Nothing Special   »   [go: up one dir, main page]

JP3821368B2 - Manufacturing method of high clean maraging steel - Google Patents

Manufacturing method of high clean maraging steel Download PDF

Info

Publication number
JP3821368B2
JP3821368B2 JP2001386109A JP2001386109A JP3821368B2 JP 3821368 B2 JP3821368 B2 JP 3821368B2 JP 2001386109 A JP2001386109 A JP 2001386109A JP 2001386109 A JP2001386109 A JP 2001386109A JP 3821368 B2 JP3821368 B2 JP 3821368B2
Authority
JP
Japan
Prior art keywords
less
steel
maraging steel
esr
metallic inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001386109A
Other languages
Japanese (ja)
Other versions
JP2003183765A (en
Inventor
悦夫 藤田
節夫 三嶋
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001386109A priority Critical patent/JP3821368B2/en
Publication of JP2003183765A publication Critical patent/JP2003183765A/en
Application granted granted Critical
Publication of JP3821368B2 publication Critical patent/JP3821368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高清浄マルエージング鋼の製造方法に関する。
【0002】
【従来の技術】
マルエージング鋼は、2000MPa前後の非常に高い引張強さをもつため、高比強度が要求される部材、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車用無段変速用部品等種々の用途に使用されている。
その代表的な組成には、18%Ni-8%Co-5%Mo-0.45%Ti-0.1%Al-bal.Feが挙げられる。そして、マルエージング鋼は、強化元素として、Mo、Tiを適量含んでおり、時効処理を行うことによって、Ni3Mo、Ni3Ti、Fe2Mo等の金属間化合物を析出させて高強度を得ることのできる鋼である。
【0003】
このマルエージング鋼を構造用材料として用いる場合の設計強度としては、繰返し回数10の7乗回での疲労強度が用いられる。しかし、最近では繰返し応力が10の7乗回を超えて負荷される場合があり、従来の10の7乗回での疲労強度を設計強度として用いたマルエージング鋼では信頼性が低く、10の7乗回を超える繰返し回数、例えば10の8乗回程度の繰返し数を設計強度とした場合にでも充分使用に耐え得るマルエージング鋼が求められるようになった。
ところで、10の7乗回以下の繰返し数での疲労強度を評価した従来の技術では、最終熱処理方法等が疲労強度を決定する重要な要素であった。しかし、マルエージング鋼において通常、10の7乗回以下の繰返し数では表面起点の疲労破断が起こるが、10の7乗回を超える繰返し数では特定の大きさより大きな非金属介在物を起点として疲労破壊を起すため、破壊のメカニズムが大きく異なる。従って、10の7乗回を超える繰返し数の使用をする場合、従来に増して非金属介在物の大きさが問題となり、非金属介在物は特定の大きさ以下とする必要がある。
【0004】
【発明が解決しようとする課題】
ところでマルエージング鋼は、真空誘導溶解(以下、VIMと呼ぶ)等の後、真空アーク再溶解(以下、VARと呼ぶ)もしくはエレクトロスラグ再溶解(以下、ESRと呼ぶ)を施すと、均質(成分偏析が少ない)でしかも、非金属介在物の少ない鋼となることが知られている。
しかしながら、上記の二重溶解で製造するマルエージング鋼にも、絶対数は少ないものの特定の大きさより大きなAl2O3等の酸化物系非金属介在物やTiN、TiCNやAlN等の窒化物系非金属介在物が残留し、残留した特定の大きさより大きな非金属介在物は、二重溶解後に行う熱間鍛造、熱処理、熱間圧延、冷間圧延等を行った後の素材中にもそのまま残留し、残留する特定の大きさより大きな非金属介在物を起点とした疲労破壊を生じることが心配される。
本発明の目的は、マルエージング鋼の10の7乗回を超える高サイクル疲労における疲労強度を高めるために、マルエージング鋼中に残留する、Al2O3等の酸化物系非金属介在物やTiN、TiCNやAlN等の非金属介在物を少なく且つ大きさを小さくできる高清浄マルエージング鋼の製造方法を提供することである。
【0005】
【発明が解決しようとする課題】
上述したように、マルエージング鋼を製造する場合において、二重溶解を行うことで、成分を均質にでき易いという利点がある。本発明者等は、この利点を損なうことなく、酸化物系非金属介在物と窒化物系非金属介在物の両方の大きさを特定の大きさ以下にする製造条件について鋭意検討を行った。
この検討を行うに際して、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車用無段変速用部品等、最近繰返し応力が10の7乗回を超える疲労強度が求められるようになった種々の用途の使用に耐え得る非金属介在物の大きさを検討した結果、鋼中に残留する非金属介在物の大きさが最大で20μm以下の長さのものであれば、繰返し応力が10の7乗回を超える疲労強度が求められる用途にも適用できることを見出した。
【0006】
そして、この非金属介在物の最大長さを20μm以下にする方法について検討した結果、最も効果的な方法として再溶解をESRで行うことで最終製品に近い状態で非金属介在物が20μm程度まで小さくできることを知見した。
そして、更にESRの条件を詳細に検した結果、投入電流とモールド内径とを調整することで非金属介在物の最大長さを20μm以下にすることができることを見出し、本発明に到達した。
即ち本発明は、ESRを行い、非金属介在物の最大長が20μm以下とする高清浄マルエージング鋼の製造方法であって、真空溶解で鋳造した消耗電極を用いて、前記エレクトロスラグ再溶解時の条件を下式に従うA値が15A/mm以上になるようにエレクトロスラグ再溶解を行った後、鋼塊状態または熱間鍛造後の何れか若しくは両方で、 1000 1300 ℃で少なくとも 5 時間以上の保持を行う高清浄マルエージング鋼の製造方法である。
A値[A/mm]=(投入電流)/(モールド内径)
【0007】
好ましくは、上記のマルエージング鋼は質量%で、C:0.01%以下、Ni:8.0〜22.0%、Co:5.0〜20.0%、Mo:2.0〜9.0%、Ti:2.0%以下、Al:1.7%以下、N:0.003%以下、O:0.002%以下、残部は実質的にFeからなる高清浄マルエージング鋼の製造方法である。
【0008】
【発明の実施の形態】
本発明の最大の特徴は、真空溶解で鋳造した消耗電極を用いて、ESRを行う際に投入電流とモールド内径とを調整することでAl2O3等の酸化物系非金属介在物やTiN、TiCNやAlN等の窒化物系非金属介在物の両方の大きさを小さく制御できることにある。
以下に、本発明を詳しく説明する。
【0009】
先ず、はじめに酸化物系非金属介在物を小さくする方法について説明する。
マルエージング鋼に存在する酸化物系非金属介在物は、例えば高真空のVIMで作製した電極鋼塊においても皆無にすることは不可能であり、再溶解により除去する必要がある。再溶解方法として、ESRとVARが挙げられる。
ESRでは電極鋼塊を再溶解し、フラックスと呼ばれる溶解酸化物中を通過させ、その後再凝固する。この際、フラックスは酸化物系非金属介在物をこしとるフィルターの役目を果たし、電極鋼塊中に含まれていた粗大な酸化物系非金属介在物はフラックスに吸収され除去される。
一方、VARでは酸化物系非金属介在物を高真空下での酸化物還元反応、または溶鋼プール内の浮上分離によって除去するが、マルエージング鋼のように酸素溶解度の低い鋼種では酸化物の還元反応は維持できず、加えて対流が発生している溶解プールにおいて完全に浮上分離することも困難であるため、一部の酸化物系非金属介在物は鋼塊中に残存する。
従って、ESRを用いた場合、15μm以上の大きさより大きなAl2O3等の酸化物系非金属介在物を除去することができるが、VARの場合は20μmを超える非金属介在物の残存が生じ易いため、本発明ではESRを行うと規定した。
【0010】
次に、窒化物系非金属介在物を小さくする方法について説明する。
マルエージング鋼は窒素との親和力が大きいTi或いは更にAlを含有していることから、VIMにて作製したESR用の電極鋼塊製造段階でTiN、TiCNやAlN等の窒化物系非金属介在物が存在する。これらの窒化物系非金属介在物は再溶解時に、一部はTiN→Ti+N、TiCN→Ti+C+NやAlN→Al+Nの反応により溶鋼中へ溶解し、溶存窒素や溶存炭素が増加する。また一部は完全には溶解せずにTiN、TiCNやAlN等の窒化物系非金属介在物の状態で溶鋼プール内に浮遊する。
溶鋼プール内では凝固殻への抜熱により逐次凝固が進行していくが、凝固前面付近では溶鋼温度が低下し、溶鋼中に溶存している窒素や炭素は溶解度の低下に伴ない上述の未固溶のTiN、TiCNやAlN表面上に晶出し成長していく。
このようにESR時には溶鋼プール内を浮遊するTiN、TiCNやAlNの存在により、TiN、TiCNやAlNが大きくなる。従って鋼塊内のTiN、TiCNやAlNを微細にするには、鋼塊中に含まれる窒素量を下げると供に、ESR時に溶解せずに残存するTiN、TiCNやAlNをなくす、もしくはできるだけ小さくする方法をとることが必要である。
【0011】
このためには溶鋼プールやスラブ浴の熱容量を大きくすることが必要である。
溶鋼プールやスラブ浴の熱容量を大きくするには、ESRの入熱を大きし、かつ抜熱を小さくすることが有効であり、入熱を大きくするには電流密度を大きくすればよく、また、抜熱を小さくするには単位重量当りの冷却モールドとの接触面積を小さくする、即ちモールド内径を大きくするとよい。
このようなことから、溶鋼プールおよびスラブ浴の熱容量を高めるためには、{(電流密度)×(モールド内径)}を大きくすればよく、{(電流密度)×(モールド内径)}∝{(投入電流)/(モールド面積)×(モールド内径)}∝{(投入電流)/(モールド内径)}であるので、前式に従うA値を大きくすればよい。
このため、ESRにおいてTiNやTiCN等の窒化物系非金属介在物を20μm以下に制御するためにはA値が15A/mm以上である必要がある。
A値が大きすぎると凝固偏析が大きくなり問題となるが、実用上偏析許容範囲内であれば特にA値の上限はないが、30A/mm以下にすると成分偏析も抑制でき、好ましい。
【0012】
なお、鋼塊内の窒素値は窒化物サイズに影響するので、ESRは外気を遮断しArで置換した雰囲気もしくは減圧下で行い、かつフラックスを追加する場合にはAr雰囲気を壊さないようArガスにてシールした管内を通して装入することにより操業中の窒素ピックアップを防止すると更に好ましい。
これは、マルエージング鋼中に含まれる窒素が再溶解中に増加し、TiN、TiCNやAlNが大きくなるのを防ぐことができ、上述のA値を大きくする効果をより高めることができるためである。
また、ESRに使用するフラックスについては目的とするマルエージング鋼の成分が達成できれば基本的にはどのようなものであってもよいが、例えばCaF2-Al2O3-TiO2系又はCaF2-CaO-Al2O3-TiO2系が好ましい。
【0013】
次に、本発明では上記のESRを行った後、鋼塊状態または熱間鍛造後の何れか若しくは両方で、1000〜1300℃で少なくとも5時間以上の保持を行う(この高温保持を以下ソーキングと呼ぶ)。
これは、ESRで均質となった鋼塊をより成分偏析の少ないものとすることで、疲労強度を更に向上させることができるためである。
このソーキングはESR後の鋼塊状態または熱間鍛造後の何れで行っても良く、より高温でより長時間行うとより成分偏析は少なくなる。しかし、保持温度が1300℃を超えると部分的に溶解が生じる可能性があり、逆に1000℃より低いとその効果は低くいため、1000℃〜1300℃の範囲で行うと良い。
【0014】
また、ソーキングの保持時間が5時間より短いと均質化の効果が低いため、保持時間は少なくとも5時間以上必要である。また、ソーキングは二回以上行ってもよく、例えば、ESR後の鋼塊状態と熱間鍛造後の両方で行っても合計の保持時間が5時間以上であればよい。
よって、ソーキングを行う場合は、鋼塊サイズ、熱間鍛造比、ソーキング加熱炉の容量、加工工程、求められる強度等を考慮して、鋼塊状態または熱間鍛造後の何れか若しくは両方で、少なくとも一回以上のソーキングを適宜行えば良く、勿論、熱間鍛造→ソーキング→熱間鍛造→ソーキングと言った工程でも良い。
【0015】
本発明により製造したマルエージング鋼を使用するには、上述の工程後に、熱間加工または冷間加工の何れか若しくは両方を、最終製品の用途形状に応じて、適時組み合わせ成形するとよい。例えば、鋼板が必要な場合は、1100℃にて熱間圧延を施したのち、Fe、Moを主成分とする未固溶の金属間化合物を残留させないために、760〜950℃で固溶化処理を行い、その後、冷間圧延に形を整えると供に加工歪を付加して、その後、二回目の固溶化処理を実施する事によって微細に再結晶させ、その後、時効処理を施すと良い。
【0016】
次に、本発明の組成の限定理由について述べる。
Cは炭化物を形成し、金属間化合物の析出量を減少させて疲労強度を低下させるため本発明ではCの上限を0.01%以下とした。
Niは靱性の高い母相組織を形成させるためには不可欠の元素であるが、8.0%未満では靱性が劣化する。一方、22.0 を越えるとオーステナイトが安定化し、マルテンサイト組織を形成し難くなることから、Niは8.0〜22.0%とした。
【0017】
Coは、マトリックスであるマルテンサイト組織を安定性に大きく影響することなく、Moの固溶度を低下させることによってMoが微細な金属間化合物を形成して析出するのを促進することによって析出強化に寄与するが、その含有量が5.0%未満では必ずしも十分効果が得られず、また20.0%を越えると脆化する傾向がみられることから、Coの含有量は5.0〜20.0%にした。
Moは時効処理により、微細な金属間化合物を形成し、マトリックスに析出することによって強化に寄与する元素であるが、その含有量が2.0%未満の場合その効果が少なく、また9.0%を越えて含有すると延性、靱性を劣化させるFe、Moを主要元素とする粗大析出物を形成しやすくなるため、Moの含有量を2.0〜9.0%とした。
【0018】
Tiは、Moと同様に時効処理により微細な金属間化合物を形成し、析出することによって強化に寄与する元素であるが、2.0%を越えて含有させると延性、靱性が劣化する。また、Moで十分硬さが得られている場合は無添加でも良いため、Tiの含有量を2.0%以下とした。
Alは脱酸作用を持つだけでなく、時効析出して強化に寄与するが、1.7%を越えて含有させると靱性が劣化することから、その含有量を1.7%以下とした。
【0019】
Nは窒化物系非金属介在物を形成するため、0.003%を超えて含有すると窒化物系非金属介在物を20μm以下とすることが困難となる。よって、その含有量を0.003%以下に制限する。
Oは酸化物系非金属介在物を形成するため、0.002%を超えて含有すると酸化物系非金属介在物を20μm以下とすることが困難となる。よって、その含有量を0.002%以下にした。
【0020】
なお、本発明ではこれら規定する元素以外は実質的にFeとしているが、例えばBは、結晶粒を微細化するのに有効な元素でるため、靱性が劣化しない0.01%以下で含有させても良い。
また、不可避的に含有する不純物元素のSi、MnはFe、Moを主用元素とする金属間化合物を粗大化させ靭性に悪影響をもたらすため、Si、Mn共に0.10%以下とすれば良い。また、P、Sも粒界脆化させたり熱間加工性を低下させるので、0.01%以下とすると良い。
【0021】
【実施例】
以下、実施例として更に詳しく本発明を説明する。
真空溶解で鋳造した表1に示す化学組成の消耗電極鋼塊を用意し、電流密度を25000A/m2〜140000A/m2、モールド径を300mm〜750mmの範囲で変化させることにより、前式のA値を14A/mm〜17A/mmの範囲で変化させてESRを行って鋼塊を作製した。なお、ESRのフラックスはCaF2-CaO-Al2O3-TiO2系のものを予めモールド内に全量装入しておき、Arにより完全に外気を遮断した状態で通電を開始した。また、その後の溶解もArで置換した雰囲気で行い、Fill Ratio(電極径/鋼塊径の比)を0.8とした。
本発明のA値を17A/mmとしてESRを行ったものはA、本発明のA値を15.5A/mmとしてESRを行ったものはB、比較例のA値を14A/mmとしてESRを行ったものはCし、それぞれ下記表1のNo.の後に1A、1B、1Cと言うように記号として付して、以後説明する。
【0022】
【表1】

Figure 0003821368
【0023】
No.1A、1B、1Cの材料は、再溶解後の鋼塊で1250℃×20時間のソーキングを行い、次いで熱間鍛造を行い熱間鍛造品とした。また、No,2A、2B、2Cの材料は、再溶解後の鋼塊に熱間鍛造を行い、1250℃×20時間のソーキングを行った。
次に、これら材料に熱間圧延、820℃×2時間の固溶化処理、冷間圧延、820℃×1時間の固溶化処理と480℃×3時間の時効処理を行い、マルエージング鋼の鋼帯を作製した。
【0024】
得られたマルエージング鋼の鋼帯から介在物測定用の試験片を50g採取した。採取した試験片を混酸(硝酸+塩酸)で溶解後、フィルターで濾過し、濾過面全面を走査型電子顕微鏡で観察し、最大の酸化物系非金属介在物および窒化物系非金属介在物をそれぞれ探した。その後、最大の酸化物系非金属介在物および窒化物系非金属介在物について1000倍で観察し、最長部の長さを測定し、酸化物系非金属介在物および窒化物系非金属介在物の大きさとして、それぞれ表2に示した。表2より、酸化物系非金属介在物はESR材では比較例No.1C、2Cを含め20μm以下である。また、ESR材において、A値が大きいほど窒化物系非金属介在物が微細になっており、本発明のNo.1A、2A、1B、2Bでは20μm以下である。
【0025】
【表2】
Figure 0003821368
【0026】
次に、上述のマルエージング鋼帯の圧延方向における中央部について、試験片を採取し、化学組成を分析した。化学組成を表3に示す。
表3より、再溶解による化学成分変化はほとんど起こっていない。マルエージング鋼帯の圧延方向における先・後端部についても中央部と同様に化学組成を分析したが、中央部と差違が無かった。
【0027】
次に、上述のマルエージング鋼帯の圧延方向における中央部について、試験片を採取し、圧延方向および板方向を含む面を鏡面研磨し、EPMAの面分析でTi、Moについて成分偏析を評価した。表3に縞状偏析がみられたものを×、縞状偏析がみられず均質であったものを○と表示する。
表3より、No.1A、1B、1C、2A、2B、2C、の何れの試料にも縞状の偏析がみられず均質である。マルエージング鋼帯の圧延方向における先・後端部についても中央部と同様に面分析を行ったが、中央部と同様、縞状の偏析がなく均質であった。
【0028】
【表3】
Figure 0003821368
【0029】
また、本発明の製造方法を適用したNo.1A、1B、2A、2Bの鋼帯では、TiNやTiCNの窒化物系非金属介在物の大きさも、表2に示すレベルで小さいことが、EPMA用に作製した鏡面仕上げ試料の断面観察からも確認できた。
一方、比較例のNo.1C、2Cでは、EPMA用に作製した鏡面仕上げ試料の断面観察からも比較的大きなTiN、TiCNの窒化物系非金属介在物が確認され、この非金属介在物を起点とした疲労破壊が起こる可能性が大きい結果となった。
また、酸化物系非金属介在物については、EPMA用に作製した鏡面仕上げ試料の全ての断面観察で確認できるものは5μm以下であり、断面観察によっては差違が確認されなかった。
【0030】
【発明の効果】
以上のような結果から、本発明の製造方法を適用すると、Al2O3等の酸化物系非金属介在物とTiN、TiCNやAlN等の窒化物系非金属介在物の両方の大きさが小さく、しかも、成分偏析も少なくすることができるため、繰返し応力が10の7乗回を超える例えば10の8乗回程度の疲労強度が求められる用途にも適用できる、優れた疲労強度を有する高清浄マルエージング鋼を製造することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing highly clean maraging steel.
[0002]
[Prior art]
Maraging steel has a very high tensile strength of around 2000MPa, so various parts that require high specific strength, such as rocket parts, centrifuge parts, aircraft parts, continuously variable transmission parts for automobiles, etc. It is used for
A typical composition includes 18% Ni-8% Co-5% Mo-0.45% Ti-0.1% Al-bal.Fe. And maraging steel contains appropriate amounts of Mo and Ti as strengthening elements, and by performing an aging treatment, intermetallic compounds such as Ni 3 Mo, Ni 3 Ti and Fe 2 Mo are precipitated to increase the strength. It is a steel that can be obtained.
[0003]
As the design strength when this maraging steel is used as a structural material, the fatigue strength at the seventh power of 10 repetitions is used. However, recently, there is a case where the cyclic stress is applied exceeding 10 7 times, and the conventional maraging steel using the fatigue strength at 10 7 times as design strength is low in reliability. There has been a demand for maraging steel that can withstand sufficient use even when the number of repetitions exceeding 7 7 times, for example, the number of repetitions of about 10 8 is used as the design strength.
By the way, in the conventional technique in which the fatigue strength at the number of repetitions of 10 7 times or less is evaluated, the final heat treatment method and the like are important factors for determining the fatigue strength. However, in maraging steel, fatigue fracture of the surface starting point usually occurs at a repetition rate of 10 7 or less, but when the repetition number exceeds 10 7 repetition, fatigue starts from a nonmetallic inclusion larger than a specific size. In order to cause destruction, the destruction mechanism is greatly different. Therefore, when the number of repetitions exceeding 10 7 times is used, the size of non-metallic inclusions becomes a problem as compared with the conventional case, and the non-metallic inclusions need to be a specific size or less.
[0004]
[Problems to be solved by the invention]
By the way, when maraging steel is subjected to vacuum arc remelting (hereinafter referred to as VAR) or electroslag remelting (hereinafter referred to as ESR) after vacuum induction melting (hereinafter referred to as VIM) or the like, it is homogeneous (components). It is known that the steel becomes less segregated) and less non-metallic inclusions.
However, the maraging steel produced by the above double melting also has a small number of oxide-based non-metallic inclusions such as Al 2 O 3 larger than a specific size, but a nitride system such as TiN, TiCN and AlN. Non-metallic inclusions remain, and non-metallic inclusions larger than the specified size remain in the material after hot forging, heat treatment, hot rolling, cold rolling, etc. performed after double melting. It is feared that fatigue fracture will occur starting from non-metallic inclusions that remain and are larger than the specific size that remains.
The object of the present invention is to increase the fatigue strength in high cycle fatigue exceeding 10 7 times of maraging steel, in order to increase the fatigue strength in the maraging steel, such as oxide nonmetallic inclusions such as Al 2 O 3 It is an object of the present invention to provide a method for producing highly clean maraging steel that can reduce the size of TiN, TiCN, AlN, and other nonmetallic inclusions.
[0005]
[Problems to be solved by the invention]
As described above, when maraging steel is produced, there is an advantage that the components can be easily made homogeneous by performing double melting. The present inventors diligently studied production conditions for reducing the size of both oxide-based non-metallic inclusions and nitride-based non-metallic inclusions to a specific size or less without impairing this advantage.
In conducting this study, for example, rocket parts, centrifuge parts, aircraft parts, continuously variable transmission parts for automobiles, etc., various types of fatigue strength whose repeated stress has recently exceeded 10 7 times have been required. As a result of examining the size of the nonmetallic inclusions that can withstand the use of the above-mentioned application, if the size of the nonmetallic inclusions remaining in the steel is 20 μm or less at maximum, the cyclic stress is 10 It has been found that the present invention can also be applied to applications requiring fatigue strength exceeding 7th power.
[0006]
And, as a result of examining the method of making the maximum length of this non-metallic inclusion 20 μm or less, as the most effective method, non-metallic inclusions are reduced to about 20 μm in a state close to the final product by performing remelting with ESR. I found that it can be made smaller.
As a result of further examining the ESR conditions in detail, it was found that the maximum length of the nonmetallic inclusions can be reduced to 20 μm or less by adjusting the input current and the mold inner diameter, and the present invention has been achieved.
That is, the present invention is a method for producing a high clean maraging steel in which ESR is performed and the maximum length of non-metallic inclusions is 20 μm or less , using a consumable electrode cast by vacuum melting, After performing electroslag remelting so that the A value according to the following equation is 15 A / mm or more, either in steel ingot state or after hot forging, or both, at 1000 to 1300 ° C for at least 5 hours It is a manufacturing method of the highly clean maraging steel which performs holding | maintenance .
A value [A / mm] = (input current) / (mold inner diameter)
[0007]
Preferably, maraging steel upper SL in mass%, C: 0.01% or less, Ni: 8.0~22.0%, Co: 5.0~20.0%, Mo: 2.0~9.0%, Ti: 2.0% or less, Al: 1.7 % Or less, N: 0.003% or less, O: 0.002% or less, and the balance is a method for producing highly clean maraging steel substantially consisting of Fe.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The greatest feature of the present invention is that a consumable electrode cast by vacuum melting is used to adjust the input current and the inner diameter of the mold when performing ESR, so that oxide non-metallic inclusions such as Al 2 O 3 and TiN In addition, the size of both nitride-based nonmetallic inclusions such as TiCN and AlN can be controlled to be small.
The present invention is described in detail below.
[0009]
First, a method for reducing oxide-based nonmetallic inclusions will be described.
The oxide-based non-metallic inclusions present in the maraging steel cannot be completely eliminated even in an electrode steel ingot produced by high vacuum VIM, for example, and must be removed by remelting. ESR and VAR are examples of re-dissolution methods.
In ESR, the electrode steel ingot is remelted and passed through a dissolved oxide called flux, and then re-solidified. At this time, the flux serves as a filter that scrapes the oxide-based nonmetallic inclusions, and the coarse oxide-based nonmetallic inclusions contained in the electrode steel ingot are absorbed and removed by the flux.
On the other hand, VAR removes oxide-based non-metallic inclusions by high-vacuum oxide reduction reaction or floating separation in the molten steel pool. However, in the case of steel types with low oxygen solubility, such as maraging steel, oxide reduction. Since the reaction cannot be maintained, and in addition, it is difficult to completely float and separate in the melting pool in which convection is generated. Therefore, some oxide-based nonmetallic inclusions remain in the steel ingot.
Therefore, when ESR is used, oxide-based nonmetallic inclusions such as Al 2 O 3 larger than 15 μm or larger can be removed, but in the case of VAR, nonmetallic inclusions exceeding 20 μm remain. Since it is easy, in the present invention, it is defined that ESR is performed.
[0010]
Next, a method for reducing nitride-based nonmetallic inclusions will be described.
Since maraging steel contains Ti or Al that has a high affinity with nitrogen, nitride-based non-metallic inclusions such as TiN, TiCN, and AlN are produced at the ESR electrode ingot manufacturing stage manufactured by VIM. Exists. These nitride-based non-metallic inclusions are partly dissolved in molten steel by the reaction of TiN → Ti + N, TiCN → Ti + C + N or AlN → Al + N during remelting, resulting in an increase in dissolved nitrogen and dissolved carbon. To do. Some of them are not completely dissolved and float in the molten steel pool in the form of nitride-based non-metallic inclusions such as TiN, TiCN, and AlN.
In the molten steel pool, solidification progresses sequentially due to heat removal from the solidified shell, but the temperature of the molten steel decreases near the front of the solidification, and the nitrogen and carbon dissolved in the molten steel increase as the solubility decreases. Crystallization grows on the surface of solid solution TiN, TiCN and AlN.
Thus, during ESR, TiN, TiCN, and AlN increase due to the presence of TiN, TiCN, and AlN floating in the molten steel pool. Therefore, in order to make TiN, TiCN and AlN in the steel ingot finer, lower the amount of nitrogen contained in the steel ingot and eliminate the remaining TiN, TiCN and AlN not dissolved during ESR or as small as possible. It is necessary to take a method to do.
[0011]
To this end, it is necessary to increase the heat capacity of the molten steel pool and slab bath.
To increase the heat capacity of the molten steel pool and slab bath, it is effective to increase the heat input of ESR and decrease the heat removal. To increase the heat input, the current density should be increased. In order to reduce the heat removal, it is preferable to reduce the contact area with the cooling mold per unit weight, that is, increase the mold inner diameter.
Therefore, in order to increase the heat capacity of the molten steel pool and the slab bath, {(current density) × (mold inner diameter)} should be increased, and {(current density) × (mold inner diameter)}) {( Input current) / (mold area) × (mold inner diameter)} ∝ {(input current) / (mold inner diameter)}. Therefore, the A value according to the previous equation may be increased.
For this reason, in order to control nitride-based nonmetallic inclusions such as TiN and TiCN to 20 μm or less in ESR, the A value needs to be 15 A / mm or more.
If the A value is too large, solidification segregation increases, which causes a problem. However, if practically within the allowable range of segregation, there is no upper limit for the A value, but if it is 30 A / mm or less, component segregation can be suppressed, which is preferable.
[0012]
Since the nitrogen value in the steel ingot affects the nitride size, ESR is performed in an atmosphere where the outside air is blocked and replaced with Ar or under reduced pressure, and when adding flux, Ar gas is used not to break the Ar atmosphere. More preferably, the nitrogen pick-up during operation is prevented by charging through the pipe sealed with a.
This is because the nitrogen contained in the maraging steel increases during remelting and TiN, TiCN and AlN can be prevented from increasing, and the effect of increasing the A value can be further enhanced. is there.
The flux used for ESR may be basically any flux as long as the desired maraging steel components can be achieved. For example, CaF 2 -Al 2 O 3 -TiO 2 or CaF 2 The -CaO-Al 2 O 3 -TiO 2 system is preferred.
[0013]
Next, after the above ESR in the present invention, either or both of the post between the steel ingot state or thermal forging, intends row at least 5 hours or more holding at 1000 to 1300 ° C. (The high temperature holding less soaking Called).
This is because the fatigue strength can be further improved by making the steel ingot homogenized by ESR less segregated.
This soaking may be performed either in a steel ingot state after ESR or after hot forging, and component segregation is reduced when the soaking is performed at a higher temperature for a longer time. However, if the holding temperature exceeds 1300 ° C., there is a possibility that partial dissolution occurs. Conversely, if the holding temperature is lower than 1000 ° C., the effect is low, so it is preferable to carry out in the range of 1000 ° C. to 1300 ° C.
[0014]
Further, if the soaking time is shorter than 5 hours, the homogenizing effect is low, so the holding time is required to be at least 5 hours. In addition, soaking may be performed twice or more. For example, the total holding time may be 5 hours or more even when both the steel ingot state after ESR and hot forging are performed.
Therefore, when performing soaking, considering the steel ingot size, hot forging ratio, capacity of the soaking furnace, processing steps, required strength, etc., either in the steel ingot state or after hot forging, or both, At least one or more soaking may be performed as appropriate, and of course, a process of hot forging → soaking → hot forging → soaking may be used.
[0015]
In order to use the maraging steel produced according to the present invention, after the above-described steps, either or both of hot working and cold working may be combined and formed in a timely manner according to the application shape of the final product. For example, when steel plates are required, after hot rolling at 1100 ° C, solution treatment is performed at 760 to 950 ° C in order not to leave undissolved intermetallic compounds mainly composed of Fe and Mo. After that, when the shape is adjusted to cold rolling, processing strain is added, and then a second solution treatment is performed to recrystallize finely, followed by an aging treatment.
[0016]
Next, the reasons for limiting the composition of the present invention will be described.
C forms carbides and decreases the precipitation amount of intermetallic compounds to reduce fatigue strength. Therefore, in the present invention, the upper limit of C is set to 0.01% or less.
Ni is an indispensable element for forming a matrix structure with high toughness, but if it is less than 8.0%, the toughness deteriorates. On the other hand, if it exceeds 22.0 % , austenite is stabilized and it becomes difficult to form a martensite structure. Therefore, Ni is set to 8.0 to 22.0%.
[0017]
Co enhances precipitation by promoting the formation of fine intermetallic compounds and precipitation by reducing the solid solubility of Mo without significantly affecting the stability of the matrix martensite structure. However, when the content is less than 5.0%, sufficient effects are not necessarily obtained, and when the content exceeds 20.0%, embrittlement tends to occur, so the Co content is set to 5.0 to 20.0%.
Mo is an element that contributes to strengthening by forming a fine intermetallic compound by aging treatment and precipitating in the matrix, but its effect is small when its content is less than 2.0%, and it exceeds 9.0% If contained, it becomes easy to form coarse precipitates containing Fe and Mo as main elements which deteriorate ductility and toughness, so the Mo content was set to 2.0 to 9.0%.
[0018]
Ti is an element that contributes to strengthening by forming and precipitating fine intermetallic compounds by aging treatment like Mo, but if included over 2.0%, ductility and toughness deteriorate. Further, when Mo is sufficiently hard, addition of Ti may be omitted, so the Ti content is set to 2.0% or less.
Al not only has a deoxidizing action, but also contributes to strengthening by aging precipitation. However, if the content exceeds 1.7%, the toughness deteriorates, so the content was made 1.7% or less.
[0019]
Since N forms nitride-based nonmetallic inclusions, if it exceeds 0.003%, it becomes difficult to make the nitride-based nonmetallic inclusions 20 μm or less. Therefore, the content is limited to 0.003% or less.
Since O forms oxide-based nonmetallic inclusions, if it exceeds 0.002%, it becomes difficult to make the oxide-based nonmetallic inclusions 20 μm or less. Therefore, the content was made 0.002% or less.
[0020]
In the present invention, elements other than these specified elements are substantially Fe. However, for example, B is an element effective for refining crystal grains, so may be contained at 0.01% or less that does not deteriorate toughness. .
Further, inevitably contained impurity elements Si and Mn coarsen an intermetallic compound containing Fe and Mo as main elements and adversely affect toughness. Therefore, both Si and Mn may be set to 0.10% or less. Further, P and S are also preferably made 0.01% or less because they also cause grain boundary embrittlement and reduce hot workability.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail as examples.
A consumable electrode steel ingot with the chemical composition shown in Table 1 cast by vacuum melting was prepared, and the current density was changed from 25000A / m 2 to 140000A / m 2 and the mold diameter was changed in the range of 300mm to 750mm. Steel ingots were produced by performing ESR while changing the A value in the range of 14 A / mm to 17 A / mm. Note that the ESR flux was CaF 2 —CaO—Al 2 O 3 —TiO 2 based in advance and charged in its entirety in the mold, and energization was started with the outside air completely shut off. Further, the subsequent dissolution was performed in an atmosphere substituted with Ar, and the Fill Ratio (ratio of electrode diameter / steel ingot diameter) was set to 0.8.
In the present invention, the A value was 17 A / mm, and the ESR was A, in the present invention, the A value was 15.5 A / mm, the ESR was B, and in the comparative example, the A value was 14 A / mm. ones is set to C, 1A after each following table 1 No., 1B, denoted as a symbol to say 1C, will be described hereinafter.
[0022]
[Table 1]
Figure 0003821368
[0023]
The materials No. 1A, 1B, and 1C were soaked at 1250 ° C. for 20 hours with the steel ingot after remelting, and then hot forged to obtain hot forged products. In addition, the materials No, 2A, 2B, and 2C were hot forged to the steel ingot after remelting, and soaked at 1250 ° C. for 20 hours.
Next, hot rolling, 820 ° C x 2 hours of solution treatment, cold rolling, 820 ° C x 1 hour of solution treatment and 480 ° C x 3 hours of aging treatment were performed on these materials, and maraging steel A strip was made.
[0024]
From the obtained maraging steel strip, 50 g of a specimen for inclusion measurement was sampled. The collected specimen is dissolved in mixed acid (nitric acid + hydrochloric acid), filtered through a filter, and the entire filtration surface is observed with a scanning electron microscope to obtain the largest oxide-based non-metallic inclusions and nitride-based non-metallic inclusions. I looked for each one. Thereafter, the largest oxide-based non-metallic inclusions and nitride-based non-metallic inclusions were observed at a magnification of 1000 times, the length of the longest part was measured, and the oxide-based non-metallic inclusions and nitride-based non-metallic inclusions were measured. Are shown in Table 2. From Table 2, the oxide-based nonmetallic inclusions are 20 μm or less including Comparative Examples No. 1C and 2C in the ESR material. Further, in the ESR material, the larger the A value, the finer the nitride-based nonmetallic inclusions, and in the Nos. 1A, 2A, 1B, and 2B of the present invention, it is 20 μm or less.
[0025]
[Table 2]
Figure 0003821368
[0026]
Next, the test piece was extract | collected about the center part in the rolling direction of the above-mentioned maraging steel strip, and the chemical composition was analyzed. Table 3 shows the chemical composition.
From Table 3, the chemical component change by remelting hardly occurs. The chemical composition of the front and rear end portions in the rolling direction of the maraging steel strip was analyzed in the same manner as in the central portion, but there was no difference from the central portion.
[0027]
Next, evaluation for central portion in the rolling direction of the maraging steel strips described above, the test pieces were taken, the plane containing the rolling direction and the thickness direction was mirror-polished, Ti in surface analysis of EPMA, the component segregation for Mo did. In Table 3, “X” indicates that striped segregation is observed, and “◯” indicates that the striped segregation is not observed and is homogeneous.
From Table 3, no striped segregation is observed in any of samples No. 1A, 1B, 1C, 2A, 2B, and 2C, and they are homogeneous. The front and rear end portions in the rolling direction of the maraging steel strip were also analyzed in the same manner as in the central portion, but as in the central portion, there was no striped segregation and was homogeneous.
[0028]
[Table 3]
Figure 0003821368
[0029]
In addition, in the No. 1A, 1B, 2A, and 2B steel strips to which the manufacturing method of the present invention is applied, the size of the nitride-based non-metallic inclusions of TiN and TiCN is also small at the level shown in Table 2, EPMA It was also confirmed by cross-sectional observation of a mirror-finished sample prepared for use.
On the other hand, in comparative examples No. 1C and 2C, comparatively large TiN and TiCN nitride-based non-metallic inclusions were confirmed from cross-sectional observations of mirror-finished samples prepared for EPMA. As a result, the possibility of fatigue failure was high.
As for the oxide-based non-metallic inclusions, those that can be confirmed by all cross-sectional observations of the mirror-finished sample prepared for EPMA are 5 μm or less, and no difference was confirmed by cross-sectional observation.
[0030]
【The invention's effect】
From the above results, when the manufacturing method of the present invention is applied, the size of both oxide nonmetallic inclusions such as Al 2 O 3 and nitride nonmetallic inclusions such as TiN, TiCN and AlN is large. Since it is small and component segregation can also be reduced, it can be applied to applications requiring a fatigue strength of about 10 to the 8th power where the repeated stress exceeds 10 7 times. Clean maraging steel can be produced.

Claims (2)

エレクトロスラグ再溶解を行い、非金属介在物の最大長が20μm以下とする高清浄マルエージング鋼の製造方法であって、真空溶解で鋳造した消耗電極を用いて、前記エレクトロスラグ再溶解時の条件を下式に従うA値が15A/mm以上になるようにエレクトロスラグ再溶解を行った後、鋼塊状態または熱間鍛造後の何れか若しくは両方で、 1000 1300 ℃で少なくとも 5 時間以上の保持を行うことを特徴とする高清浄マルエージング鋼の製造方法。
A値[A/mm]=(投入電流)/(モールド内径)
Electroslag remelting is a method for producing highly clean maraging steel in which the maximum length of non-metallic inclusions is 20 μm or less , using a consumable electrode cast by vacuum melting, and the conditions for remelting the electroslag After re-melting electroslag so that the A value according to the following formula is 15 A / mm or more, hold at 1000 to 1300 ° C for at least 5 hours , either in the steel ingot state or after hot forging, or both A process for producing highly clean maraging steel, characterized in that
A value [A / mm] = (input current) / (mold inner diameter)
請求項1に記載のマルエージング鋼は、質量%で、C:0.01%以下、Ni:8.0〜22.0%、Co:5.0〜20.0%、Mo:2.0〜9.0%、Ti:2.0%以下、Al:1.7%以下、N:0.003%以下、O:0.002%以下、残部は実質的にFeからなることを特徴とする高清浄マルエージング鋼の製造方法。The maraging steel according to claim 1 is in mass%, C: 0.01% or less, Ni: 8.0-22.0%, Co: 5.0-20.0%, Mo: 2.0-9.0%, Ti: 2.0% or less, Al: 1.7% or less, N: 0.003% or less, O: 0.002% or less, and the balance is substantially made of Fe.
JP2001386109A 2001-12-19 2001-12-19 Manufacturing method of high clean maraging steel Expired - Lifetime JP3821368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386109A JP3821368B2 (en) 2001-12-19 2001-12-19 Manufacturing method of high clean maraging steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386109A JP3821368B2 (en) 2001-12-19 2001-12-19 Manufacturing method of high clean maraging steel

Publications (2)

Publication Number Publication Date
JP2003183765A JP2003183765A (en) 2003-07-03
JP3821368B2 true JP3821368B2 (en) 2006-09-13

Family

ID=27595350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386109A Expired - Lifetime JP3821368B2 (en) 2001-12-19 2001-12-19 Manufacturing method of high clean maraging steel

Country Status (1)

Country Link
JP (1) JP3821368B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60331111D1 (en) 2002-11-19 2010-03-11 Hitachi Metals Ltd Process for producing martensitic hardening steel
CN1867685B (en) 2003-10-08 2010-07-21 日立金属株式会社 Method for producing steel ingot
JP2009167511A (en) * 2008-01-21 2009-07-30 Sumitomo Metal Ind Ltd Method for producing ingot by electroslag remelting process
JP6310557B2 (en) 2014-06-10 2018-04-11 日立金属株式会社 Method for producing maraging steel
US10316377B2 (en) 2014-07-16 2019-06-11 Hitachi Metals, Ltd. Production method for maraging steel and production method for maraging steel consumable electrode
WO2016170397A1 (en) * 2015-04-23 2016-10-27 Aperam Steel, product made of said steel, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003183765A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP7416542B2 (en) Method for manufacturing steel wire, wire rod for steel wire, and wire rod for steel wire
JP5237801B2 (en) Doped iridium with improved high temperature properties
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
JP6310557B2 (en) Method for producing maraging steel
EP1422301B1 (en) Maraging steel and method of producing the same
JP6160942B1 (en) Low thermal expansion super heat resistant alloy and manufacturing method thereof
JP3821368B2 (en) Manufacturing method of high clean maraging steel
JP4692282B2 (en) Steel ingot manufacturing method
JP2002285290A (en) High strength and highly fatigue resistant steel for structural purpose and production method therefor
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JP4374529B2 (en) Maraging steel and ribbon
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JP2004090022A (en) Method for producing maraging steel
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
JP3682881B2 (en) Method for producing maraging steel and maraging steel
JP2004183097A (en) Method for producing maraging steel and maraging steel
JP4683712B2 (en) Ni-base alloy with excellent hot workability
JP3604035B2 (en) Method for producing maraging steel
JP2003001484A (en) Welding material fining structure of weld metal
JP2005248187A (en) Method for manufacturing maraging steel, and maraging steel
JP4296303B2 (en) High Cr ferritic iron alloy with excellent toughness and method for producing the same
JP4085374B2 (en) Method for producing maraging steel
CN117286371A (en) Nickel-based heat-resistant alloy and preparation method and application thereof
JP2014005493A (en) High strength and high fatigue strength steel having excellent toughness and ductility for saw wire
JPH06218415A (en) Production of spring steel wire rod

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3821368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

EXPY Cancellation because of completion of term