Nothing Special   »   [go: up one dir, main page]

JP3828050B2 - Antenna array and wireless device - Google Patents

Antenna array and wireless device Download PDF

Info

Publication number
JP3828050B2
JP3828050B2 JP2002174293A JP2002174293A JP3828050B2 JP 3828050 B2 JP3828050 B2 JP 3828050B2 JP 2002174293 A JP2002174293 A JP 2002174293A JP 2002174293 A JP2002174293 A JP 2002174293A JP 3828050 B2 JP3828050 B2 JP 3828050B2
Authority
JP
Japan
Prior art keywords
conductor element
ground plane
conductor
antenna
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002174293A
Other languages
Japanese (ja)
Other versions
JP2004023369A (en
Inventor
根 秀 一 関
上 康 村
舘 紀 章 大
村 彰 宏 辻
藤 敬 義 伊
上 和 弘 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002174293A priority Critical patent/JP3828050B2/en
Publication of JP2004023369A publication Critical patent/JP2004023369A/en
Application granted granted Critical
Publication of JP3828050B2 publication Critical patent/JP3828050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

【0001】
【発明の属する技術分野】
複数のアンテナを有するアンテナアレーと、複数のアンテナのそれぞれに対応した複数の無線機を有する無線装置に関する。
【0002】
【従来の技術】
近年、2GHz近傍の周波数帯で動作する無線システムが数多く開発されている。例えば、2.4GHz帯で動作する無線システムには無線LANとBluetooth(登録商標)があるが、これらのシステムに対応した無線機が同じ端末内に実装される場合がある。
【0003】
【発明が解決しようとする課題】
2つの無線機が同一周波数帯域で動作している場合には、アンテナを介して互いの送信電波による干渉が発生する。
【0004】
上述した干渉を抑圧するには、アンテナを離して配置する必要があるが、端末の小型・薄型化に伴って、アンテナを離して配置するのがスペース的に困難になりつつある。
【0005】
端末が小型・薄型化すると、アンテナは低姿勢になるが、低姿勢化したアンテナでは、アンテナ自身の放射だけでなく、近接する導体を介してアンテナ間結合が発生し、上述した干渉が起こりやすくなる。この種のアンテナ間結合が発生すると、アンテナ自身の放射だけでなく、アンテナが接続される地板からの放射も大きくなる。特に、2つのアンテナが同じ地板上に配置される場合、2つのアンテナは、地板を介して接続されるのと同じ状態になり、干渉が大きくなる。この種の送信電波の干渉が起きると、通信品質が低下してしまう。
【0006】
本発明は、このような点に鑑みてなされたものであり、その目的は、送信電波の干渉を抑制可能なアンテナアレー及び無線装置を提供することにある。
【0007】
【課題を解決するための手段】
上述した課題を解決するために、本発明の一態様によれば、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、前記第3導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、前記第5導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレーが提供される。
【0009】
また、本発明の一態様によれば、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、前記第2導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、前記第5導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレーが提供される。
また、本発明の一態様によれば、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、前記第3導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、前記第6導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレーが提供される。
【0010】
【発明の実施の形態】
以下、本発明に係るアンテナアレー及び無線装置について、図面を参照しながら具体的に説明する。
【0011】
(第1の実施形態)
図1は本発明に係るアンテナアレーの第1の実施形態の概略的な配置図である。図1のアンテナアレーは、同一の地板1上に配置される第1及び第2アンテナ2,3を備えている。図1では省略しているが、第1アンテナ2は給電点4を通して第1無線機に接続され、第2アンテナ3は給電点7を通して第2無線機に接続されている。
【0012】
第1アンテナ2は、地板1上の第1給電点4と、この第1給電点4から地板1に対して略垂直に延びる第1導体素子5と、この第1導体素子5の先端部から地板1に略平行に延びる第2導体素子6とを有する。第1導体素子5及び第2導体素子6の長さの和は、第1アンテナ2の動作周波数の略1/4波長に設定されている。
【0013】
第2アンテナ3は、地板1上の第2給電点7と、この第2給電点7から地板1に対して略垂直に延びる第3導体素子8と、この第3導体素子8の先端部から地板1に略平行に延びる第4導体素子9とを有する。第3導体素子8及び第4導体素子9の長さの和は、第2アンテナ3の動作周波数の略1/4波長に設定されている。
【0014】
第2導体素子6と第4導体素子9は同じ向きに配置されている。すなわち、第4導体素子9の先端部は第1及び第2給電点4,7の間に配置され、第2導体素子6の先端部は第1給電点4を基準として第2給電点7の反対側に配置されている。なお、図2(a)に示すように、第2アンテナ3を第1アンテナ2の延長線上から少しずらして配置してもよい。あるいは、図2(b)に示すように、第2導体素子6の先端部を第1及び第2給電点4,7の間に配置し、第4導体素子9の先端部を第2給電点7を基準として第1給電点4の反対側に配置してもよい。
【0015】
図1の第1及び第2アンテナ2,3において、インピーダンス整合が取れない場合には、第1及び第2給電点4,7の近傍に整合回路を設けるか、あるいは逆Fアンテナのように第1及び第3導体素子8を地板1に短絡させる配線を接続してもよい。これにより、インピーダンスが変化して整合を取ることができる。
【0016】
図3は第1及び第2アンテナ2,3の整合特性と結合特性を示す図である。図3では、第1及び第2アンテナ2,3の距離を一定にした状態で、これらアンテナの向きを変えたモデルA,B,Cの整合特性と結合特性のシミュレーションによる計算結果を示している。
【0017】
モデルAは図1のように配置した場合であり、モデルBは第1及び第2アンテナ2,3を逆向きに配置した場合、モデルCは第1及び第2アンテナ2,3を対向配置した場合である。
【0018】
図3からわかるように、第1及び第2アンテナ2,3の整合が取れている場所で、モデルAの結合量を他のモデルB,Cと比較すると、1〜2dB程度アンテナ間結合が減る。
【0019】
図4はモデルA,B,Cの第1及び第2アンテナ2,3上の電流分布を示す模式図である。第1及び第2アンテナ2,3は、1/4波長の長さを有するため、電流は給電点を最大とする正弦波状に分布する。
【0020】
一般に、アンテナ間結合は、アンテナ上の電流分布の大きい部分が近接することで強くなると考えられている。第1及び第2アンテナ2,3間の距離はモデルCが最も離れており、モデルBが最も近接しているため、直感的にはモデルCが最もアンテナ間結合が少ないように思える。ところが実際には、モデルCの結合量が一番大きくなり、モデルBはモデルCよりも結合量が小さくなる。このような現象が起きる理由は、地板1に流れる電流による結合が生じるためである。
【0021】
また、図5は地板1上の電流分布を示す模式図である。図5からわかるように、地板1上の電流には、地板1と平行に配置された第2及び第4導体素子6,9によって誘起される電流が加わる。このため、第2及び第4導体素子6,9と同じ向きに強い電流分布が生じ、その結果、アンテナ間結合が生じる。第2及び第4導体素子6,9上の電流分布は空間を介して結合するが、地板1上の電流は地板1を介して結合する。
【0022】
この種のアンテナ間結合は、アンテナが地板1と平行に配置された平板状の場合に顕著に発生する。また、地板1上の電流だけに着目すれば、モデルBのように第1及び第2アンテナ2,3を互いに逆方向に配置することでアンテナ間結合の削減が期待できる。ところが、この場合、第1及び第2アンテナ2,3上の電流が最大になる位置が近接するため、その影響を受けてアンテナ間結合が強くなってしまう。
【0023】
一方、本実施形態が推奨するモデルAでは、まずアンテナ上の電流の最大値がモデルBより離れている。また地板1上の電流に関しては、片側のみが他方のアンテナ素子の方向に向いており、モデルCのように両方が向き合うよりも良好な構成になる。以上のことから、本実施形態のアンテナアレーでは、他のアンテナアレーの構成よりもアンテナ間結合を小さくすることができる。
【0024】
このように、第1の実施形態では、第1アンテナ2の第2導体素子6と第2アンテナ3の第4導体素子9とを略同一方向に配置するため、アンテナ間結合を抑制できるとともに、地板1上の結合も抑制でき、電波の干渉が起きにくくなり、アンテナの結合特性がよくなる。
【0025】
(第2の実施形態)
第2の実施形態は、地板1の辺縁部に第1及び第2アンテナ2,3を配置するものである。
【0026】
図6は本発明に係るアンテナアレーの第2の実施形態の概略的な配置図である。図示のように、同一の有限地板1の辺縁部に第1アンテナ2の第1給電点4と第2アンテナ3の第2給電点7とが配置され、第1アンテナ2の第2導体素子6と第2アンテナ3の第4導体素子9は辺縁部に略平行に同じ向きに配置されている。
【0027】
一般に、導体板では、辺縁部の電流分布が大きいため、アンテナを辺縁部に配置すると、より大きな電流が辺縁部に分布することになる。したがって、図6のように配置した場合、アンテナ間結合がより大きくなる。その理由は、第1及び第2アンテナ2,3が辺縁部に配置されると、辺縁部への電流の漏洩が多くなるためである。したがって、図6に示すように、有限地板1の辺縁部に第1及び第2アンテナ2,3を略平行かつ同じ向きに配置すると、アンテナ間結合をよりいっそう抑制することができる。
【0028】
図7は図6の変形例であり、有限地板1の隣接する2辺の一方に第1アンテナ2を配置し、他方に第2アンテナ3を配置する例を示している。この場合は、各アンテナが地板1の辺縁部に平行になるように配置し、かつ第2導体素子6及び第4導体素子9のいずれか一方の先端部を第1及び第2給電点4,7の間に配置し、他方の先端部を、第1給電点4を基準として第2給電点7の反対側に配置するか、または第2給電点7を基準として第1給電点4の反対側に配置すればよい。
【0029】
このように、第2の実施形態では、地板1の辺縁部に第1及び第2アンテナ2,3を配置するため、アンテナ間結合の抑制効果を高めることができる。
【0030】
(第3の実施形態)
第3の実施形態は、地板1の辺縁部に補助地板を配置し、この補助地板上に第1及び第2アンテナ2,3を配置するものである。
【0031】
図8は本発明に係るアンテナアレーの第3の実施形態の概略的な配置図である。図示のように、地板1の辺縁部に配置された補助地板10と、この補助地板10上の辺縁部に配置された第1及び第2アンテナ2,3とを備えている。
【0032】
地板1と補助地板10は、容量性結合で結ばれるため、高周波的には図7に示した第2の実施形態と同様の構成になる。したがって、第1アンテナ2の第1導体素子5と第2アンテナ3の第2導体素子6を辺縁部に略平行かつ同じ方向に配置することで、第2の実施形態と同様に、アンテナ間結合をより効率的に抑制できる。図8の場合の容量結合は、第1及び第2アンテナ2,3を直接地板1に接続した場合よりも弱いため、アンテナ間結合が第2の実施形態よりも小さくなる。
【0033】
(第4の実施形態)
上述した第1〜第3の実施形態ではL字型のアンテナを用いる例を説明したが、以下に説明する第4〜第10の実施形態ではT字型のアンテナを用いる。
【0034】
図9は本発明に係るアンテナアレイの第4の実施形態の概略的な配置図である。図9のアンテナアレイは、地板1上に配置されたT字型の第1及び第2アンテナ21,22を備えている。第1及び第2アンテナ21,22は、略同一線上に配置されている。なお、図10に示すように、第1及び第2アンテナ21,22を少しずらして配置してもよい。この場合、第1及び第2アンテナ21,22が互いに重なり合わないように平行に配置するのが望ましい。
【0035】
第1アンテナ21は、地板1上の第1給電点23と、この第1給電点23から地板1に対して略垂直に延びる第1導体素子24と、この第1導体素子24の先端部から地板1に略平行に延びる第2導体素子25と、第1導体素子24の先端部から第2導体素子25の反対側に延びる第3導体素子26と、を有し、第1動作周波数で共振する。
【0036】
第2アンテナ22は、地板1上の第2給電点27と、この第2給電点27から地板1に対して略垂直に延びる第4導体素子28と、この第4導体素子28の先端部から地板1に略平行に延びる第5導体素子29と、第4導体素子28の先端部から第5導体素子29の反対側に延びる第6導体素子30と、を有し、第2動作周波数で共振する。
【0037】
第2及び第3導体素子25,26の長さの和は、第1動作周波数の略半波長であり、第5及び第6導体素子29,30の長さの和は、第2動作周波数の略半波長である。
【0038】
第1アンテナ21の第1及び第2導体素子25,26の長さの比を調整することで、第1アンテナ21を第1動作周波数で給電線のインピーダンスである50Ωに整合させることができる。同様に、第2アンテナ22の第5及び第6導体素子29,30の長さの比を調整することで、第2アンテナ22を第2動作周波数で給電線のインピーダンスである50Ωに整合させることができる。
【0039】
図11及び図12は第1及び第2アンテナ21,22の構成例を示す図であり、図11は1.9GHzで50Ωになるように構成した例、図12は2.1GHzで50Ωになるように構成した例を示している。
【0040】
図11の場合、第1導体素子24の長さは6.5mm、第2導体素子25の長さは31.5mm、第3導体素子26の長さは35.6mmで、これら導体素子の径φは0.8mmである。また、図12の場合、第1導体素子24の長さは7mm、第2導体素子25の長さは34mm、第3導体素子26の長さは38.5mmで、これら導体素子の径φは0.8mmである。
【0041】
図10のようなT字型アンテナは、図1のようなL字型アンテナと比べて、地板1に多くの電流が流れないという特徴を有する。
【0042】
図13はT字型アンテナの放射パターンを示す図である。この図からわかるように、T字型アンテナの長手方向には、放射パターンのヌルが向けられることになる。したがって、図10のように略同一線上に第1及び第2アンテナ21,22を配置すると、一方のアンテナには他方のアンテナのヌルが向けられるので、アンテナ間結合を十分に抑制できる。
【0043】
このように、第4の実施形態では、T字型アンテナを略同一線上に配置するため、アンテナ間結合が起きにくくなり、電波の干渉が起きにくくなる。
【0044】
(第5の実施形態)
第5の実施形態は、地板1の辺縁部に2つのT字型アンテナを配置するものである。
【0045】
図14は本発明に係るアンテナアレーの第5の実施形態の概略的な配置図である。図10と同じ形状の第1及び第2アンテナ21,22が有限地板1の辺縁部に配置されている。より具体的には、第1及び第2アンテナ21,22の第2、第3、第5及び第6導体素子25,26,29,30は辺縁部に略平行に配置されている。
【0046】
第1及び第2アンテナ21,22を有限地板1の辺縁部に配置すると、有限地板1上に流れるイメージ電流が不完全になり、有限地板1からの放射が減少する。このイメージ電流は、アンテナ上の電流と逆相になるため、アンテナからの放射電波を打ち消しているが、上記のように不完全となることで、アンテナからの放射の打ち消しが抑圧され、よりアンテナからの放射が大きくなる。
【0047】
また、図14の第1及び第2アンテナ21,22の各導体素子方向には、図13と同様にヌルが向けられるので、第1及び第2アンテナ21,22を有限地板1の辺縁部に配置しても、アンテナ間結合の劣化はあまり大きくならない。
【0048】
このように、第5の実施形態では、第1及び第2アンテナ21,22を有限地板1の辺縁部に配置するため、有限地板1からの放射を減少でき、アンテナの放射特性を向上できる。
【0049】
(第6の実施形態)
第6の実施形態は、有限地板1の辺縁部に補助地板10を配置し、この補助地板10の辺縁部に2つのT字型アンテナを配置するものである。
【0050】
図15は本発明に係るアンテナアレーの第6の実施形態の概略的な配置図である。図15のアンテナアレーは、有限地板1の辺縁部に配置された補助地板10と、これら補助地板10の辺縁部に配置された図10と同じ形状の第1及び第2アンテナ21,22とを備えている。第1及び第2アンテナ21,22の第2、第3、第5及び第6導体素子25,26,29,30は補助地板10の辺縁部に略平行に配置されている。
【0051】
有限地板1と補助地板10は容量性結合で結びつくため、高周波的には図14と同じ構成になる。また、補助地板10を設けたことにより、有限地板1を介した結合が図14よりも弱まるため、図14よりもアンテナ間結合を弱めることができる。
【0052】
このように、第6の実施形態では、有限地板1の周縁部に補助地板10を設け、この補助地板10の周縁部に第1及び第2アンテナ21,22を配置するため、アンテナ間結合を弱めることができ、電波の干渉が起きにくくなる。
【0053】
(第7の実施形態)
第5、6の実施形態では省略したが、本アンテナにおいても、導体素子に生じた電流によって結合が生じる。図16は図10に示したT字型アンテナの電流分布を周波数ごとに模式的に示した図である。第1アンテナ21は、第2導体素子25を第3導体素子26よりも長くしており、共振周波数はf1である。この場合、第1アンテナ21の電流分布は、共振周波数f1より低い周波数と高い周波数で大きく変化する。
【0054】
図16に示すように、共振周波数f1より低い周波数では、第2導体素子25に大きな電流分布が発生し、共振周波数f1より高い周波数では、第3導体素子26に大きな電流分布が発生する。共振周波数f1より低い周波数でも、高い周波数でも、第1の実施形態で説明したL字型アンテナと同様に動作する。すなわち、T字型アンテナは、等価的に、周波数が変化するに従って向きが異なるL字型アンテナとして機能する。このため、L字の向きが固定の第1の実施形態とは別個の対策が必要になる。
【0055】
また、T字型アンテナは、給電点が第2及び第3導体素子25,26の略中央に位置しているため、第2及び第3導体素子25,26の向きを変えても、給電点の位置は変化しない。したがって、L字型アンテナでは、L字の向きを変えることで給電点が移動するため電流の最大位置が大きく変化し、それに応じてアンテナ間結合の強さも変化するが、T字型ではほとんど変化しない。このため、T字型アンテナでは、第2及び第3導体素子25,26のうち電流分布の大きい導体素子が他方のアンテナの方向を向かないように配置するだけでよい。
【0056】
図17は本発明に係るアンテナアレーの第7の実施形態の概略的な配置図である。図17では、第1アンテナ21の動作周波数(第1動作周波数)を第2アンテナ22の動作周波数(第2動作周波数)よりも低くしている。したがって、第1アンテナ21の第2及び第3導体素子25,26の長さの和よりも、第2アンテナ22の第5及び第6導体素子29,30の長さの和を短くしている。また、第5導体素子29を第4導体素子28よりも長くし、第3導体素子26を第2導体素子25よりも長くしている。このように構成することで、上記の周波数条件において、他のアンテナ構成よりもアンテナ間結合を小さくできる。
【0057】
図18は、第1動作周波数f#1が第2動作周波数f#2よりも低い場合に、第1及び第2アンテナ21,22(図は、地板1の法線方向からアンテナを眺めている。またアンテナ21,22は図中#1、#2で表示)が取り得る地板1への実装方法のすべてを示したものである。第1動作周波数と第2動作周波数は周波数が異なるため、第1及び第2アンテナ21,22の大きさは異なったものになる。すなわち、第2導体素子25は第3導体素子26と異なった長さになり、第4導体素子28は第5導体素子29と異なった長さになる。
【0058】
第1及び第2アンテナ21,22の配置法の組み合わせとして、図18のモデルA〜Dの4種類がある。モデルAは、図17と同様に、第2導体素子25の長さ<第3導体素子26の長さで、かつ第5導体素子29の長さ<第6導体素子30の長さである。モデルBは、第2導体素子25の長さ<第3導体素子26の長さで、かつ第5導体素子29の長さ>第6導体素子30の長さである。モデルCは、第2導体素子25の長さ>第3導体素子26の長さで、かつ第5導体素子29の長さ<第6導体素子30の長さである。モデルDは、第2導体素子25の長さ>第3導体素子26の長さで、かつ第5導体素子29の長さ>第6導体素子30の長さである。
【0059】
図18において、「大」と記載された導体素子は、その周波数帯での電流分布が大きいことを示している。図18では、モデルA〜Dのそれぞれについて、第1動作周波数(共振周波数)f#1と第2動作周波数(共振周波数)f#2の前後における電流分布を把握できる。
【0060】
図18からわかるように、第1アンテナ21の電流分布の大きい場所と第2アンテナ22の電流分布の大きい場所とが最も離れているのは、モデルAである。したがって、モデルAのように第1及び第2アンテナ21,22を配置すれば、電流分布が大きな部分が向き合い最近接状態となるおそれがなくなる。
【0061】
図19は、モデルA〜Dのアンテナアレーを用いて、給電点間の距離を100mmとしたときのアンテナ間の最大結合量を示している。この図からわかるように、周波数f#1〜f#2の帯域で、モデルAが他のモデルに比べてアンテナ間結合が弱くなる。
【0062】
このように、第7の実施形態では、電流分布の大きな部分が向き合い近接しないように第1及び第2アンテナ21,22を配置するため、電波の干渉が起きにくくなる。
【0063】
(第8の実施形態)
第8の実施形態は、第1アンテナ21が送信アンテナで、第2アンテナ22が受信アンテナであり、第1アンテナ21の動作周波数(第1動作周波数)f#1が第2アンテナ22の動作周波数(第2動作周波数)f#2より低い場合のアンテナ構成である。
【0064】
このような場合、送信アンテナから受信アンテナへの回り込みが最大の問題になる。したがって、送信周波数でのアンテナ間結合が小さくなるようにアンテナアレーを構成する必要がある。
【0065】
そこで、第8の実施形態では、第2アンテナ22の第5導体素子29を第6導体素子30よりも短くする。
【0066】
図18において、モデルAまたはCを選択することで、第1動作周波数f#1近傍でのアンテナ間結合を小さくできることがわかる。モデルAまたはCでは、第5導体素子29が第6導体素子30より短いため、第1アンテナ21の動作周波数f#1にてアンテナ間結合を抑制することができる。
【0067】
このように、第8の実施形態では、送信周波数が受信周波数よりも低い場合に、第2アンテナ22の第5導体素子29を第6導体素子30より短くするため、送信周波数f#1でのアンテナ間結合を抑制でき、送信アンテナから受信アンテナへの回り込みを回避できる。
【0068】
(第9の実施形態)
第9の実施形態では、送信周波数が受信周波数よりも高い場合に、送信アンテナから受信アンテナへの回り込みを回避するものである。
【0069】
図18において、周波数fが、f#2<f<f#1か、f#2<fの場合、モデルA,Bのいずれでも、第1アンテナ21の第2導体素子25を第3導体素子26よりも短くしている。このような構成にすることで、送信周波数であるf#2近傍にて、アンテナ間結合を抑制できる。
【0070】
このように、送信周波数が受信周波数よりも高い場合に、第1アンテナ21の第2導体素子25を第3導体素子26よりも短くすることで、送信周波数f#2でのアンテナ間結合を抑制でき、送信アンテナから受信アンテナへの回り込みを回避できる。
【0071】
(第10の実施形態)
第10の実施形態では、第1アンテナ21の動作周波数(第1動作周波数)f#1と第2アンテナ22の動作周波数(第2動作周波数)f#2を略同一の場合、図18のモデルAまたはモデルDではいずれも、第1及び第2アンテナ21,22の導体素子の向きが同じである。より具体的には、第2導体素子25と第5導体素子29が同じ長さで、かつ第3導体素子26と第6導体素子30が同じ長さにする。
【0072】
このように、送信周波数と受信周波数がほぼ同一の場合には、第1及び第2アンテナ21,22をほぼ同じ向きにし、第2導体素子25と第5導体素子29を同じ長さにし、かつ第3導体素子26と第6導体素子30を同じ長さにすることで、アンテナ間結合を低減できる。
【0073】
なお、本特許の説明において、導体素子はすべて直線状の素子として説明したが、図20に示すように素子が変形していても効果は同じである。図20に示すアンテナでは、地板に略平行な導体素子がヘリカル型とメアンダ型に変形されている。ヘリカル型では、ヘリカル31の中心軸が地板に略平行となっておりこの方向が直線状素子の向きと等価である。またメアンダ型では、メアンダ素子32が、地板に垂直な素子と接続されているあたりの部分の向きが直線状素子の向きと等価となる。
【0074】
【発明の効果】
以上詳細に説明したように、本発明によれば、第1及び第2アンテナ21,22の向きを調整することにより、アンテナ間結合を減らして電波の干渉を防止できる。したがって、同一の無線装置内に複数の無線機用のアンテナを配置しても、互いに干渉し合うことなく、無線通信を行うことができる。
【図面の簡単な説明】
【図1】本発明に係るアンテナアレーの第1の実施形態の概略的な配置図。
【図2】図1の変形例を示す配置図。
【図3】第1及び第2アンテナ2,3の整合特性と結合特性を示す図。
【図4】モデルA,B,Cの第1及び第2アンテナ2,3上の電流分布を示す模式図。
【図5】地板1上の電流分布を示す模式図。
【図6】本発明に係るアンテナアレーの第2の実施形態の概略的な配置図。
【図7】図6の変形例であり、有限地板1の隣接する2辺の一方に第1アンテナ2を配置し、他方に第2アンテナ3を配置する例を示す図。
【図8】本発明に係るアンテナアレーの第3の実施形態の概略的な配置図。
【図9】本発明に係るアンテナアレイの第4の実施形態の概略的な配置図。
【図10】図9の変形例を示す配置図。
【図11】第1及び第2アンテナ21,22の構成例を示す図。
【図12】第1及び第2アンテナ21,22の構成例を示す図。
【図13】T字型アンテナの放射パターンを示す図。
【図14】本発明に係るアンテナアレーの第5の実施形態の概略的な配置図。
【図15】本発明に係るアンテナアレーの第6の実施形態の概略的な配置図。
【図16】図10に示したT字型アンテナの電流分布を周波数ごとに模式的に示した図。
【図17】本発明に係るアンテナアレーの第7の実施形態の概略的な配置図。
【図18】第1動作周波数f#1が第2動作周波数f#2よりも低い場合に、第1及び第2アンテナ21,22が取り得る地板1への実装方法のすべてを示した図。
【図19】モデルA〜Dのアンテナアレーを用いて、給電点間の距離を100mmとしたときのアンテナ間の最大結合量を示す図。
【図20】導体素子がヘリカル型とメアンダ型に変形されている場合のアンテナアレーの形状を示す図。
【符号の説明】
1 地板
2 第1アンテナ
3 第2アンテナ
4 第1給電点
5 第1導体素子
6 第2導体素子
7 第2給電点
8 第3導体素子
9 第4導体素子
10 補助地板
21 第1アンテナ
22 第2アンテナ
23 第1給電点
24 第1導体素子
25 第2導体素子
26 第3導体素子
27 第2給電点
28 第4導体素子
29 第5導体素子
30 第6導体素子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antenna array having a plurality of antennas and a radio apparatus having a plurality of radios corresponding to each of the plurality of antennas.
[0002]
[Prior art]
In recent years, many wireless systems that operate in a frequency band near 2 GHz have been developed. For example, wireless systems operating in the 2.4 GHz band include wireless LAN and Bluetooth (registered trademark), but wireless devices corresponding to these systems may be mounted in the same terminal.
[0003]
[Problems to be solved by the invention]
When two wireless devices are operating in the same frequency band, interference occurs due to the transmission radio waves via the antenna.
[0004]
In order to suppress the above-described interference, it is necessary to arrange the antennas apart from each other. However, as the terminals become smaller and thinner, it is becoming difficult to arrange the antennas apart.
[0005]
When the terminal is reduced in size and thickness, the antenna is lowered, but in the antenna lowered, not only radiation of the antenna itself but also coupling between the antennas occurs through a nearby conductor, and the above-described interference is likely to occur. Become. When this type of inter-antenna coupling occurs, not only the radiation of the antenna itself but also the radiation from the ground plane to which the antenna is connected increases. In particular, when two antennas are arranged on the same ground plane, the two antennas are in the same state as being connected via the ground plane, and interference increases. When this type of transmission radio wave interference occurs, communication quality deteriorates.
[0006]
The present invention has been made in view of such a point, and an object thereof is to provide an antenna array and a radio apparatus capable of suppressing interference of transmission radio waves.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, according to one aspect of the present invention, a first feeding point on a ground plane, a first conductor element extending substantially perpendicularly to the ground plane from the first feeding point, A second conductor element extending substantially parallel to the ground plane from the tip of one conductor element, and extending from the tip of the first conductor element to the opposite side of the second conductor element and having a different length from the second conductor element. A third antenna having a first conductor that resonates at a first operating frequency, a second feeding point on the ground plane, and a fourth conductor extending substantially perpendicularly to the ground plane from the second feeding point. An element, a fifth conductor element extending substantially parallel to the ground plane from the tip of the fourth conductor element, and the fifth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element; Has a sixth conductor element having a different length, and has a second resonance frequency at a second operating frequency. A sum of the lengths of the second and third conductor elements is approximately half a wavelength of the first operating frequency, and a sum of the lengths of the fifth and sixth conductor elements is the first The third conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point, and the first operating frequency is Lower than the second operating frequency, the second conductor element is shorter than the third conductor element, the fifth conductor element is shorter than the sixth conductor element, and the fifth conductor element is the first feeding point and An antenna array is provided that is disposed between the second feeding points.
[0009]
Moreover, according to one aspect of the present invention, the first feeding point on the ground plane, the first conductive element extending substantially perpendicularly to the ground plane from the first feeding point, and the tip of the first conductive element A second conductor element extending substantially parallel to the ground plane; a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element; A first antenna that resonates at a first operating frequency, a second feed point on the ground plane, a fourth conductor element extending from the second feed point substantially perpendicular to the ground plane, and the fourth conductor A fifth conductor element extending substantially parallel to the ground plane from the tip of the element; and a fifth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element and having a length different from that of the fifth conductor element. A second antenna having a six-conductor element and resonating at a second operating frequency, The sum of the lengths of the second and third conductor elements is approximately half the wavelength of the first operating frequency, and the sum of the lengths of the fifth and sixth conductor elements is approximately the half wavelength of the second operating frequency. The second conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point, and the first operating frequency is lower than the second operating frequency; And the second conductor element is shorter than the third conductor element, the fifth conductor element is shorter than the sixth conductor element, and the fifth conductor element is located between the first feeding point and the second feeding point. An antenna array is provided that is arranged.
Moreover, according to one aspect of the present invention, the first feeding point on the ground plane, the first conductive element extending substantially perpendicularly to the ground plane from the first feeding point, and the tip of the first conductive element A second conductor element extending substantially parallel to the ground plane; a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element; A first antenna that resonates at a first operating frequency, a second feed point on the ground plane, a fourth conductor element extending from the second feed point substantially perpendicular to the ground plane, and the fourth conductor A fifth conductor element extending substantially parallel to the ground plane from the tip of the element; and a fifth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element and having a length different from that of the fifth conductor element. A second antenna having a six-conductor element and resonating at a second operating frequency, The sum of the lengths of the second and third conductor elements is approximately half the wavelength of the first operating frequency, and the sum of the lengths of the fifth and sixth conductor elements is approximately the half wavelength of the second operating frequency. The third conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point, and the first operating frequency is lower than the second operating frequency; And the second conductor element is shorter than the third conductor element, the fifth conductor element is shorter than the sixth conductor element, and the sixth conductor element is located between the first feeding point and the second feeding point. An antenna array is provided that is arranged.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an antenna array and a radio apparatus according to the present invention will be specifically described with reference to the drawings.
[0011]
(First embodiment)
FIG. 1 is a schematic layout diagram of a first embodiment of an antenna array according to the present invention. The antenna array shown in FIG. 1 includes first and second antennas 2 and 3 disposed on the same ground plane 1. Although omitted in FIG. 1, the first antenna 2 is connected to the first radio through the feed point 4, and the second antenna 3 is connected to the second radio through the feed point 7.
[0012]
The first antenna 2 includes a first feeding point 4 on the ground plane 1, a first conductor element 5 extending substantially perpendicular to the ground plane 1 from the first feeding point 4, and a tip portion of the first conductor element 5. And a second conductor element 6 extending substantially parallel to the ground plane 1. The sum of the lengths of the first conductor element 5 and the second conductor element 6 is set to approximately ¼ wavelength of the operating frequency of the first antenna 2.
[0013]
The second antenna 3 includes a second feed point 7 on the ground plane 1, a third conductor element 8 extending substantially perpendicularly to the ground plane 1 from the second feed point 7, and a tip end portion of the third conductor element 8. And a fourth conductor element 9 extending substantially parallel to the ground plane 1. The sum of the lengths of the third conductor element 8 and the fourth conductor element 9 is set to approximately ¼ wavelength of the operating frequency of the second antenna 3.
[0014]
The second conductor element 6 and the fourth conductor element 9 are arranged in the same direction. That is, the tip of the fourth conductor element 9 is disposed between the first and second feeding points 4 and 7, and the tip of the second conductor element 6 is located at the second feeding point 7 with respect to the first feeding point 4. Located on the opposite side. Note that, as shown in FIG. 2A, the second antenna 3 may be arranged slightly shifted from the extension line of the first antenna 2. Alternatively, as shown in FIG. 2B, the tip of the second conductor element 6 is disposed between the first and second feeding points 4 and 7, and the tip of the fourth conductor element 9 is placed at the second feeding point. You may arrange | position on the opposite side of the 1st feeding point 4 on the basis of 7.
[0015]
When impedance matching cannot be achieved in the first and second antennas 2 and 3 of FIG. 1, a matching circuit is provided in the vicinity of the first and second feeding points 4 and 7, or the first and second antennas 2 and 3 can You may connect the wiring which short-circuits the 1st and 3rd conductor element 8 to the ground plane 1. FIG. Thereby, impedance can be changed and matching can be achieved.
[0016]
FIG. 3 is a diagram showing matching characteristics and coupling characteristics of the first and second antennas 2 and 3. FIG. 3 shows calculation results by simulation of matching characteristics and coupling characteristics of models A, B, and C in which the directions of the antennas are changed with the distance between the first and second antennas 2 and 3 being constant. .
[0017]
The model A is a case where the first and second antennas 2 and 3 are arranged in the reverse direction, and the model C is the case where the first and second antennas 2 and 3 are arranged opposite to each other. Is the case.
[0018]
As can be seen from FIG. 3, when the first and second antennas 2 and 3 are matched, the coupling amount of the model A is reduced by about 1 to 2 dB when compared with the other models B and C. .
[0019]
FIG. 4 is a schematic diagram showing the current distribution on the first and second antennas 2 and 3 of the models A, B and C. Since the first and second antennas 2 and 3 have a length of ¼ wavelength, the current is distributed in a sine wave shape that maximizes the feeding point.
[0020]
In general, it is considered that coupling between antennas becomes stronger when a portion with a large current distribution on the antenna comes close. Since the model C is the farthest distance between the first and second antennas 2 and 3 and the model B is the closest, it seems intuitively that the model C has the least inter-antenna coupling. However, in practice, the coupling amount of the model C is the largest, and the coupling amount of the model B is smaller than that of the model C. The reason why such a phenomenon occurs is that coupling due to the current flowing through the ground plane 1 occurs.
[0021]
FIG. 5 is a schematic diagram showing a current distribution on the ground plane 1. As can be seen from FIG. 5, a current induced by the second and fourth conductor elements 6 and 9 arranged in parallel with the ground plane 1 is added to the current on the ground plane 1. For this reason, a strong current distribution occurs in the same direction as the second and fourth conductor elements 6 and 9, and as a result, coupling between antennas occurs. The current distributions on the second and fourth conductor elements 6 and 9 are coupled through space, but the current on the ground plane 1 is coupled through the ground plane 1.
[0022]
This type of inter-antenna coupling occurs remarkably when the antenna is a flat plate arranged parallel to the ground plane 1. If attention is paid only to the current on the ground plane 1, reduction of coupling between antennas can be expected by arranging the first and second antennas 2 and 3 in opposite directions as in the model B. However, in this case, since the positions where the currents on the first and second antennas 2 and 3 are maximized are close to each other, the coupling between the antennas becomes strong under the influence.
[0023]
On the other hand, in the model A recommended by the present embodiment, the maximum value of the current on the antenna is first separated from the model B. As for the current on the ground plane 1, only one side is directed toward the other antenna element, which is a better configuration than both facing each other as in the model C. From the above, in the antenna array of the present embodiment, the inter-antenna coupling can be made smaller than in other antenna array configurations.
[0024]
Thus, in the first embodiment, since the second conductor element 6 of the first antenna 2 and the fourth conductor element 9 of the second antenna 3 are arranged in substantially the same direction, the coupling between the antennas can be suppressed, Coupling on the ground plane 1 can also be suppressed, radio wave interference is less likely to occur, and the antenna coupling characteristics are improved.
[0025]
(Second Embodiment)
In the second embodiment, the first and second antennas 2 and 3 are arranged on the edge portion of the ground plane 1.
[0026]
FIG. 6 is a schematic layout of a second embodiment of the antenna array according to the present invention. As shown in the drawing, the first feeding point 4 of the first antenna 2 and the second feeding point 7 of the second antenna 3 are arranged at the edge of the same finite ground plane 1, and the second conductor element of the first antenna 2 is arranged. 6 and the fourth conductor element 9 of the second antenna 3 are arranged in the same direction substantially parallel to the edge portion.
[0027]
In general, a conductor plate has a large current distribution at the edge portion. Therefore, when the antenna is disposed at the edge portion, a larger current is distributed at the edge portion. Therefore, when it arrange | positions like FIG. 6, the coupling | bonding between antennas becomes larger. The reason is that when the first and second antennas 2 and 3 are arranged at the edge, current leakage to the edge increases. Therefore, as shown in FIG. 6, when the first and second antennas 2 and 3 are arranged substantially in parallel and in the same direction at the edge of the finite ground plane 1, the coupling between the antennas can be further suppressed.
[0028]
FIG. 7 is a modification of FIG. 6 and shows an example in which the first antenna 2 is arranged on one of two adjacent sides of the finite ground plane 1 and the second antenna 3 is arranged on the other side. In this case, each antenna is arranged so as to be parallel to the edge of the ground plane 1, and either one of the second conductor element 6 and the fourth conductor element 9 is connected to the first and second feeding points 4. , 7 and the other tip is arranged on the opposite side of the second feeding point 7 with respect to the first feeding point 4 or the first feeding point 4 with respect to the second feeding point 7. What is necessary is just to arrange | position on the opposite side.
[0029]
Thus, in 2nd Embodiment, since the 1st and 2nd antennas 2 and 3 are arrange | positioned in the edge part of the ground plane 1, the inhibitory effect of the coupling between antennas can be heightened.
[0030]
(Third embodiment)
In the third embodiment, an auxiliary ground plate is disposed on the edge of the ground plate 1, and the first and second antennas 2 and 3 are disposed on the auxiliary ground plate.
[0031]
FIG. 8 is a schematic layout diagram of a third embodiment of an antenna array according to the present invention. As shown in the figure, an auxiliary ground plate 10 disposed at the edge of the ground plate 1 and first and second antennas 2 and 3 disposed at the edge of the auxiliary ground plate 10 are provided.
[0032]
Since the ground plane 1 and the auxiliary ground plane 10 are connected by capacitive coupling, the configuration is the same as that of the second embodiment shown in FIG. 7 in terms of high frequency. Therefore, by arranging the first conductor element 5 of the first antenna 2 and the second conductor element 6 of the second antenna 3 substantially parallel to the edge and in the same direction, as in the second embodiment, Binding can be suppressed more efficiently. Since the capacitive coupling in the case of FIG. 8 is weaker than that in the case where the first and second antennas 2 and 3 are directly connected to the ground plane 1, the inter-antenna coupling is smaller than that in the second embodiment.
[0033]
(Fourth embodiment)
In the above-described first to third embodiments, the example using the L-shaped antenna has been described. However, in the fourth to tenth embodiments described below, a T-shaped antenna is used.
[0034]
FIG. 9 is a schematic layout diagram of a fourth embodiment of an antenna array according to the present invention. The antenna array shown in FIG. 9 includes T-shaped first and second antennas 21 and 22 arranged on the ground plane 1. The first and second antennas 21 and 22 are arranged on substantially the same line. In addition, as shown in FIG. 10, you may arrange | position the 1st and 2nd antennas 21 and 22 a little. In this case, it is desirable to arrange the first and second antennas 21 and 22 in parallel so as not to overlap each other.
[0035]
The first antenna 21 includes a first feed point 23 on the ground plane 1, a first conductor element 24 that extends substantially perpendicular to the ground plane 1 from the first feed point 23, and a tip end portion of the first conductor element 24. A second conductor element 25 extending substantially parallel to the ground plane 1; and a third conductor element 26 extending from the tip of the first conductor element 24 to the opposite side of the second conductor element 25, and resonates at a first operating frequency. To do.
[0036]
The second antenna 22 includes a second feeding point 27 on the ground plane 1, a fourth conductor element 28 extending substantially perpendicularly to the ground plane 1 from the second feeding point 27, and a tip end portion of the fourth conductor element 28. A fifth conductor element 29 extending substantially parallel to the ground plane 1; and a sixth conductor element 30 extending from the tip of the fourth conductor element 28 to the opposite side of the fifth conductor element 29, and resonates at a second operating frequency. To do.
[0037]
The sum of the lengths of the second and third conductor elements 25 and 26 is approximately a half wavelength of the first operating frequency, and the sum of the lengths of the fifth and sixth conductor elements 29 and 30 is the second operating frequency. It is approximately half wavelength.
[0038]
By adjusting the ratio of the lengths of the first and second conductor elements 25 and 26 of the first antenna 21, the first antenna 21 can be matched to 50Ω, which is the impedance of the feeder line, at the first operating frequency. Similarly, by adjusting the ratio of the lengths of the fifth and sixth conductor elements 29 and 30 of the second antenna 22, the second antenna 22 is matched to 50Ω which is the impedance of the feeder line at the second operating frequency. Can do.
[0039]
FIGS. 11 and 12 are diagrams showing a configuration example of the first and second antennas 21 and 22. FIG. 11 is an example configured to be 50Ω at 1.9 GHz, and FIG. 12 is 50Ω at 2.1 GHz. An example configured as described above is shown.
[0040]
In the case of FIG. 11, the length of the first conductor element 24 is 6.5 mm, the length of the second conductor element 25 is 31.5 mm, and the length of the third conductor element 26 is 35.6 mm. φ is 0.8 mm. In the case of FIG. 12, the length of the first conductor element 24 is 7 mm, the length of the second conductor element 25 is 34 mm, the length of the third conductor element 26 is 38.5 mm, and the diameter φ of these conductor elements is 0.8 mm.
[0041]
The T-shaped antenna as shown in FIG. 10 has a feature that a large amount of current does not flow through the ground plane 1 as compared with the L-shaped antenna as shown in FIG.
[0042]
FIG. 13 is a diagram showing a radiation pattern of the T-shaped antenna. As can be seen from this figure, a null of the radiation pattern is directed in the longitudinal direction of the T-shaped antenna. Therefore, when the first and second antennas 21 and 22 are arranged on substantially the same line as shown in FIG. 10, since the null of the other antenna is directed to one antenna, the coupling between the antennas can be sufficiently suppressed.
[0043]
As described above, in the fourth embodiment, since the T-shaped antennas are arranged on substantially the same line, coupling between antennas hardly occurs, and radio wave interference hardly occurs.
[0044]
(Fifth embodiment)
In the fifth embodiment, two T-shaped antennas are arranged on the edge of the ground plane 1.
[0045]
FIG. 14 is a schematic layout diagram of a fifth embodiment of an antenna array according to the present invention. First and second antennas 21 and 22 having the same shape as in FIG. 10 are arranged at the edge of the finite ground plane 1. More specifically, the second, third, fifth, and sixth conductor elements 25, 26, 29, and 30 of the first and second antennas 21 and 22 are disposed substantially parallel to the edge portion.
[0046]
When the first and second antennas 21 and 22 are arranged at the edge of the finite ground plane 1, the image current flowing on the finite ground plane 1 becomes incomplete, and the radiation from the finite ground plane 1 decreases. Since this image current is in reverse phase with the current on the antenna, the radiated radio wave from the antenna is canceled out. However, the imperfection as described above suppresses the cancellation of the radiation from the antenna, and more The radiation from becomes larger.
[0047]
Further, nulls are directed in the respective conductor element directions of the first and second antennas 21 and 22 in FIG. 14 as in FIG. However, the degradation of coupling between antennas does not become so great.
[0048]
Thus, in the fifth embodiment, since the first and second antennas 21 and 22 are arranged at the edge of the finite ground plane 1, radiation from the finite ground plane 1 can be reduced, and the radiation characteristics of the antenna can be improved. .
[0049]
(Sixth embodiment)
In the sixth embodiment, an auxiliary ground plane 10 is arranged at the edge of the finite ground plane 1, and two T-shaped antennas are arranged at the edge of the auxiliary ground plane 10.
[0050]
FIG. 15 is a schematic layout diagram of a sixth embodiment of an antenna array according to the present invention. The antenna array of FIG. 15 includes an auxiliary ground plate 10 arranged at the edge of the finite ground plane 1 and first and second antennas 21 and 22 having the same shape as that of FIG. 10 arranged at the edge of the auxiliary ground plate 10. And. The second, third, fifth, and sixth conductor elements 25, 26, 29, and 30 of the first and second antennas 21 and 22 are disposed substantially parallel to the edge of the auxiliary ground plane 10.
[0051]
Since the finite ground plane 1 and the auxiliary ground plane 10 are connected by capacitive coupling, they have the same configuration as FIG. 14 in terms of high frequency. Further, since the auxiliary ground plane 10 is provided, the coupling through the finite ground plane 1 is weaker than that in FIG. 14, so that the coupling between antennas can be weaker than that in FIG. 14.
[0052]
As described above, in the sixth embodiment, the auxiliary ground plate 10 is provided at the peripheral portion of the finite ground plane 1, and the first and second antennas 21 and 22 are disposed at the peripheral portion of the auxiliary ground plate 10. Can be weakened, making it difficult for radio wave interference to occur.
[0053]
(Seventh embodiment)
Although omitted in the fifth and sixth embodiments, in this antenna as well, coupling occurs due to the current generated in the conductor element. FIG. 16 is a diagram schematically showing the current distribution of the T-shaped antenna shown in FIG. 10 for each frequency. The first antenna 21 has the second conductor element 25 longer than the third conductor element 26, and the resonance frequency is f1. In this case, the current distribution of the first antenna 21 changes greatly at a frequency lower and higher than the resonance frequency f1.
[0054]
As shown in FIG. 16, a large current distribution is generated in the second conductor element 25 at a frequency lower than the resonance frequency f1, and a large current distribution is generated in the third conductor element 26 at a frequency higher than the resonance frequency f1. It operates in the same manner as the L-shaped antenna described in the first embodiment at both lower and higher frequencies than the resonance frequency f1. That is, the T-shaped antenna functions equivalently as an L-shaped antenna whose direction changes as the frequency changes. For this reason, a separate measure from the first embodiment in which the L-shaped direction is fixed is required.
[0055]
Further, since the feeding point of the T-shaped antenna is located at the approximate center of the second and third conductor elements 25 and 26, the feeding point can be changed even if the orientation of the second and third conductor elements 25 and 26 is changed. The position of does not change. Therefore, in the L-shaped antenna, the feed point moves by changing the direction of the L-shape, so that the maximum current position changes greatly, and the strength of coupling between the antennas changes accordingly. do not do. For this reason, in the T-shaped antenna, it is only necessary to arrange a conductor element having a large current distribution among the second and third conductor elements 25 and 26 so as not to face the direction of the other antenna.
[0056]
FIG. 17 is a schematic layout diagram of the seventh embodiment of the antenna array according to the present invention. In FIG. 17, the operating frequency (first operating frequency) of the first antenna 21 is set lower than the operating frequency (second operating frequency) of the second antenna 22. Therefore, the sum of the lengths of the fifth and sixth conductor elements 29, 30 of the second antenna 22 is made shorter than the sum of the lengths of the second and third conductor elements 25, 26 of the first antenna 21. . Further, the fifth conductor element 29 is longer than the fourth conductor element 28, and the third conductor element 26 is longer than the second conductor element 25. With this configuration, the antenna-to-antenna coupling can be made smaller than in other antenna configurations under the above frequency conditions.
[0057]
FIG. 18 illustrates the first and second antennas 21 and 22 (the antenna is viewed from the normal direction of the ground plane 1 when the first operating frequency f # 1 is lower than the second operating frequency f # 2. In addition, the antennas 21 and 22 show all the mounting methods to the ground plane 1 that can be taken by # 1 and # 2 in the figure. Since the first operating frequency and the second operating frequency are different, the sizes of the first and second antennas 21 and 22 are different. That is, the second conductor element 25 has a different length from the third conductor element 26, and the fourth conductor element 28 has a different length from the fifth conductor element 29.
[0058]
As combinations of the arrangement methods of the first and second antennas 21 and 22, there are four types of models A to D in FIG. In the model A, the length of the second conductor element 25 <the length of the third conductor element 26 and the length of the fifth conductor element 29 <the length of the sixth conductor element 30 as in FIG. In the model B, the length of the second conductor element 25 <the length of the third conductor element 26 and the length of the fifth conductor element 29> the length of the sixth conductor element 30. In the model C, the length of the second conductor element 25> the length of the third conductor element 26, and the length of the fifth conductor element 29 <the length of the sixth conductor element 30. In the model D, the length of the second conductor element 25> the length of the third conductor element 26 and the length of the fifth conductor element 29> the length of the sixth conductor element 30.
[0059]
In FIG. 18, the conductor element described as “large” indicates that the current distribution in the frequency band is large. In FIG. 18, the current distribution before and after the first operating frequency (resonance frequency) f # 1 and the second operating frequency (resonance frequency) f # 2 can be grasped for each of the models A to D.
[0060]
As can be seen from FIG. 18, the place where the current distribution of the first antenna 21 is large and the place where the current distribution of the second antenna 22 is large are the model A. Therefore, if the first and second antennas 21 and 22 are arranged as in the model A, there is no possibility that the portion with a large current distribution faces each other and enters the closest state.
[0061]
FIG. 19 shows the maximum amount of coupling between antennas when the antenna arrays of models A to D are used and the distance between feeding points is 100 mm. As can be seen from this figure, in the band of frequencies f # 1 to f # 2, model A has weaker antenna coupling than other models.
[0062]
As described above, in the seventh embodiment, since the first and second antennas 21 and 22 are arranged so that the portions having a large current distribution face each other and do not approach each other, radio wave interference is less likely to occur.
[0063]
(Eighth embodiment)
In the eighth embodiment, the first antenna 21 is a transmitting antenna, the second antenna 22 is a receiving antenna, and the operating frequency (first operating frequency) f # 1 of the first antenna 21 is the operating frequency of the second antenna 22. (Second operating frequency) This is an antenna configuration when it is lower than f # 2.
[0064]
In such a case, wraparound from the transmitting antenna to the receiving antenna becomes the biggest problem. Therefore, it is necessary to configure the antenna array so that the coupling between antennas at the transmission frequency is reduced.
[0065]
Therefore, in the eighth embodiment, the fifth conductor element 29 of the second antenna 22 is made shorter than the sixth conductor element 30.
[0066]
In FIG. 18, it can be seen that by selecting the model A or C, the coupling between antennas in the vicinity of the first operating frequency f # 1 can be reduced. In the model A or C, since the fifth conductor element 29 is shorter than the sixth conductor element 30, the coupling between the antennas can be suppressed at the operating frequency f # 1 of the first antenna 21.
[0067]
As described above, in the eighth embodiment, when the transmission frequency is lower than the reception frequency, the fifth conductor element 29 of the second antenna 22 is made shorter than the sixth conductor element 30. Inter-antenna coupling can be suppressed and wraparound from the transmitting antenna to the receiving antenna can be avoided.
[0068]
(Ninth embodiment)
In the ninth embodiment, when the transmission frequency is higher than the reception frequency, wraparound from the transmission antenna to the reception antenna is avoided.
[0069]
In FIG. 18, when the frequency f is f # 2 <f <f # 1 or f # 2 <f, the second conductor element 25 of the first antenna 21 is replaced with the third conductor element in both models A and B. It is shorter than 26. With such a configuration, it is possible to suppress coupling between antennas in the vicinity of the transmission frequency f # 2.
[0070]
As described above, when the transmission frequency is higher than the reception frequency, the antenna-to-antenna coupling at the transmission frequency f # 2 is suppressed by making the second conductor element 25 of the first antenna 21 shorter than the third conductor element 26. It is possible to avoid the wraparound from the transmitting antenna to the receiving antenna.
[0071]
(Tenth embodiment)
In the tenth embodiment, when the operating frequency (first operating frequency) f # 1 of the first antenna 21 and the operating frequency (second operating frequency) f # 2 of the second antenna 22 are substantially the same, the model of FIG. In both A and Model D, the directions of the conductor elements of the first and second antennas 21 and 22 are the same. More specifically, the second conductor element 25 and the fifth conductor element 29 have the same length, and the third conductor element 26 and the sixth conductor element 30 have the same length.
[0072]
Thus, when the transmission frequency and the reception frequency are substantially the same, the first and second antennas 21 and 22 are oriented in substantially the same direction, the second conductor element 25 and the fifth conductor element 29 have the same length, and By making the third conductor element 26 and the sixth conductor element 30 have the same length, the coupling between antennas can be reduced.
[0073]
In the description of this patent, the conductor elements are all described as linear elements, but the effect is the same even if the elements are deformed as shown in FIG. In the antenna shown in FIG. 20, a conductor element substantially parallel to the ground plane is transformed into a helical type and a meander type. In the helical type, the central axis of the helical 31 is substantially parallel to the ground plane, and this direction is equivalent to the direction of the linear element. In the meander type, the direction of the portion where the meander element 32 is connected to the element perpendicular to the ground plane is equivalent to the direction of the linear element.
[0074]
【The invention's effect】
As described above in detail, according to the present invention, by adjusting the orientations of the first and second antennas 21 and 22, it is possible to reduce the coupling between the antennas and prevent radio wave interference. Therefore, even if a plurality of antennas for wireless devices are arranged in the same wireless device, wireless communication can be performed without interfering with each other.
[Brief description of the drawings]
FIG. 1 is a schematic layout diagram of an antenna array according to a first embodiment of the present invention.
FIG. 2 is a layout view showing a modification of FIG. 1;
FIG. 3 is a diagram showing matching characteristics and coupling characteristics of the first and second antennas 2 and 3;
FIG. 4 is a schematic diagram showing current distribution on the first and second antennas 2 and 3 of models A, B and C;
FIG. 5 is a schematic diagram showing a current distribution on the ground plane 1;
FIG. 6 is a schematic layout diagram of a second embodiment of an antenna array according to the present invention.
7 is a modification of FIG. 6 and shows an example in which the first antenna 2 is arranged on one of two adjacent sides of the finite ground plane 1 and the second antenna 3 is arranged on the other side.
FIG. 8 is a schematic layout diagram of a third embodiment of an antenna array according to the present invention.
FIG. 9 is a schematic layout diagram of a fourth embodiment of an antenna array according to the present invention.
10 is a layout view showing a modification of FIG. 9;
11 is a diagram showing a configuration example of first and second antennas 21 and 22. FIG.
12 is a diagram showing a configuration example of first and second antennas 21 and 22. FIG.
FIG. 13 is a diagram showing a radiation pattern of a T-shaped antenna.
FIG. 14 is a schematic layout view of an antenna array according to a fifth embodiment of the present invention.
FIG. 15 is a schematic layout diagram of a sixth embodiment of an antenna array according to the present invention;
16 is a diagram schematically showing the current distribution of the T-shaped antenna shown in FIG. 10 for each frequency.
FIG. 17 is a schematic layout view of an antenna array according to a seventh embodiment of the present invention.
FIG. 18 is a diagram showing all the mounting methods on the ground plane 1 that the first and second antennas 21 and 22 can take when the first operating frequency f # 1 is lower than the second operating frequency f # 2.
FIG. 19 is a diagram showing the maximum coupling amount between antennas when the antenna arrays of models A to D are used and the distance between feeding points is 100 mm.
FIG. 20 is a diagram showing the shape of the antenna array when the conductor element is deformed into a helical type and a meander type.
[Explanation of symbols]
1 Ground plane
2 First antenna
3 Second antenna
4 First feeding point
5 First conductor element
6 Second conductor element
7 Second feeding point
8 Third conductor element
9 Fourth conductor element
10 Auxiliary ground plane
21 First antenna
22 Second antenna
23 First feeding point
24 First conductor element
25 Second conductor element
26 Third conductor element
27 Second feeding point
28 Fourth conductor element
29 Fifth conductor element
30 sixth conductor element

Claims (8)

地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、
前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、
前記第3導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、
前記第5導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレー。
A first feed point on the ground plane; a first conductor element extending substantially perpendicularly to the ground plane from the first feed point; and a second conductor element extending substantially parallel to the ground plane from a tip portion of the first conductor element And a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element, and resonating at a first operating frequency. One antenna,
A second feeding point on the ground plane; a fourth conductor element extending substantially perpendicular to the ground plane from the second feeding point; and a fifth conductor extending substantially parallel to the ground plane from a tip portion of the fourth conductor element An element and a sixth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element and having a length different from the fifth conductor element, and resonates at a second operating frequency. A second antenna,
The sum of the lengths of the second and third conductor elements is approximately a half wavelength of the first operating frequency;
The sum of the lengths of the fifth and sixth conductor elements Ri substantially half-wave der of the second operating frequency,
The third conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point ; and the first operating frequency is lower than the second operating frequency; and the second conductive element is shorter than the third conductive element, and the fifth conductive element rather short than the sixth conductive element,
The antenna array according to claim 5, wherein the fifth conductor element is disposed between the first feeding point and the second feeding point .
地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、
前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、
前記第2導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、
前記第5導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレー。
A first feed point on the ground plane; a first conductor element extending substantially perpendicularly to the ground plane from the first feed point; and a second conductor element extending substantially parallel to the ground plane from a tip portion of the first conductor element And a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element, and resonating at a first operating frequency. One antenna,
A second feeding point on the ground plane; a fourth conductor element extending substantially perpendicular to the ground plane from the second feeding point; and a fifth conductor extending substantially parallel to the ground plane from a tip portion of the fourth conductor element An element and a sixth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element and having a length different from the fifth conductor element, and resonates at a second operating frequency. A second antenna,
The sum of the lengths of the second and third conductor elements is approximately a half wavelength of the first operating frequency;
The sum of the lengths of the fifth and sixth conductor elements is approximately a half wavelength of the second operating frequency;
The second conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point, and the first operating frequency is lower than the second operating frequency, and The second conductor element is shorter than the third conductor element, and the fifth conductor element is shorter than the sixth conductor element;
The antenna array according to claim 5, wherein the fifth conductor element is disposed between the first feeding point and the second feeding point .
地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し第1動作周波数で共振する第1アンテナと、
前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し第2動作周波数で共振する第2アンテナと、を備え、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、
前記第3導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給 電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、
前記第6導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とするアンテナアレー。
A first feed point on the ground plane; a first conductor element extending substantially perpendicularly to the ground plane from the first feed point; and a second conductor element extending substantially parallel to the ground plane from a tip portion of the first conductor element And a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element, and resonating at a first operating frequency. One antenna,
A second feeding point on the ground plane; a fourth conductor element extending substantially perpendicular to the ground plane from the second feeding point; and a fifth conductor extending substantially parallel to the ground plane from a tip portion of the fourth conductor element An element and a sixth conductor element extending from the tip of the fourth conductor element to the opposite side of the fifth conductor element and having a length different from the fifth conductor element, and resonates at a second operating frequency. A second antenna,
The sum of the lengths of the second and third conductor elements is approximately a half wavelength of the first operating frequency;
The sum of the lengths of the fifth and sixth conductor elements is approximately a half wavelength of the second operating frequency;
The third conductive element, the fifth disposed between the substantially parallel and the first feeding point and the second feed-electric point in the conductor element, and wherein the first operating frequency is lower than the second operating frequency, and The second conductor element is shorter than the third conductor element, and the fifth conductor element is shorter than the sixth conductor element;
The antenna array according to claim 6, wherein the sixth conductor element is disposed between the first feeding point and the second feeding point .
前記第1及び第2給電点は、有限地板の辺縁部に、近接する辺に略平行に配置されることを特徴とする請求項1及至のいずれかに記載のアンテナアレー。The antenna array according to any one of claims 1 to 3 , wherein the first and second feeding points are arranged substantially in parallel with adjacent sides on the edge of the finite ground plane. 前記第1及び第2給電点は、前記有限地板の隣接する辺縁部に近接する辺に略平行にそれぞれ配置されることを特徴とする請求項に記載のアンテナアレー。5. The antenna array according to claim 4 , wherein the first and second feeding points are respectively arranged substantially parallel to sides adjacent to adjacent edge portions of the finite ground plane. 前記地板の辺縁部に前記地板とは別個に設けられる補助地板を備え、
前記第1及び第2給電点は、前記補助地板上に設けられることを特徴とする請求項またはに記載のアンテナアレー。
An auxiliary ground plate provided separately from the ground plate at the edge of the ground plate,
The antenna array according to claim 4 or 5 , wherein the first and second feeding points are provided on the auxiliary ground plane.
前記第1アンテナは送信用アンテナであり、The first antenna is a transmitting antenna;
前記第2アンテナは受信用アンテナであることを特徴とする請求項1乃至6のいずれかに記載のアンテナアレー。The antenna array according to claim 1, wherein the second antenna is a receiving antenna.
第1アンテナを利用して第1動作周波数で無線通信を行う第1無線機と、
第2アンテナを利用して第2動作周波数で無線通信を行う第2無線機と、を備えた無線装置において、
前記第1アンテナは、地板上の第1給電点と、この第1給電点から前記地板に対して略垂直に延びる第1導体素子と、この第1導体素子の先端部から前記地板に略平行に延びる第2導体素子と、前記第1導体素子の先端部から前記第2導体素子の反対側に延び前記第2導体素子とは異なる長さをもつ第3導体素子と、を有し
前記第2アンテナは、前記地板上の第2給電点と、この第2給電点から前記地板に対して略垂直に延びる第4導体素子と、この第4導体素子の先端部から前記地板に略平行に延びる第5導体素子と、前記第4導体素子の先端部から前記第5導体素子の反対側に延び前記第5導体素子とは異なる長さをもつ第6導体素子と、を有し、
前記第2及び第3導体素子の長さの和は、前記第1動作周波数の略半波長であり、
前記第5及び第6導体素子の長さの和は、前記第2動作周波数の略半波長であり、
前記第3導体素子は、前記第5導体素子に略平行かつ前記第1給電点および前記第2給電点の間に配置され、かつ前記第1動作周波数は前記第2動作周波数より低く、かつ前記第2導体素子は前記第3導体素子より短く、かつ前記第5導体素子は前記第6導体素子より短く、
前記第5導体素子は前記第1給電点および前記第2給電点の間に配置されることを特徴とする無線装置。
A first radio that performs radio communication at a first operating frequency using a first antenna;
In a radio apparatus comprising: a second radio that performs radio communication at a second operating frequency using a second antenna;
The first antenna includes a first feed point on the ground plane, a first conductor element extending substantially perpendicularly to the ground plane from the first feed point, and a substantially parallel to the ground plane from a tip portion of the first conductor element. And a third conductor element extending from the tip of the first conductor element to the opposite side of the second conductor element and having a length different from that of the second conductor element. The two antennas include a second feeding point on the ground plane, a fourth conductor element extending substantially perpendicular to the ground plane from the second feeding point, and substantially parallel to the ground plane from a tip portion of the fourth conductor element. A fifth conductor element that extends, and a sixth conductor element that extends from the tip of the fourth conductor element to the opposite side of the fifth conductor element and has a length different from that of the fifth conductor element,
The sum of the lengths of the second and third conductor elements is approximately a half wavelength of the first operating frequency;
The sum of the lengths of the fifth and sixth conductor elements Ri substantially half-wave der of the second operating frequency,
The third conductor element is substantially parallel to the fifth conductor element and disposed between the first feeding point and the second feeding point ; and the first operating frequency is lower than the second operating frequency; and the second conductive element is shorter than the third conductive element, and the fifth conductive element rather short than the sixth conductive element,
The wireless device, wherein the fifth conductor element is disposed between the first feeding point and the second feeding point .
JP2002174293A 2002-06-14 2002-06-14 Antenna array and wireless device Expired - Fee Related JP3828050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002174293A JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002174293A JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Publications (2)

Publication Number Publication Date
JP2004023369A JP2004023369A (en) 2004-01-22
JP3828050B2 true JP3828050B2 (en) 2006-09-27

Family

ID=31173298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002174293A Expired - Fee Related JP3828050B2 (en) 2002-06-14 2002-06-14 Antenna array and wireless device

Country Status (1)

Country Link
JP (1) JP3828050B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4230372B2 (en) * 2004-01-27 2009-02-25 京セラ株式会社 Wireless communication terminal
WO2006011659A1 (en) * 2004-07-29 2006-02-02 Matsushita Electric Industrial Co., Ltd. Composite antenna device
JP4171008B2 (en) * 2005-07-11 2008-10-22 株式会社東芝 Antenna device and portable radio
JP3941069B2 (en) * 2005-10-18 2007-07-04 国立大学法人横浜国立大学 Printed circuit board type monopole antenna
CN101548428B (en) * 2006-12-04 2013-01-16 松下电器产业株式会社 Antenna device and electronic apparatus using the same
US7701401B2 (en) * 2007-07-04 2010-04-20 Kabushiki Kaisha Toshiba Antenna device having no less than two antenna elements
JP2009044697A (en) * 2007-08-13 2009-02-26 Nippon Antenna Co Ltd Planner antenna
JP4974168B2 (en) * 2007-10-02 2012-07-11 古河電気工業株式会社 Radar system antenna
US7916089B2 (en) * 2008-01-04 2011-03-29 Apple Inc. Antenna isolation for portable electronic devices
CN101604791A (en) * 2008-06-09 2009-12-16 韩燕� A kind of multi-antenna radio equipment and communication means and antenna
JP5652804B2 (en) * 2008-10-29 2015-01-14 レノボ・イノベーションズ・リミテッド(香港) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
JP5435338B2 (en) * 2009-06-15 2014-03-05 日立金属株式会社 Multiband antenna
JP5060629B1 (en) 2011-03-30 2012-10-31 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP5127966B1 (en) 2011-08-30 2013-01-23 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP5162012B1 (en) 2011-08-31 2013-03-13 株式会社東芝 ANTENNA DEVICE AND ELECTRONIC DEVICE HAVING THE ANTENNA DEVICE
JP5681083B2 (en) * 2011-10-26 2015-03-04 小島プレス工業株式会社 In-vehicle antenna system
JP5733156B2 (en) * 2011-11-01 2015-06-10 株式会社日本自動車部品総合研究所 Antenna device
JP6249894B2 (en) * 2014-07-02 2017-12-20 三菱電機株式会社 Antenna device

Also Published As

Publication number Publication date
JP2004023369A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3828050B2 (en) Antenna array and wireless device
EP1044481B1 (en) Antenna system for circularly polarized radio waves including antenna means and interface network
EP2942834B1 (en) Antenna apparatus and terminal device
US7965242B2 (en) Dual-band antenna
US7830329B2 (en) Composite antenna and portable terminal using same
JP3753436B2 (en) Multiband printed monopole antenna
JP4384102B2 (en) Portable radio device and antenna device
JP4308786B2 (en) Portable radio
EP2509158B1 (en) Communication electronic device and antenna structure thereof
WO2011102143A1 (en) Antenna device and portable wireless terminal equipped with same
JP2002043826A (en) Antenna arrangement
JP2007013643A (en) Integrally formed flat-plate multi-element antenna and electronic apparatus
JP5323271B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
EP2381529B1 (en) Communications structures including antennas with separate antenna branches coupled to feed and ground conductors
CN110970709B (en) Antenna structure and wireless communication device with same
WO2016030038A2 (en) Decoupled antennas for wireless communication
JP4910868B2 (en) Antenna device
EP2375488B1 (en) Planar antenna and handheld device
JP4044074B2 (en) Antenna device
US9419327B2 (en) System for radiating radio frequency signals
JP2004088198A (en) Monopole antenna system and communication system employing the same
KR20090050566A (en) Mimo system installed in vehicle
JP3655234B2 (en) Antenna device
JP2020098999A (en) Antenna device and radio terminal
JP7544386B2 (en) Antenna Device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees