030】
ステップ40に於いては、図5に示されたサブルーチンに従って四輪の接地荷重Fzj(j=fl、fr、rl、rr)が演算され、ステップ50に於いては、図6に示されたサブルーチンに従って四輪のコーナリングフォースFyj(j=fl、fr、rl、rr)が演算される。
【0031】
ステップ60に於いては、シフトポジションセンサ50よりのSP信号に基づき自動変速機16が変速中であるか否かの判別、即ち自動変速機の変速段の切り換え中又は変速段の切り換え完了後の所定の時間内であり、左右後輪の駆動力が安定しない期間中であるか否かの判別が行われ、否定判別が行われたときにはステップ70に於いてステップ90の演算に於ける重み係数Kx が1に設定され、肯定判別が行われたときにはステップ80に於いて重み係数Kx が0に設定される。
【0032】
ステップ90に於いては、前後加速度Gx に基づく前後力Fxgrl、Fxgrrとトルクコンバータの出力トルクに基づく前後力Fxtrl、Fxtrrとの重み平均値として下記の数1に従って左右後輪の前後力Fxrl 、Fxrr が演算され、ステップ100に於いては、図7に示されたサブルーチンに従って左右後輪の摩擦円半径Rmrl 、Rmrr が演算される。
【数1】
Fxrl =(Fxgrl+Kx ・Fxtrl)/2
Fxrr =(Fxgrr+Kx ・Fxtrr)/2
【0033】
図3に示された左右後輪の前後力Fxgrl、Fxgrr演算ルーチンのステップ21に於いては、Mを車輌の重量として下記の数2に従って左右後輪の合計の前後力Fxallが演算され、ステップ22に於いては、Cpfをブレーキ油圧より前後力への変換係数として下記の数3に従って左右後輪の制動力についての補正値Fxbrl、Fxbrrが演算される。
【0034】
【数2】
Fxall=M・Gx
【数3】
Fxbrl=Cpf ・Prl
Fxbrr=Cpf ・Prr
【0035】
ステップ23に於いては、左右後輪の車輪速度Vwrl 、Vwrr の時間微分値として車輪加速度Vwdrl、Vwdrrが演算されると共に、Cwfを車輪加速度より前後力への変換係数として下記の数4に従って左右後輪の回転慣性力についての補正値Fxirl、Fxirrが演算される。
【数4】
Fxirl=Cwf・Vwdrl
Fxirr=Cwf・Vwdrr
【0036】
ステップ24に於いては、下記の数5に従って左右後輪の前後力差ΔFxrが演算され、ステップ25に於いては下記の数6に従って前後加速度Gx に基づく左右後輪の前後力Fxgrl、Fxgrrが演算される。
【0037】
【数5】
ΔFxr=(Fxbrl+Fxirl)−(Fxbrr+Fxirr)
【数6】
Fxgrl=(Fxall−ΔFxr)/2
Fxgrr=(Fxall+ΔFxr)/2
【0038】
図4に示された左右後輪の前後力Fxtrl、Fxtrr演算ルーチンのステップ31に於いては、エンジン10の回転数Ne 及びトルクコンバータ12の出力回転数Nout に基づき下記の数7に従ってトルクコンバータのスリップ比Rslが演算される。
【数7】
Rsl=Ne /Nout (Ne ≧Nout の場合)
Rsl=Nout /Ne (Ne <Nout の場合)
【0039】
ステップ32に於いては、スリップ比Rslよりトルクコンバータ12の容量係数Cp を求めるための図には示されていないマップよりトルクコンバータの容量係数Cp が演算され、ステップ33に於いては、下記の数8に従ってトルクコンバータの入力トルクTinが演算される。
【数8】
Tin=Cp ・Ne 2
【0040】
ステップ34に於いては、スリップ比Rslよりトルクコンバータ12のトルク比Rtqを求めるための図には示されていないマップよりトルクコンバータのトルク比Rtqが演算され、ステップ35に於いては下記の数9に従ってトルクコンバータの出力トルクTout が演算される。
【数9】
Tout =Tin・Rtq
【0041】
ステップ36に於いては、図3に示されたフローチャートのステップ22の場合と同様、上記数3に従って左右後輪の制動力についての補正値Fxbrl、Fxbrrが演算され、ステップ37に於いては、図3に示されたフローチャートのステップ23の場合と同様、上記数4に従って左右後輪の回転慣性力についての補正値Fxirl、Fxirrが演算され、ステップ38に於いては下記の数10に従ってトルクコンバータの出力トルクTout に基づく左右後輪の前後力Fxtrl、Fxtrrが演算される。
【数10】
Fxtrl=Tout /2−Fxbrl+Fxirl
Fxtrr=Tout /2−Fxbrr+Fxirr
【0042】
図5に示された四輪の接地荷重Fzj演算ルーチンのステップ41に於いては、Hを車輌の重心高さとし、Lを車輌のホイールベースとし、Tr を車輌のトレッドとして下記の数11に従って車輌の前後加速度Gx 及び横加速度Gy に起因する前後方向及び横方向の荷重移動量ΔFx 、ΔFy が演算される。
【数11】
ΔFx =M・H・Gx /L
ΔFy =M・H・Gy /Tr
【0043】
ステップ42に於いては、Mf 及びMr をそれぞれ左右前輪及び左右後輪が担持する車輌の重量とし、gを重力加速度とし、Kf を前輪のロール剛性配分比(1未満の正の定数)として下記の数12に従って旋回内側前輪、旋回外側前輪、旋回内側後輪、旋回外側後輪の接地荷重Fzfi 、Fzfo 、Fzri 、Fzro が演算される。
【数12】
Fzfi =Mf ・g−ΔFx /2−ΔFy ・Kf
Fzfo =Mf ・g−ΔFx /2+ΔFy ・Kf
Fzri =Mr ・g+ΔFx /2−ΔFy ・(1−Kf )
Fzro =Mr ・g+ΔFx /2+ΔFy ・(1−Kf )
【0044】
ステップ43に於いては、車輌の横加速度Gy が正であるか否かの判別、即ち車輌が左旋回中であるか否かの判別が行われ、肯定判別が行われたときにはステップ44に於いて下記の数13に従って四輪の接地荷重Fzj(j=fl、fr、rl、rr)が設定され、否定判別が行われたときにはステップ45に於いて下記の数14に従って四輪の接地荷重Fzjが設定される。尚車輌の旋回方向の判定は操舵角又はヨーレートγの符号判別により行われてもよく、それらの組合せにより行われてもよい。
【0045】
【数13】
Fzfl =Fzfi
Fzfr =Fzfo
Fzrl =Fzri
Fzrr =Fzro
【数14】
Fzfl =Fzfo
Fzfr =Fzfi
Fzrl =Fzro
Fzrr =Fzri
【0046】
図6に示された四輪のコーナリングフォースFyj演算ルーチンのステップ51に於いては、車輌の横加速度Gy と車速V及びヨーレートγの積V・γとの偏差Gy −V・γとして横加速度の偏差、即ち車輌の横滑り加速度Vydが演算され、横滑り加速度Vydが積分されることにより車体の横滑り速度Vy が演算され、更に車体の前後速度Vx (=車速V)に対する車体の横滑り速度Vy の比Vy /Vx として車体のスリップ角βが演算される。
【0047】
ステップ52に於いては、車体のスリップ角βの微分値βd 及び車輌のヨーレートγの微分値γd が演算されると共に、Lf を車輌の重心と前輪車軸との間の車輌前後方向の距離とし、Lr を車輌の重心と後輪車軸との間の車輌前後方向の距離とし、Iz を車輌のヨー慣性モーメントとして下記の数15に従って左右前輪及び左右後輪のそれぞれについて合計のコーナリングフォースFyf、Fyrが演算される。
【数15】
Fyf={M・V・Lr ・(βd +γ)+Iz ・γd }/L
Fyr={M・V・Lf ・(βd +γ)−Iz ・γd }/L
【0048】
ステップ53於いては、下記の数16に従って各輪のコーナリングフォースFyj(j=fl、fr、rl、rr)が演算される。
【数16】
Fyfl =Fyf・Fzfl /(Fzfl +Fzfr )
Fyfr =Fyf・Fzfr /(Fzfl +Fzfr )
Fyrl =Fyr・Fzrl /(Fzrl +Fzrr )
Fyrr =Fyr・Fzrr /(Fzrl +Fzrr )
【0049】
次に図7に示されたフローチャートを参照して左右後輪の摩擦円半径Rmrl 、Rmrr の演算について説明する。尚図7に示されたフローチャートによる演算は左後輪(j=rl)及び右後輪(j=rr)について個別に実行される。
【0050】
図7のサブルーチンのステップ101に於いては、平均前後力Fxj及びコーナリングフォースFyjに基づき下記の数17に従ってタイヤの発生力Fxyj が演算され、ステップ102に於いては車速Vに基づき図8に示されたグラフに対応するマップより目標車輪速度Vwtが演算される。
【数17】
Fxyj =(Fxj2 +Fyj21/2
【0051】
ステップ103に於いては、Vw1を正の定数として、実車輪速度Vwjが基準値Vwt+Vw1を越えているか否かの判別、即ち当該後輪が加速スリップの状態にあるか否かの判別が行われ、肯定判別が行われたときにはステップ104に於いてカウンタのカウント値Cs が1インクリメントされ、否定判別が行われたときにはステップ105に於いてカウンタのカウント値Cs が0にリセットされる。
【0052】
ステップ106に於いては、カウンタのカウント値Cs が基準値Cse(正の一定の整数)であるか否かの判別、即ち加速スリップが所定の時間継続したか否かの判別が行われ、肯定判別が行われたときにはステップ108へ進み、否定判別が行われたときにはステップ107へ進む。
【0053】
ステップ107に於いては、Vw2をVw1よりも大きい正の定数として、実車輪速度Vwjが基準値Vwt+Vw2を越えているか否かの判別、即ち当該後輪が過大な加速スリップの状態にあるか否かの判別が行われ、否定判別が行われたときには摩擦円半径が更新されることなくステップ10へ戻り、肯定判別が行われたときにはステップ108に於いてカウンタのカウント値Cs が0にリセットされ、ステップ109に於いて摩擦円半径Rmjがステップ101に於いて演算されたタイヤ発生力Fxyj に更新された後ステップ10へ戻る。
【0054】
かくして図示の実施形態によれば、ステップ20に於いて前後加速度Gx に基づく左右後輪の前後力Fxgrl、Fxgrrが演算され、ステップ30に於いてトルクコンバータの出力トルクに基づく左右後輪の前後力Fxtrl、Fxtrrが演算され、ステップ90に於いてこれらの重み平均値として左右後輪の前後力Fxrl 、Fxrr が演算される。
【0055】
またステップ40に於いて四輪の接地荷重Fzjが演算され、ステップ50に於いて各輪の接地荷重に基づき四輪のコーナリングフォースFyjが演算され、ステップ100に於いて左右後輪の前後力Fxrl 、Fxrr 及びコーナリングフォースFyrl 、Fyrr の二乗和平方根として左右後輪の摩擦円半径Rmrl 、Rmrr が演算される。
【0056】
従って図示の実施形態によれば、車輌全体としての摩擦円半径ではなく、左右後輪の摩擦円半径Rmrl 及びRmrr を個別に正確に推定することができ、これにより摩擦円半径との関連で左右後輪の駆動力を最適に制御して左右後輪のトラクションを最適に制御することができる。
【0057】
特に図示の実施形態によれば、左右後輪の前後力Fxrl 及びFxrr は前後加速度Gx に基づく前後力Fxgrl、Fxgrrとトルクコンバータの出力トルクに基づく前後力Fxtrl、Fxtrrとの重み平均値として演算され、ステップ60に於いて自動変速機の変速中である旨の判別が行われるとステップ80に於いてトルクコンバータの出力トルクに基づく前後力に対する重み係数Kx が0に設定されるので、自動変速機の変速に起因して左右後輪の駆動力が安定していない状況に於いてこれらに基づき左右後輪の前後力が演算されることに起因して左右後輪の摩擦円半径が不正確に演算されることを確実に防止することができる。
【0058】
尚変速機がマニュアル式の変速機である車輌の場合には、ステップ30、ステップ60〜90が省略され、ステップ100に於いて左右後輪の摩擦円半径Rmrl 、Rmrr は前後加速度Gx に基づく前後力Fxgrl、FxgrrとコーナリングフォースFyrl 、Fyrr との二乗和平方根として演算される。
【0059】
以上に於ては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0060】
例えば図示の実施形態に於いては、車輌は自動変速機が搭載された後輪駆動車であり、左右後輪の摩擦円半径が推定されるようになっているが、本発明は前輪駆動車の左右前輪の摩擦円半径の推定に適用されてもよい。
【0061】
また図示の実施形態に於いては、駆動輪である左右後輪の摩擦円半径が推定されるようになっているが、従動輪の操舵角が考慮された転がり抵抗やホイールシリンダ内の圧力等に基づき従動輪の前後力が演算され、これらの前後力及びステップ50に於いて演算される従動輪のコーナリングフォースの二乗和平方根として従動輪の摩擦円半径が推定されるよう構成されてもよい。
【0062】
【発明の効果】
以上の説明より明らかである如く、本発明の請求項1の構成によれば、各輪毎に横力及び前後力の二乗和平方根が演算され、各輪毎に車輪スリップが検出されたときの二乗和平方根が当該車輪の摩擦円半径と推定されるので、路面と各輪との間に作用する水平方向の力に基づき各輪毎に個別に摩擦円半径を正確に推定することができ、これにより駆動輪のトラクション制御や車輪の制駆動力を制御することによる車輌の挙動制御を過不足なく適切に行うことができる。特に車輌のヨーレート及び横加速度に基づき左右前輪の横力の合計及び左右後輪の横力の合計が演算され、車輌の前後加速度及び横加速度に基づき各輪の垂直荷重が演算され、各輪の横力がその車輪の垂直荷重に比例する値として左右前輪の横力の合計及び左右後輪の横力の合計に基づいて演算されるので、各輪の横力を正確に推定することができ、これにより各輪の摩擦円半径を正確に推定することができる。
【0063】
また本発明の請求項2の構成によれば、左右駆動輪の合計の駆動力が演算され、左右駆動輪の制駆動力差及び左右駆動輪の車輪回転慣性力差に基づき左右駆動輪の駆動力差が演算され、合計の駆動力及び駆動力差に基づき各駆動輪の前後力が演算されるので、各駆動輪の摩擦円半径の推定に必要な各駆動輪の前後力を正確に推定することができる。
【0064】
更に本発明の請求項3又は4の構成によれば、各駆動輪の前後力の推定に必要な左右駆動輪の合計の駆動力を確実に推定することができる。
【図面の簡単な説明】
【図1】自動変速機が搭載され本発明に従って左右後輪の摩擦円半径が推定される後輪駆動車を示す概略構成図(A)及び制御系のブロック線図(B)である。
【図2】実施形態に於ける左右後輪の摩擦円半径推定のメインルーチンを示すフローチャートである。
【図3】実施形態に於ける前後加速度Gx に基づく左右後輪の前後力Fxgrl、Fxgrr演算のサブルーチンを示すフローチャートである。
【図4】実施形態に於けるトルクコンバータの出力トルク基づく左右後輪の前後力Fxtrl、Fxtrr演算のサブルーチンを示すフローチャートである。
【図5】実施形態に於ける四輪の接地荷重Fzj演算のサブルーチンを示すフローチャートである。
【図6】実施形態に於ける四輪のコーナリングフォースFyj演算のサブルーチンを示すフローチャートである。
【図7】実施形態に於ける左右後輪の摩擦円半径Rmrl 、Rmrr 演算のサブルーチンを示すフローチャートである。
【図8】車速Vと目標車輪速度Vwtとの間の関係を示すグラフである。
【符号の説明】
10…エンジン
12…トルクコンバータ
16…自動変速機
20…ディファレンシャル
26…制動装置
28…油圧回路
30FL〜30RR…ホイールシリンダ
36…車輌運動制御コンピュータ
38…前後加速度センサ
40…横加速度センサ
42…車速センサ
44…ヨーレートセンサ
46RL、46RR…車輪速度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating a friction circle radius of a wheel, and more particularly to a method for estimating a friction circle radius for each wheel.
[0002]
[Prior art]
As one method of estimating the wheel frictional circle radius in a vehicle such as an automobile, the longitudinal acceleration and lateral acceleration of the vehicle are calculated as described in, for example, Japanese Patent Laid-Open No. 4-331668 concerning the application of the present applicant. A method of detecting and estimating a square sum of squares of longitudinal acceleration and lateral acceleration when a wheel slip occurs is conventionally known.
[0003]
Since the horizontal force acting between the road surface and the vehicle when the wheel is slipping is proportional to the friction coefficient of the road surface, the horizontal force is proportional to the square sum of squares of the longitudinal acceleration and lateral acceleration of the vehicle. According to the above-described method, the friction circle radius of the wheel can be estimated as a value corresponding to the friction coefficient of the road surface.
[0004]
[Problems to be solved by the invention]
However, in the conventional method for estimating the frictional circle radius according to the above-mentioned proposal, the frictional circle radius of the wheel is estimated based on the horizontal force of the entire vehicle, so a value corresponding to the friction coefficient of the road surface is set. Although it can be obtained, there is a problem that it is impossible to estimate the friction circle radius for each wheel individually.
[0005]
The present invention has been made in view of the in above-mentioned problems a method of estimating the friction circle radii of the past, the main object of the present invention, acting between the road surface and the wheels in each wheel By estimating the force in the horizontal direction, the friction circle radius is accurately estimated individually for each wheel.
[0006]
[Means for Solving the Problems]
According to the present invention, the main problems as described above are the steps of estimating the lateral force of each wheel and the longitudinal force of each wheel according to the configuration of claim 1, that is, the method of estimating the frictional circle radius of the wheel. A step of estimating, a step of calculating a square sum of squares of the lateral force and the longitudinal force for each wheel, a step of detecting a wheel slip for each wheel, and a wheel slip being detected for each wheel the SSR possess a step of estimating the friction circle radii of the wheel, the sum and the lateral forces of the left and right front wheels on the basis of the yaw rate and lateral acceleration of the vehicle is at a step of estimating the lateral force of each wheel The total lateral force of the left and right rear wheels is calculated, the vertical load of each wheel is calculated based on the longitudinal acceleration and lateral acceleration of the vehicle, and the lateral force of each wheel is calculated as a value proportional to the vertical load of the wheel. It is calculated based on the sum of the lateral forces of the sum and the left and right rear wheels of the lateral force It is achieved by a method characterized in that.
[0007]
According to the configuration of claim 1, the square sum of the square force of the lateral force and the longitudinal force is calculated for each wheel, and the square sum square root when the wheel slip is detected for each wheel is the friction circle radius of the wheel. Since it is estimated, the friction circle radius is accurately estimated individually for each wheel based on the horizontal force acting between the road surface and each wheel. In particular, the total lateral force of the left and right front wheels and the total lateral force of the left and right rear wheels are calculated based on the yaw rate and lateral acceleration of the vehicle, and the vertical load of each wheel is calculated based on the longitudinal acceleration and lateral acceleration of the vehicle. Since the lateral force is calculated based on the total lateral force of the left and right front wheels and the total lateral force of the left and right rear wheels as a value proportional to the vertical load of the wheel, the lateral force of each wheel is accurately estimated, The friction circle radius of each wheel is accurately estimated.
[0008]
According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1, the wheel is a drive wheel, and the step of estimating the longitudinal force is performed by the left and right drive wheels. A step of calculating a total driving force, a step of calculating a driving force difference between left and right driving wheels based on a braking / driving force difference between left and right driving wheels and a wheel rotational inertial force difference between left and right driving wheels, and the total driving force and And a step of calculating the longitudinal force of each driving wheel based on the driving force difference (configuration of claim 2).
[0009]
According to this configuration, the total driving force of the left and right driving wheels is calculated, and the driving force difference between the left and right driving wheels is calculated based on the braking / driving force difference between the left and right driving wheels and the wheel rotational inertia force difference between the left and right driving wheels. Since it is calculated and the longitudinal force of each driving wheel is calculated based on the total driving force and the driving force difference, the longitudinal force of each driving wheel is accurately estimated.
[0010]
Further, according to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 2, the left and right drive wheels are the left and right rear wheels of a rear wheel drive vehicle or the left and right front wheels of a front wheel drive vehicle. The total driving force of the left and right driving wheels is calculated as the product of the longitudinal acceleration of the vehicle and the weight of the vehicle (configuration of claim 3).
[0011]
In general, when the vehicle is a rear wheel drive vehicle or a front wheel drive vehicle, the longitudinal acceleration of the vehicle is equal to the total driving force of the left and right drive wheels. According to the third aspect of the present invention, the product of the longitudinal acceleration of the vehicle and the weight of the vehicle is calculated as the total driving force of the left and right driving wheels, so that the total driving force of the left and right driving wheels is reliably estimated. .
[0012]
Further, according to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 2, the left and right drive wheels are the left and right rear wheels of a rear wheel drive vehicle or the left and right front wheels of a front wheel drive vehicle. The total driving force of the left and right drive wheels is calculated based on the output torque of the torque converter (configuration of claim 4).
[0013]
Since the left and right driving wheels are driven by the output torque of the torque converter, the total driving force of the left and right driving wheels corresponds to the output torque of the torque converter. According to the configuration of the fourth aspect, since the total driving force of the left and right driving wheels is calculated based on the output torque of the torque converter, the total driving force of the left and right driving wheels is reliably estimated.
[0015]
[Preferred embodiment of the problem solving means]
According to one preferred embodiment of the present invention, in the configuration of the first aspect, longitudinal force of one of the driving wheels is calculated as one-half driving force difference than the sum of the driving force is subtracted value, The longitudinal force of the other driving wheel is configured to be calculated as the sum of the longitudinal force of one driving wheel and the driving force difference (preferred aspect 1 ).
[0016]
According to another preferred aspect of the present invention, in the configuration according to claim 3 or 4, the total driving force of the left and right driving wheels is calculated as a product of the longitudinal acceleration of the vehicle and the weight of the vehicle. It is comprised so that it may calculate as an average value of the driving force calculated based on force and the output torque of a torque converter (Preferred aspect 2 ).
[0017]
According to another preferred aspect of the present invention, in the configuration of the preferred aspect 2 described above, the driving force calculated based on the output torque of the torque converter is set to 0 for a predetermined time during and after the shift. (Preferred embodiment 3 ).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) of a control system showing a rear wheel drive vehicle in which an automatic transmission is mounted and a friction circle radius of left and right rear wheels is estimated according to the present invention.
[0020]
In FIG. 1, reference numeral 10 denotes an engine, and the driving force of the engine 10 is transmitted to a propeller shaft 18 via an automatic transmission 16 including a torque converter 12 and a transmission 14. The driving force of the propeller shaft 18 is transmitted to the left rear wheel axle 22L and the right rear wheel axle 22R by the differential 20, whereby the left and right rear wheels 24RL and 24RR which are driving wheels are rotationally driven.
[0021]
On the other hand, the left and right front wheels 24FL and 24FR are both driven wheels and steered wheels, which are not shown in FIG. 1, but are rack and pinion type driven in response to steering of the steering wheel by the driver. It is steered via a tie rod by a power steering device.
[0022]
The braking forces of the left and right front wheels 24FL, 24FR and the left and right rear wheels 24RL, 24RR are controlled by controlling the braking pressures of the corresponding wheel cylinders 30FL, 30FR, 30RL, 30RR by the hydraulic circuit 28 of the braking device 26. Although not shown in the drawing, the hydraulic circuit 28 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 32 by the driver. It is controlled by the master cylinder 34 and, if necessary, is controlled by a vehicle motion control computer 36 as will be described in detail later.
[0023]
The vehicle motion control computer 36 includes a signal indicating the longitudinal acceleration Gx of the vehicle from the longitudinal acceleration sensor 38, a signal indicating the lateral acceleration Gy of the vehicle from the lateral acceleration sensor 40, a signal indicating the vehicle speed V from the vehicle speed sensor 42, and a vehicle indicating the vehicle speed V from the yaw rate sensor 44. A signal indicating the yaw rate γ, a signal indicating the wheel speeds Vwrl and Vwrr of the left and right rear wheels from the wheel speed sensors 46RL and 46RR, and a pressure Prl and Prr in the wheel cylinders 30RL and 30RR of the left and right rear wheels from the pressure sensors 48RL and 48RR. A signal indicating the shift position SP of the automatic transmission 16 from the shift position sensor 50, a signal indicating the engine rotational speed Ne from the rotational speed sensor 52, and a signal indicating the output rotational speed Nout of the torque converter 12 from the rotational speed sensor 54 are input. Is done.
[0024]
The vehicle motion control computer 36 may actually be a microcomputer having a known configuration including a CPU, a ROM, a RAM, and an input / output port device. The longitudinal acceleration sensor 38 detects longitudinal acceleration with the vehicle acceleration direction as positive, and the lateral acceleration sensor 40 and yaw rate sensor 44 detect lateral acceleration and the like with the vehicle left turning direction as positive. Further, the pressures Prl and Prr in the wheel cylinders 30RL and 30RR for the left and right rear wheels may be estimated based on the pressure in the master cylinder 34, for example.
[0025]
Although not shown in the flowchart, the vehicle motion control computer 36 calculates the target wheel speed Vwt of the left and right rear wheels 24RL and 24RR, which are drive wheels, based on the vehicle speed V, and calculates the deviation between the actual wheel speed and the target wheel speed. The left and right rear wheel drive slip amounts SLrl and SLrr are calculated, and the left and right rear wheel target braking forces Ftrl and Ftrr are calculated as values proportional to the drive slip amounts SLrl and SLrr. The pressure in the wheel cylinders 30RL and 30RR is controlled so as to obtain a braking force.
[0026]
The vehicle motion control computer 36 calculates the longitudinal forces Fxgrl and Fxgrr of the left and right rear wheels based on the longitudinal acceleration Gx, calculates the longitudinal forces Fxtrl and Fxtrr of the left and right rear wheels based on the output torque of the torque converter, and averages them. The longitudinal forces Fxrl and Fxrr of the left and right rear wheels are calculated. Further, the computer 36 calculates the ground load Fzj of the four wheels, calculates the cornering force Fyj of the four wheels based on the ground load, and the left and right rear squares of the front and rear forces Fxrl and Fxrr and the cornering forces Fyrl and Fyrr of the left and right rear wheels. The friction circle radii Rmrl and Rmrr of the ring are calculated.
[0027]
In this case, when the target braking forces Ftrl and Ftrr of the left and right rear wheels calculated as values proportional to the driving slip amounts SLrl and SLrr are excessive with respect to the friction circle radii Rmrl and Rmrr, respectively, the vehicle motion control computer 36 makes the target braking force. Is guarded with a friction circle radius to prevent excessive braking force on the left and right rear wheels and optimally control the traction on the left and right rear wheels.
[0028]
Next, a main routine for calculating the frictional circle radius of the wheel in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The calculation according to the flowchart shown in FIG. 2 is started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals.
[0029]
First, at step 10, a signal indicating the longitudinal acceleration Gx of the vehicle is read, and at step 20, the longitudinal force Fxgrl of the left and right rear wheels based on the longitudinal acceleration Gx according to the subroutine shown in FIG. Fxgrr is calculated, and in step 30, the front and rear forces Fxtrl and Fxtrr of the left and right rear wheels based on the output torque of the torque converter 12 are calculated in accordance with the subroutine shown in FIG.
[0030]
In step 40, the four-wheel contact load Fzj (j = fl, fr, rl, rr) is calculated according to the subroutine shown in FIG. 5, and in step 50, the subroutine shown in FIG. The four-wheel cornering force Fyj (j = fl, fr, rl, rr) is calculated.
[0031]
In step 60, it is determined whether or not the automatic transmission 16 is shifting based on the SP signal from the shift position sensor 50, that is, during the shift stage of the automatic transmission or after the shift stage is completed. It is determined whether the driving force of the left and right rear wheels is not stable within a predetermined time. If a negative determination is made, the weighting coefficient in the calculation of step 90 is determined in step 70. If Kx is set to 1 and an affirmative determination is made, the weighting coefficient Kx is set to 0 in step 80.
[0032]
In step 90, the longitudinal forces Fxrl and Fxrr of the left and right rear wheels according to the following formula 1 are used as weighted average values of the longitudinal forces Fxgrl and Fxgrr based on the longitudinal acceleration Gx and the longitudinal forces Fxtrl and Fxtrr based on the output torque of the torque converter. In step 100, the friction circle radii Rmrl and Rmrr of the left and right rear wheels are calculated according to the subroutine shown in FIG.
[Expression 1]
Fxrl = (Fxgrl + Kx · Fxtrl) / 2
Fxrr = (Fxgrr + Kx · Fxtrr) / 2
[0033]
In step 21 of the left and right rear wheel front / rear force Fxgrl and Fxgrr calculation routine shown in FIG. 3, the total front / rear force Fxall of the left and right rear wheels is calculated according to the following equation 2 where M is the weight of the vehicle. In 22, correction values Fxbrl and Fxbrr for the braking force of the left and right rear wheels are calculated according to the following equation 3 using Cpf as the conversion coefficient from the brake hydraulic pressure to the longitudinal force.
[0034]
[Expression 2]
Fxall = M ・ Gx
[Equation 3]
Fxbrl = Cpf ・ Prl
Fxbrr = Cpf ・ Prr
[0035]
In step 23, wheel accelerations Vwdrl and Vwdrr are calculated as time differential values of the wheel speeds Vwrl and Vwrr of the left and right rear wheels, and Cwf is converted into the left and right according to the following equation 4 as a conversion coefficient from the wheel acceleration to the longitudinal force. Correction values Fxirl and Fxirr for the rotational inertia force of the rear wheels are calculated.
[Expression 4]
Fxirl = Cwf ・ Vwdrl
Fxirr = Cwf ・ Vwdrr
[0036]
In step 24, the longitudinal force difference ΔFxr between the left and right rear wheels is calculated according to the following equation 5, and in step 25, the longitudinal forces Fxgrl and Fxgrr of the left and right rear wheels based on the longitudinal acceleration Gx are calculated according to equation 6 below. Calculated.
[0037]
[Equation 5]
ΔFxr = (Fxbrl + Fxirl) − (Fxbrr + Fxirr)
[Formula 6]
Fxgrl = (Fxall−ΔFxr) / 2
Fxgrr = (Fxall + ΔFxr) / 2
[0038]
In step 31 of the left and right rear wheel front / rear force Fxtrl, Fxtrr calculation routine shown in FIG. 4, the torque converter is operated according to the following equation 7 based on the rotational speed Ne of the engine 10 and the output rotational speed Nout of the torque converter 12. A slip ratio Rsl is calculated.
[Expression 7]
Rsl = Ne / Nout (when Ne ≥ Nout)
Rsl = Nout / Ne (when Ne <Nout)
[0039]
In step 32, the capacity coefficient Cp of the torque converter is calculated from a map not shown in the figure for determining the capacity coefficient Cp of the torque converter 12 from the slip ratio Rsl. An input torque Tin of the torque converter is calculated according to Equation 8.
[Equation 8]
Tin = Cp ・ Ne 2
[0040]
In step 34, the torque ratio Rtq of the torque converter is calculated from a map not shown in the figure for obtaining the torque ratio Rtq of the torque converter 12 from the slip ratio Rsl. 9 is used to calculate the output torque Tout of the torque converter.
[Equation 9]
Tout = Tin · Rtq
[0041]
In step 36, the correction values Fxbrl and Fxbrr for the braking forces of the left and right rear wheels are calculated according to the above equation 3, as in step 22 of the flowchart shown in FIG. As in step 23 of the flowchart shown in FIG. 3, correction values Fxirl and Fxirr for the rotational inertial forces of the left and right rear wheels are calculated according to the above equation (4). At step 38, the torque converter is calculated according to the following equation (10). The front and rear forces Fxtrl and Fxtrr of the left and right rear wheels based on the output torque Tout are calculated.
[Expression 10]
Fxtrl = Tout / 2-Fxbrl + Fxirl
Fxtrr = Tout / 2−Fxbrr + Fxirr
[0042]
In step 41 of the four-wheel contact load Fzj calculation routine shown in FIG. 5, H is the center of gravity of the vehicle, L is the vehicle wheel base, and Tr is the vehicle tread. The forward and backward load movement amounts ΔFx and ΔFy resulting from the longitudinal acceleration Gx and the lateral acceleration Gy are calculated.
[Expression 11]
ΔFx = M ・ H ・ Gx / L
ΔFy = M ・ H ・ Gy / Tr
[0043]
In step 42, Mf and Mr are the weights of the vehicles carried by the left and right front wheels and the left and right rear wheels, g is the gravitational acceleration, and Kf is the roll stiffness distribution ratio of the front wheels (a positive constant less than 1). The ground contact loads Fzfi, Fzfo, Fzri, Fzro of the turning inner front wheel, the turning outer front wheel, the turning inner rear wheel, and the turning outer rear wheel are calculated according to the following equation (12).
[Expression 12]
Fzfi = Mf.g-.DELTA.Fx / 2-.DELTA.Fy.Kf
Fzfo = Mf.g-.DELTA.Fx / 2 + .DELTA.Fy.Kf
Fzri = Mr.g + .DELTA.Fx / 2-.DELTA.Fy. (1-Kf)
Fzro = Mr.g + .DELTA.Fx / 2 + .DELTA.Fy. (1-Kf)
[0044]
In step 43, it is determined whether or not the lateral acceleration Gy of the vehicle is positive, that is, whether or not the vehicle is turning left, and if an affirmative determination is made, If the four wheel contact load Fzj (j = fl, fr, rl, rr) is set according to the following equation 13 and a negative determination is made, then at step 45, the four wheel contact load Fzj according to the following equation 14: Is set. Note that the turning direction of the vehicle may be determined by determining the sign of the steering angle or yaw rate γ, or a combination thereof.
[0045]
[Formula 13]
Fzfl = Fzfi
Fzfr = Fzfo
Fzrl = Fzri
Fzrr = Fzro
[Expression 14]
Fzfl = Fzfo
Fzfr = Fzfi
Fzrl = Fzro
Fzrr = Fzri
[0046]
In step 51 of the four-wheel cornering force Fyj calculation routine shown in FIG. 6, the lateral acceleration is calculated as a deviation Gy−V · γ between the lateral acceleration Gy of the vehicle and the product V · γ of the vehicle speed V and the yaw rate γ. The deviation, that is, the side slip acceleration Vyd of the vehicle is calculated, and the side slip acceleration Vyd is integrated to calculate the side slip speed Vy of the vehicle body. Further, the ratio Vy of the vehicle body side slip velocity Vy to the vehicle body longitudinal speed Vx (= vehicle speed V). The slip angle β of the vehicle body is calculated as / Vx.
[0047]
In step 52, the differential value βd of the slip angle β of the vehicle body and the differential value γd of the vehicle yaw rate γ are calculated, and Lf is the distance in the longitudinal direction of the vehicle between the center of gravity of the vehicle and the front axle. Lr is the vehicle longitudinal distance between the center of gravity of the vehicle and the rear axle, and Iz is the yaw moment of inertia of the vehicle. The total cornering forces Fyf and Fyr for each of the left and right front wheels and the left and right rear wheels are as follows: Calculated.
[Expression 15]
Fyf = {M · V · Lr · (βd + γ) + Iz · γd} / L
Fyr = {M · V · Lf · (βd + γ) −Iz · γd} / L
[0048]
In step 53, the cornering force Fyj (j = fl, fr, rl, rr) of each wheel is calculated according to the following equation (16).
[Expression 16]
Fyfl = Fyf · Fzfl / (Fzfl + Fzfr)
Fyfr = Fyf · Fzfr / (Fzfl + Fzfr)
Fyrl = Fyr · Fzrl / (Fzrl + Fzrr)
Fyrr = Fyr · Fzrr / (Fzrl + Fzrr)
[0049]
Next, the calculation of the friction circle radii Rmrl and Rmrr of the left and right rear wheels will be described with reference to the flowchart shown in FIG. The calculation according to the flowchart shown in FIG. 7 is executed individually for the left rear wheel (j = rl) and the right rear wheel (j = rr).
[0050]
In step 101 of the subroutine of FIG. 7, the generated force Fxyj of the tire is calculated according to the following equation 17 based on the average longitudinal force Fxj and the cornering force Fyj, and in step 102 shown in FIG. The target wheel speed Vwt is calculated from the map corresponding to the graph.
[Expression 17]
Fxyj = (Fxj 2 + Fyj 2 ) 1/2
[0051]
In step 103, it is determined whether Vw1 is a positive constant and whether the actual wheel speed Vwj exceeds the reference value Vwt + Vw1, that is, whether the rear wheel is in an acceleration slip state. When a positive determination is made, the count value Cs of the counter is incremented by 1 in step 104, and when a negative determination is made, the count value Cs of the counter is reset to 0 in step 105.
[0052]
In step 106, it is determined whether or not the count value Cs of the counter is the reference value Cse (a positive constant integer), that is, whether or not the acceleration slip has continued for a predetermined time. When a determination is made, the process proceeds to step 108, and when a negative determination is made, the process proceeds to step 107.
[0053]
In step 107, it is determined whether or not the actual wheel speed Vwj exceeds the reference value Vwt + Vw2 with Vw2 being a positive constant larger than Vw1, that is, whether or not the rear wheel is in an excessive acceleration slip state. When a negative determination is made, the friction circle radius is not updated, and the routine returns to step 10, and when an affirmative determination is made, the count value Cs of the counter is reset to 0 at step 108. In step 109, the frictional circle radius Rmj is updated to the tire generation force Fxyj calculated in step 101, and then the process returns to step 10.
[0054]
Thus, according to the illustrated embodiment, the front / rear forces Fxgrl and Fxgrr of the left and right rear wheels based on the longitudinal acceleration Gx are calculated at step 20, and the front / rear forces of the left and right rear wheels based on the output torque of the torque converter are calculated at step 30. Fxtrl and Fxtrr are calculated, and in step 90, the longitudinal forces Fxrl and Fxrr of the left and right rear wheels are calculated as the weighted average values.
[0055]
In step 40, the ground contact load Fzj of the four wheels is calculated. In step 50, the cornering force Fyj of the four wheels is calculated based on the ground load of each wheel. In step 100, the longitudinal force Fxrl of the left and right rear wheels is calculated. , Fxrr and cornering forces Fyrl and Fyrr are calculated as the square sum of squares of friction circle radii Rmrl and Rmrr of the left and right rear wheels.
[0056]
Therefore, according to the illustrated embodiment, it is possible to accurately estimate the friction circle radii Rmrl and Rmrr of the left and right rear wheels independently of the friction circle radius of the entire vehicle, and thereby the right and left in relation to the friction circle radius. The traction of the left and right rear wheels can be optimally controlled by optimally controlling the driving force of the rear wheels.
[0057]
In particular, according to the illustrated embodiment, the longitudinal forces Fxrl and Fxrr of the left and right rear wheels are calculated as weighted average values of the longitudinal forces Fxgrl and Fxgrr based on the longitudinal acceleration Gx and the longitudinal forces Fxtrl and Fxtrr based on the output torque of the torque converter. When it is determined in step 60 that the automatic transmission is shifting, the weight coefficient Kx for the longitudinal force based on the output torque of the torque converter is set to 0 in step 80, so that the automatic transmission In the situation where the driving force of the left and right rear wheels is not stable due to the shift of the left and right, the frictional circle radius of the left and right rear wheels is inaccurate due to the calculation of the longitudinal force of the left and right rear wheels based on these It is possible to reliably prevent calculation.
[0058]
In the case of a vehicle in which the transmission is a manual transmission, steps 30 and 60 to 90 are omitted. In step 100, the friction circle radii Rmrl and Rmrr of the left and right rear wheels are determined based on the longitudinal acceleration Gx. It is calculated as the square sum of squares of the forces Fxgrl and Fxgrr and the cornering forces Fyrl and Fyrr.
[0059]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
[0060]
For example, in the illustrated embodiment, the vehicle is a rear wheel drive vehicle equipped with an automatic transmission, and the friction circle radius of the left and right rear wheels is estimated. It may be applied to estimate the friction circle radius of the left and right front wheels.
[0061]
In the illustrated embodiment, the frictional circle radii of the left and right rear wheels, which are drive wheels, are estimated, but the rolling resistance, the pressure in the wheel cylinder, etc. in consideration of the steering angle of the driven wheels, etc. The longitudinal force of the driven wheel is calculated on the basis of the above, and the frictional circle radius of the driven wheel is estimated as the square sum square root of the longitudinal force and the cornering force of the driven wheel calculated in step 50. .
[0062]
【The invention's effect】
As is clear from the above description, according to the configuration of claim 1 of the present invention, the square sum of squares of the lateral force and the longitudinal force is calculated for each wheel, and the wheel slip is detected for each wheel. Since the square sum of squares is estimated as the friction circle radius of the wheel, the friction circle radius can be accurately estimated individually for each wheel based on the horizontal force acting between the road surface and each wheel, Thus, the vehicle behavior control by controlling the traction control of the driving wheel and the braking / driving force of the wheel can be appropriately performed without excess or deficiency. In particular, the total lateral force of the left and right front wheels and the total lateral force of the left and right rear wheels are calculated based on the yaw rate and lateral acceleration of the vehicle, and the vertical load of each wheel is calculated based on the longitudinal acceleration and lateral acceleration of the vehicle. Since the lateral force is calculated based on the total lateral force of the left and right front wheels and the total lateral force of the left and right rear wheels as a value proportional to the vertical load of the wheel, the lateral force of each wheel can be accurately estimated. Thus, the friction circle radius of each wheel can be accurately estimated.
[0063]
According to the second aspect of the present invention, the total driving force of the left and right driving wheels is calculated, and the left and right driving wheels are driven based on the braking / driving force difference between the left and right driving wheels and the wheel rotational inertia force difference between the left and right driving wheels. The force difference is calculated, and the longitudinal force of each driving wheel is calculated based on the total driving force and the driving force difference. Therefore, the longitudinal force of each driving wheel necessary for estimating the friction circle radius of each driving wheel is accurately estimated. can do.
[0064]
Furthermore, according to the structure of Claim 3 or 4 of this invention, the total driving force of the right-and-left driving wheel required for estimation of the longitudinal force of each driving wheel can be estimated reliably.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram (A) and a block diagram (B) of a control system showing a rear wheel drive vehicle equipped with an automatic transmission and in which the friction circle radius of left and right rear wheels is estimated according to the present invention.
FIG. 2 is a flowchart showing a main routine for estimating a friction circle radius of left and right rear wheels in the embodiment.
FIG. 3 is a flowchart showing a subroutine for calculating front and rear force Fxgrl and Fxgrr of the left and right rear wheels based on the longitudinal acceleration Gx in the embodiment.
FIG. 4 is a flowchart showing a subroutine for calculating front and rear force Fxtrl and Fxtrr of the left and right rear wheels based on the output torque of the torque converter in the embodiment.
FIG. 5 is a flowchart showing a subroutine for calculating a contact load Fzj of four wheels in the embodiment.
FIG. 6 is a flowchart showing a subroutine of four-wheel cornering force Fyj calculation in the embodiment.
FIG. 7 is a flowchart showing a subroutine for calculating friction circle radii Rmrl and Rmrr of left and right rear wheels in the embodiment.
FIG. 8 is a graph showing a relationship between a vehicle speed V and a target wheel speed Vwt.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Engine 12 ... Torque converter 16 ... Automatic transmission 20 ... Differential 26 ... Braking device 28 ... Hydraulic circuit 30FL-30RR ... Wheel cylinder 36 ... Vehicle motion control computer 38 ... Longitudinal acceleration sensor 40 ... Lateral acceleration sensor 42 ... Vehicle speed sensor 44 ... Yaw rate sensors 46RL, 46RR ... Wheel speed sensors

Claims (4)

車輪の摩擦円半径を推定する方法にして、各輪の横力を推定する工程と、各輪の前後力を推定する工程と、各輪毎に前記横力及び前記前後力の二乗和平方根を演算する工程と、各輪毎に車輪スリップを検出する工程と、各輪毎に車輪スリップが検出されたときの前記二乗和平方根を当該車輪の摩擦円半径と推定する工程とを有し、前記各輪の横力を推定する工程に於いては車輌のヨーレート及び横加速度に基づき左右前輪の横力の合計及び左右後輪の横力の合計が演算され、車輌の前後加速度及び横加速度に基づき各輪の垂直荷重が演算され、各輪の横力がその車輪の垂直荷重に比例する値として前記左右前輪の横力の合計及び前記左右後輪の横力の合計に基づいて演算されることを特徴とする方法。A method for estimating the frictional circle radius of the wheel, a step of estimating the lateral force of each wheel, a step of estimating the longitudinal force of each wheel, and the square sum of squares of the lateral force and the longitudinal force for each wheel. a step of calculating, the step of detecting wheel slip for each wheel, and a step of the square root of sum of squares when the wheel slip is detected for each wheel for estimating the friction circle radii of the wheels possess, the In the process of estimating the lateral force of each wheel, the total lateral force of the left and right front wheels and the lateral force of the left and right rear wheels are calculated based on the yaw rate and lateral acceleration of the vehicle, and based on the longitudinal acceleration and lateral acceleration of the vehicle. vertical load of each wheel is calculated, Rukoto is calculated based on the sum of the lateral forces of the sum and the left and right rear wheels of the lateral force of the left and right front wheels as a value the lateral force of each wheel is proportional to the vertical load of the wheel A method characterized by. 前記車輪は駆動輪であり、前記前後力を推定する工程は左右駆動輪の合計の駆動力を演算する工程と、左右駆動輪の制駆動力差及び左右駆動輪の車輪回転慣性力差に基づき左右駆動輪の駆動力差を演算する工程と、前記合計の駆動力及び前記駆動力差に基づき各駆動輪の前後力を演算する工程とを含むことを特徴とする請求項1に記載の方法。The wheel is a drive wheel, and the step of estimating the longitudinal force is based on the step of calculating the total drive force of the left and right drive wheels, and the braking / driving force difference between the left and right drive wheels and the wheel rotation inertia force difference between the left and right drive wheels. The method according to claim 1, comprising: calculating a driving force difference between left and right driving wheels; and calculating a longitudinal force of each driving wheel based on the total driving force and the driving force difference. . 前記左右駆動輪は後輪駆動車の左右後輪又は前輪駆動車の左右前輪であり、前記左右駆動輪の合計の駆動力は車輌の前後加速度と車輌の重量との積として演算されることを特徴とする請求項2に記載の方法。The left and right drive wheels are the left and right rear wheels of a rear wheel drive vehicle or the left and right front wheels of a front wheel drive vehicle, and the total driving force of the left and right drive wheels is calculated as a product of a vehicle longitudinal acceleration and a vehicle weight. 3. A method according to claim 2, characterized in that 前記左右駆動輪は後輪駆動車の左右後輪又は前輪駆動車の左右前輪であり、前記左右駆動輪の合計の駆動力はトルクコンバータの出力トルクに基づき演算されることを特徴とする請求項2に記載の方法。The left and right drive wheels are left and right rear wheels of a rear wheel drive vehicle or left and right front wheels of a front wheel drive vehicle, and a total driving force of the left and right drive wheels is calculated based on an output torque of a torque converter. 2. The method according to 2.
JP27644897A 1997-09-24 1997-09-24 Estimation method of friction circle radius of wheel Expired - Lifetime JP3948076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27644897A JP3948076B2 (en) 1997-09-24 1997-09-24 Estimation method of friction circle radius of wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27644897A JP3948076B2 (en) 1997-09-24 1997-09-24 Estimation method of friction circle radius of wheel

Publications (2)

Publication Number Publication Date
JPH1191538A JPH1191538A (en) 1999-04-06
JP3948076B2 true JP3948076B2 (en) 2007-07-25

Family

ID=17569581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27644897A Expired - Lifetime JP3948076B2 (en) 1997-09-24 1997-09-24 Estimation method of friction circle radius of wheel

Country Status (1)

Country Link
JP (1) JP3948076B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842185B2 (en) * 2007-03-22 2011-12-21 富士重工業株式会社 Vehicle driving force control device
JP5419375B2 (en) * 2008-03-31 2014-02-19 株式会社アドヴィックス Vehicle wheel lateral force estimation device
JP7103080B2 (en) * 2018-08-31 2022-07-20 株式会社アドヴィックス Vehicle control device
WO2023210535A1 (en) * 2022-04-28 2023-11-02 三菱自動車工業株式会社 Control device for vehicle

Also Published As

Publication number Publication date
JPH1191538A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
JP3937524B2 (en) Vehicle braking / driving force control device
US6094614A (en) Driving force distribution control system and road friction coefficient estimating apparatus
US6564140B2 (en) Vehicle dynamics control system and vehicle having the vehicle dynamics control system
US8244432B2 (en) Road-surface friction-coefficient estimating device
JP3458839B2 (en) Road surface maximum friction coefficient estimation device
JP3707276B2 (en) Vehicle motion control device
EP1338490B1 (en) Method of controlling travelling stability of vehicle
JP3669668B2 (en) Vehicle wheel slip angle detection device
US20050096830A1 (en) Integrated control apparatus for vehicle
US6980900B2 (en) Method for determining an estimate of the mass of a motor vehicle
US8958967B2 (en) Vehicle braking-force control device
JP3607985B2 (en) Vehicle body speed estimation device and control device
JPH09226559A (en) Reference wheelspeed calculation device for controlling brake force and drive force
JP3827837B2 (en) Vehicle motion control device
JP3997923B2 (en) Regenerative braking control device for vehicle
JP3948076B2 (en) Estimation method of friction circle radius of wheel
JP3662187B2 (en) Road slope estimation device
CN107487326A (en) The control method and device of vehicle traction
JP4158539B2 (en) Vehicle wheel state estimation device
JP4055225B2 (en) Vehicle braking / driving force control device
JP3612194B2 (en) Road surface friction coefficient detector
JPH1178836A (en) Driving force control device for four-wheel drive vehicle
JP3770301B2 (en) Vehicle behavior control device
JP3817922B2 (en) Vehicle motion control device
JP4957272B2 (en) Vehicle speed information estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

EXPY Cancellation because of completion of term