Nothing Special   »   [go: up one dir, main page]

JP3817105B2 - High strength steel with excellent fatigue characteristics and method for producing the same - Google Patents

High strength steel with excellent fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JP3817105B2
JP3817105B2 JP2000046163A JP2000046163A JP3817105B2 JP 3817105 B2 JP3817105 B2 JP 3817105B2 JP 2000046163 A JP2000046163 A JP 2000046163A JP 2000046163 A JP2000046163 A JP 2000046163A JP 3817105 B2 JP3817105 B2 JP 3817105B2
Authority
JP
Japan
Prior art keywords
steel
strength
strength steel
fatigue
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000046163A
Other languages
Japanese (ja)
Other versions
JP2001234277A (en
Inventor
敏三 樽井
真吾 山崎
達郎 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000046163A priority Critical patent/JP3817105B2/en
Publication of JP2001234277A publication Critical patent/JP2001234277A/en
Application granted granted Critical
Publication of JP3817105B2 publication Critical patent/JP3817105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ばね、シャフト、軸受けなどに使われている高強度鋼に関するものであり、特に疲労特性の優れた高強度鋼に関するものである。
【0002】
【従来の技術】
ばね、シャフト、軸受け鋼などで使われている鋼は、伸線、冷間鍛造あるいは熱間鍛造等により所定の形状に成形した後、焼入れ・焼戻し処理によって製造され、強度が1500MPa以上の高強度鋼が使用されている。部品の軽量化、あるいは高疲労強度化のニーズが強く、これに応じるためには鋼材の一層の高強度化が必要である。
【0003】
鋼材を高強度化する際にネックとなる課題の一つは疲労特性である。通常の疲労破壊は鋼材表面で亀裂が生成し内部に亀裂が伝播するプロセスで起きる。しかし、鋼材を高強度化していくと疲労亀裂が内部から発生し(以下、内部破壊)、疲労寿命が低下する現象が生じる。内部破壊の起点には、非金属介在物が多く観察されることから、非金属介在物量の減少あるいは非金属介在物サイズを小さくする手段がとられている。
【0004】
しかしながら、鋼材を高強度化するほど要求される非金属介在物のサイズ・量は一層厳しくなり、工業的規模で非金属介在物のサイズ・量を制御することは困難であった。
【0005】
【発明が解決しようとする課題】
本発明は上記の如き実状に鑑みなされたものであって、疲労特性の優れた高強度鋼を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、まず高強度鋼において生じる内部破壊の原因について詳細に究明した。この結果、内部破壊は非金属介在物のサイズと量以外に、鋼材中に含まれる水素に大きく影響されることを初めて見いだした。即ち、鋼材中の水素を低下させれば、内部破壊が発生しなくなり、疲労寿命が大幅に向上することを見いだした。更に、鋼材の高強度化手段と鋼材中の水素量を低下させる技術を確立した。
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、次の通りである。
(1) 質量%で、
C :0.2〜1.3%、 Si:0.01〜3.0%、
Mn:0.2〜3.0%を含有し残部はFeおよび不可避的不純物からなり、下記(1)式で示す炭素当量(Ceq)が0.8%以上であり、且つ鋼中の水素量が0.3ppm 以下であり、全面が焼き戻しマルテンサイト組織であることを特徴とする疲労特性の優れた高強度鋼。
Ceq=C%+Si%/15+Mn%/10+Cr%/11+Mo%/7+V%/5+Ni%/45+Cu%/45 ・・・(1)
(2) 鋼成分がさらに、質量%で、
Cr:0.05〜3.0%、 Mo:0.05〜1.0%、
Ni:0.05〜3.0%、 Cu:0.05〜1.5%、
B :0.0003〜0.01%の1種または2種以上を含有することを特徴とする前項(1)記載の疲労特性の優れた高強度鋼。
(3) 鋼成分がさらに、質量%で、
Al:0.005〜0.1%、 Ti:0.005〜0.3%、
Nb:0.005〜0.3%、 V :0.05〜1.0%の1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の疲労特性の優れた高強度鋼。
(4) 鋼成分がさらに、質量%で、
Ca:0.0003〜0.01%、Mg:0.0003〜0.01%、
REM:0.005〜0.1%の1種または2種以上を含有することを特徴とする前記(1)、(2)または(3)のいずれかに記載の疲労特性の優れた高強度鋼。
(5) 前記(1)乃至(4)のいずれかに記載の成分を含有する鋼をAc1点以上の温 度に加熱後、冷却し全面のマルテンサイト組織にした後、500〜650℃で焼き戻すことを特徴とする疲労特性の優れた高強度鋼の製造方法。
【0007】
【発明の実施の形態】
まず本発明における疲労特性の優れた高強度とは、引張強さが1500MPa以上であり 10 8 サイクルでの疲労強度が引張強さの0.4以上であることを意味している。
【0008】
以下に、本発明の対象とする鋼の成分の限定理由について述べる。
C:Cは鋼の強度を増加させるために有効な元素であるが、0.2%未満では本発明で目的とする1500MPa以上の引張強さを得ることが困難である。一方、1.3%を超える過剰な添加は強度が高くなるものの靭性が低下しやすい。従って、Cの添加範囲を0.2〜1.3%に限定した。
【0009】
Si:Siは脱酸に有効であるとともに固溶強化および焼戻し軟化抵抗を増加させ、高強度化に有効な元素である。0.01%未満では前記の効果が期待できず、一方、3.0%を超えて添加しても効果が飽和するため、0.01〜3.0%の範囲に制限した。
【0010】
Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、マルテンサイト組織を得るための焼入性を高めるために有効な元素である。更に焼戻し軟化抵抗を増加させる効果も有している。0.2%未満では上記の効果が得られず、一方、3.0%を超えて添加しても効果が飽和するため0.2〜3.0%の範囲に制限した。
【0011】
以上が本発明の高強度鋼の基本成分であるが、本発明では焼入性あるいは焼戻し軟化抵抗を増加させて高強度化を達成するためにCr、Mo、Ni、Cu、Bの1種または2種以上、またオーステナイト粒径の細粒化あるいは析出強化を図るためにAl、Ti、Nb、Vの1種または2種以上、更に非金属介在物のサイズを小さくして内部破壊を防止するためにCa、Mg、REMを1種または2種以上を必要に応じて選択含有することができる。
【0012】
Cr:Crは焼入性の向上および焼戻し処理時の軟化抵抗を増加させるために有効な元素であるが、0.05%未満ではその効果が十分に発揮できず、一方、3.0%を超えて添加しても効果が飽和するために0.05〜3.0%に限定した。
【0013】
Mo:MoはCrと同様に強い焼戻し軟化抵抗を有し熱処理後の引張強さを高めるために有効な元素であるが、0.05%未満ではその効果が少なく、一方、1.0%を超えて添加しても添加量に見合う効果が得られないため0.05〜1.0%に制限した。
【0014】
Ni:Niは高強度化に伴って劣化する延性を向上させるとともに熱処理時の焼入性を向上させて引張強さを増加させるために添加されるが、0.05%未満ではその効果が少なく、一方、3.0%を超えても添加量に見合う効果が発揮できないため、0.05〜3.0%の範囲に制限した。
【0015】
Cu:Cuは焼戻し軟化抵抗を高めるために有効な元素であるが、0.05%未満では効果が発揮できず、1.5%を超えると熱間加工性が劣化するため、0.05〜1.5%に制限した。
【0016】
B:Bは極微量の添加で焼入性を著しく高める効果を有しているが、0.0003%未満では前記の効果が発揮されず、0.01%を超えても効果が飽和するため0.0003〜0.01%に制限した。
【0017】
Al:Alは脱酸に有効であり、更に熱処理時においてAlNを形成することによりオーステナイト粒の粗大化を防止する効果とともにNを固定し焼入性向上に有効な固溶Bを確保する効果も有しているが、0.005%未満ではこれらの効果が発揮されず、0.1%を超えても効果が飽和するため0.005〜0.1%の範囲に限定した。
【0018】
Ti:TiもAlと同様に脱酸に有効であり、更に熱処理時においてTiNを形成することによりオーステナイト粒の粗大化を防止する効果とともにNを固定し焼入性向上に有効な固溶Bを確保する効果も有しているが、0.005%未満ではこれらの効果が発揮されず、0.3%を超えても効果が飽和するため0.005〜0.3%の範囲に限定した。
【0019】
V:Vは焼入れ処理時において炭窒化物を生成することによりオーステナイト粒を微細化させるとともに強い焼戻し軟化抵抗を有する元素であるが、0.05%未満では前記作用の効果が得られず、一方、1.0%を超えても効果が飽和するため0.05〜1.0%に限定した。
【0020】
Nb:NbもVと同様に炭窒化物を生成することによりオーステナイト粒を微細化させるために有効な元素である。0.005%未満では上記効果が不十分であり、一方、0.3%を超えるとこの効果が飽和するため0.005〜0.3%に制限した。
【0021】
Ca、Mg、REM:Ca、Mg、REMはいずれも微細な酸化物あるいは硫化物もしくはこれらの混合物を形成し、介在物サイズを小さくさせる効果があり、内部破壊の起点を減少させる作用を有している。更に、Ca、Mg、REMを含む微少な酸化物あるいは硫化物もしくはこれらの混合物はピンニング作用により熱処理時のオーステナイト粒径を細粒化させる効果も有している。これらの効果を発揮するための下限の含有量は、CaおよびMgは0.0003%、REMは0.005%である。一方、過剰に添加しても効果が飽和するため、上限をそれぞれ、Ca、Mgは0.01%、REMは0.1%に制限した。
【0022】
P、Sについては特に制限しないものの、高強度鋼の靭性低下を防ぐ点で、それぞれ0.02%以下が好ましい範囲である。
また、NはTi、Al、V、Nbの窒化物を生成することによりオーステナイト粒の細粒化効果があるため、0.003〜0.015%が好ましい範囲である。
【0023】
以上の化学組成の限定に加えて、本発明においては以下の理由により、(1) 式で示す炭素当量(Ceq)の下限を0.8に限定している。
Ceq=C%+Si%/15+Mn%/10+Cr%/11+Mo%/7+V%/5+Ni%/45+Cu%/45 ・・・(1)
炭素当量が0.8%未満であると本発明の目的とする引張強さが1500MPa以上の高強度鋼を製造することが困難となるため、下限を0.8%に限定した。上限は本発明の効果を得るためには特に限定する必要はないが、1.5%を超えると靭性が低下するため、1.5%とすることが好ましい。
【0024】
次に本発明で重要な点である鋼材中に含まれる水素量の限定理由について述べる。
図1は、強度が1716〜1796MPaの高強度鋼を用いて、鋼中の水素量と回転曲げによる疲労強度(108 サイクル)の関係について解析した一例である。強度および鋼材中に含まれる水素量は、化学組成および熱処理条件(焼入れ:温度、時間、雰囲気、焼戻し:温度、時間)によって変化させたものである。
【0025】
図1から明らかなように鋼材中の水素量が0.3ppm を超えると疲労強度が大幅に低下することが明らかである。また、0.3ppm を超える領域では内部疲労破壊の比率が多くなる。以上の結果から、鋼材中の水素量の上限を0.3ppm に制限した。なお、水素量が0.2ppm 以下では、水素の影響が一層低下することから、好ましい条件は0.2ppm 以下である。
【0026】
なお、本発明での水素の測定条件は下記の通りである。水素量の測定はガスクロマトグラフによる昇温分析法(加熱抽出法)である。試料は表層のスケールを除去、脱脂したものを用い、試料重量は分析精度の点で20g以上が良い。また、昇温分析時の昇温速度は100℃/時間である。本発明では、室温から500℃に加熱する際に鋼材中から放出される水素量について測定を行っている。
【0027】
次に1500MPa 以上の高強度鋼と鋼中の水素量を0.3ppm以下にするための製造条件について説明する。
加熱温度:加熱温度がAc1 点未満では完全にオーステナイト化できず、その後の冷却で全面のマルテンサイト組織にすることができないため、加熱温度の下限をAc1 点に限定した。
【0028】
鋼材中の水素は、加熱時に熱処理雰囲気中の水素ガスあるいは水分、メタン等が分解して鋼材中に侵入し、加熱温度が高くなるほど、加熱時間が長くなるほど鋼材中の水素量は増加する。このため、加熱雰囲気は水素ガス、水分等を減少させることが好ましい条件である。
【0029】
また、加熱温度は低い方が良く、加熱温度の上限は1100℃が好ましい条件である。加熱時間は短い方が水素量が低くなるため、むやみに長くしないことが必要である。このような点で、高周波加熱のような加熱速度が速く加熱時間が短時間ですむ方法が好ましい加熱条件である。
【0030】
焼戻し温度:焼戻し温度が500℃未満では鋼材中の水素量を0.3ppm 以下にすることが困難であるため、焼戻し温度の下限を500℃に限定した。焼戻し温度が500℃以上になると通常は強度が大幅に低下するが、炭素当量を0.8以上とすることにより500℃以上の焼戻し温度でも1500MPa以上の高強度鋼を製造することが可能となる。一方、焼戻し温度が650℃を超えると強度低下が大きくなり高強度鋼にすることが困難になるため、焼戻し温度の上限を650℃に限定した。また、焼戻し処理手段は、通常の電気炉、ガス炉等よりも、高周波加熱のような加熱速度が速く加熱時間が短時間ですむ方法が好ましい焼戻し条件である。これは、同一の温度で焼戻しした場合、高周波加熱では時間が短時間ですむため、焼戻し時の強度低下が少なく、より高強度化するためである。
【0031】
【実施例】
以下、実施例により本発明の効果を更に具体的に説明する。
表1に示す化学組成を有する供試材を熱間圧延で32mm径に仕上げた。その後、高周波加熱あるいは電気炉による焼入れ・焼戻し処理を行った。高周波加熱の場合は、焼入れ時の加熱時間が20秒、焼戻し時の加熱時間が3〜20秒の条件で、また電気炉の場合は焼入れおよび焼戻し時の加熱時間が45分の条件で行った。焼戻し処理後の鋼材中の水素量および機械的性質を調査するとともに回転曲げ疲労試験によって108 サイクルの疲労限を求めた。これらの結果を表2に示す。
【0032】
表2において、試験 No.1〜11が比較例で、試験 No.12〜37が本発明例である。同表に見られるように本発明例は、いずれも1500MPa以上の高強度と高い疲労限を有する鋼が実現されている。
これに対して比較例である No.1〜9は、いずれも従来の鋼材を用いた場合である。 No.1、3、4、6〜9は、1500MPa以上の高強度は達成できているものの、炭素当量が0.8未満であるため焼戻し温度が低くなり、この結果鋼材中の水素量が0.3ppm 以上となって疲労限が低下している。また、 No.2、5は、焼戻し温度が500℃以上の例である。本発明の目的とする疲労限度と引張強さの比が0.4以上になっているが、引張強さは1500MPa未満となっている。
比較例の No.10、11は炭素当量が0.8以上であるが、焼戻し温度が低いために水素量が0.3ppm 以上あり、疲労限度と引張強さの比が0.4未満となっている。
【0033】
【表1】

Figure 0003817105
【0034】
【表2】
Figure 0003817105
【0035】
【発明の効果】
以上の実施例からも明らかなごとく、本発明は鋼材成分と焼戻し温度を限定することによって、1500MPa以上の高強度と高い疲労特性を有する高強度鋼を実現したものであり、産業上の効果は極めて顕著なものがある。
【図面の簡単な説明】
【図1】高強度鋼の疲労限に及ぼす水素の影響について解析した一例を示す図である。[0001]
[Industrial application fields]
The present invention relates to high-strength steel used for springs, shafts, bearings, and the like, and particularly to high-strength steel with excellent fatigue characteristics.
[0002]
[Prior art]
Steel used for springs, shafts, bearing steels, etc. is formed by wire drawing, cold forging or hot forging into a predetermined shape, and then manufactured by quenching and tempering, and has a strength of 1500 MPa or more. Steel is used. There is a strong need for weight reduction or high fatigue strength of parts, and in order to meet this demand, it is necessary to further increase the strength of steel materials.
[0003]
One of the problems that become a bottleneck when increasing the strength of steel is fatigue characteristics. Ordinary fatigue failure occurs in a process in which cracks are generated on the steel surface and the cracks propagate inside. However, when the strength of steel is increased, fatigue cracks are generated from the inside (hereinafter referred to as internal fracture), resulting in a phenomenon that the fatigue life is reduced. Since many nonmetallic inclusions are observed at the starting point of internal fracture, measures are taken to reduce the amount of nonmetallic inclusions or to reduce the size of nonmetallic inclusions.
[0004]
However, the size and amount of non-metallic inclusions required as the strength of steel is increased, and the size and amount of non-metallic inclusions are more severe, and it is difficult to control the size and amount of non-metallic inclusions on an industrial scale.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the actual situation as described above, and an object thereof is to provide a high-strength steel excellent in fatigue characteristics.
[0006]
[Means for Solving the Problems]
The inventors first investigated in detail the cause of internal fracture that occurs in high-strength steel. As a result, it was found for the first time that internal fracture is greatly influenced by hydrogen contained in the steel material in addition to the size and amount of non-metallic inclusions. That is, it has been found that if the hydrogen in the steel material is lowered, internal fracture does not occur and the fatigue life is greatly improved. In addition, we have established means for increasing the strength of steel and technology for reducing the amount of hydrogen in the steel.
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.2 to 1.3%, Si: 0.01 to 3.0%,
Mn: 0.2 to 3.0%, the balance is made of Fe and inevitable impurities, the carbon equivalent (Ceq) represented by the following formula (1) is 0.8% or more, and the amount of hydrogen in the steel There Ri der below 0.3 ppm, excellent high strength steel fatigue characteristics characterized by martensite der Rukoto return entire surface tempering.
Ceq = C% + Si% / 15 + Mn% / 10 + Cr% / 11 + Mo% / 7 + V% / 5 + Ni% / 45 + Cu% / 45 (1)
(2) The steel component is further mass%,
Cr: 0.05 to 3.0%, Mo: 0.05 to 1.0%,
Ni: 0.05-3.0%, Cu: 0.05-1.5%,
B: High strength steel with excellent fatigue properties as described in the above item (1), containing one or more of 0.0003 to 0.01%.
(3) The steel component is further mass%,
Al: 0.005-0.1%, Ti: 0.005-0.3%,
Nb: 0.005 to 0.3%, V: 0.05 to 1.0% of one type or two or more types of fatigue characteristics as described in (1) or (2) above Excellent high strength steel.
(4) The steel component is further mass%,
Ca: 0.0003 to 0.01%, Mg: 0.0003 to 0.01%,
REM: 0.005 to 0.1% of one type or two or more types, (1), (2) or (3) high fatigue strength and excellent strength steel.
(5) After heating the steel containing the component according to any one of (1) to (4) above to a temperature of Ac1 point or higher and cooling to a martensitic structure on the entire surface , the steel is baked at 500 to 650 ° C. A method for producing high-strength steel with excellent fatigue characteristics characterized by returning.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, the high strength with excellent fatigue characteristics in the present invention means that the tensile strength is 1500 MPa or more and the fatigue strength at 10 8 cycles is 0.4 or more of the tensile strength.
[0008]
Below, the reason for limitation of the component of the steel made into the object of this invention is described.
C: C is an effective element for increasing the strength of the steel, but if it is less than 0.2%, it is difficult to obtain a tensile strength of 1500 MPa or more as intended in the present invention. On the other hand, excessive addition exceeding 1.3% tends to lower toughness although strength increases. Therefore, the addition range of C is limited to 0.2 to 1.3%.
[0009]
Si: Si is an element that is effective for deoxidation, increases solid solution strengthening and temper softening resistance, and is effective for increasing strength. If the content is less than 0.01%, the above-mentioned effect cannot be expected. On the other hand, even if added over 3.0%, the effect is saturated.
[0010]
Mn: Mn is not only necessary for deoxidation and desulfurization, but is also an effective element for enhancing the hardenability for obtaining a martensite structure. Furthermore, it has the effect of increasing the temper softening resistance. If the content is less than 0.2%, the above effect cannot be obtained. On the other hand, even if the content exceeds 3.0%, the effect is saturated, so the content is limited to 0.2 to 3.0%.
[0011]
The above are the basic components of the high-strength steel of the present invention. In the present invention, one of Cr, Mo, Ni, Cu, and B is used in order to increase the hardenability or temper softening resistance and achieve high strength. Two or more types, or one or more types of Al, Ti, Nb, and V to reduce the austenite grain size or strengthen precipitation, and further reduce the size of non-metallic inclusions to prevent internal fracture. Therefore, one, two or more of Ca, Mg, and REM can be selectively contained as necessary.
[0012]
Cr: Cr is an effective element for improving the hardenability and increasing the softening resistance during the tempering process, but if it is less than 0.05%, the effect cannot be sufficiently exhibited, while 3.0% Even if it added exceeding it, since the effect was saturated, it limited to 0.05 to 3.0%.
[0013]
Mo: Mo is an element effective for increasing the tensile strength after heat treatment and having a strong resistance to tempering softening similar to Cr. Even if added in excess, an effect commensurate with the amount added cannot be obtained, so the content was limited to 0.05 to 1.0%.
[0014]
Ni: Ni is added to improve ductility, which deteriorates with increasing strength, and to improve the hardenability during heat treatment to increase the tensile strength, but less than 0.05% has little effect. On the other hand, even if it exceeds 3.0%, an effect commensurate with the added amount cannot be exhibited, so the content is limited to the range of 0.05 to 3.0%.
[0015]
Cu: Cu is an element effective for increasing the temper softening resistance. However, if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 1.5%, the hot workability deteriorates. Limited to 1.5%.
[0016]
B: B has the effect of significantly increasing the hardenability by adding a very small amount, but if less than 0.0003%, the above effect is not exhibited, and if it exceeds 0.01%, the effect is saturated. Limited to 0.0003-0.01%.
[0017]
Al: Al is effective for deoxidation, and also has the effect of preventing the coarsening of austenite grains by forming AlN during heat treatment, and also securing the solid solution B effective for fixing N and improving the hardenability. However, when the amount is less than 0.005%, these effects are not exhibited, and even if the amount exceeds 0.1%, the effect is saturated, so the content is limited to the range of 0.005 to 0.1%.
[0018]
Ti: Ti is also effective for deoxidation in the same way as Al. Further, by forming TiN during the heat treatment, it is effective to prevent coarsening of austenite grains and to fix N, which is effective for improving hardenability. Although it has an effect to ensure, if less than 0.005%, these effects are not exhibited, and even if it exceeds 0.3%, the effect is saturated, so it is limited to a range of 0.005 to 0.3%. .
[0019]
V: V is an element that refines austenite grains and produces strong temper softening resistance by forming carbonitrides during the quenching treatment. However, if it is less than 0.05%, the effect of the above action cannot be obtained. Even if it exceeds 1.0%, the effect is saturated, so it is limited to 0.05 to 1.0%.
[0020]
Nb: Nb is also an effective element for refining austenite grains by forming carbonitrides in the same manner as V. If it is less than 0.005%, the above effect is insufficient. On the other hand, if it exceeds 0.3%, this effect is saturated, so the content is limited to 0.005 to 0.3%.
[0021]
Ca, Mg, REM: Ca, Mg, and REM all form fine oxides, sulfides, or a mixture thereof, and have the effect of reducing the size of inclusions, and have the effect of reducing the origin of internal fracture. ing. Further, a minute oxide or sulfide containing Ca, Mg, or REM or a mixture thereof has an effect of reducing the austenite grain size during heat treatment by a pinning action. The lower limit contents for exhibiting these effects are 0.0003% for Ca and Mg, and 0.005% for REM. On the other hand, since the effect is saturated even if added excessively, the upper limits were limited to 0.01% for Ca and Mg and 0.1% for REM, respectively.
[0022]
P and S are not particularly limited, but 0.02% or less is a preferable range in terms of preventing toughness deterioration of high-strength steel.
Moreover, since N has the effect of refining austenite grains by forming nitrides of Ti, Al, V, and Nb, 0.003 to 0.015% is a preferable range.
[0023]
In addition to the above chemical composition limitation, in the present invention, the lower limit of the carbon equivalent (Ceq) represented by the formula (1) is limited to 0.8 for the following reason.
Ceq = C% + Si% / 15 + Mn% / 10 + Cr% / 11 + Mo% / 7 + V% / 5 + Ni% / 45 + Cu% / 45 (1)
If the carbon equivalent is less than 0.8%, it becomes difficult to produce a high strength steel having a tensile strength of 1500 MPa or more, which is the object of the present invention, so the lower limit was limited to 0.8%. The upper limit is not particularly limited in order to obtain the effect of the present invention. However, if it exceeds 1.5%, the toughness is lowered, and therefore it is preferably 1.5%.
[0024]
Next, the reason for limiting the amount of hydrogen contained in the steel material, which is an important point in the present invention, will be described.
FIG. 1 is an example in which the relationship between the amount of hydrogen in steel and the fatigue strength (10 8 cycles) due to rotational bending is analyzed using high-strength steel having a strength of 1716 to 1796 MPa. The strength and the amount of hydrogen contained in the steel material are varied depending on the chemical composition and heat treatment conditions (quenching: temperature, time, atmosphere, tempering: temperature, time).
[0025]
As is clear from FIG. 1, it is clear that the fatigue strength is greatly reduced when the amount of hydrogen in the steel material exceeds 0.3 ppm. In the region exceeding 0.3 ppm, the ratio of internal fatigue failure increases. From the above results, the upper limit of the amount of hydrogen in the steel was limited to 0.3 ppm. In addition, when the amount of hydrogen is 0.2 ppm or less, the influence of hydrogen is further reduced. Therefore, the preferable condition is 0.2 ppm or less.
[0026]
The measurement conditions for hydrogen in the present invention are as follows. The measurement of the amount of hydrogen is a temperature rising analysis method (heating extraction method) using a gas chromatograph. A sample obtained by removing the scale of the surface layer and degreasing is used, and the sample weight is preferably 20 g or more in terms of analysis accuracy. Moreover, the temperature increase rate at the temperature analysis is 100 ° C./hour. In the present invention, the amount of hydrogen released from the steel material when heated from room temperature to 500 ° C. is measured.
[0027]
Next, high strength steel of 1500 MPa or more and manufacturing conditions for reducing the hydrogen content in the steel to 0.3 ppm or less will be described.
Heating temperature: When the heating temperature is less than the Ac1 point, complete austenite cannot be formed, and the entire martensite structure cannot be formed by subsequent cooling. Therefore, the lower limit of the heating temperature is limited to the Ac1 point.
[0028]
Hydrogen in the steel material is decomposed by hydrogen gas, moisture, methane, etc. in the heat treatment atmosphere during heating and enters the steel material, and the higher the heating temperature and the longer the heating time, the more hydrogen content in the steel material. For this reason, it is preferable that the heating atmosphere reduce hydrogen gas, moisture, and the like.
[0029]
The heating temperature is preferably low, and the upper limit of the heating temperature is preferably 1100 ° C. The shorter the heating time, the lower the amount of hydrogen, so it is necessary not to make it unnecessarily long. In this respect, a heating method such as high-frequency heating that has a high heating rate and a short heating time is a preferable heating condition.
[0030]
Tempering temperature: When the tempering temperature is less than 500 ° C, it is difficult to reduce the amount of hydrogen in the steel material to 0.3 ppm or less. Therefore, the lower limit of the tempering temperature is limited to 500 ° C. When the tempering temperature is 500 ° C. or higher, the strength is usually greatly reduced, but by setting the carbon equivalent to 0.8 or higher, it becomes possible to produce a high strength steel of 1500 MPa or higher even at a tempering temperature of 500 ° C. or higher. . On the other hand, when the tempering temperature exceeds 650 ° C., the strength decreases so much that it becomes difficult to obtain a high-strength steel. Further, the tempering means is preferably tempering conditions, such as a method in which the heating rate is high and the heating time is short, such as high-frequency heating, as compared with a normal electric furnace, gas furnace or the like. This is because, when tempering at the same temperature, high-frequency heating requires a short time, so that the strength is not lowered during tempering and the strength is further increased.
[0031]
【Example】
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
A specimen having the chemical composition shown in Table 1 was finished to a diameter of 32 mm by hot rolling. Then, quenching and tempering treatment was performed using high-frequency heating or an electric furnace. In the case of high-frequency heating, the heating time during quenching was 20 seconds, the heating time during tempering was 3 to 20 seconds, and in the case of an electric furnace, the heating time during quenching and tempering was 45 minutes. . The amount of hydrogen and mechanical properties in the steel after tempering were investigated, and a fatigue limit of 10 8 cycles was determined by a rotating bending fatigue test. These results are shown in Table 2.
[0032]
In Table 2, Test Nos. 1 to 11 are comparative examples, and Test Nos. 12 to 37 are examples of the present invention. As can be seen from the table, all of the examples of the present invention realize steel having high strength of 1500 MPa or more and high fatigue limit.
On the other hand, No. 1-9 which is a comparative example is a case where all use the conventional steel materials. Nos. 1, 3, 4, 6 to 9 can achieve high strength of 1500 MPa or more, but the carbon equivalent is less than 0.8, so the tempering temperature is lowered, and as a result, the amount of hydrogen in the steel is 0. The fatigue limit is lowered at 3 ppm or more. Nos. 2 and 5 are examples in which the tempering temperature is 500 ° C. or higher. The ratio between the fatigue limit and the tensile strength targeted by the present invention is 0.4 or more, but the tensile strength is less than 1500 MPa.
Comparative Examples No. 10 and 11 have a carbon equivalent of 0.8 or more, but because the tempering temperature is low, the amount of hydrogen is 0.3 ppm or more, and the ratio of fatigue limit to tensile strength is less than 0.4. ing.
[0033]
[Table 1]
Figure 0003817105
[0034]
[Table 2]
Figure 0003817105
[0035]
【The invention's effect】
As is clear from the above examples, the present invention realizes a high strength steel having a high strength of 1500 MPa or more and a high fatigue property by limiting the steel material components and the tempering temperature. Some are very prominent.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of analyzing the influence of hydrogen on the fatigue limit of high-strength steel.

Claims (5)

質量%で、
C :0.2〜1.3%、
Si:0.01〜3.0%、
Mn:0.2〜3.0%
を含有し残部はFeおよび不可避的不純物からなり、(1)式で示す炭素当量(Ceq)が0.8%以上であり、且つ鋼中の水素量が0.3ppm以下であり、全面が焼き戻しマル テンサイト組織であることを特徴とする疲労特性の優れた高強度鋼。
Ceq=C%+Si%/15+Mn%/10+Cr%/11+Mo%/7+V%/5+Ni%/45+Cu%/45 ・・・(1)
% By mass
C: 0.2 to 1.3%,
Si: 0.01-3.0%,
Mn: 0.2 to 3.0%
Containing the balance consisting of Fe and unavoidable impurities, (1) the carbon equivalent represented by formula (Ceq) is not less 0.8% or more and the hydrogen content in steel is Ri der less 0.3 ppm, the entire surface excellent high strength steel fatigue characteristics characterized by martensitic organizations der Rukoto tempering.
Ceq = C% + Si% / 15 + Mn% / 10 + Cr% / 11 + Mo% / 7 + V% / 5 + Ni% / 45 + Cu% / 45 (1)
鋼成分がさらに、質量%で、
Cr:0.05〜3.0%、
Mo:0.05〜1.0%、
Ni:0.05〜3.0%、
Cu:0.05〜1.5%、
B :0.0003〜0.01%
の1種または2種以上を含有することを特徴とする請求項1記載の疲労特性の優れた高強度鋼。
The steel component is further mass%,
Cr: 0.05-3.0%,
Mo: 0.05-1.0%,
Ni: 0.05-3.0%,
Cu: 0.05 to 1.5%,
B: 0.0003 to 0.01%
The high-strength steel with excellent fatigue characteristics according to claim 1, comprising one or more of the following.
鋼成分がさらに、質量%で、
Al:0.005〜0.1%、
Ti:0.005〜0.3%、
Nb:0.005〜0.3%、
V :0.05〜1.0%
の1種または2種以上を含有することを特徴とする請求項1または2に記載の疲労特性の優れた高強度鋼。
The steel component is further mass%,
Al: 0.005 to 0.1%,
Ti: 0.005 to 0.3%,
Nb: 0.005-0.3%
V: 0.05-1.0%
The high-strength steel excellent in fatigue characteristics according to claim 1 or 2, characterized by containing one or more of the following.
鋼成分がさらに、質量%で、
Ca:0.0003〜0.01%、
Mg:0.0003〜0.01%、
REM:0.005〜0.1%
の1種または2種以上を含有することを特徴とする請求項1、2または3のいずれかに記載の疲労特性の優れた高強度鋼。
The steel component is further mass%,
Ca: 0.0003 to 0.01%,
Mg: 0.0003 to 0.01%
REM: 0.005-0.1%
The high-strength steel excellent in fatigue characteristics according to any one of claims 1, 2, and 3, characterized by containing at least one of the following.
請求項1乃至4のいずれかに記載の成分を含有する鋼をAc1点以上 の温度に加熱後、冷却し全面のマルテンサイト組織にした後、500〜650℃で焼き戻すことを特徴とする疲労特性の優れた高強度鋼の製造方法。Fatigue characterized by heating the steel containing the component according to any one of claims 1 to 4 to a temperature of Ac1 or higher, cooling to a martensitic structure on the entire surface, and tempering at 500 to 650 ° C. A method for producing high strength steel with excellent properties.
JP2000046163A 2000-02-23 2000-02-23 High strength steel with excellent fatigue characteristics and method for producing the same Expired - Fee Related JP3817105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046163A JP3817105B2 (en) 2000-02-23 2000-02-23 High strength steel with excellent fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046163A JP3817105B2 (en) 2000-02-23 2000-02-23 High strength steel with excellent fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001234277A JP2001234277A (en) 2001-08-28
JP3817105B2 true JP3817105B2 (en) 2006-08-30

Family

ID=18568635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046163A Expired - Fee Related JP3817105B2 (en) 2000-02-23 2000-02-23 High strength steel with excellent fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3817105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3815354B2 (en) * 2002-03-25 2006-08-30 Jfeスチール株式会社 Bearing member with excellent rolling fatigue characteristics and workability in high-frequency heat-treated parts
JP3763573B2 (en) 2002-11-21 2006-04-05 三菱製鋼株式会社 Spring steel with improved hardenability and pitting corrosion resistance
JP4517983B2 (en) * 2003-01-17 2010-08-04 Jfeスチール株式会社 Steel material excellent in fatigue characteristics after induction hardening and method for producing the same
JP4937499B2 (en) * 2004-06-11 2012-05-23 Jfe条鋼株式会社 High strength spring steel excellent in corrosion resistance and fatigue characteristics and method for producing the same
JP4642490B2 (en) * 2005-01-25 2011-03-02 Ntn株式会社 Manufacturing method of thin-walled bearing member for bearing
JP4593510B2 (en) * 2006-03-31 2010-12-08 新日本製鐵株式会社 High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts
JP5097047B2 (en) * 2008-08-11 2012-12-12 住友金属工業株式会社 Steel for hot forging and method for producing the same
JP5335523B2 (en) * 2009-04-01 2013-11-06 株式会社神戸製鋼所 Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
WO2011039890A1 (en) 2009-10-02 2011-04-07 トヨタ自動車株式会社 Lithium secondary battery and positive electrode for said battery
JP5400089B2 (en) * 2010-08-31 2014-01-29 Jfeスチール株式会社 Bearing steel excellent in rolling fatigue life characteristics, ingot material for bearing, and production method thereof
CN102330029A (en) * 2010-11-15 2012-01-25 贵州新润科技咨询服务有限公司 Metal alloy material
CN102330028A (en) * 2010-11-15 2012-01-25 贵州新润科技咨询服务有限公司 Metal alloy material for cutting pick bodies of coal cutters
CN102108436B (en) * 2010-12-13 2013-03-27 清华大学 Heat treatment method for alloy steel hollow car axle material for high-speed railway cars
JP5764383B2 (en) * 2011-05-12 2015-08-19 Jfe条鋼株式会社 Steel for spring parts for vehicle suspension, spring part for vehicle suspension, and manufacturing method thereof
CN102876860B (en) * 2012-10-11 2014-09-24 清华大学 Heat treatment method of novel alloy steel hollow car axle material
JP5973903B2 (en) 2012-12-21 2016-08-23 株式会社神戸製鋼所 High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring
US20140345756A1 (en) * 2013-05-21 2014-11-27 General Electric Company Martensitic alloy component and process of forming a martensitic alloy component
CN104060176A (en) * 2014-05-27 2014-09-24 安徽红桥金属制造有限公司 Spring and surface treatment method thereof
CN104152811A (en) * 2014-07-25 2014-11-19 安徽霍山科皖特种铸造有限责任公司 High-ductility steel
CN104264057A (en) * 2014-09-18 2015-01-07 河北展创矿山机械有限公司 Chromium molybdenum alloy lining plate of ball mill and preparation process of chromium molybdenum alloy lining plate
WO2017094487A1 (en) 2015-12-04 2017-06-08 新日鐵住金株式会社 High-strength bolt
KR102090196B1 (en) 2015-12-04 2020-03-17 닛폰세이테츠 가부시키가이샤 Rolled bar for cold forging
US10760150B2 (en) * 2018-03-23 2020-09-01 General Electric Company Martensitic alloy component and process of forming a martensitic alloy component
CN109763063B (en) * 2018-12-19 2020-08-21 钢铁研究总院 Alloy structural steel suitable for high-strength transmission shaft
CN111763889A (en) * 2020-06-02 2020-10-13 钢铁研究总院 High-carbon bearing steel and preparation method thereof
CN113493882B (en) * 2021-07-08 2022-02-01 马鞍山钢铁股份有限公司 Steel with excellent pitting corrosion resistance for spring with long fatigue life, and heat treatment method and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282825A (en) * 2016-08-25 2017-01-04 浙江天马轴承有限公司 A kind of high-speed bearing steel and preparation method thereof

Also Published As

Publication number Publication date
JP2001234277A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP3817105B2 (en) High strength steel with excellent fatigue characteristics and method for producing the same
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5760453B2 (en) Carburized material
JP5973903B2 (en) High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP4267376B2 (en) High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same
JP4050829B2 (en) Carburized material with excellent rolling fatigue characteristics
EP3112489B1 (en) Rail vehicle axle
JP5556151B2 (en) Manufacturing method of bearing parts with excellent rolling fatigue characteristics under foreign environment
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP5655627B2 (en) High strength spring steel with excellent hydrogen embrittlement resistance
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP2010236049A (en) Method for manufacturing bearing part excellent in rolling-fatigue characteristics under foreign-matter environment
JP4054179B2 (en) High-strength pearlite steel with excellent delayed fracture resistance
JP3262994B2 (en) High hardness stainless steel with excellent hardenability
JPS58171558A (en) Tough nitriding steel
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
EP3643803A1 (en) High-strength steel member
JP2022095157A (en) Steel for bolts and bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R151 Written notification of patent or utility model registration

Ref document number: 3817105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees