JP3945022B2 - 車両用空調装置 - Google Patents
車両用空調装置 Download PDFInfo
- Publication number
- JP3945022B2 JP3945022B2 JP17150698A JP17150698A JP3945022B2 JP 3945022 B2 JP3945022 B2 JP 3945022B2 JP 17150698 A JP17150698 A JP 17150698A JP 17150698 A JP17150698 A JP 17150698A JP 3945022 B2 JP3945022 B2 JP 3945022B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- heat exchanger
- vehicle
- cold air
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Air-Conditioning For Vehicles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、冷房用熱交換器を略水平に近い角度で配置する車両用空調装置における凝縮水の排水性向上に関する。
【0002】
【従来の技術】
本出願人においては、特開平9−123748号公報にて、冷房用熱交換器を下側で、暖房用熱交換器を上側に配置して、この両熱交換器を略水平に近い角度で配置する車両用空調装置を提案している。この従来装置では、熱交換器部を略水平に近い角度で配置するとともに、送風機ユニット部からの送風空気を冷房用熱交換器の下側に導入した後、冷房用熱交換器と暖房用熱交換器を下方から上方へ空気を通過させる配置レイアウトにしている。
【0003】
これにより、特に、車両上下方向および車両前後方向の寸法を縮小して、空調装置の車両への搭載性を改善している。
【0004】
【発明が解決しようとする課題】
ところで、上記従来装置では、冷房用熱交換器を略水平に近い角度で配置し、
下方から上方へ空気を通過させているので、冷房用熱交換器で発生する凝縮水の落下方向と、冷房用熱交換器を通過する空気の流れ方向とが逆方向となり、この結果、凝縮水を排出しにくいという問題がある。
【0005】
本発明は上記点に鑑みてなされたもので、冷房用熱交換器を略水平に近い角度で配置し、下方から上方へ空気を通過させる車両用空調装置において、冷房用熱交換器で発生する凝縮水の排水性を向上することを目的とする。
【0006】
【課題を解決するための手段】
本発明は以下の点に着目して上記目的を達成しようとするものである。
すなわち、冷房用熱交換器(12)を水平面から若干の角度だけ傾斜配置して、冷房用熱交換器(12)の傾斜方向の下方端に凝縮水を集めて、冷房用熱交換器(12)から凝縮水をスムースに排出させることが考えられる。しかし、このタイプのものを本発明者らが実際に試作検討してみると、最大冷房時に開放される冷風バイパス通路(23)の位置によって、凝縮水の排水性に大きな影響が生じることが分かった。
【0007】
つまり、冷風バイパス通路(23)は、最大冷房時に暖房用熱交換器(13)をバイパスする空気流れ(冷風の流れ)を形成するように暖房用熱交換器(13)の側方に配置されるものであるが、この冷風バイパス通路(23)を冷房用熱交換器(12)の傾斜方向の下方端側に対向して配置すると、冷風バイパス通路(23)による通風抵抗減少のために、冷房用熱交換器のうち、傾斜方向の下方端側に風速分布の高い部位が形成される。
【0008】
すると、冷房用熱交換器(12)の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、風速の高い空気流れにより凝縮水が冷房用熱交換器(12)下流側(上方側)へ飛散するという水飛び現象が発生する。最悪の場合、水飛びが吹出口部まで到達し、水滴が車室内へ飛散する事態も生じる。
このように、冷風バイパス通路(23)による風速分布の高い部位が冷房用熱交換器(12)の傾斜方向の下方端側に形成されると、冷房用熱交換器(12)下流側への水飛びが顕著になることが判明した。
【0009】
そこで、請求項1ないし4記載の発明では、上記の水飛び発生原因に着目して、冷房用熱交換器(12)の傾斜方向の上方端側に冷風バイパス通路(23)を配置することを特徴としている。
これによると、冷房用熱交換器(12)の傾斜方向の上方端側に冷風バイパス通路(23)による風速分布の高い部位が形成され、一方、冷房用熱交換器(12)の傾斜方向の下方端側には冷風バイパス通路(23)が位置しないので、通過空気の風速が低下する。
【0010】
従って、冷房用熱交換器(12)の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、凝縮水が集中する下方端側部位では空気の風速が低いので、凝縮水の水飛びが生じにくい。その結果、冷房用熱交換器(12)の傾斜方向の下方端側に集まった凝縮水を空気流れ下流側への飛散を良好に抑制して、凝縮水の排水性を向上できる。
【0011】
なお、上記各手段に付した括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示す。
【0012】
【発明の実施の形態】
以下本発明を図に示す一実施形態について説明する。
図1は本発明の一実施形態における空調装置通風系の概要を示しており、通風系は、大別して、図示しない送風機ユニットと、図1に示す空調ユニット10の2つの部分に分かれている。空調ユニット10部は、車室内の計器盤下方部のうち、車両左右方向の略中央部に配置されるものである。一方、送風機ユニットは車室内左右方向において空調ユニット10の側方(助手席側)にオフセット配置される。
【0013】
送風機ユニットは周知の構成であり、内気(車室内空気)と外気(車室外空気)を切替導入する内外気切替箱を備えており、この内外気切替箱を通して導入された空気(内気または外気)をモータ駆動の遠心多翼ファン(シロッコファン)により送風するようになっている。
次に、空調ユニット10部は空調ケース11内に蒸発器12とヒータコア13とを両方とも一体的に内蔵するタイプのものである。空調ケース11はポリプロピレンのような、ある程度の弾性を有し、強度的にも優れた樹脂の成形品からなり、複数に分割された分割ケースからなる。この複数の分割ケース内に、上記熱交換器12、13、後述するドア等の機器を収納した後に、この複数の分割ケースを金属バネクリップ、ネジ等の締結手段により一体に結合することにより、空調ユニット10部が組み立てられる。
【0014】
空調ケース11内において車両下方側の部位に蒸発器12が水平面より微小角度θ1 だけ傾斜して配置されている。ここで、蒸発器12の傾斜角度θ1 は例えば、22°程度であり、蒸発器12は空調ケース11内の空気通路の全域にわたって配置されている。また、蒸発器12の下方空間には送風機ユニットの吹出側から空気が流入する空気入口部14が開口している。
【0015】
蒸発器12は周知のごとく冷凍サイクルの冷媒の蒸発潜熱を空調空気から吸熱して、空調空気を冷却する冷房用熱交換器である。なお、蒸発器12は周知の積層型のものであって、アルミニュウム等の金属薄板を最中状に2枚張り合わせて構成した偏平チューブをコルゲートフィンを介在して多数積層配置し、一体ろう付けしたものである。この偏平チューブとコルゲートフィンの積層方向を図1の紙面垂直方向(車両左右方向)に設定することにより、空気入口部14から流入した空調空気が蒸発器12下方部で上方へ方向転換して、空調空気が蒸発器12を下方から上方へ通過する。
【0016】
また、ヒータコア13は、蒸発器12の空気流れ下流側(車両上方側)に隣接配置されており、このヒータコア13は、蒸発器12を通過した冷風を再加熱する暖房用熱交換器であって、その内部に高温の温水(エンジン冷却水)が流れ、この温水を熱源として空気を加熱するものである。
このヒータコア13も蒸発器12と同様に、水平面より微小角度θ2 だけ傾斜して配置されている。ここで、ヒータコア13の傾斜角度θ2 は27度程度である。ヒータコア13は、温水入口側タンク13aと温水出口側タンク13bとの間に熱交換用コア部13cを構成し、このコア部13cはアルミニュウム等の金属薄板を断面偏平状に形成した偏平チューブとコルゲートフィンとを多数積層配置している。ヒータコア13全体は、組付後に一体ろう付けにより接合される。
【0017】
温水入口側タンク13aには温水弁15を介して図示しない車両エンジンで加熱された温水が流入する。その後に、温水はコア部13cの各チューブを温水出口側タンク13bへ向かって一方向に流れる。そして、温水弁15はヒータコア13に流入する温水の流量を調整することにより、ヒータコア13の吹出空気温度(車室内への吹出空気温度)を調整する温度調整手段を構成する。この温水弁15は周知の構成のものでよく、例えば、弁ハウジング内に弁体を回動可能に収納し、この弁体の回動量を連続的に可変することにより、弁ハウジング内の温水流路の開口面積を連続的に可変して、温水流量を調整するものである。
【0018】
次に、ヒータコア13の空調ケース11内での配置形態をより具体的に説明すると、ヒータコア13の温水出口側タンク13bが下方側に位置し、また、温水入口側タンク13aが上方側に位置するようにして、ヒータコア13を傾斜配置している。その場合、ヒータコア13の温水出口側タンク13bの側方(車両後方側)に隣接してフット開口部16が配置されている。また、ヒータコア13のコア部13cの上方側にフェイス開口部17とデフロスタ開口部18が配置されている。
【0019】
ここで、フット開口部16にはフット吹出口19が連通しており、フット吹出口19は空調ケース11の下方側で、車両後方側の左右両端部に開口している。
このフット吹出口19から車室内の運転席側および助手席側の両方の乗員足元に向けて温風が吹き出される。上記したフット開口部16は、回転軸20aにより回動自在な平板状のフットドア20により開閉される。
【0020】
また、フェイス開口部17は空調ケース11の上面部において車両前方側の部位に開口しており、このフェイス開口部17は図示しないフェイスダクトを介して車両計器盤上方部のフェイス吹出口より乗員頭部に向けて風を吹き出すためのものである。このフェイス開口部17は、回転軸21aにより回動自在な平板状のフェイスドア21により開閉される。
【0021】
また、デフロスタ開口部18は空調ケース11の上面部において車両前方側の部位に開口しており、このデフロスタ開口部18は図示しないデフロスタダクトおよびデフロスタ吹出口を介して、車両窓ガラス内面に向けて風を吹き出すためのものである。このデフロスタ開口部18は、回転軸22aにより回動自在な平板状のデフロスタドア22により開閉される。
【0022】
さらに、空調ケース11内において、ヒータコア13は蒸発器12に比して図1の車両前後方向の寸法が小さくなっており、これにより、ヒータコア13の温水入口側タンク13aを空調ケース11の車両前方側の内壁面より所定間隔だけ開けて配置して、温水入口側タンク13aと空調ケース11の内壁面との間に、ヒータコア13をバイパスして空気(冷風)が流れる冷風バイパス通路23を形成している。この冷風バイパス通路23は、回転軸24aにより回動自在な平板状の冷風バイパスドア24により開閉される。
【0023】
ヒータコア13は、蒸発器12と同一方向に傾斜(すなわち、車両後方側が下で、車両前方側が上となる傾斜)しているので、冷風バイパス通路23は、蒸発器12の上方側で、かつ、蒸発器12の傾斜方向の上方端側(図1の右端側)に対向配置されている。
なお、フットドア20、フェイスドア21、およびデフロスタドア22は吹出モード切替用のドア手段であって、図示しないリンク機構等を介してサーボモータを用いたモード切替用アクチュエータ機構により操作される。
【0024】
また、温水弁15は温度調整手段であって、図示しないリンク機構等を介してサーボモータを用いた温度調整用アクチュエータ機構により操作される。同様に、冷風バイパスドア24も図示しないリンク機構等を介してサーボモータを用いたアクチュエータ機構により独立に操作される。
上記アクチュエータ機構の各サーボモータ等の機器は図示しない空調用制御装置により作動が制御されるようになっている。この制御装置は周知のごとくマイクロコンピュータとその周辺回路とから構成されるものであって、空調操作パネルに設けられた各種操作部材からの操作信号および内外気温度、日射量、蒸発器吹出温度、温水温度等の各種センサの検出信号が入力される。そして、空調用制御装置は予め設定された所定のプログラムに基づいて、上記の操作信号および検出信号に対する演算処理を行って、アクチュエータ機構の各サーボモータ等の機器の作動を制御するようになっている。
【0025】
次に、上記構成において本実施形態の作動を吹出モード別に説明する。
(1)フット吹出モード
冬期の暖房時にフット吹出モードが選択されると、フットドア20がフット開口部16を全開し、フェイスドア21がフェイス開口部17を全閉する。デフロスタドア22はデフロスタ開口部18を少量開放する。そして、暖房始動時等において、最大暖房状態にあるときは、温水弁15が全開状態となり、ヒータコア13に最大流量の温水が循環する。また、冷風バイパスドア24は冷風バイパス通路23の全閉位置(図1の2点鎖線位置)に操作される。
【0026】
これにより、図示しない送風機ユニットからの送風空気が空気入口部14から蒸発器12を通過後に全量ヒータコア13のコア部13cを通過するとともに、温水流量が最大となることにより、温水からの放熱量が最大となり、最大暖房能力が発揮される。そして、ヒータコア13で加熱された温風の大部分はフット開口部16を経てフット吹出口19から乗員足元部に吹き出し、残余の一部の温風がデフロスタ開口部18から車両窓ガラス側へ吹き出す。
【0027】
次に、車室内温度(内気温度)が上昇して、暖房負荷が減少すると、吹出空気温度制御のため、最大暖房状態から温度制御領域に移行する。すると、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。
また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、送風機ユニットからの送風空気がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れる。
【0028】
従って、温度制御領域では、ヒータコア13のコア部13cを通過した温風に冷風バイパス通路23を通過した冷風が混合されるとともに、温水弁15が中間開度位置に操作されることにより、温水からの放熱量も減少して、吹出空気温度を調整できる。
(2)フットデフロスタ吹出モード
フットデフロスタ吹出モードでは、フット開口部16からの吹出風量と、デフロスタ開口部18からの吹出風量とを略同等(50%づつ)とするため、フットドア16によりフット開口部16を全開するとともに、デフロスタドア22によりデフロスタ開口部18を全開する。
【0029】
フットデフロスタ吹出モードでは上記風量割合の点でフット吹出モードと相違しているだけであり、最大暖房時および温度制御領域の双方において作動は同じである。
(3)デフロスタ吹出モード
デフロスタ吹出モードにおいては、フェイスドア21がフェイス開口部17を、また、フットドア20がフット開口部16をそれぞれ全閉する。また、デフロスタドア22がデフロスタ開口部18を全開する。また、最大暖房時には温水弁15が全開状態となり、冷風バイパスドア24は、冷風バイパス通路23の全閉位置に操作される。
【0030】
従って、最大暖房時には、ヒータコア13のコア部13cへの温水流量が最大流量になるとともに、送風機ユニットからの送風空気が全量ヒータコア13のコア部13cを通過して加熱され、温風となる。この温風は、デフロスタ開口部18を通して窓ガラス内面に吹き出して、窓ガラスの曇り止めを行う。
これに対し、温度制御領域では、温水弁15を適宜の絞り開度の状態とし、また、冷風バイパスドア24を中間開度位置または全開位置(図1の実線位置)に操作する。
(4)フェイス吹出モード
フェイス吹出モードにおいては、図1に示すように、フェイスドア21がフェイス開口部17を全開し、デフロスタドア22がデフロスタ開口部18を、またフットドア20がフット開口部16をそれぞれ全閉する。そして、空調装置の冷凍サイクルを運転すると、送風機ユニットからの送風空気は蒸発器12により冷却、除湿されて冷風となる。
【0031】
ここで、冷房始動時のごとく最大冷房状態が設定されているときは、温水弁15が全閉されてヒータコア13への温水循環が遮断され、ヒータコア13の加熱作用を停止する。これと同時に、冷風バイパスドア24は、冷風バイパス通路23の全開位置(図1の実線位置)に操作される。従って、蒸発器12により冷却された冷風はヒータコア13と冷風バイパス通路23の両方を通過した後に、フェイス開口部17を経て車室内乗員の頭部側へ吹き出す。
【0032】
最大冷房時には、冷風バイパス通路23の全開により空調ケース11内の通風抵抗(圧損)が低下して冷風の風量を増加できるので、最大冷房能力を増加できる。
次に、車室内温度の低下により冷房負荷が低下すると、吹出空気温度制御のため、最大冷房状態から温度制御領域に移行する。すると、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器12からの冷風がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れる冷風量が制限され、吹出空気温度を調整することができる。
【0033】
ところで、フェイス吹出モードにおいては、冷凍サイクルの蒸発器12の冷却冷却、除湿作用により、送風機ユニットからの送風空気中の水分が凝縮して、蒸発器12表面に凝縮水が発生する。この凝縮水は蒸発器12の傾斜に沿って蒸発器12傾斜方向の下方端(図1の左端部)側へ移動する。
この場合に、蒸発器12の傾斜方向の上方端側に冷風バイパス通路23を配置しているから、蒸発器12の傾斜方向の上方端側に冷風バイパス通路23による風速分布の高い部位が形成されることになる。一方、蒸発器12の傾斜方向の下方端側には冷風バイパス通路23が位置しないので、通過空気の風速が低下する。
【0034】
従って、蒸発器12の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、凝縮水が集中する下方端側の部位では空気の風速が低いので、凝縮水の水飛びが生じにくい。その結果、蒸発器12の傾斜方向の下方端側に集まった凝縮水を空気流れ下流側へ飛散させることなく、良好に蒸発器下方側へ排水できる。
【0035】
なお、図1では図示していないが、空調ケース11において、蒸発器下方側の部位には凝縮水の受け皿部が形成され、この受け皿部の最低部に形成された排水口から車外へ凝縮水が排水される。
(5)バイレベル吹出モード
バイレベル吹出モードにおいては、フェイスドア21がフェイス開口部17を全開するとともに、フットドア20がフット開口部16を全開する。デフロスタドア22はデフロスタ開口部18を全閉する。従って、フェイス開口部17とフット開口部16を通して、車室の上下両方から同時に風を吹き出すことができる。
【0036】
バイレベル吹出モードは通常、春秋の中間シーズンで使用されるので、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器12からの冷風がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れ、これにより、所望の中間吹出温度が得られる。
【0037】
空調用冷凍サイクルは前述のスェイスモード以外の他のモードでも蒸発器12の冷却除湿作用を得るために運転される場合があるが、いずれのモードでも蒸発器12からの凝縮水の排水をスムースに行うことができる。
(他の実施形態)
なお、上記の実施形態では、空調ユニット10部を、車室内の計器盤下方部の略中央部に配置する場合について説明したが、車室内の後席側を空調する空調ユニット等にも本発明を適用できることはもちろんである。
【0038】
また、上記の実施形態では、蒸発器(冷房用熱交換器)12を微小角度θ1 で傾斜配置するとともに、ヒータコア(暖房用熱交換器)13も微小角度θ2 で傾斜配置しているが、蒸発器12のみを傾斜配置して、ヒータコア13は水平に配置してもよい。
また、上記の実施形態では、ヒータコア13に循環する温水の流量を温水弁15により制御して車室内への吹出空気温度を制御するタイプの空調ユニット10について説明したが、ヒータコア13を通過する温風とヒータコア13をバイパスする冷風との風量割合をエアミックスドアにより制御して車室内への吹出空気温度を制御するエアミックスタイプの空調ユニット10に対しても本発明を適用できる。この場合は、エアミックス用の冷風を通過させる冷風バイパス通路を蒸発器12の傾斜方向の上方端側に配置すればよい。
【0039】
また、上記の実施形態では、温水弁15と、冷風バイパスドア24をそれぞれサーボモータを用いたアクチェータ機構により独立に操作する場合について説明したが、温水弁15と冷風バイパスドア24を適宜のリンク機構等を用いて連結し、温水弁15の操作に連動して冷風バイパスドア24を開閉することもできる。この場合、空調操作パネルに設けられたマニュアル式の温度調整部材の手動操作により、温水弁15と冷風バイパスドア24を連動操作するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態における空調ユニット部を示す概略断面図である。
【符号の説明】
10…空調ユニット、11…空調ケース、12…蒸発器、13…ヒータコア、
15…温水弁、16…フット開口部、17…フェイス開口部、
18…デフロスタ開口部、19…フット吹出口、20…フットドア、
21…フェイスドア、22…デフロスタドア、23…冷風バイパス通路、
24…冷風バイパスドア。
【発明の属する技術分野】
本発明は、冷房用熱交換器を略水平に近い角度で配置する車両用空調装置における凝縮水の排水性向上に関する。
【0002】
【従来の技術】
本出願人においては、特開平9−123748号公報にて、冷房用熱交換器を下側で、暖房用熱交換器を上側に配置して、この両熱交換器を略水平に近い角度で配置する車両用空調装置を提案している。この従来装置では、熱交換器部を略水平に近い角度で配置するとともに、送風機ユニット部からの送風空気を冷房用熱交換器の下側に導入した後、冷房用熱交換器と暖房用熱交換器を下方から上方へ空気を通過させる配置レイアウトにしている。
【0003】
これにより、特に、車両上下方向および車両前後方向の寸法を縮小して、空調装置の車両への搭載性を改善している。
【0004】
【発明が解決しようとする課題】
ところで、上記従来装置では、冷房用熱交換器を略水平に近い角度で配置し、
下方から上方へ空気を通過させているので、冷房用熱交換器で発生する凝縮水の落下方向と、冷房用熱交換器を通過する空気の流れ方向とが逆方向となり、この結果、凝縮水を排出しにくいという問題がある。
【0005】
本発明は上記点に鑑みてなされたもので、冷房用熱交換器を略水平に近い角度で配置し、下方から上方へ空気を通過させる車両用空調装置において、冷房用熱交換器で発生する凝縮水の排水性を向上することを目的とする。
【0006】
【課題を解決するための手段】
本発明は以下の点に着目して上記目的を達成しようとするものである。
すなわち、冷房用熱交換器(12)を水平面から若干の角度だけ傾斜配置して、冷房用熱交換器(12)の傾斜方向の下方端に凝縮水を集めて、冷房用熱交換器(12)から凝縮水をスムースに排出させることが考えられる。しかし、このタイプのものを本発明者らが実際に試作検討してみると、最大冷房時に開放される冷風バイパス通路(23)の位置によって、凝縮水の排水性に大きな影響が生じることが分かった。
【0007】
つまり、冷風バイパス通路(23)は、最大冷房時に暖房用熱交換器(13)をバイパスする空気流れ(冷風の流れ)を形成するように暖房用熱交換器(13)の側方に配置されるものであるが、この冷風バイパス通路(23)を冷房用熱交換器(12)の傾斜方向の下方端側に対向して配置すると、冷風バイパス通路(23)による通風抵抗減少のために、冷房用熱交換器のうち、傾斜方向の下方端側に風速分布の高い部位が形成される。
【0008】
すると、冷房用熱交換器(12)の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、風速の高い空気流れにより凝縮水が冷房用熱交換器(12)下流側(上方側)へ飛散するという水飛び現象が発生する。最悪の場合、水飛びが吹出口部まで到達し、水滴が車室内へ飛散する事態も生じる。
このように、冷風バイパス通路(23)による風速分布の高い部位が冷房用熱交換器(12)の傾斜方向の下方端側に形成されると、冷房用熱交換器(12)下流側への水飛びが顕著になることが判明した。
【0009】
そこで、請求項1ないし4記載の発明では、上記の水飛び発生原因に着目して、冷房用熱交換器(12)の傾斜方向の上方端側に冷風バイパス通路(23)を配置することを特徴としている。
これによると、冷房用熱交換器(12)の傾斜方向の上方端側に冷風バイパス通路(23)による風速分布の高い部位が形成され、一方、冷房用熱交換器(12)の傾斜方向の下方端側には冷風バイパス通路(23)が位置しないので、通過空気の風速が低下する。
【0010】
従って、冷房用熱交換器(12)の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、凝縮水が集中する下方端側部位では空気の風速が低いので、凝縮水の水飛びが生じにくい。その結果、冷房用熱交換器(12)の傾斜方向の下方端側に集まった凝縮水を空気流れ下流側への飛散を良好に抑制して、凝縮水の排水性を向上できる。
【0011】
なお、上記各手段に付した括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示す。
【0012】
【発明の実施の形態】
以下本発明を図に示す一実施形態について説明する。
図1は本発明の一実施形態における空調装置通風系の概要を示しており、通風系は、大別して、図示しない送風機ユニットと、図1に示す空調ユニット10の2つの部分に分かれている。空調ユニット10部は、車室内の計器盤下方部のうち、車両左右方向の略中央部に配置されるものである。一方、送風機ユニットは車室内左右方向において空調ユニット10の側方(助手席側)にオフセット配置される。
【0013】
送風機ユニットは周知の構成であり、内気(車室内空気)と外気(車室外空気)を切替導入する内外気切替箱を備えており、この内外気切替箱を通して導入された空気(内気または外気)をモータ駆動の遠心多翼ファン(シロッコファン)により送風するようになっている。
次に、空調ユニット10部は空調ケース11内に蒸発器12とヒータコア13とを両方とも一体的に内蔵するタイプのものである。空調ケース11はポリプロピレンのような、ある程度の弾性を有し、強度的にも優れた樹脂の成形品からなり、複数に分割された分割ケースからなる。この複数の分割ケース内に、上記熱交換器12、13、後述するドア等の機器を収納した後に、この複数の分割ケースを金属バネクリップ、ネジ等の締結手段により一体に結合することにより、空調ユニット10部が組み立てられる。
【0014】
空調ケース11内において車両下方側の部位に蒸発器12が水平面より微小角度θ1 だけ傾斜して配置されている。ここで、蒸発器12の傾斜角度θ1 は例えば、22°程度であり、蒸発器12は空調ケース11内の空気通路の全域にわたって配置されている。また、蒸発器12の下方空間には送風機ユニットの吹出側から空気が流入する空気入口部14が開口している。
【0015】
蒸発器12は周知のごとく冷凍サイクルの冷媒の蒸発潜熱を空調空気から吸熱して、空調空気を冷却する冷房用熱交換器である。なお、蒸発器12は周知の積層型のものであって、アルミニュウム等の金属薄板を最中状に2枚張り合わせて構成した偏平チューブをコルゲートフィンを介在して多数積層配置し、一体ろう付けしたものである。この偏平チューブとコルゲートフィンの積層方向を図1の紙面垂直方向(車両左右方向)に設定することにより、空気入口部14から流入した空調空気が蒸発器12下方部で上方へ方向転換して、空調空気が蒸発器12を下方から上方へ通過する。
【0016】
また、ヒータコア13は、蒸発器12の空気流れ下流側(車両上方側)に隣接配置されており、このヒータコア13は、蒸発器12を通過した冷風を再加熱する暖房用熱交換器であって、その内部に高温の温水(エンジン冷却水)が流れ、この温水を熱源として空気を加熱するものである。
このヒータコア13も蒸発器12と同様に、水平面より微小角度θ2 だけ傾斜して配置されている。ここで、ヒータコア13の傾斜角度θ2 は27度程度である。ヒータコア13は、温水入口側タンク13aと温水出口側タンク13bとの間に熱交換用コア部13cを構成し、このコア部13cはアルミニュウム等の金属薄板を断面偏平状に形成した偏平チューブとコルゲートフィンとを多数積層配置している。ヒータコア13全体は、組付後に一体ろう付けにより接合される。
【0017】
温水入口側タンク13aには温水弁15を介して図示しない車両エンジンで加熱された温水が流入する。その後に、温水はコア部13cの各チューブを温水出口側タンク13bへ向かって一方向に流れる。そして、温水弁15はヒータコア13に流入する温水の流量を調整することにより、ヒータコア13の吹出空気温度(車室内への吹出空気温度)を調整する温度調整手段を構成する。この温水弁15は周知の構成のものでよく、例えば、弁ハウジング内に弁体を回動可能に収納し、この弁体の回動量を連続的に可変することにより、弁ハウジング内の温水流路の開口面積を連続的に可変して、温水流量を調整するものである。
【0018】
次に、ヒータコア13の空調ケース11内での配置形態をより具体的に説明すると、ヒータコア13の温水出口側タンク13bが下方側に位置し、また、温水入口側タンク13aが上方側に位置するようにして、ヒータコア13を傾斜配置している。その場合、ヒータコア13の温水出口側タンク13bの側方(車両後方側)に隣接してフット開口部16が配置されている。また、ヒータコア13のコア部13cの上方側にフェイス開口部17とデフロスタ開口部18が配置されている。
【0019】
ここで、フット開口部16にはフット吹出口19が連通しており、フット吹出口19は空調ケース11の下方側で、車両後方側の左右両端部に開口している。
このフット吹出口19から車室内の運転席側および助手席側の両方の乗員足元に向けて温風が吹き出される。上記したフット開口部16は、回転軸20aにより回動自在な平板状のフットドア20により開閉される。
【0020】
また、フェイス開口部17は空調ケース11の上面部において車両前方側の部位に開口しており、このフェイス開口部17は図示しないフェイスダクトを介して車両計器盤上方部のフェイス吹出口より乗員頭部に向けて風を吹き出すためのものである。このフェイス開口部17は、回転軸21aにより回動自在な平板状のフェイスドア21により開閉される。
【0021】
また、デフロスタ開口部18は空調ケース11の上面部において車両前方側の部位に開口しており、このデフロスタ開口部18は図示しないデフロスタダクトおよびデフロスタ吹出口を介して、車両窓ガラス内面に向けて風を吹き出すためのものである。このデフロスタ開口部18は、回転軸22aにより回動自在な平板状のデフロスタドア22により開閉される。
【0022】
さらに、空調ケース11内において、ヒータコア13は蒸発器12に比して図1の車両前後方向の寸法が小さくなっており、これにより、ヒータコア13の温水入口側タンク13aを空調ケース11の車両前方側の内壁面より所定間隔だけ開けて配置して、温水入口側タンク13aと空調ケース11の内壁面との間に、ヒータコア13をバイパスして空気(冷風)が流れる冷風バイパス通路23を形成している。この冷風バイパス通路23は、回転軸24aにより回動自在な平板状の冷風バイパスドア24により開閉される。
【0023】
ヒータコア13は、蒸発器12と同一方向に傾斜(すなわち、車両後方側が下で、車両前方側が上となる傾斜)しているので、冷風バイパス通路23は、蒸発器12の上方側で、かつ、蒸発器12の傾斜方向の上方端側(図1の右端側)に対向配置されている。
なお、フットドア20、フェイスドア21、およびデフロスタドア22は吹出モード切替用のドア手段であって、図示しないリンク機構等を介してサーボモータを用いたモード切替用アクチュエータ機構により操作される。
【0024】
また、温水弁15は温度調整手段であって、図示しないリンク機構等を介してサーボモータを用いた温度調整用アクチュエータ機構により操作される。同様に、冷風バイパスドア24も図示しないリンク機構等を介してサーボモータを用いたアクチュエータ機構により独立に操作される。
上記アクチュエータ機構の各サーボモータ等の機器は図示しない空調用制御装置により作動が制御されるようになっている。この制御装置は周知のごとくマイクロコンピュータとその周辺回路とから構成されるものであって、空調操作パネルに設けられた各種操作部材からの操作信号および内外気温度、日射量、蒸発器吹出温度、温水温度等の各種センサの検出信号が入力される。そして、空調用制御装置は予め設定された所定のプログラムに基づいて、上記の操作信号および検出信号に対する演算処理を行って、アクチュエータ機構の各サーボモータ等の機器の作動を制御するようになっている。
【0025】
次に、上記構成において本実施形態の作動を吹出モード別に説明する。
(1)フット吹出モード
冬期の暖房時にフット吹出モードが選択されると、フットドア20がフット開口部16を全開し、フェイスドア21がフェイス開口部17を全閉する。デフロスタドア22はデフロスタ開口部18を少量開放する。そして、暖房始動時等において、最大暖房状態にあるときは、温水弁15が全開状態となり、ヒータコア13に最大流量の温水が循環する。また、冷風バイパスドア24は冷風バイパス通路23の全閉位置(図1の2点鎖線位置)に操作される。
【0026】
これにより、図示しない送風機ユニットからの送風空気が空気入口部14から蒸発器12を通過後に全量ヒータコア13のコア部13cを通過するとともに、温水流量が最大となることにより、温水からの放熱量が最大となり、最大暖房能力が発揮される。そして、ヒータコア13で加熱された温風の大部分はフット開口部16を経てフット吹出口19から乗員足元部に吹き出し、残余の一部の温風がデフロスタ開口部18から車両窓ガラス側へ吹き出す。
【0027】
次に、車室内温度(内気温度)が上昇して、暖房負荷が減少すると、吹出空気温度制御のため、最大暖房状態から温度制御領域に移行する。すると、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。
また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、送風機ユニットからの送風空気がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れる。
【0028】
従って、温度制御領域では、ヒータコア13のコア部13cを通過した温風に冷風バイパス通路23を通過した冷風が混合されるとともに、温水弁15が中間開度位置に操作されることにより、温水からの放熱量も減少して、吹出空気温度を調整できる。
(2)フットデフロスタ吹出モード
フットデフロスタ吹出モードでは、フット開口部16からの吹出風量と、デフロスタ開口部18からの吹出風量とを略同等(50%づつ)とするため、フットドア16によりフット開口部16を全開するとともに、デフロスタドア22によりデフロスタ開口部18を全開する。
【0029】
フットデフロスタ吹出モードでは上記風量割合の点でフット吹出モードと相違しているだけであり、最大暖房時および温度制御領域の双方において作動は同じである。
(3)デフロスタ吹出モード
デフロスタ吹出モードにおいては、フェイスドア21がフェイス開口部17を、また、フットドア20がフット開口部16をそれぞれ全閉する。また、デフロスタドア22がデフロスタ開口部18を全開する。また、最大暖房時には温水弁15が全開状態となり、冷風バイパスドア24は、冷風バイパス通路23の全閉位置に操作される。
【0030】
従って、最大暖房時には、ヒータコア13のコア部13cへの温水流量が最大流量になるとともに、送風機ユニットからの送風空気が全量ヒータコア13のコア部13cを通過して加熱され、温風となる。この温風は、デフロスタ開口部18を通して窓ガラス内面に吹き出して、窓ガラスの曇り止めを行う。
これに対し、温度制御領域では、温水弁15を適宜の絞り開度の状態とし、また、冷風バイパスドア24を中間開度位置または全開位置(図1の実線位置)に操作する。
(4)フェイス吹出モード
フェイス吹出モードにおいては、図1に示すように、フェイスドア21がフェイス開口部17を全開し、デフロスタドア22がデフロスタ開口部18を、またフットドア20がフット開口部16をそれぞれ全閉する。そして、空調装置の冷凍サイクルを運転すると、送風機ユニットからの送風空気は蒸発器12により冷却、除湿されて冷風となる。
【0031】
ここで、冷房始動時のごとく最大冷房状態が設定されているときは、温水弁15が全閉されてヒータコア13への温水循環が遮断され、ヒータコア13の加熱作用を停止する。これと同時に、冷風バイパスドア24は、冷風バイパス通路23の全開位置(図1の実線位置)に操作される。従って、蒸発器12により冷却された冷風はヒータコア13と冷風バイパス通路23の両方を通過した後に、フェイス開口部17を経て車室内乗員の頭部側へ吹き出す。
【0032】
最大冷房時には、冷風バイパス通路23の全開により空調ケース11内の通風抵抗(圧損)が低下して冷風の風量を増加できるので、最大冷房能力を増加できる。
次に、車室内温度の低下により冷房負荷が低下すると、吹出空気温度制御のため、最大冷房状態から温度制御領域に移行する。すると、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器12からの冷風がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れる冷風量が制限され、吹出空気温度を調整することができる。
【0033】
ところで、フェイス吹出モードにおいては、冷凍サイクルの蒸発器12の冷却冷却、除湿作用により、送風機ユニットからの送風空気中の水分が凝縮して、蒸発器12表面に凝縮水が発生する。この凝縮水は蒸発器12の傾斜に沿って蒸発器12傾斜方向の下方端(図1の左端部)側へ移動する。
この場合に、蒸発器12の傾斜方向の上方端側に冷風バイパス通路23を配置しているから、蒸発器12の傾斜方向の上方端側に冷風バイパス通路23による風速分布の高い部位が形成されることになる。一方、蒸発器12の傾斜方向の下方端側には冷風バイパス通路23が位置しないので、通過空気の風速が低下する。
【0034】
従って、蒸発器12の傾斜に沿って凝縮水が傾斜方向の下方端側へ移動する過程おいて、凝縮水が集中する下方端側の部位では空気の風速が低いので、凝縮水の水飛びが生じにくい。その結果、蒸発器12の傾斜方向の下方端側に集まった凝縮水を空気流れ下流側へ飛散させることなく、良好に蒸発器下方側へ排水できる。
【0035】
なお、図1では図示していないが、空調ケース11において、蒸発器下方側の部位には凝縮水の受け皿部が形成され、この受け皿部の最低部に形成された排水口から車外へ凝縮水が排水される。
(5)バイレベル吹出モード
バイレベル吹出モードにおいては、フェイスドア21がフェイス開口部17を全開するとともに、フットドア20がフット開口部16を全開する。デフロスタドア22はデフロスタ開口部18を全閉する。従って、フェイス開口部17とフット開口部16を通して、車室の上下両方から同時に風を吹き出すことができる。
【0036】
バイレベル吹出モードは通常、春秋の中間シーズンで使用されるので、温水弁15は車室内への目標吹出空気温度に対応した所定の中間開度位置に操作される。また、冷風バイパスドア24も温水弁15の中間開度位置に対応した中間開度位置に操作される。これにより、蒸発器12からの冷風がヒータコア13を通過して加熱されると同時に、冷風バイパス通路23を通過して流れ、これにより、所望の中間吹出温度が得られる。
【0037】
空調用冷凍サイクルは前述のスェイスモード以外の他のモードでも蒸発器12の冷却除湿作用を得るために運転される場合があるが、いずれのモードでも蒸発器12からの凝縮水の排水をスムースに行うことができる。
(他の実施形態)
なお、上記の実施形態では、空調ユニット10部を、車室内の計器盤下方部の略中央部に配置する場合について説明したが、車室内の後席側を空調する空調ユニット等にも本発明を適用できることはもちろんである。
【0038】
また、上記の実施形態では、蒸発器(冷房用熱交換器)12を微小角度θ1 で傾斜配置するとともに、ヒータコア(暖房用熱交換器)13も微小角度θ2 で傾斜配置しているが、蒸発器12のみを傾斜配置して、ヒータコア13は水平に配置してもよい。
また、上記の実施形態では、ヒータコア13に循環する温水の流量を温水弁15により制御して車室内への吹出空気温度を制御するタイプの空調ユニット10について説明したが、ヒータコア13を通過する温風とヒータコア13をバイパスする冷風との風量割合をエアミックスドアにより制御して車室内への吹出空気温度を制御するエアミックスタイプの空調ユニット10に対しても本発明を適用できる。この場合は、エアミックス用の冷風を通過させる冷風バイパス通路を蒸発器12の傾斜方向の上方端側に配置すればよい。
【0039】
また、上記の実施形態では、温水弁15と、冷風バイパスドア24をそれぞれサーボモータを用いたアクチェータ機構により独立に操作する場合について説明したが、温水弁15と冷風バイパスドア24を適宜のリンク機構等を用いて連結し、温水弁15の操作に連動して冷風バイパスドア24を開閉することもできる。この場合、空調操作パネルに設けられたマニュアル式の温度調整部材の手動操作により、温水弁15と冷風バイパスドア24を連動操作するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態における空調ユニット部を示す概略断面図である。
【符号の説明】
10…空調ユニット、11…空調ケース、12…蒸発器、13…ヒータコア、
15…温水弁、16…フット開口部、17…フェイス開口部、
18…デフロスタ開口部、19…フット吹出口、20…フットドア、
21…フェイスドア、22…デフロスタドア、23…冷風バイパス通路、
24…冷風バイパスドア。
Claims (4)
- 空調空気が流れる空気通路を形成する空調ケース(11)と、
この空調ケース(11)内に微小傾斜角度(θ1 )にて略水平方向に配置され、下方から上方へ通過する空調空気を冷却する冷房用熱交換器(12)と、
前記空調ケース(11)内で、前記冷房用熱交換器(12)より上方側において、略水平方向に配置され、前記冷房用熱交換器(12)通過後の空調空気を加熱する暖房用熱交換器(13)と、
この暖房用熱交換器(13)による空気加熱量を調整する温度調整手段(15)とを備える車両用空調装置において、
前記冷房用熱交換器(12)の傾斜方向の上方端側に、前記冷房用熱交換器(12)通過後の空調空気が前記暖房用熱交換器(13)の側方をバイパスして流れる冷風バイパス通路(24)を配置したことを特徴とする車両用空調装置。 - 前記冷風バイパス通路(24)を開閉する冷風バイパスドア(24)を備えており、
前記温度調整手段は、前記暖房用熱交換器(13)への温水流量を調整する温水弁(15)であり、
この温水弁(15)が全開状態にあるとき、前記冷風バイパスドア(24)により前記冷風バイパス通路(24)を全閉し、
前記温水弁(15)が全閉状態にあるとき、前記冷風バイパスドア(24)により前記冷風バイパス通路(24)を全開することを特徴とする請求項1に記載の車両用空調装置。 - 前記空調ケース(11)は車室内の計器盤部に配置されるように構成されており、
前記暖房用熱交換器(13)は略水平方向に微小傾斜角度(θ2 )を持って配置され、
前記冷房用熱交換器(12)および前記暖房用熱交換器(13)は、その傾斜方向の上方端が車両前方側に位置し、その傾斜方向の下方端が車両後方側に位置し、
前記冷風バイパス通路(24)は、前記暖房用熱交換器(13)の傾斜方向の上方端よりも更に車両前方側に位置していることを特徴とする請求項1または2に記載の車両用空調装置。 - 前記暖房用熱交換器(13)および前記冷風バイパス通路(24)を通過して温度制御された空調空気を車室内へ吹き出す複数の開口部(16〜18)を備え、
この開口部として、乗員の足元に向けて空調空気を吹き出すフット開口部(16)と、車室内乗員の頭部に向けて空調空気を吹き出すフェイス開口部(17)と、車両窓ガラス内面に向けて空調空気を吹き出すデフロスタ開口部(18)とを備え、
前記フット開口部(16)は、前記暖房用熱交換器(13)の車両後方側に位置し、
前記フェイス開口部(17)および前記デフロスタ開口部(18)は、前記暖房用熱交換器(13)の上方側に位置することを特徴とする請求項3に記載の車両用空調装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17150698A JP3945022B2 (ja) | 1998-06-18 | 1998-06-18 | 車両用空調装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17150698A JP3945022B2 (ja) | 1998-06-18 | 1998-06-18 | 車両用空調装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000006644A JP2000006644A (ja) | 2000-01-11 |
JP3945022B2 true JP3945022B2 (ja) | 2007-07-18 |
Family
ID=15924384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17150698A Expired - Fee Related JP3945022B2 (ja) | 1998-06-18 | 1998-06-18 | 車両用空調装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3945022B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4098495B2 (ja) | 2001-06-22 | 2008-06-11 | カルソニックカンセイ株式会社 | 車両用空気調和装置 |
KR101094845B1 (ko) * | 2004-06-18 | 2011-12-15 | 한라공조주식회사 | 차량용 공기 조화 장치 |
KR101166337B1 (ko) * | 2004-06-18 | 2012-07-18 | 한라공조주식회사 | 차량용 공기조화장치 |
JP2009208573A (ja) * | 2008-03-03 | 2009-09-17 | Denso Corp | 車両用空調装置 |
-
1998
- 1998-06-18 JP JP17150698A patent/JP3945022B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000006644A (ja) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858466B2 (ja) | 自動車用空調装置 | |
JP4013315B2 (ja) | 車両用空調装置 | |
JP3572955B2 (ja) | 車両用空調装置 | |
US6415857B1 (en) | Vehicle air conditioner with front and rear foot air outlets | |
EP0930186B1 (en) | Air conditioner for vehicles | |
JP3309779B2 (ja) | 車両用空調装置 | |
JP3804152B2 (ja) | 車両用空調装置 | |
JPH11235914A (ja) | 車両用空調装置 | |
US6644559B2 (en) | Vehicle air conditioner with foot air-outlet structure | |
US6079484A (en) | Air conditioning apparatus for vehicle | |
JP3774961B2 (ja) | 車両用空調装置 | |
JPH10181331A (ja) | 車両用空調装置 | |
JP3823531B2 (ja) | 車両用空調装置 | |
JPH11208245A (ja) | 車両用空調装置 | |
US20050098311A1 (en) | Air-conditioning unit | |
JP3945022B2 (ja) | 車両用空調装置 | |
JP3791126B2 (ja) | 車両用空調装置 | |
JP3900592B2 (ja) | 車両用空調装置 | |
JP2006001378A (ja) | 車両用空調装置 | |
JP3692626B2 (ja) | 車両用空調装置 | |
JP3772471B2 (ja) | 車両用空調装置 | |
JPH10166838A (ja) | 車両用空調装置 | |
JP4285348B2 (ja) | 車両用空調装置 | |
KR101441322B1 (ko) | 차량용 공조장치 | |
JP2004243932A (ja) | 車両用空調装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070320 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |