Nothing Special   »   [go: up one dir, main page]

JP3822761B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP3822761B2
JP3822761B2 JP02219299A JP2219299A JP3822761B2 JP 3822761 B2 JP3822761 B2 JP 3822761B2 JP 02219299 A JP02219299 A JP 02219299A JP 2219299 A JP2219299 A JP 2219299A JP 3822761 B2 JP3822761 B2 JP 3822761B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
nox reduction
reduction catalyst
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02219299A
Other languages
Japanese (ja)
Other versions
JP2000220445A (en
Inventor
満 細谷
幸浩 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP02219299A priority Critical patent/JP3822761B2/en
Publication of JP2000220445A publication Critical patent/JP2000220445A/en
Application granted granted Critical
Publication of JP3822761B2 publication Critical patent/JP3822761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばディーゼルエンジン等の内燃機関に適用される排気浄化装置に関するものである。
【0002】
【従来の技術】
従来よりディーゼルエンジン等の内燃機関においては、排気ガスが流通する排気管の途中にNOx還元触媒を装備し、該NOx還元触媒より上流側で排気ガスに対し必要量の還元剤を添加し得るように構成したものがある。
【0003】
通常、この種のNOx還元触媒としては、例えばアルミナ(Al23)等の担体上に白金(Pt)、ロジウム(Rh)、イリジウム(Ir)、銀(Ag)、銅(Cu)、コバルト(Co)、鉄(Fe)等から選ばれた少なくとも一つを担持させてなるものが用いられ、還元剤としては、軽油等が用いられており、排気ガス中のNOxと還元剤とをNOx還元触媒を介し還元反応させることでNOxの排出濃度を低減するようにしている。
【0004】
そして、内燃機関の回転数と負荷とを検出して排気ガスのNOx排出量を推定し、その推定された排気ガスのNOx排出量に応じ還元剤の添加量を算出すると共に、NOx還元触媒上流側に設置した温度センサにより排気ガス温度を検出し、その検出温度がNOx還元触媒の活性温度域となった時に、前記算出した必要量の還元剤を添加するように作動されている。
【0005】
【発明が解決しようとする課題】
しかしながら、以上に述べた如き従来の排気浄化装置にあっては、NOx還元触媒に入る排気ガスの温度が内燃機関の回転数や負荷等により上下し、変化する排気ガス温度に従って制御するようにしていた為、限られた運転状態でしかNOx低減効果が得られないという問題があった。
【0006】
本発明は、上述の実情に鑑みてなされたものであり、排気ガス温度をNOx還元触媒の活性温度域となるよう積極的に制御してNOx低減効果の向上を図ることを目的としている。
【0007】
【課題を解決するための手段】
本発明は、排気ガスが流通する排気管の途中にNOx還元触媒を装備し、該NOx還元触媒より上流側で排気ガスに対し必要量の還元剤を添加し得るよう構成した内燃機関の排気浄化装置であって、ターボチャージャとしてバリアブルジオメトリーターボチャージャを採用し、該バリアブルジオメトリーターボチャージャのタービン側ノズルベーンを傾動するアクチュエータに対し開度増減指令を出力して排気ガス温度がNOx還元触媒の活性温度域となるように吸入空気量を制御し且つ排気ガス温度がNOx還元触媒の耐久限界温度に達した際に直ちにアクチュエータに向けノズルベーンの開度を絞る一定角度減指令を出力する制御装置を備えたことを特徴とするものである。
【0008】
このようにターボチャージャとしてバリアブルジオメトリーターボチャージャを採用すると、タービン側ノズルベーンの開度を大きく開くことによりタービンにおける排気ガスの旋速を下げ、これによりタービンの回転数を下げてコンプレッサ側における吸入空気量を減少したり、或いは、これとは反対に、ノズルベーンの開度を小さく絞ることによりタービンにおける排気ガスの旋速を上げ、これによりタービンの回転数を上げてコンプレッサ側における吸入空気量を増加したりすることが可能となる。
【0009】
そして、排気ガスの温度がNOx還元触媒の活性温度域を下まわっているような場合に、タービン側ノズルベーンを傾動するアクチュエータに対し開度増減指令を出力し、ノズルベーンの開度を大きく開けて吸入空気量を減少すれば、インタークーラで冷却された吸気の内燃機関への導入量が減らされて排気ガスの温度が結果的に上がり、逆に排気ガスの温度がNOx還元触媒の活性温度域を上まわっているような場合に、ノズルベーンの開度を絞って吸入空気量を増加すれば、インタークーラで冷却された多量の吸気により排気ガスの温度が結果的に下がるので、該排気ガスの温度をNOx還元触媒の活性温度域に入るように調整することが可能となる。
また、排気ガス温度がNOx還元触媒の耐久限界温度に達した時点で、直ちにノズルベーンの開度が一定角度分だけ絞られて吸入空気量が増加され、これにより排気ガス温度が急激に下げられるので、NOx還元触媒への過剰な熱負担が緊急回避されることになる。
【0010】
また、本発明においては、NOx還元触媒の入口付近における排気ガス温度を検出する温度センサと、内燃機関の回転数を検出する回転センサと、内燃機関の負荷を検出する負荷センサとを備え、これら温度センサと回転センサと負荷センサとからの検出信号に基づき内燃機関の運転状態と現在の排気ガス温度とを照らし合わせて開度増減指令を出力し得るように制御装置を構成することが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図1から図4に示す図面を参照しながら詳細に説明すると、図1は本発明に係る排気浄化装置を実施する形態の一例を示し、図中1はディーゼル機関であるエンジン本体を示し、該エンジン本体1は、ターボチャージャとしてバリアブルジオメトリーターボチャージャ2(以下ではVGTと略称する)を備えており、エアクリーナ3から導いた吸気4を吸気管5を介し前記VGT2のコンプレッサ2aへ送り、該コンプレッサ2aで加圧された吸気4を更にインタークーラ6へ送って冷却し、該インタークーラ6から図示しないインテークマニホールドへと吸気を導いてエンジン本体1の各気筒に導入するようにしてある。
【0014】
また、このエンジン本体1の各気筒には、燃料ポンプ7により図示しない燃料タンクからの液体燃料(軽油)を供給して燃焼させるようにしてあり、エンジン本体1の各気筒から排出された排気ガス8をエキゾーストマニホールド9を介し前記VGT2のタービン2bへ送り、該タービン2bを駆動した排気ガス8を排気管10を介し車外へ排出するようにしてある。
【0015】
前記排気管10におけるマフラ11より上流側の中途部には、NOx還元触媒12が抱持されていると共に、該NOx還元触媒12の上流側には、還元剤タンク13から還元剤14(軽油)を導く還元剤供給管15が接続されており、この還元剤供給管15は、その途中に具備した供給ポンプ16の駆動により逆止弁17を介し還元剤14を導いて前記NOx還元触媒12の上流側で排気ガス8に還元剤14を添加し得るように構成されている。
【0016】
前記エンジン本体1には、その機関回転数を検出する回転センサ18が装備されており、該回転センサ18からの回転数信号18aと、燃料ポンプ7に付設された負荷センサ19(燃料の噴射量を検出するセンサ)からの負荷信号19aとが制御装置20に入力されて排気ガス8のNOx排出量が推定されるようになっている。
【0017】
一方、制御装置20においては、推定された排気ガス8のNOx排出量に応じた還元剤14の添加量が算出されて、その添加量に見合う還元剤14の供給を指令する還元剤噴射指令16aが還元剤供給管15の供給ポンプ16に向け出力されるようになっている。
【0018】
そして、前記排気管10におけるNOx還元触媒12の入口付近には、該NOx還元触媒12に入る排気ガス8の温度を検出する温度センサ21が装備されており、該温度センサ21からの温度信号21aが前記制御装置20に入力され、この温度信号21aから判る触媒入口温度と、前述した回転数信号18a及び負荷信号19aから判断されるNOx排出量とを照らし合わせて、触媒入口温度をNOx還元触媒12の活性温度域に調整し得るようなVGT2のタービン2bにおけるノズルベーンの開度x1が算出され、該ノズルベーンを傾動するアクチュエータ22に向けて開度増減指令22aが出力されるようになっている。
【0019】
即ち、VGT2は、従来周知であるように、タービン2bのノズルベーンをアクチュエータ22により傾動することで前記ノズルベーンの開度を調整できるようになっており、例えばノズルベーンの開度を大きく開くと、VGT2のタービン2bにおける排気ガス8の旋速が下がり、これによりタービン2bの回転数が下がってコンプレッサ2a側における吸入空気量が減少し、反対にノズルベーンの開度を絞ると、VGT2のタービン2bにおける排気ガス8の旋速が上がり、これによりタービン2bの回転数が上がってコンプレッサ2a側における吸入空気量が増加するようになっている。
【0020】
そこで、温度センサ21により検出される排気ガス8の温度がNOx還元触媒12の活性温度域(約350℃〜450℃の範囲)を下まわっているような場合に、ノズルベーンの開度を開けて吸入空気量を減少すれば、インタークーラ6で冷却された吸気4のエンジン本体1への導入量が減らされて該エンジン本体1の各気筒から排出される排気ガス8の温度が結果的に上がり、逆に排気ガス8の温度がNOx還元触媒12の活性温度域を上まわっているような場合に、ノズルベーンの開度を絞って吸入空気量を増加すれば、インタークーラ6で冷却された多量の吸気4によりエンジン本体1の各気筒から排出される排気ガス8の温度が結果的に下がるので、該排気ガス8の温度をNOx還元触媒12の活性温度域に入るように調整することが可能となる。
【0021】
制御装置20における具体的な制御フローは、図2にステップS1〜S10に示す通りであり、先ずステップS1で温度センサ21により排気ガス8の温度が検出されると、その温度がNOx還元触媒12の活性温度域内であるか否かがステップS2で判定され、その判定がYESである場合に、ステップS3へと進んで回転センサ18及び負荷センサ19により検出されたエンジン本体1の回転数と負荷とが取り込まれ、これらをもとに推定される排気ガス8のNOx排出量に応じた還元剤14の添加量がステップS4にて算出され、次いで、ステップS5にて還元剤噴射指令16aが還元剤供給管15の供給ポンプ16に向け出力され、必要量の還元剤14がNOx還元触媒12の上流側で排気ガス8に添加されるようになっている。
【0022】
一方、ステップS2における判定がNOであった場合には、ステップS6に進んで排気ガス8の温度が耐久限界温度の500℃より低いか否かが判定され、その判定がYESである場合に、ステップS7へと進んで回転センサ18及び負荷センサ19により検出されたエンジン本体1の回転数と負荷とが取り込まれ、これらをもとに判断されるNOx排出量と現在の排気ガス8の温度とを照らし合わせてステップS8にて触媒入口温度をNOx還元触媒12の活性温度域に調整し得るようなVGT2のノズルベーン開度x1が算出され、次いで、ステップS9にてVGT2のアクチュエータ22に向けて開度増減指令22aが出力される。
【0023】
ここで、ステップS8にてノズルベーン開度x1を算出するに際しては、例えばNOx還元触媒12の活性温度域内における最活性温度(約400℃程度)に排気ガス8の温度が調整されるようにノズルベーンの開度x1を算出することが好ましい。
【0024】
尚、エンジン本体1の運転状態によっては、排気ガス8の温度がNOx還元触媒12の活性温度域を大幅に下まわっているようなケースがあり、単にノズルベーン開度x1を開けて吸入空気量を減少するだけでは対応しきれないケースも当然にして起こるので、吸入空気量の減少で対応できないケースであると判断された場合には、排気ガス8の温度制御を考慮しない従来通りの開度を算出して出力するようにすれば良い。
【0025】
更に、ステップS6における判定がNOであった場合には、ステップS10に進んでVGT2のノズルベーンの開度を絞る方向に一定角度分だけ傾動する一定角度減指令22a’がVGT2のアクチュエータ22に向けて出力される。
【0026】
従って、このようにVGT2のタービン2bのノズルベーン開度を調整して吸入空気量を制御すると、排気ガス8の温度をNOx還元触媒12の活性温度域となるよう積極的に制御することができるので、従来において排気ガス8の温度不足により還元剤14が供給されていなかった運転状態でもNOxが低減されることになり、NOx低減効果を従来より大幅に向上することができ、しかも、排気ガス8の温度がNOx還元触媒12の耐久限界温度に達した時点で、直ちにVGT2のノズルベーンの開度が一定角度分だけ絞られて吸入空気量が増加され、これにより排気ガス8の温度が急激に下げられるので、NOx還元触媒12への過剰な熱負担を緊急回避することができる。
【0027】
また、以上は従来と同じNOx還元触媒12の活性温度域(約350℃〜450℃の範囲)を基準として制御装置20のステップS2で排気ガス8の温度を判定する場合を説明したが、ステップS2における判定基準を厳しくして最活性温度付近の狭い温度範囲で排気ガス8の温度を判定するようにすれば、図3に示すように、日本ディーゼル自動車13モードとして[1]〜[13]の項目に分けられた公的な各種の運転モードに対し、実線で示した吸入空気量を制御しない場合の触媒入口温度の分布曲線が二点鎖線で示すように改善され、運転モード[9]〜[12]の比較的広い範囲に亘り触媒入口温度を活性温度域に維持することが可能となる。
【0028】
そして、図4に示すように、吸入空気量を制御しない場合に運転モード[10][11][12]で確認されたNOx低減率よりも、吸入空気量を制御した場合の方が運転モード[10][11][12]の何れにおいても優れたNOx低減率となり、しかも、吸入空気量を制御しない場合に確認できなかった運転モード[9]においても優れたNOx低減率となる。
【0029】
尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、図示する例では、NOx還元触媒の上流側に還元剤タンクから還元剤を導く還元剤供給管を接続して供給ポンプの駆動により還元剤を添加する場合を例示したが、コモンレール式の燃料ポンプによる後噴射(膨張行程又は排気行程での燃料噴射)で還元剤を添加するように構成しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0030】
【発明の効果】
以上の説明から明らかなように、この発明に係る排気浄化装置によれば、下記のような種々の優れた効果を奏する。
【0031】
発明の請求項1及び2に記載の発明によれば、排気ガス温度をNOx還元触媒の活性温度域となるよう積極的に制御することができるので、従来において排気ガス温度の不足により還元剤が供給されていなかった運転状態でもNOxが低減されることとなり、NOx低減効果を従来より大幅に向上することができ、しかも、排気ガス温度がNOx還元触媒の耐久限界温度に達した時点で、直ちに吸入空気量を増加して排気ガス温度を急激に下げることができるので、NOx還元触媒への過剰な熱負担を緊急回避することができる。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例を示す概略図である。
【図2】図1の制御装置の制御フローを示すフローチャートである。
【図3】触媒入口温度と運転モードとの関係を示すグラフである。
【図4】NOx低減率と運転モードとの関係を示すグラフである。
【符号の説明】
1 エンジン本体(内燃機関)
2 バリアブルジオメトリーターボチャージャ
2b タービン
8 排気ガス
10 排気管
12 NOx還元触媒
14 還元剤
18 回転センサ
18a 回転数信号(検出信号)
19 負荷センサ
19a 負荷信号(検出信号)
20 制御装置
21 温度センサ
21a 温度信号(検出信号)
22 アクチュエータ
22a 開度増減指令
22a’ 一定角度減指令
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device applied to an internal combustion engine such as a diesel engine.
[0002]
[Prior art]
Conventionally, in an internal combustion engine such as a diesel engine, a NOx reduction catalyst is provided in the middle of an exhaust pipe through which exhaust gas flows, and a necessary amount of reducing agent can be added to the exhaust gas upstream of the NOx reduction catalyst. There is something configured.
[0003]
Usually, as this type of NOx reduction catalyst, for example, platinum (Pt), rhodium (Rh), iridium (Ir), silver (Ag), copper (Cu), cobalt on a support such as alumina (Al 2 O 3 ). (Co), at least one selected from iron (Fe) or the like is used, light oil or the like is used as the reducing agent, and NOx and reducing agent in the exhaust gas are mixed with NOx. The NOx emission concentration is reduced by the reduction reaction through the reduction catalyst.
[0004]
Then, the rotational speed and load of the internal combustion engine are detected to estimate the NOx emission amount of the exhaust gas, and the addition amount of the reducing agent is calculated according to the estimated NOx emission amount of the exhaust gas, and the upstream of the NOx reduction catalyst. The exhaust gas temperature is detected by a temperature sensor installed on the side, and when the detected temperature reaches the activation temperature range of the NOx reduction catalyst, the calculated amount of reducing agent is added.
[0005]
[Problems to be solved by the invention]
However, in the conventional exhaust purification apparatus as described above, the temperature of the exhaust gas entering the NOx reduction catalyst is increased or decreased depending on the rotational speed or load of the internal combustion engine, and is controlled according to the changing exhaust gas temperature. Therefore, there is a problem that the NOx reduction effect can be obtained only in a limited operating state.
[0006]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to positively control the exhaust gas temperature to be within the activation temperature range of the NOx reduction catalyst to improve the NOx reduction effect.
[0007]
[Means for Solving the Problems]
The present invention provides an exhaust purification system for an internal combustion engine in which a NOx reduction catalyst is provided in the middle of an exhaust pipe through which exhaust gas flows, and a required amount of reducing agent can be added to the exhaust gas upstream of the NOx reduction catalyst. The device adopts a variable geometry turbocharger as a turbocharger, outputs an opening degree increase / decrease command to the actuator that tilts the turbine side nozzle vane of the variable geometry turbocharger, and the exhaust gas temperature is the activity of the NOx reduction catalyst. Provided with a control device that controls the amount of intake air so as to be in the temperature range and outputs a constant angle reduction command for reducing the nozzle vane opening degree immediately toward the actuator when the exhaust gas temperature reaches the endurance limit temperature of the NOx reduction catalyst It is characterized by that.
[0008]
Thus, when a variable geometry turbocharger is used as a turbocharger, the rotational speed of the exhaust gas in the turbine is lowered by greatly opening the opening of the turbine-side nozzle vane, thereby lowering the rotational speed of the turbine and reducing the intake air on the compressor side. Decrease the volume or, conversely, increase the rotational speed of the exhaust gas in the turbine by reducing the opening of the nozzle vane to a small size, thereby increasing the turbine speed and increasing the intake air volume on the compressor side It becomes possible to do.
[0009]
Then, when the exhaust gas temperature falls below the activation temperature range of the NOx reduction catalyst, an opening degree increase / decrease command is output to the actuator that tilts the turbine side nozzle vane, and the nozzle vane opening degree is greatly opened. If the amount of air is reduced, the amount of intake air cooled by the intercooler into the internal combustion engine is reduced, resulting in an increase in the temperature of the exhaust gas. Conversely, the temperature of the exhaust gas exceeds the activation temperature range of the NOx reduction catalyst. In such a case, if the amount of intake air is increased by narrowing the opening of the nozzle vane, the exhaust gas temperature will eventually decrease due to the large amount of intake air cooled by the intercooler. Can be adjusted to fall within the activation temperature range of the NOx reduction catalyst.
Also, as soon as the exhaust gas temperature reaches the endurance limit temperature of the NOx reduction catalyst, the nozzle vane opening is immediately throttled by a certain angle, and the intake air amount is increased. Therefore, an excessive heat burden on the NOx reduction catalyst is urgently avoided.
[0010]
The present invention also includes a temperature sensor that detects the exhaust gas temperature in the vicinity of the inlet of the NOx reduction catalyst, a rotation sensor that detects the rotational speed of the internal combustion engine, and a load sensor that detects the load of the internal combustion engine. It is preferable to configure the control device so that an opening degree increase / decrease command can be output by comparing the operating state of the internal combustion engine with the current exhaust gas temperature based on detection signals from the temperature sensor, the rotation sensor, and the load sensor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings shown in FIG. 1 to FIG. 4. FIG. 1 shows an example of an embodiment for implementing an exhaust purification apparatus according to the present invention. 1 shows an engine body that is an engine. The engine body 1 includes a variable geometry turbocharger 2 (hereinafter abbreviated as VGT) as a turbocharger. The intake air 4 guided from an air cleaner 3 is passed through the intake pipe 5 through the intake pipe 5. The intake 4 pressurized by the compressor 2a is sent to the intercooler 6 to be cooled, and the intake air is guided from the intercooler 6 to an intake manifold (not shown) to each cylinder of the engine body 1. It has been introduced.
[0014]
Further, each cylinder of the engine main body 1 is supplied with fuel fuel (light oil) from a fuel tank (not shown) by a fuel pump 7 and combusted. Exhaust gas discharged from each cylinder of the engine main body 1 8 is sent to the turbine 2b of the VGT 2 through the exhaust manifold 9, and the exhaust gas 8 that has driven the turbine 2b is discharged outside the vehicle through the exhaust pipe 10.
[0015]
A NOx reduction catalyst 12 is held in the middle of the exhaust pipe 10 upstream of the muffler 11, and a reducing agent 14 (light oil) is supplied from a reducing agent tank 13 to the upstream side of the NOx reduction catalyst 12. Is connected to the reducing agent supply pipe 15, and the reducing agent supply pipe 15 guides the reducing agent 14 through the check valve 17 by driving a supply pump 16 provided in the middle of the reducing agent supply pipe 15. The reducing agent 14 can be added to the exhaust gas 8 on the upstream side.
[0016]
The engine body 1 is equipped with a rotation sensor 18 for detecting the engine rotation speed. A rotation speed signal 18a from the rotation sensor 18 and a load sensor 19 (fuel injection amount) attached to the fuel pump 7 are provided. And a load signal 19a from a sensor for detecting the NOx emission amount of the exhaust gas 8 is estimated.
[0017]
On the other hand, the control device 20 calculates the addition amount of the reducing agent 14 according to the estimated NOx emission amount of the exhaust gas 8, and supplies the reducing agent injection command 16a that commands the supply of the reducing agent 14 corresponding to the addition amount. Is output to the supply pump 16 of the reducing agent supply pipe 15.
[0018]
A temperature sensor 21 for detecting the temperature of the exhaust gas 8 entering the NOx reduction catalyst 12 is provided near the inlet of the NOx reduction catalyst 12 in the exhaust pipe 10, and a temperature signal 21a from the temperature sensor 21 is provided. Is input to the control device 20, and the catalyst inlet temperature determined from the temperature signal 21a is compared with the NOx emission amount determined from the rotational speed signal 18a and the load signal 19a described above to determine the catalyst inlet temperature as the NOx reduction catalyst. opening x 1 of the nozzle vanes is calculated in VGT2 turbine 2b such as to be able to adjust to the activation temperature range of 12, so that the opening decrease command 22a is outputted to the actuator 22 for tilting the nozzle vanes .
[0019]
That is, the VGT 2 can adjust the opening degree of the nozzle vane by tilting the nozzle vane of the turbine 2b by the actuator 22 as is well known in the art. For example, when the opening degree of the nozzle vane is greatly opened, the VGT 2 When the rotational speed of the exhaust gas 8 in the turbine 2b is lowered, thereby reducing the rotational speed of the turbine 2b and reducing the amount of intake air on the compressor 2a side, conversely, when the opening degree of the nozzle vane is reduced, the exhaust gas in the turbine 2b of the VGT 2 8, the rotational speed of the turbine 2b is increased, and the intake air amount on the compressor 2a side is increased.
[0020]
Therefore, when the temperature of the exhaust gas 8 detected by the temperature sensor 21 falls below the activation temperature range of the NOx reduction catalyst 12 (a range of about 350 ° C. to 450 ° C.), the nozzle vane opening is opened. If the intake air amount is reduced, the introduction amount of the intake air 4 cooled by the intercooler 6 into the engine body 1 is reduced, and the temperature of the exhaust gas 8 discharged from each cylinder of the engine body 1 is consequently increased. On the contrary, when the temperature of the exhaust gas 8 exceeds the activation temperature range of the NOx reduction catalyst 12, if the intake air amount is increased by reducing the opening of the nozzle vane, a large amount cooled by the intercooler 6 is obtained. As a result, the temperature of the exhaust gas 8 exhausted from each cylinder of the engine body 1 is lowered by the intake air 4 of the engine, so that the temperature of the exhaust gas 8 is adjusted to fall within the activation temperature range of the NOx reduction catalyst 12. It can become.
[0021]
The specific control flow in the control device 20 is as shown in steps S1 to S10 in FIG. 2. First, when the temperature of the exhaust gas 8 is detected by the temperature sensor 21 in step S1, the temperature is reduced to the NOx reduction catalyst 12. Is determined in step S2, and if the determination is YES, the process proceeds to step S3 and the rotational speed and load of the engine body 1 detected by the rotation sensor 18 and the load sensor 19 are detected. And the amount of reducing agent 14 added according to the NOx emission amount of the exhaust gas 8 estimated based on these is calculated in step S4, and then the reducing agent injection command 16a is reduced in step S5. The reductant 14 is output to the supply pump 16 of the agent supply pipe 15 and a required amount of the reducing agent 14 is added to the exhaust gas 8 on the upstream side of the NOx reduction catalyst 12.
[0022]
On the other hand, if the determination in step S2 is NO, the process proceeds to step S6, where it is determined whether the temperature of the exhaust gas 8 is lower than the endurance limit temperature of 500 ° C. If the determination is YES, Proceeding to step S7, the rotational speed and load of the engine main body 1 detected by the rotation sensor 18 and the load sensor 19 are taken in, and the NOx emission amount determined based on these and the current temperature of the exhaust gas 8 are determined. nozzle vane opening degree x 1 of VGT2 such a catalyst inlet temperature can be adjusted to the active temperature region of the NOx reduction catalyst 12 is calculated in step S8 in the light and then, toward the actuator 22 of VGT2 at step S9 An opening degree increase / decrease command 22a is output.
[0023]
Here, when the nozzle vane opening x 1 is calculated in step S 8, for example, the nozzle vane is adjusted so that the temperature of the exhaust gas 8 is adjusted to the most active temperature (about 400 ° C.) within the activation temperature range of the NOx reduction catalyst 12. it is preferable to calculate the opening x 1.
[0024]
Depending on the operating state of the engine body 1, there are cases where the temperature of the exhaust gas 8 is falls below greatly activation temperature range of the NOx reduction catalyst 12, just the amount of intake air by opening the nozzle vane opening degree x 1 As a matter of course, there are cases in which it is not possible to cope with the problem only by reducing the amount of exhaust gas. Therefore, when it is determined that the case cannot be dealt with by reducing the amount of intake air, the conventional opening without considering the temperature control of the exhaust gas 8 May be calculated and output.
[0025]
Further, if the determination in step S6 is NO, the process proceeds to step S10, and a constant angle reduction command 22a ′ that tilts by a fixed angle in the direction of narrowing the opening of the nozzle vane of VGT2 is directed to the actuator 22 of VGT2. Is output.
[0026]
Therefore, if the intake air amount is controlled by adjusting the nozzle vane opening of the turbine 2b of the VGT 2 in this way, the temperature of the exhaust gas 8 can be positively controlled so as to be within the activation temperature range of the NOx reduction catalyst 12. , it will be NOx even in operating conditions where the reducing agent 14 has not been supplied by under-temperature of the exhaust gas 8 in the prior art is reduced, it is possible to significantly improve the conventional a NOx reduction effect, moreover, the exhaust gas 8 As soon as the temperature reaches the endurance limit temperature of the NOx reduction catalyst 12, the opening of the nozzle vane of the VGT 2 is immediately reduced by a certain angle, and the intake air amount is increased, whereby the temperature of the exhaust gas 8 is rapidly lowered. because it is, Ru can be emergency avoid excessive heat load on the NOx reduction catalyst 12.
[0027]
Further, the case where the temperature of the exhaust gas 8 is determined in step S2 of the control device 20 based on the same active temperature range (a range of about 350 ° C. to 450 ° C.) of the NOx reduction catalyst 12 as in the past has been described. If the judgment criteria in S2 are made strict and the temperature of the exhaust gas 8 is judged within a narrow temperature range near the most active temperature, as shown in FIG. Compared to the various public operation modes divided into items, the distribution curve of the catalyst inlet temperature when the intake air amount shown by the solid line is not controlled is improved as shown by the two-dot chain line, and the operation mode [9] It is possible to maintain the catalyst inlet temperature in the activation temperature range over a relatively wide range of [12].
[0028]
As shown in FIG. 4, when the intake air amount is not controlled, the operation mode when the intake air amount is controlled is higher than the NOx reduction rate confirmed in the operation modes [10] [11] [12]. In any of [10], [11] and [12], the NOx reduction rate is excellent, and in the operation mode [9] which cannot be confirmed when the intake air amount is not controlled, the NOx reduction rate is also excellent.
[0029]
The exhaust emission control device of the present invention is not limited to the above-described embodiment. In the illustrated example, a reducing agent supply pipe for leading the reducing agent from the reducing agent tank is connected to the upstream side of the NOx reduction catalyst. In the above example, the reducing agent is added by driving the supply pump. However, the reducing agent may be added by the post-injection (fuel injection in the expansion stroke or the exhaust stroke) by the common rail fuel pump. Of course, various modifications can be made without departing from the scope of the present invention.
[0030]
【The invention's effect】
As is clear from the above description, the exhaust emission control device according to the present invention has the following various excellent effects.
[0031]
According to the first and second aspects of the present invention, the exhaust gas temperature can be actively controlled so as to be within the activation temperature range of the NOx reduction catalyst. NOx is reduced even in the operating state where the gas is not supplied, and the NOx reduction effect can be greatly improved as compared with the prior art . Moreover, when the exhaust gas temperature reaches the endurance limit temperature of the NOx reduction catalyst, Since the amount of intake air can be increased immediately and the exhaust gas temperature can be lowered rapidly, an excessive heat burden on the NOx reduction catalyst can be urgently avoided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an embodiment for carrying out the present invention.
FIG. 2 is a flowchart showing a control flow of the control device of FIG. 1;
FIG. 3 is a graph showing the relationship between catalyst inlet temperature and operation mode.
FIG. 4 is a graph showing a relationship between a NOx reduction rate and an operation mode.
[Explanation of symbols]
1 Engine body (internal combustion engine)
2 Variable Geometry Turbocharger 2b Turbine 8 Exhaust Gas 10 Exhaust Pipe 12 NOx Reduction Catalyst 14 Reductant 18 Rotation Sensor 18a Rotational Speed Signal (Detection Signal)
19 Load sensor 19a Load signal (detection signal)
20 control device 21 temperature sensor 21a temperature signal (detection signal)
22 Actuator 22a Opening degree increase / decrease command 22a 'Constant angle decrease command

Claims (2)

排気ガスが流通する排気管の途中にNOx還元触媒を装備し、該NOx還元触媒より上流側で排気ガスに対し必要量の還元剤を添加し得るよう構成した内燃機関の排気浄化装置であって、ターボチャージャとしてバリアブルジオメトリーターボチャージャを採用し、該バリアブルジオメトリーターボチャージャのタービン側ノズルベーンを傾動するアクチュエータに対し開度増減指令を出力して排気ガス温度がNOx還元触媒の活性温度域となるように吸入空気量を制御し且つ排気ガス温度がNOx還元触媒の耐久限界温度に達した際に直ちにアクチュエータに向けノズルベーンの開度を絞る一定角度減指令を出力する制御装置を備えたことを特徴とする排気浄化装置。An exhaust gas purification apparatus for an internal combustion engine, equipped with a NOx reduction catalyst in the middle of an exhaust pipe through which exhaust gas flows, and configured to be able to add a necessary amount of reducing agent to the exhaust gas upstream of the NOx reduction catalyst. The variable geometry turbocharger is used as a turbocharger, and an opening / closing command is output to the actuator that tilts the turbine side nozzle vane of the variable geometry turbocharger, so that the exhaust gas temperature falls within the activation temperature range of the NOx reduction catalyst. And a control device for controlling the intake air amount and outputting a constant angle reduction command for reducing the opening degree of the nozzle vane toward the actuator immediately when the exhaust gas temperature reaches the endurance limit temperature of the NOx reduction catalyst. Exhaust gas purification device. NOx還元触媒の入口付近における排気ガス温度を検出する温度センサと、内燃機関の回転数を検出する回転センサと、内燃機関の負荷を検出する負荷センサとを備え、これら温度センサと回転センサと負荷センサとからの検出信号に基づき内燃機関の運転状態と現在の排気ガス温度とを照らし合わせて開度増減指令を出力し得るように制御装置を構成したことを特徴とする請求項1に記載の排気浄化装置。  A temperature sensor that detects an exhaust gas temperature in the vicinity of the inlet of the NOx reduction catalyst, a rotation sensor that detects the number of revolutions of the internal combustion engine, and a load sensor that detects a load of the internal combustion engine, the temperature sensor, the rotation sensor, and the load 2. The control device according to claim 1, wherein the controller is configured to output an opening degree increase / decrease command by comparing an operating state of the internal combustion engine with a current exhaust gas temperature based on a detection signal from the sensor. Exhaust purification device.
JP02219299A 1999-01-29 1999-01-29 Exhaust purification device Expired - Fee Related JP3822761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02219299A JP3822761B2 (en) 1999-01-29 1999-01-29 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02219299A JP3822761B2 (en) 1999-01-29 1999-01-29 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2000220445A JP2000220445A (en) 2000-08-08
JP3822761B2 true JP3822761B2 (en) 2006-09-20

Family

ID=12075947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02219299A Expired - Fee Related JP3822761B2 (en) 1999-01-29 1999-01-29 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP3822761B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041929A (en) * 2001-08-01 2003-02-13 Toyota Motor Corp Exhaust purification device for internal combustion engine
US7150151B2 (en) 2002-11-19 2006-12-19 Cummins Inc. Method of controlling the exhaust gas temperature for after-treatment systems on a diesel engine using a variable geometry turbine
US7207176B2 (en) * 2002-11-19 2007-04-24 Cummins Inc. Method of controlling the exhaust gas temperature for after-treatment systems on a diesel engine using a variable geometry turbine
JP5140135B2 (en) * 2004-05-06 2013-02-06 カミンズ インコーポレーテッド Variable geometry turbocharger and system for determining exhaust gas temperature for aftertreatment systems in an internal combustion engine using a variable geometry turbine
KR100980631B1 (en) 2004-11-25 2010-09-07 현대자동차주식회사 Element storage tank of SCC system and heating device of urea supply line
JP2008223681A (en) * 2007-03-14 2008-09-25 Mitsubishi Motors Corp Exhaust purification device
JP4459987B2 (en) 2007-06-27 2010-04-28 株式会社デンソー Exhaust purification agent addition amount control device and exhaust purification system
JP4388103B2 (en) 2007-06-27 2009-12-24 株式会社デンソー Exhaust purification agent addition amount control device and exhaust purification system
JP7206764B2 (en) * 2018-10-03 2023-01-18 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2000220445A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
US6742331B2 (en) Device for purifying exhaust gas of diesel engines
KR100823381B1 (en) Engine control method and device
JP4120524B2 (en) Engine control device
EP1420159B1 (en) EGR system for internal combustion engine provided with a turbo-charger
US6276139B1 (en) Automotive engine with controlled exhaust temperature and oxygen concentration
JP4843035B2 (en) Engine and method for maintaining engine exhaust temperature
US20020174648A1 (en) Device for purifying exhaust gas of diesel engines
JP4057549B2 (en) Exhaust gas purification device in internal combustion engine
KR20090113845A (en) Secondary air system for combustion engine breathing system
JP2002276405A (en) Exhaust emission control device of diesel engine
JP3822761B2 (en) Exhaust purification device
CN101326346B (en) Exhaust system of internal combustion engine
JP4203355B2 (en) EGR device for diesel engine
JP4691012B2 (en) Engine with internal EGR system
JP2008138638A (en) Exhaust gas recirculation device for internal combustion engine
JP4736931B2 (en) Exhaust gas recirculation device for internal combustion engine
EP2143919B1 (en) Particulate filter regeneration system
JP4969225B2 (en) Engine exhaust system with DPF device
JP3783319B2 (en) EGR device for diesel engine
JPH08296430A (en) Exhaust emission control device for internal combustion engine
JP4131637B2 (en) Engine with EGR device
JP3741030B2 (en) Internal combustion engine
JP2008261256A (en) EGR system for internal combustion engine
JP4601518B2 (en) EGR device
JP2007291975A (en) Exhaust gas recirculation device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees