Nothing Special   »   [go: up one dir, main page]

JP3942621B2 - Electrostatic drive type optical deflection element - Google Patents

Electrostatic drive type optical deflection element Download PDF

Info

Publication number
JP3942621B2
JP3942621B2 JP2005198702A JP2005198702A JP3942621B2 JP 3942621 B2 JP3942621 B2 JP 3942621B2 JP 2005198702 A JP2005198702 A JP 2005198702A JP 2005198702 A JP2005198702 A JP 2005198702A JP 3942621 B2 JP3942621 B2 JP 3942621B2
Authority
JP
Japan
Prior art keywords
fixed electrode
deflection element
optical deflection
component
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005198702A
Other languages
Japanese (ja)
Other versions
JP2007017678A (en
Inventor
健一 加川
規裕 淺田
Original Assignee
マイクロプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロプレシジョン株式会社 filed Critical マイクロプレシジョン株式会社
Priority to JP2005198702A priority Critical patent/JP3942621B2/en
Publication of JP2007017678A publication Critical patent/JP2007017678A/en
Application granted granted Critical
Publication of JP3942621B2 publication Critical patent/JP3942621B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Facsimile Heads (AREA)

Description

本発明は、静電駆動型光偏向素子に関し、特にその低周波駆動、衝撃耐性の改善、低コスト化に関するものである。   The present invention relates to an electrostatic drive type optical deflection element, and more particularly to its low frequency drive, improvement of impact resistance, and cost reduction.

MEMS(Micro Electro Mechanical Systems)技術により製造される小型光偏向素子は、光偏向システムの小型化、低コスト化が実現できるため、種々の提案がなされ、試作・実用化が進んでいる。動作原理も静電駆動方式、電磁駆動方式、その他の方式など様々な種類のデバイスが存在する。たとえば、ガルバノメータの原理(可動コイル型電磁駆動)で動作する光偏向素子(ガルバノミラーともいう)は種々提案されており(特許文献1)、これらの光偏向素子は、半導体製造技術を流用したMEMS製造技術で製造されている。   A small-sized optical deflection element manufactured by MEMS (Micro Electro Mechanical Systems) technology can realize a reduction in size and cost of an optical deflection system. Therefore, various proposals have been made, and trial manufacture and practical use are proceeding. There are various types of devices such as an electrostatic drive system, an electromagnetic drive system, and other systems in terms of operation principle. For example, various optical deflection elements (also referred to as galvanometer mirrors) that operate on the principle of galvanometers (moving coil electromagnetic drive) have been proposed (Patent Document 1), and these optical deflection elements are MEMS that utilize semiconductor manufacturing technology. Manufactured with manufacturing technology.

そして、これらの光偏向素子はたとえば図9に示すように、シリコンを両持ち梁19の材料とした両持ち梁構造として構成される(特許文献2)。これは、半導体製造技術を基盤としたMEMS製造技術はシリコン高精度加工能力に優れているため、また弾性材料であるシリコンは両持ち梁19の材料として適しているためである。   These optical deflecting elements are configured as a double-supported beam structure using silicon as a material for the double-supported beam 19 as shown in FIG. 9 (Patent Document 2). This is because the MEMS manufacturing technology based on the semiconductor manufacturing technology is excellent in silicon high-precision processing capability, and silicon, which is an elastic material, is suitable as a material for the cantilever beam 19.

ところが、近年、たとえば100Hz以下の低い駆動周波数で動作する小型光偏向素子を実現したい要求、また携帯機器製品向けに衝撃耐性の優れた光偏向素子を低コストで実現したい要求が高まっており、シリコンを両持ち梁の材料とするには種々の問題が発生してきた。これらの問題を図10ないし11により説明する。   However, in recent years, there has been an increasing demand for realizing a small optical deflecting element that operates at a low driving frequency of, for example, 100 Hz or less, and for realizing an optical deflecting element having excellent impact resistance for portable device products at a low cost. Various problems have arisen in order to use as a material for a doubly supported beam. These problems will be described with reference to FIGS.

図10、11はシリコンを両持ち梁材料として低周波偏向を実現する場合に、光偏向素子の小型化が制約される問題を説明する図である。シリコンはヤング率が130GPa程度と大きく、100Hz以下の低周波で動作させるためには、両持ち梁19を長く、細く、薄く設計する必要があり、例えば、両持ち梁19の長さ3mm以上、両持ち梁19の幅0.05mm以下、両持ち梁19の厚さ0.01mm以下などとすることにより低周波駆動が実現できると考えられる。しかし、このとき光偏向素子は図10に示すように両持ち梁19の長さによる制約のため素子の小型化に限界がある。素子の小型化を実現するために、図11に示すように両持ち梁19を折り曲げて設計する方法が考えられる。しかし、シリコンは130GPa程度のヤング率を有する硬質材料ではあるが、脆性材料であり、長く、細く、薄いシリコン製の両持ち梁は壊れやすく、生産性において問題となり、また製造しても落下させると両持ち梁が破損してしまうため、衝撃耐性が求められる携帯機器製品には適用できないなど、応用範囲にも制限を与える。また、シリコンは高価な材料であり、高価な半導体製造装置により加工されるため、低コスト化には限界がある。
このように、シリコンを両持ち梁の材料として、低周波駆動を実現できる光偏向素子を低コストで実現することは事実上不可能である。
FIGS. 10 and 11 are diagrams for explaining the problem that miniaturization of the optical deflection element is restricted when low frequency deflection is realized by using silicon as a doubly supported beam material. Silicon has a large Young's modulus of about 130 GPa, and in order to operate at a low frequency of 100 Hz or less, it is necessary to design the cantilever beam 19 to be long, thin, and thin. It is considered that low-frequency driving can be realized by setting the width of the both-end supported beam 19 to 0.05 mm or less and the thickness of the both-end supported beam 19 to 0.01 mm or less. However, at this time, the optical deflecting element is limited in the miniaturization of the element due to the restriction due to the length of the doubly supported beam 19 as shown in FIG. In order to realize the miniaturization of the element, a method of designing by bending the doubly supported beam 19 as shown in FIG. 11 is conceivable. However, although silicon is a hard material having a Young's modulus of about 130 GPa, it is a brittle material, and long, thin and thin silicon doubly supported beams are fragile, causing problems in productivity and falling even when manufactured. Since the cantilever beam is damaged, it is not applicable to portable device products that require impact resistance. Further, since silicon is an expensive material and is processed by an expensive semiconductor manufacturing apparatus, there is a limit to cost reduction.
As described above, it is practically impossible to realize an optical deflecting element that can realize low-frequency driving at low cost by using silicon as a material for a double-supported beam.

低周波駆動を実現できる光偏向素子を低コストで実現する手法として、両持ち梁の材料にポリイミドを用いる手法が提案されている(特許文献3)。ポリイミドはヤング率が数GPa程度で低く、またシリコンのような脆性材料ではないため、駆動周波数が低くかつ衝撃耐性に優れる小型光偏向素子実現が期待できる。しかし、ポリイミドのヤング率は数GPa程度と制御範囲が狭く低周波駆動に限界があるなど、設計制約が大きいという問題があった。
特開2002−228951号公報 特開平07−175005号公報 特開2005−099063号公報
As a technique for realizing an optical deflecting element capable of realizing low-frequency driving at a low cost, a technique using polyimide as a material for a doubly supported beam has been proposed (Patent Document 3). Since polyimide has a low Young's modulus of about several GPa and is not a brittle material like silicon, it can be expected to realize a small optical deflection element having a low driving frequency and excellent impact resistance. However, the Young's modulus of polyimide is about several GPa, and the control range is narrow, so there is a problem that design restrictions are large, such as low frequency driving.
JP 2002-228951 A Japanese Patent Application Laid-Open No. 07-175005 Japanese Patent Laying-Open No. 2005-099063

MEMS(Micro Electro Mechanical Systems)技術により製造される小型光偏向素子は、光偏向システムの小型化、低コスト化が実現できるため、種々のタイプのものの開発、実用化が進んでいる。これらの光偏向素子の多くは単結晶シリコンを梁材料とした両持ち梁構造となっており、光を反射させる鏡を有する可動部を、静電気力や電磁力により可動させ、光を偏向させる構造としている。   Small-sized optical deflecting elements manufactured by MEMS (Micro Electro Mechanical Systems) technology can realize miniaturization and cost reduction of optical deflecting systems, and therefore various types are being developed and put into practical use. Many of these light deflection elements have a double-supported beam structure using single crystal silicon as a beam material, and a movable part having a mirror that reflects light is moved by electrostatic force or electromagnetic force to deflect light. It is said.

しかし、駆動周波数が低く、衝撃耐性に優れた小型光偏向素子を低コストで実現したい要求は強く、ヤング率が130GPa程度と大きく、脆性材料であるシリコンを梁材料とするには、素子サイズが大きくなることを余儀なくされたり、また十分な衝撃耐性を確保できなくなったりなど、種々の問題があった。これらの問題を解消するため、ポリイミドを梁材料とする提案もなされているが、ヤング率制御範囲が狭く低周波駆動に限界があるなど、やはり種々の問題があった。   However, there is a strong demand to realize a small optical deflection element with a low driving frequency and excellent impact resistance at low cost. The Young's modulus is as large as about 130 GPa. There were various problems such as being forced to become large and being unable to ensure sufficient impact resistance. In order to solve these problems, proposals have been made to use polyimide as a beam material, but there are still various problems such as a narrow Young's modulus control range and a limit to low-frequency driving.

本発明は、このような状況のもとでなされたもので、低い周波数で駆動でき、衝撃耐性に優れ、小型で低コストの光偏向素子を提供することを課題とするものである。   The present invention has been made under such circumstances, and it is an object of the present invention to provide a light deflection element that can be driven at a low frequency, has excellent impact resistance, and is small and low cost.

前記課題を解決するため、本発明では、静電駆動型光偏向素子を次の(1)のとおりに構成する。
(1)台座部品と、前記台座部品に固着または連続形成された不動部と該不動部に両持ち梁部により支持された可動部とを有し、該可動部が電極機能を有する軟質樹脂部品と、前記可動部上に固着された反射板と、前記可動部に対して所定の間隔をもって対向配置される固定電極が設けられ、前記台座部品に固着された固定電極基板とを備え、
前記軟質樹脂部品は導電性シリコーンゴムより形成し、前記固定電極基板の前記固定電極を2分割して形成する静電駆動型光偏向素子。
In order to solve the above-described problem, in the present invention, the electrostatic drive type optical deflection element is configured as described in (1 ) below.
(1) A soft resin part having a base part, a stationary part fixedly or continuously formed on the base part, and a movable part supported by the stationary part by a doubly supported beam part, the movable part having an electrode function And a reflecting plate fixed on the movable part, a fixed electrode disposed to face the movable part at a predetermined interval, and a fixed electrode substrate fixed to the pedestal component,
The electrostatic drive type optical deflection element, wherein the soft resin component is formed of conductive silicone rubber, and the fixed electrode of the fixed electrode substrate is divided into two.

本発明によれば、軟質で、脆くない材料であるシリコーンゴムを、反射板を固着した可動部を支える両持ち梁の材料に適用できるため、低い駆動周波数で駆動でき、かつ衝撃耐性に優れる小型の静電駆動型光偏向素子を提供できる。   According to the present invention, since the silicone rubber, which is a soft and non-brittle material, can be applied to the material of the cantilever beam that supports the movable part to which the reflecting plate is fixed, it can be driven at a low driving frequency and has a small impact resistance. The electrostatic drive type optical deflection element can be provided.

以下、本発明を実施するための最良の形態を実施例により詳しく説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.

図1、2、3は実施例1である“静電駆動型光偏向素子”の構成を示す図であり、図1は静電駆動型光偏向素子の上面図であり、図2、3はその断面図である。なお、シリコーンゴムで形成された軟質樹脂部品5における周辺部分が不動部3であり、この不動部3に両持ち梁2により支持され、反射板6を固着する部分が可動部1である。   1, 2 and 3 are diagrams showing a configuration of an “electrostatic drive type optical deflection element” according to the first embodiment, FIG. 1 is a top view of the electrostatic drive type optical deflection element, and FIGS. FIG. In addition, the peripheral part in the soft resin component 5 formed of silicone rubber is the stationary part 3, and the part that is supported by the stationary part 3 by the doubly supported beam 2 and to which the reflecting plate 6 is fixed is the movable part 1.

製造された台座部品14の上面側に軟質樹脂部品5を固着し、前記軟質樹脂部品5の上面側に反射板6を固着し、前記台座部品14の下面側に固定電極部品11を固着することにより、図1、2、3に示す静電駆動型光偏向素子が構成される。   The soft resin component 5 is fixed to the upper surface side of the manufactured pedestal component 14, the reflector 6 is fixed to the upper surface side of the soft resin component 5, and the fixed electrode component 11 is fixed to the lower surface side of the pedestal component 14. Thus, the electrostatic drive type optical deflection element shown in FIGS.

前記台座部品14は、モールド技術によりシリコーンゴムを成形することにより容易に形成でき、たとえば、枠幅1mm、外枠の一辺長は5mm、厚さ0.3mmの形状である。モールド前のシリコーンゴム前駆体内に金属粒子や炭素粒子を混合することにより前記台座部品は導電性を有するようにしている。前記台座部品14は硬く変形が少ないことが好ましく、加硫制御によりヤング率が10MPa程度となるよう制御した。   The pedestal component 14 can be easily formed by molding silicone rubber by a molding technique. For example, the pedestal component 14 has a frame width of 1 mm, an outer frame having a side length of 5 mm, and a thickness of 0.3 mm. By mixing metal particles and carbon particles in the silicone rubber precursor before molding, the pedestal component is made conductive. The pedestal component 14 is preferably hard and less deformed, and the Young's modulus was controlled to be about 10 MPa by vulcanization control.

本実施例1では、シリコーンゴムを台座部品14の材料として適用したが、導電性プラスチックや半導体製造技術により穴あけ加工したシリコン基板やサンドブラスト技術により穴あけ加工したセラミック基板などでも良い。また、本実施例1では、シリコーンゴムの成形方法としてモールド技術を適用したが、パンチング技術により成形しても構わない。   In the first embodiment, silicone rubber is applied as a material for the pedestal component 14; however, a conductive plastic, a silicon substrate drilled by a semiconductor manufacturing technique, a ceramic substrate drilled by a sandblast technique, or the like may be used. In the first embodiment, the molding technique is applied as a method for molding the silicone rubber. However, the molding technique may be performed by a punching technique.

前記軟質樹脂部品5は、モールド技術によりシリコーンゴムを成形することにより容易に形成でき、前記台座部品14と同様に導電性を有するようにしており、導電性接着剤を介して前記台座部品14と前記軟質樹脂部品5は電気的に導通されている。また、加硫制御により、前記軟質樹脂部品5はヤング率が10kPa程度となるよう制御した。本実施例1では、シリコーンゴムの成形方法としてモールド技術を適用したが、パンチング技術により成形しても構わない。   The soft resin component 5 can be easily formed by molding silicone rubber by a molding technique, and has the same conductivity as the pedestal component 14. The soft resin component 5 is electrically connected. Further, the soft resin component 5 was controlled to have a Young's modulus of about 10 kPa by vulcanization control. In the first embodiment, the molding technique is applied as a method for molding the silicone rubber. However, the molding technique may be performed by a punching technique.

前記反射板6は、200ミクロン厚さのガラス基板13上に反射膜12となる金膜を蒸着により1.0ミクロンの厚さ堆積した後、ガラス基板13をダイシング技術により所望のサイズに切り出すことにより形成でき、たとえば一辺2mmの正方形の形状である。本実施例1では、前記反射板6の基板としてガラス基板13を用いているが、シリコン基板などでも良い。   The reflection plate 6 is obtained by depositing a gold film serving as the reflection film 12 on the glass substrate 13 having a thickness of 200 microns to a thickness of 1.0 microns by vapor deposition, and then cutting the glass substrate 13 to a desired size by a dicing technique. For example, it has a square shape with a side of 2 mm. In the first embodiment, the glass substrate 13 is used as the substrate of the reflection plate 6, but a silicon substrate or the like may be used.

前記固定電極部品11は、シリコン基板8を半導体製造技術により加工することにより形成できる。たとえば600ミクロン厚さのシリコン基板8上に、フォトリソグラフィー技術により所望のレジストパターンを形成し、前記レジストをエッチングマスクとして弗酸と硝酸と酢酸の混合水溶液などによりシリコン基板8を2ミクロン深さエッチングしてシリコン基板の段差10を形成した後、熱酸化によりシリコン酸化膜27を1ミクロン厚さ形成し、フォトリソグラフィー技術とエッチング技術により前記シリコン酸化膜27上に固定電極7となるアルミニウムや金などの固定電極配線15をパターニングし、ダイシング技術により所望のサイズに切り出すことにより形成でき、たとえば6mm×7mmで良い。   The fixed electrode component 11 can be formed by processing the silicon substrate 8 by a semiconductor manufacturing technique. For example, a desired resist pattern is formed on a silicon substrate 8 having a thickness of 600 microns by photolithography, and the silicon substrate 8 is etched to a depth of 2 microns with a mixed aqueous solution of hydrofluoric acid, nitric acid and acetic acid using the resist as an etching mask. After the step 10 of the silicon substrate is formed, a silicon oxide film 27 is formed to a thickness of 1 micron by thermal oxidation, and aluminum, gold, or the like that becomes the fixed electrode 7 is formed on the silicon oxide film 27 by a photolithography technique and an etching technique. The fixed electrode wiring 15 can be formed by patterning and cutting out to a desired size by a dicing technique, and may be, for example, 6 mm × 7 mm.

本実施例1では、固定電極基板としてシリコン基板8を適用したが、ガラス基板などを用いても良い。また、ポリイミドなどからなる既存のフレキシブル基板製造技術によっても前記固定電極部品は容易に実現できる。   In the first embodiment, the silicon substrate 8 is applied as the fixed electrode substrate, but a glass substrate or the like may be used. In addition, the fixed electrode component can be easily realized by an existing flexible substrate manufacturing technology made of polyimide or the like.

また、本実施例1では、台座部品14と軟質樹脂部品5を別々に形成したが、複数の金型を用いて連続形成しても良い。   In the first embodiment, the pedestal component 14 and the soft resin component 5 are formed separately, but may be formed continuously using a plurality of molds.

前記台座部品14の上面側に前記軟質樹脂部品5を導電性接着剤17などにより固着し、前記軟質樹脂部品5の上面側に前記反射板6を固着し、前記台座部品14の下面側に前記固定電極部品11を固着することにより構成される素子において、たとえば前記導電性の前記軟質樹脂部品5の可動電極パッド4をアース電位に固定すると、導電性シリコーンゴムにより形成した前記台座部品14を介して、前記可動部1を有する前記軟質樹脂部品5をアース電位に固定できる。前記軟質樹脂部品5の前記可動部1は導電性を有しているため、可動電極としての機能を備えている。   The soft resin component 5 is fixed to the upper surface side of the pedestal component 14 with a conductive adhesive 17, the reflector 6 is fixed to the upper surface side of the soft resin component 5, and the lower surface side of the pedestal component 14 is In the element constituted by fixing the fixed electrode component 11, for example, when the movable electrode pad 4 of the conductive soft resin component 5 is fixed to the ground potential, the element is formed via the pedestal component 14 formed of conductive silicone rubber. Thus, the soft resin component 5 having the movable part 1 can be fixed to the ground potential. Since the movable part 1 of the soft resin component 5 has conductivity, it has a function as a movable electrode.

ここで、前記固定電極部品11に形成された一対の固定電極の片側たとえば7−1に固定電極パッド9−1を介して低周波交流電圧を印加する(すなわち固定電極パッド9−1と可動電極パッド4の間に低周波交流電圧を印加する)と、前記軟質樹脂部品5の可動部1と前記電圧の印加された前記片側の固定電極7−1の間には周期的に静電引力が発生し両持ち梁2の弾性力と相まって、前記軟質樹脂部品5の可動部1は前記両持ち梁2を中心として両方向に回動し、前記軟質樹脂部品5に固着された前記反射板6が回動し、反射板6により反射光を周期的に偏向することができる。   Here, a low frequency AC voltage is applied to one side of the pair of fixed electrodes formed on the fixed electrode component 11, for example, 7-1 via the fixed electrode pad 9-1 (that is, the fixed electrode pad 9-1 and the movable electrode). When a low frequency AC voltage is applied between the pads 4), electrostatic attraction is periodically generated between the movable part 1 of the soft resin component 5 and the fixed electrode 7-1 on the one side to which the voltage is applied. Combined with the elastic force of the both-end supported beam 2, the movable portion 1 of the soft resin component 5 rotates in both directions around the both-end supported beam 2, and the reflector 6 fixed to the soft resin component 5 is moved. It can be rotated and the reflected light can be periodically deflected by the reflecting plate 6.

また、一対の固定電極7の片側たとえば7−1に固定電極パッド9−1を介して直流電圧を印加すると、前記軟質樹脂部品5の可動部1と前記電圧の印加された前記片側の固定電極7−1の間には連続的に静電引力が発生し、前記可動部1は前記両持ち梁2を中心として一方の方向に回動し、前記軟質樹脂部品5に固着された前記反射板6が回動し、反射板6により反射光を一方の方向に連続的に偏向することができる。また、他方の固定電極7−2に固定電極パッド9−2を介して直流電圧を印加すると、前記軟質樹脂部品5の可動部1と前記電圧の印加された前記片側の固定電極7−2の間には連続的に静電引力が発生し、前記可動部1は前記両持ち梁2を中心として他方の方向に回動し、前記軟質樹脂部品5に固着された前記反射板6が回動し、反射板6により反射光を他方の方向に連続的に偏向することができる。   Further, when a DC voltage is applied to one side of the pair of fixed electrodes 7, for example, 7-1 via the fixed electrode pad 9-1, the movable part 1 of the soft resin component 5 and the fixed electrode on the one side to which the voltage is applied 7-1, an electrostatic attractive force is continuously generated, and the movable portion 1 rotates in one direction around the both-end supported beam 2 and is fixed to the soft resin component 5 6 is rotated, and the reflected light can be continuously deflected in one direction by the reflecting plate 6. When a DC voltage is applied to the other fixed electrode 7-2 via the fixed electrode pad 9-2, the movable part 1 of the soft resin component 5 and the fixed electrode 7-2 on one side to which the voltage is applied are applied. In the meantime, electrostatic attraction is continuously generated, the movable part 1 rotates in the other direction around the both-end supported beam 2, and the reflecting plate 6 fixed to the soft resin component 5 rotates. The reflected light can be continuously deflected in the other direction by the reflecting plate 6.

固定電極への印加電圧は、交流、直流に限らず、パルス電圧であってもよい。
このようにして、本実施例1の静電駆動型光偏向素子は駆動される。
The voltage applied to the fixed electrode is not limited to alternating current and direct current, but may be a pulse voltage.
In this manner, the electrostatic drive type optical deflection element of the first embodiment is driven.

本実施例1では、固定電極を両持ち梁2を中心として2分割しているが、これに限らず、可動電極を2分割する、あるいは固定電極、可動電極の両方をそれぞれ2分割する形で実施することができる。   In the first embodiment, the fixed electrode is divided into two with the double-supported beam 2 as the center. However, the present invention is not limited to this, and the movable electrode is divided into two, or both the fixed electrode and the movable electrode are divided into two. Can be implemented.

本実施例1によれば、軟質で非脆性材料であるシリコーンゴムを両持ち梁材料に適用できるため、低周波で駆動でき、かつ衝撃耐性に優れる光偏向素子を容易に実現できる。また、安価なシリコーンゴム材料を母材として、モールド技術やパンチング技術などの低コスト加工技術により形成できるため、安価な光偏向素子を提供できる。   According to the first embodiment, since the soft and non-brittle silicone rubber can be applied to the doubly supported beam material, it is possible to easily realize an optical deflection element that can be driven at a low frequency and has excellent impact resistance. In addition, since an inexpensive silicone rubber material can be used as a base material and can be formed by a low-cost processing technique such as a molding technique or a punching technique, an inexpensive optical deflection element can be provided.

また、周知のとおり、シリコーンゴムなどのゴム材料は、含有される硫黄の比率を制御するなどにより、そのヤング率を1kPa程度から10MPa程度まで広範囲にわたり制御できるため、たとえば、硫黄含有率を制御するだけで部品の幾何学設計を変更することなく、系の共振周波数を変更することができるため、フォトマスクや金型などの作成費用を削減でき、また製品開発期間を短縮できる。   Further, as is well known, a rubber material such as silicone rubber can control its Young's modulus over a wide range from about 1 kPa to about 10 MPa by controlling the ratio of sulfur contained therein, and thus, for example, the sulfur content is controlled. Since it is possible to change the resonance frequency of the system without changing the geometric design of the parts, it is possible to reduce the cost for creating photomasks and molds and shorten the product development period.

なお、軟質樹脂部品5を絶縁性とし、表面に可動電極を固着する形で実施することもできる。この場合、可動電極パッドと可動電極を適宜の手段で接続する必要がある。   The soft resin component 5 can be made insulative and the movable electrode can be fixed to the surface. In this case, it is necessary to connect the movable electrode pad and the movable electrode by an appropriate means.

図5ないし8は実施例2である“静電駆動型光偏向素子”の構成を示す図であり、図5は静電駆動型光偏向素子の上面図であり、図6、7、8はその断面図である。反射板6、軟質樹脂部品5、台座部品14、固定電極部品11のそれぞれに、固着位置決め用凹凸28を備えている。   FIGS. 5 to 8 are diagrams showing the configuration of the “electrostatic drive type optical deflection element” according to the second embodiment, FIG. 5 is a top view of the electrostatic drive type optical deflection element, and FIGS. FIG. The reflector 6, the soft resin component 5, the pedestal component 14, and the fixed electrode component 11 are each provided with fixing positioning irregularities 28.

前記反射板6に形成された穴は実施例1と同様の手法で形成した反射板6にサンドブラスト技術やレーザ加工技術を適用することにより容易に実現できる。   The holes formed in the reflector 6 can be easily realized by applying a sandblasting technique or a laser processing technique to the reflector 6 formed by the same method as in the first embodiment.

前記台座部品14、および前記軟質樹脂部品5は、実施例1と同様、シリコーンゴムをモールド技術により成形して形成され、前記軟質樹脂部品5の上面側には前記反射板6に形成された穴に対応する位置に突起が形成されている(図8参照)。また、前記台座部品14の底面側には固定電極部品11の上面側に形成された凹みに対応する位置に突起が形成されている(図7参照)。   The pedestal component 14 and the soft resin component 5 are formed by molding silicone rubber by a molding technique in the same manner as in the first embodiment, and a hole formed in the reflector 6 on the upper surface side of the soft resin component 5. A protrusion is formed at a position corresponding to (see FIG. 8). A protrusion is formed on the bottom surface side of the pedestal component 14 at a position corresponding to a recess formed on the upper surface side of the fixed electrode component 11 (see FIG. 7).

固定電極部品11に形成された凹みは実施例1と同様の手法で形成した固定電極部品にサンドブラスト技術やレーザ加工技術を適用することにより容易に形成できる。   The recess formed in the fixed electrode part 11 can be easily formed by applying a sandblasting technique or a laser processing technique to the fixed electrode part formed by the same method as in the first embodiment.

本実施例2によれば、反射板6と軟質樹脂部品5、台座部品14と固定電極部品11をそれぞれ固着するときに、位置決め用の凹凸28を利用できるため、固着アライメント精度を向上でき、光偏向素子の性能バラツキを低減できる。本実施例2では示していないが、台座部品14と軟質樹脂部品5の固着部においても同様の位置決め用凹凸28を形成するとより性能バラツキを低減できる静電駆動型光偏向素子を形成できることは言うまでも無い。   According to the second embodiment, when the reflecting plate 6 and the soft resin component 5 and the pedestal component 14 and the fixed electrode component 11 are fixed, the positioning unevenness 28 can be used. It is possible to reduce the performance variation of the deflection element. Although not shown in the second embodiment, it is possible to form an electrostatic drive type optical deflecting element that can further reduce the performance variation by forming the same positioning unevenness 28 in the fixing portion of the base component 14 and the soft resin component 5. Not too long.

以上、説明したように、本実施例によれば、軟質で、脆くない材料であるシリコーンゴムを、反射板を固着した可動部を支える両持ち梁の材料に適用できるため、低い駆動周波数で駆動でき、かつ衝撃耐性に優れる小型の静電駆動型光偏向素子を提供できる。   As described above, according to this embodiment, silicone rubber, which is a soft and non-brittle material, can be applied to the material of the cantilever beam that supports the movable part to which the reflector plate is fixed, so that it is driven at a low driving frequency. It is possible to provide a small electrostatically driven optical deflecting element that is excellent in impact resistance.

また、安価な材料であるシリコーンゴムを母材とし、かつ安価なプロセスであるモールド技術やパンチング技術が利用できるので、低コストの静電駆動型光偏向素子を容易に実現できる。   In addition, since an inexpensive material such as silicone rubber is used as a base material and an inexpensive process such as molding technology or punching technology can be used, a low-cost electrostatically driven optical deflection element can be easily realized.

また、位置決め用の凹凸を利用できるため、固着アライメント精度を向上でき、光偏向素子の性能バラツキを低減できる。   Moreover, since the positioning irregularities can be used, the fixing alignment accuracy can be improved, and the performance variation of the optical deflection element can be reduced.

実施例1の構成を示す上面図The top view which shows the structure of Example 1 実施例1の構成を示すA−A断面図AA sectional view showing the composition of Example 1 実施例1の構成を示すB−B断面図BB sectional view showing the configuration of Example 1 実施例1の構成を示すC−C断面図CC sectional drawing which shows the structure of Example 1. FIG. 実施例2の構成を示す上面図The top view which shows the structure of Example 2 実施例2の構成を示すD−D断面図DD sectional drawing which shows the structure of Example 2. 実施例2の構成を示すE−E断面図EE sectional drawing which shows the structure of Example 2. 実施例2の構成を示すF−F断面図FF sectional drawing which shows the structure of Example 2. 従来の光偏向素子の構成を示す上面図Top view showing the configuration of a conventional optical deflection element 従来の光偏向素子の構成を示す上面図Top view showing the configuration of a conventional optical deflection element 従来の光偏向素子の構成を示す上面図Top view showing the configuration of a conventional optical deflection element

符号の説明Explanation of symbols

1 可動部
2 両持ち梁部
3 不動部
5 軟質樹脂部品
6 反射板
7−1 固定電極
7−2 固定電極
14 台座部品
DESCRIPTION OF SYMBOLS 1 Movable part 2 Both-ends beam part 3 Non-moving part 5 Soft resin component 6 Reflector 7-1 Fixed electrode 7-2 Fixed electrode 14 Base component

Claims (1)

台座部品と、前記台座部品に固着または連続形成された不動部と該不動部に両持ち梁部により支持された可動部とを有し、該可動部が電極機能を有する軟質樹脂部品と、前記可動部上に固着された反射板と、前記可動部に対して所定の間隔をもって対向配置される固定電極が設けられ、前記台座部品に固着された固定電極基板とを備え、
前記軟質樹脂部品は導電性シリコーンゴムより形成し、前記固定電極基板の前記固定電極を2分割して形成することを特徴とする静電駆動型光偏向素子。
A pedestal component, a non-moving portion fixed or continuously formed on the pedestal component, and a movable portion supported by the non-moving portion by a doubly supported beam portion, and the movable portion having an electrode function; a reflector secured on the movable portion, the fixed electrode facing each provided with a predetermined interval with respect to the movable portion, and a fixed electrode substrate which is secured to the pedestal part,
2. The electrostatic drive type optical deflection element according to claim 1, wherein the soft resin component is made of conductive silicone rubber, and the fixed electrode of the fixed electrode substrate is divided into two .
JP2005198702A 2005-07-07 2005-07-07 Electrostatic drive type optical deflection element Expired - Fee Related JP3942621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198702A JP3942621B2 (en) 2005-07-07 2005-07-07 Electrostatic drive type optical deflection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198702A JP3942621B2 (en) 2005-07-07 2005-07-07 Electrostatic drive type optical deflection element

Publications (2)

Publication Number Publication Date
JP2007017678A JP2007017678A (en) 2007-01-25
JP3942621B2 true JP3942621B2 (en) 2007-07-11

Family

ID=37754909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198702A Expired - Fee Related JP3942621B2 (en) 2005-07-07 2005-07-07 Electrostatic drive type optical deflection element

Country Status (1)

Country Link
JP (1) JP3942621B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045981A (en) * 2009-08-28 2011-03-10 Ritsumeikan Mems and method for manufacturing same
JP6018926B2 (en) * 2013-01-09 2016-11-02 富士フイルム株式会社 Micromirror device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007017678A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
US7205174B2 (en) Micromechanical actuator with multiple-plane comb electrodes and methods of making
US5914801A (en) Microelectromechanical devices including rotating plates and related methods
KR100486716B1 (en) 2-dimensional actuator and manufacturing method thereof
JP3942619B2 (en) Optical deflection element
US7929192B2 (en) Method of fabricating a micromechanical structure out of two-dimensional elements and micromechanical device
US6677695B2 (en) MEMS electrostatic actuators with reduced actuation voltage
CN107942509B (en) Micro mirror with distributed elastic structure
US6603591B2 (en) Microminiature movable device
JP2010026147A (en) Movable structure and optical scanning mirror using the same
JP2006072252A (en) Planar type actuator and method of manufacturing the same
KR20110046466A (en) Micromachined parts manufacturing method and micromechanical parts with electrodes in two planes
JP3942621B2 (en) Electrostatic drive type optical deflection element
US20080043309A1 (en) Micro-device and electrode forming method for the same
KR20030067491A (en) Resonant thermal out-of-plane buckle-beam actuator
JP2006201520A (en) Mems mirror scanner
JP2006343482A (en) Optical scanner
JP2011176426A (en) Resonant vibration device
JP2009122155A (en) Micro-device manufacturing method and micro--device
US12078797B2 (en) Optical scanning device and method for manufacturing same
JP2001264650A (en) Minute movable device and its manufacturing method
JP2009071663A (en) Movement mechanism and imaging apparatus
JP2007121464A (en) Tilt mirror element and method of driving the same
JP3716241B2 (en) MEMS device and optical attenuator, optical switch, and optical scanner using the same
KR100404195B1 (en) micro mirror and method for fabricating micro mirror
JP2005118944A (en) Micromachine

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Effective date: 20070105

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120413

LAPS Cancellation because of no payment of annual fees