JP3814176B2 - プラズマ処理装置 - Google Patents
プラズマ処理装置 Download PDFInfo
- Publication number
- JP3814176B2 JP3814176B2 JP2001306743A JP2001306743A JP3814176B2 JP 3814176 B2 JP3814176 B2 JP 3814176B2 JP 2001306743 A JP2001306743 A JP 2001306743A JP 2001306743 A JP2001306743 A JP 2001306743A JP 3814176 B2 JP3814176 B2 JP 3814176B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- plasma
- central
- electrodes
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Plasma Technology (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Description
【産業上の応用の分野】
本発明は、比較的に大面積のウェハーを処理するためのプラズマ処理装置に関し、特に、望ましい平面でのプラズマ密度について制御された径方向分布形状を有する大面積プラズマ源に関するものである。この平面は二重同心rf電極と下部電極との間に設定され、生成されたプラズマはプラズマ支援エッチング、化学的気相成膜、そしてスパッタ成膜の応用に有用である。これらの応用はマイクロ(微小)電子産業におけるSi(シリコン)基板または他の基板の上に半導体デバイスを作ることで使用される。
【0002】
【従来の技術】
最近の10年で半導体デバイスメーカは集積回路の製造に用いられるシリコンウェハーの標準直径を100mmから300mmへと増大させた。マイクロ電子産業は、次の標準直径はおよそ450mmになるであろうと予想している。シリコンウェハーの直径の増大に伴って、これらのウェハーを処理するため大面積プラズマ源が要求される。たとえより大きな面積のプラズマ源の製造が技術的に難しくないとしても、プラズマ密度、プラズマ電位、プラズマ均一性、そしてウェハーの平面におけるイオンと中性の半径方向の密度などといったプラズマパラメータの制御性は非常に難しい。特に、ウェハー表面におけるより高い半径方向のプラズマ均一性はほとんどのウェハー処理にとって重要である。従来のほとんどのプラズマ源において半径方向のプラズマ均一性の制御性は制限を受け、特に、大面積ウェハー処理のためにサイズが大きくなるときに制限を受ける。このことは従来の平行平板容量結合プラズマ装置を用いて詳細に説明される。
【0003】
従来の平行平板容量結合プラズマ装置の概要図が図10に示される。このプラズマ装置は、上部電極101と下部電極102と呼ばれる2つの平行電極、円筒形側壁104、上部電極101の上の複数のガス導入口110、そして排気ポート108から構成されている。上部電極101には、rf(高周波)発生器115から整合回路114を経由して13.56MHzの周波数で代表的に動作するrf電流が与えられている。下部電極102はrf電流を与えられてもよいし、与えられなくてもよい。図10に示された構造では、整合回路112を経由して下部電極102に接続されているrf発生器113を有している。
【0004】
上部電極101はリング形上部プレート104aに固定された誘電体部材103によって支持されている。上部電極101は内部にガスリザーバ109を有し、その下面にガス導入口110を有している。主要なガス導入パイプ111は上部電極101に結合されている。同様にまた、下部電極102は底プレート106に固定された誘電体部材105によって支持されている。
【0005】
【発明が解決しようとする課題】
プラズマは上部電極101に与えられたrf電力の容量的な結合によって生成される。上部電極101の下側の半径方向のプラズマ密度の変化は図11に示される。上部電極101は平板形状であるので、上部電極101の近傍におけるプラズマ密度はより高い径方向均一性を示す。これは116が付された曲線によって示されている。このプラズマは、その後、円筒形側壁104に向かって拡散し、その表面で消滅する。それ故に、プラズマ密度とプラズマの径方向均一性は下部電極102に向かって減少する。下部電極102の上に搭載されたウェハーの表面近くの平面におけるプラズマ密度の径方向均一性は117が付された曲線によって示されている。プラズマ密度のこの変化は、通常、従来のほとんどの平行平板容量結合プラズマ源にとって共通である。
【0006】
基板表面におけるプラズマの径方向均一性の減少を少なくすることができる2つの方法がある。第1の方法は上部電極と下部電極の隙間を一定に保つことにより上部電極の直径を増加させることである。これは反応容器の直径と反応容器の体積を増加させる原因となる。それ故に、同じプラズマ密度と処理速度を得るためには、より高いrf電力が要求される。第2の方法はプラズマの速い拡散を容易にするため動作圧力を減少することである。しかしながら、圧力の減少はプラズマ密度の減少という結果をもたらし、それ故に、同じ処理速度を維持するためrf電力が増大されなければならない。
【0007】
たとえrf電力の増大がプラズマ密度の増大をもたらす結果となるにしても、より高いrf電力ではプラズマ密度は飽和する。このrf電力の後、rf電力の増大はプラズマ密度の増大をもたらすことはない。反って、追加されたrf電力は、厳格な冷却の条件が要求されているrf電極とその周辺のデバイスを過度に加熱する原因となる。
【0008】
従って、従来の平行平板容量結合プラズマ装置を用いて特に大面積ウェハー上のプラズマの密度と均一性を制御することはいくぶん困難である。
【0009】
本発明の目的は、プラズマ密度と均一性を制御できる大面積ウェハー処理のプラズマ処理装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明のプラズマ処理装置は、上記問題を解決するため、次のように構成される。
【0011】
本発明による大面積ウェハー処理のためのプラズマ処理装置は二重同心rf電極を有している。この二重同心rf電極は、容量的結合機構または容量的および誘導的な結合機構によって、プラズマを生成するために用いられる。二重同心rf電極の中央rf電極は円形または円形に近い形状であり、その外側rf電極は中央rf電極の周りに配置されている。誘電体部材が中央と外側のrf電極の間に配置される。2つのrf発生器はそれぞれ整合回路とrfフィルタを経由して中央と外側のrf電極に接続される。さらに中央rf電極と外側rf電極に対してrfカットフィルタを経由してそれぞれに接続される2つの直流(DC)電圧供給器が設けられる。ウェハーホルダとしての第3の平板rf電極が二重同心rf電極に平行な下側平面に配置される。反応容器の側壁は第4の電極として電気的に接地されている。上記プラズマ処理装置において、中央と外側のrf電極の各々は、rf発生器と直流(DC)電圧供給器からそれぞれrf電流と負にバイアスされた直流電圧が供給されており、1つの電極に接続されたrf発生器と直流電圧供給器は他のrf電極に接続されたそれらから独立している。
【0012】
新しい反応容器の構成が4つの電極を用いて発明され、そこでは、上部電極は二重同心rf電極によって構成され、二重同心rf電極は独立に制御可能な2つのプラズマを生成し、これら2つのプラズマは拡散し1つのプラズマを作る。
【0013】
大面積ウェハー処理のための上記プラズマ処理装置において、外側rf電極は容量的結合機構によってプラズマを生成するため当該プラズマに面する広い平坦表面を有している。
【0014】
大面積ウェハー処理のための上記プラズマ処理装置において、外側rf電極の代わりに単一ループアンテナが誘導的結合機構によってプラズマを生成するために用いられる。
【0015】
大面積ウェハー処理のための上記プラズマ処理装置において、プラズマに面する中央と外側のrf電極のいずれか一方の下面または両rf電極の下面は誘電体部材または半導体部材によって覆われている。
【0016】
大面積ウェハー処理のための上記プラズマ処理装置において、中央と外側のrf電極の1つまたは両方は反応チャンバの中にプロセスガスを導入するためのガスリザーバと複数のガス導入口を有している。
【0017】
大面積ウェハー処理のための上記プラズマ処理装置において、中央と外側のrf電極の1つまたは両方はそれらの表面温度を制御する機構を備えている。
【0018】
大面積ウェハー処理のための上記プラズマ処理装置において、二重同心rf電極は1〜100MHzの範囲にある同じrf周波数または2つの異なるrf周波数で動作する2つの異なるrf発生器によって、個別に2つのrf電流を供給される。
【0020】
大面積ウェハー処理のための上記プラズマ処理装置において、二重同心rf電極の各rf電極は整合回路と位相シフタを経由して対応するrf発生器に接続されている。
【0021】
【発明の実施の形態】
以下に、添付された図面に従って好ましい実施形態が説明される。実施形態の説明を通して本発明の詳細が明らかにされる。
【0022】
本発明の第1実施形態は、プラズマ処理装置の断面図を示す図1を参照して説明される。この装置は、二重同心rf(高周波)電極1,2、下部電極3、円筒形側壁4、複数のガス導入口5および1つの排気ポート6を備えた反応容器を有している。すべての電極は金属、例えばアルミニウムで作られている。代表的に、二重同心rf電極1,2は円形の形状を有している。特に、外側rf電極は円形リング型の形状である。しかしながら、電極の形状としては四角形、五角形、六角形またはいかなる類似の形状を用いてもよい。これらのrf電極1,2の寸法は重要な事項ではない。もし二重同心電極1,2が円形形状であり、プラズマ装置が300mm直径のウェハー処理のためのものであるならば、中央電極1の直径は200mmから300mmの範囲にある。外側rf電極2の外形は200mmから500mmの範囲にある。もしこれらのrf電極1と他の電極が異なる形状にあるならば、同等の寸法が用いられる。中央と外側のrf電極(1,2)は内部の誘電体リング7によって分離されている。誘電体リング7の材質は重要なことではなく、それは電極温度のごとき他の要件に依存して選択される。誘電体リング7の最も狭い部分の幅は重要ではなく、1mmから約20mmで変わり得る。外側rf電極には、同様にまた、それを接地された表面から電気的に絶縁させるために外側の誘電体リング8の上に配置される。誘電体リング8の厚みと誘電率は重要なことではない。
【0023】
プロセスガスは、最初、中央と外側のrf電極(1,2)におけるガスリザーバ9,12と主要ガス管11,12を経由して導入される。このガスは、その後、中央と外側のrf電極(1,2)に作られた複数のガス導入口5を通して反応容器へ移動する。たとえプロセスガスが、図1に示されかつ上記で説明されたごとく、中央と外側の両方のrf電極(1,2)を通して供給されるとしても、当該プロセスガスをたった1つのrf電極、例えば中央rf電極1を通してのみ供給することも可能である。さらに、中央と外側のrf電極を経由して導入されるプロセスガスの流量は必ずしても同じであることはなく、異なるものにすることができる。さらに、中央と外側のrf電極を通して導入されるプロセスガスまたはガス混合物は異なるものにすることができる。
【0024】
中央と外側のrf電極(1,2)の両方は温度制御機構を有している。この目的のためrf電極1,2を通して流路39が作られている。流路39では、温度制御液体が流される。中央と外側のrf電極1,2の流路39をそれぞれ分けて2つの異なる温度コントローラに接続することによって中央と外側のrf電極の温度は独立に制御することができる。図1において、40は温度制御液体導入口を示し、41は温度制御液体排出口を示している。
【0025】
中央と外側のrf電極(1,2)は、2つの異なる周波数でまたは同じ周波数で動作する2つの異なるrf発生器13,14にそれぞれ接続されている。図1に示されるように、両方のrf発生器13,14は反応容器の上部カバー24の外側に配置されている。rf発生器13はrf整合回路15とrfフィルタ17を経由して中央rf電極1に結合されている。rf発生器14は整合回路16とrfフィルタ18を経由して外側rf電極2に結合されている。通常、rf電流は対称的なrf電流の流れを維持するために中央rf電極1の中心に与えられる。しかしながら、rf電流は外側電極2の上では、外側rf電極2上に対称的なrf電流の流れを得ることが難しいので、いかなる場所に与えてもよい。
【0026】
いずれかのrf発生器におけるrf電流の周波数は重要なことではなく、それは1〜100MHzの範囲において変えることができる。当該電極1,2に与えられるrf電流は、通常、それぞれ異なっている。例えば、中央rf電極1に対し60MHzのrf電流が与えられるのに対して、外側rf電極には13.56MHzのrf電流が与えられる。中央rf電極1に対しては高い周波数のrf電流(例えば60MHz)が与えられ、外側のrf電極2に対しては低い周波数のrf電流(例えば13.56MHz)を与えることが適当である。これは、高い周波数、例えば60MHzのrf電流が特に大面積の電極に非対称に与えられるとき、プラズマ密度が非対称に生成される傾向が生じるからである。中央rf電極1のみがその表面に対称のrf電流の流れを与えるので、高い周波数のrf電流が中央rf電極1に与えられるべきである。他方、rf電流の周波数が低いとき、例えば13.56MHzのときには、rf電極の表面上の非対称のrf電流の流れであっても非対称のプラズマの発生の原因とはならない。それ故に、低い周波数のrf電流が外側rf電極2に与えられるべきであり、それはその表面に非対称のrf電流の流れを与える。
【0027】
中央と外側の電極1,2に与えられるrf電流は、整合ボックス15,16とrfフィルタ17,18を通して流れる。もしrf電流の周波数がf1とf2であるならば、そしてそれぞれ中央と外側の電極の1,2に与えらるならば、rfフィルタ17は周波数f2のrf電流を除去し、rfフィルタ18は周波数f1のrf電流を除去する。従ってrf発生器13,14の各々のrf電流は他のrf発生器に流れ込まない。このことはrf発生器13,14の電気回路の安全性のため重要である。しかしながら、もし両方のrf発生器のrf周波数が同じであるならば、rfフィルタ17,18は省略することができる。
【0028】
ウェハーホルダ19としてどのような従来のウェハーホルダを用いてもよい。ウェハーホルダ19は底プレート23に固定される。通常、ウェハーホルダ19はrf電極を含む誘電体部材である。このrf電極は前述した下部電極3に相当している。当該rf電極は4電極形プラズマ装置において第3の電極となる。下部電極3はウェハーホルダ19の中に埋め込まれ、誘電体部材42によって覆われている。加えて、ウェハーホルダ19は冷却または加熱の機構(図において示されていない)を含んでもよい。下部電極3は、反応容器の残りの部分からそれを電気的に絶縁させるため、誘電体部材20の上に配置される。下部電極3は整合回路21を通してrf発生器22からrf電流を与えられる。しかしながら、下部電極3に対してrf電流を与える構造は省略することができる。rf電流の周波数は重要なことではなく、500KHzから15MHzまでの範囲にある。下部電極に対してrf電力を適用する目的は、下部電極3の上に自己バイアス直流電圧を発生させるためである。もしrf電力が適用されないとすると、下部電極3は電気的に接地されるか、または浮遊状態にある。下部電極3の電気的状態は、この実施形態または期待される応用にとって重要なことではなく、こうしてウェハー処理のタイプに応じて変わり得るものである。
【0029】
反応容器の円筒形側壁4は電気的に接地され、第4の電極として作用する。何故ならば、当該側壁4の内側表面はプラズマと接触しており、二重同心rf電極(1,2)と下部電極(3)によって、容量的結合機構によってプラズマの中に入るすべてのrf電流を集めるからである。しかしながら、接地電極としてプラズマからrf電流を集める目的で、側壁の内側に配置された接地シールドを用いてもよい。当該シールドは容易に反応容器から取り外すことができるので、シールドを用いることは反応容器の洗浄手順を容易にする。特に、それは、プラズマ処理ガスの化学的成分がシールドの表面上のいかなる望ましくない膜を堆積するときに都合がよい。
【0030】
加えて、ウェハー搬送ポート25が円筒形側壁4に形成され、排気ポート6が当該側壁4の下側に形成されている。
【0031】
図1に示された構造において、2つのrf電流が中央と外側のrf電極1,2に対し別々に与えられるとき、プラズマは反応容器において容量的結合機構によって生成される。両方のrf電極1,2によるプラズマ生成のメカニズムは採用されたrf電流の周波数に拘わらず容量的結合プロセスであることに注意すべきである。上部電極(1,2)と下部電極3の間のいかなる望ましい平面でもプラズマ密度とプラズマの径方向分布は、与えられたrf電流の周波数と電力に依存する。
【0032】
上側の中央と外側のrf電極1,2の近傍で発生したプラズマの径方向の形状が図2に示される。もし中央rf電極1のみにrf電流が与えられたとすると、プラズマの密度は中心でピークを持ち、反応容器の側壁4に向かって減衰する。これは26が付された曲線によって示されている。この滑らかなピラミッド型形状のプラズマは、それが下部電極3の方向に移動するとき、側壁に向かってプラズマの拡散が動くので、さらに不均一となる。不均一性の変化は、圧力と与えられたrf電力とに依存する。同様に、もし外側rf電極2のみにrf電流が与えられたとすると、外側rf電極2の下側にドーナツ型のプラズマが生成される。このプラズマの径方向の形状は図2において27が付された曲線によって示されている。中央と外側のrf電極1,2に同時にrf電流が与えられるとき、前述した両方のプラズマが生成される。これらの2つのプラズマは拡散プロセスによって1つのプラズマを作るので、結果としてのプラズマの径方向の形状は個々のプラズマの形状から異なったものとなる。ドーナツ形状のプラズマの存在のために、結果としてのプラズマの径方向のプラズマの均一性は図2で28として符号が与えられた曲線によって示されるごとく改善される。プラズマ(26)の周縁とプラズマ(27)の内縁との間のオーバラップした領域は、合成されたプラズマの平坦な径方向形状を作る。上側の中央と外側のrf電極1,2に与えられた2つのrf電力は、要求される径方向分布の均一性を有するプラズマが作られるまで、独立に変化させられる。
【0033】
上記の実施形態の四極形のプラズマ処理装置は、下部(すなわち第3の)電極3上に配置された大面積ウェハーの上で要求される径方向プラズマ均一性を有するプラズマを得ることを容易化する。このことは二重同心rf電極1,2に与えられるrf電力を制御することによって、または二重同心rf電極1,2に与えられるrf電流の周波数を適当に選択することによって、またはこれらの両方の方式を用いることによって達成することができる。
【0034】
次に図3を参照して第2の実施形態が説明される。第2の実施形態の構成は、中央と外側の電極1,2の下側に誘電体または高抵抗半導体のプレート29を追加することを除いて、第1実施形態で説明されたものと同じである。それ故に、この装置における誘電体プレート29の特性とその役割のみが説明される。誘電体プレート29の厚みは重要な事項ではなく、1〜10mmの範囲にあり得る。さらに、誘電体プレート29に用いられる誘電体のタイプ(例えば、水晶、SiN、テフロン、シリコン等)と誘電率は、同様にまた、重要なことではない。材質の厚みやその型は、応用のタイプに依存して選択される。プロセスガスはrf電極1,2と誘電体プレート29に作られた複数のガス導入口5を通して導入される。この誘電体プレート29の目的は以下に説明される。
【0035】
第1実施形態で説明された中央と外側のrf電極1,2はいかなる材料によっても覆われていない。それ故に電極1,2を作る金属材料がプラズマに晒される。プラズマが生成されるとき、rf電極1,2の上に自己バイアス直流電圧が生成される。もしこれらの直流電圧が十分に高いならば、プラズマ中のイオンはエネルギを得て電極1,2の金属表面に衝突する、そしてrf電極表面のスパッタリングという結果をもたらす。これはプラズマとウェハー表面を汚染し、欠陥のあるデバイスという結果をもたらす。それ故に第1実施形態で与えられた構成はより低いrf電力でのみ適用され、またはウェハー処理のための金属スパッタによって問題がない場合に適用される。特に、第1実施形態の構成はプラズマ支援化学気相成長にとって適している。
【0036】
前述した理由のため、第2実施形態で上側に配置された中央と外側のrf電極1,2は誘電体プレート29によって覆われている。誘電体プレート29は適当な誘電体によって作られている。誘電体プレート29の代わりにカバープレートとしてスパッタ工程によっていかなる問題も引き起こさない半導体部材を用いてもよい。例えば高抵抗シリコンまたは水晶は、スパッタされたシリコンは反応容器における他のガスと反応してガス種を形成し、それ故、それは考慮された工程にとっていかなる問題も引き起こさないため、誘電体エッチング処理にとって有用である。さらにこの構成は誘電体または半導体のスパッタ成膜の応用に用いられ得る。この場合において、誘電体または半導体のプレートはプラズマ状態における化学的反応を伴ってまたは伴わないでスパッタされ、ウェハー表面の上に堆積される必要のある物質で作られている。しかしながら、もしこの構成がスパッタ成膜応用に用いられる場合には、プロセスガスは側壁4にまたは底プレート23上に作られたガス導入口を通して導入されなければならない。中央と外側のrf電極1,2の下側に配置された誘電体または半導体のプレート29の上にいかなるガス導入口もあってはならない。
【0037】
次に図4を参照して第3の実施形態が説明される。この図は第3実施形態の模式図を示す。第3実施形態の構成は金属スパッタ成膜に特に向いている。ここで、中央と外側のrf電極1,2は金属で作られており、例えば銅であり、それはスパッタされそしてウェハーホルダ19の上に載置されたウェハー上に堆積されることが必要である。もし第1実施形態において与えられた構成が金属スパッタ成膜に用いられたとすると、rf電極1,2からスパッタされた金属原子は誘電体リング7,8の下側表面の上に堆積される。これらの誘電体リング7,8は、それぞれ、rf電極1,2の間、そして外側rf電極2と接地された壁の間にある。これはrf電極(1,2)と接地との間を電気的に接続するという結果をもたらす。rf電極1,2の間、そして外側rf電極2と接地との間で連続的な金属の膜が形成されることを防止するため、第3実施形態における誘電体リング7,8の構成は、図4に示されるごとく、変更される。上述した目的のため、深い溝または隙間30が誘電体リング7,8の各々の内側面と外側面の上に形成され、これらはrf電極1,2の各々に隣り合っている。これらの溝30はrf電極1,2の周りに円形の形状となっている。溝の厚みと幅は通常2mm以下であり、高さまたは深さはrf電極1,2の厚みに依存する。その高さは10mmから40mmの範囲にあってもよい。スパッタされた金属の原子は深い溝30の上側の部分に届くことができないので、連続的な金属膜が堆積することはできない。こうして、rf電極(1,2)と接地との間に電気的接続が形成されることが防止される。
【0038】
中央と外側のrf電極1,2は、第1実施形態で説明されたように、それぞれrf発生器13,14からrf電力を与えられる。加えて、rf電極1,2の各々は、それぞれ、rfカットフィルタ(33,34)を経由して直流電圧供給器31,32に接続されている。直流電圧を応用する目的はスパッタ速度を増大させるためにrf電極1,2の上に負のバイアス電圧を与えることである。直流電圧供給器31,32から中央と外側のrf電極1,2に与えられる直流電圧の値は異なっており、重要なことではない。rfプラズマによって生成された自己バイアス電圧が、要求されたスパッタ速度を有するのに十分である場合には、この構成は直流電圧供給器31,32がない状態で用いてもよい。
【0039】
加えて第1実施形態において示された中央と外側のrf電極1,2に作られた複数のガス導入口は、この第3実施形態では省略されている。代わりに、プロセスガスは、図4に示されるごとく、反応容器の円筒形側壁4の周りに作られたいくつかのガス導入口を通して導入される。この目的のため、いくつかのガス導入口35を有する円形の管36が円筒形側壁4に固定されている。そのとき、プロセスガスは、主要ガス導入部37を経由して円形管36に供給される。
【0040】
しかしながら、前述した構造の代わりに、プロセスガスを供給するための異なる機構を用いることができる。例えば、プロセスガスは底プレート23上に形成された単一のガス導入管を経由して供給することもできる。前述した変形を除いて、すべての他の構成は第1実施形態のそれと同じである。
【0041】
スパッタ装置の操作手順もまた、第1実施形態で説明されたものと同じである。膜の均一性と成膜速度のごとき堆積された膜について要求された特性を得るため、中央と外側のrf電極1,2に与えられるrf電流と直流電圧は適当に変化させられる。
【0042】
図5、図6、図7を参照して第4の実施形態が説明される。この構成は、第2実施形態における外側rf電極2を、金属で作られた単一ループrfアンテナ38によって置き換えることにより得られる。中央rf電極1と単一ループrfアンテナ38の上面図が図6に示される。単一ループrfアンテナ38の一端はrfフィルタ18と整合回路44を経由してrf発生器43に接続されている。単一ループrfアンテナ38の他端は接地されている。単一ループアンテナ38に接続されたrf発生器43の周波数は重要なことではなく、通常、500KHzから20MHzの範囲にある。通常、より低いrf周波数は次の理由のため単一ループrfアンテナ38にとってより都合がよい。
【0043】
単一ループrfアンテナ38の目的は単一ループrfアンテナ38の下側に誘導結合プラズマを生成することにある。この目的のため、誘導rf電流のインピーダンスは最少化されるべきである。もし単一ループrfアンテナ38のインダクションがLであり、誘導電流のインピーダンスがZLであるならば、ZL=i・2πf・Lであり、ここでfはrf電流の周波数である。従って、もし周波数fが低減すると、ZLは低下することになり、このことは単一ループrfアンテナ38からプラズマへ流れる誘導電流を強めることになる。
【0044】
図6において示された単一ループrfアンテナ38の両端の一方がたとえ電気的に接地されたとしても、その端部は図7に示されるごとくキャパシタC1を経由して接地部に接続され得る。この構成は、通常、図6で示された構成に比較して単一ループrfアンテナ38の端部の間により小さい電位差を作り出す。このことは単一ループrfアンテナ38の下側のプラズマ密度の周方向(方位角方向)の変化を減少させるために重要である。
【0045】
単一ループrfアンテナ38の厚みは通常2mmより小さい。単一ループrfアンテナ38のプラズマに向かう最下部は図5に示されるごとくナイフエッジを有するごとく鋭利に作られてもよい。これはプラズマに対するrf電力の容量的結合の可能性を減じるためである。
【0046】
中央rf電極1の下面と単一ループrfアンテナ38は、第2実施形態において述べられたと同様に、誘電体プレート29によって覆われている。しかしながら、誘電体プレート29は本質的なことではなく、それ故に誘電体プレート29なしの構成を用いることも可能である。
【0047】
プラズマは、中央rf電極1からプラズマへのrf電力の容量的結合機構によって中央領域に生成される。加えて、ドーナツ形状のプラズマが誘導的結合機構によって単一ループrfアンテナ38の下側に生成される。誘導的結合機構はより高いプラズマ密度を作り出すので、この構成は、前述した各実施形態におけるそれらと比較して、反応容器でプラズマ密度の増大という結果をもたらす。この構成の操作手順は先の実施形態で説明された手順と同じである。
【0048】
第5実施形態は、第4実施形態の拡張であり、金属スパッタ成膜応用を目的とするためのものである。第5実施形態の模式図が図8に示される。第3実施形態において説明されたように、誘電体リング7,8の表面上に連続的な金属膜が堆積することを避けるため、溝または隙間が誘電体リング7,8の下面に作られる。
【0049】
さらに中央rf電極1上の複数のガス導入口が省略される。その代わりに、プロセスガスは第3実施形態において説明されたごとく反応容器の円筒形側壁において作られたガス導入口を通して導入される。これらの変更部分を除いて、その他のすべてのハードウエア構成は第4実施形態において与えられたものと同じである。
【0050】
いくつかの金属成膜工程は、ウェハー表面上に膜を堆積させる前に上部電極1からのスパッタ原子をイオン化させるため、高密度プラズマを要求する。これらの応用のため、単一ループrfアンテナ38の下側に生成される誘導結合プラズマは高密度プラズマを作り出すので、第5実施形態において与えられた構成が使われる。
【0051】
第6実施形態は図9を参照して説明される。この構成は図3に示された第2実施形態の拡張である。ここでは、二重同心rf電極1,2に接続されたrf電力供給回路が変更される。rf発生器13,14の周波数は図9に示された同じもの(f1,f2)が採用される。rf発生器13,14からのrf電流は、整合回路15,16と位相シフタ45,46を経由して、中央と外側のrf電極1,2に供給される。それぞれ、位相シフタ45,46を使用することによって、各rf発生器(13,14)から到来するrf電流の位相は任意に変化させられる。図9において、位相シフタ45,46はそれぞれ整合回路15,16とrf電極1,2との間に配置される。しかしながら、以下に説明するのと同じ結果を得るために位相シフタをrf発生器と整合回路との間に配置することもできる。前述した変更部分を除いて、第6実施形態のすべての他のハードウエアは第2実施形態において与えられたものと同じである。
【0052】
位相シフタ45,46は、プラズマ密度、プラズマ電位、プラズマの均一性のごときプラズマの特性を変化させるために用いられる。通常、プラズマが容量的結合機構によって生成されるとき、rf電極から到来するrf電流は接地電極へ流れる。しかしながら、もし同じrf周波数でありかつ180°位相がずれたrf電流で動作する他のrf電極があるとするならば、2つの電極1,2から到来するrf電流は相互に流れる。従って、もし中央と外側のrf電極1,2のrf電流の位相のずれが180°であるならば、当該rf電流はこれら2つの電極の間を流れる。このことは、中央と外側のrf電極1,2の間の領域にプラズマを閉じ込めることの原因となり、下部電極に向かうプラズマの拡張を制限することになる。これは、ウェハー表面の近傍においてプラズマ電位を減じる可能性を有する。
【0053】
プラズマに向かう中央と外側のrf電極1,2の下面においてrf電流の正確な位相のシフトを監視することは困難である。何故ならば、位相シフタ45または46の以後の伝送線の寄生的なインダクタンス(誘導成分)とキャパシタンス(容量成分)がrf電流の位相変化を生じさせるからである。それ故に、実際的な実験によって適当な位相シフトが得られなくてはならない。最初に、プラズマは、中央と外側のrf電極1,2にrf電流を与えることによって生成される。そのとき、いずれか一方のrf発生器13または14から到来するrf電流の位相が望ましいプラズマ特性が結果として得られるまで、ゆっくりと変化させられる。プラズマの特性は従来のラングミュアープローブ(Reference:D.N. Ruzic, Electric probes for for low temperature plasmas, AVS pres, USA, 1994)、またはプラズマ吸収プローブ(Reference:H.Kokura, K.Nakamura, I.Ghanashev and H.Sugai, Jpn. J.Appl. Phys. 38, 5262(1999))のごとき技術を用いることによって監視される。いくつかの場合、プラズマの光学的な放出強度の変化はrf電流の位相を変化させるいくつかの情報を与えるかもしれない。この実験は1回のみなされなければならない、何故ならば、関連データが得られた後、それらはその後に引き続くウェハー処理のために用いられるからである。
【0054】
たとえ第6実施形態において採用されたrf電流の流れのメカニズムが第2実施形態において与えられた構成を用いられて説明されたとしても、同じrf電流の流れメカニズムは第1と第3の実施形態において与えられた構成に適用することができる。何故ならば、第1、第2、第3の実施形態における中央と外側のrf電極は容量的結合機構によってプラズマを生成するからである。
【0055】
前述した実施形態において説明された特徴的技術事項は、本発明の目的を達成するために適宜に組み合せることができる。
【0056】
【発明の効果】
本発明のプラズマ処理装置は、二重同心rf電極、すなわち中央と外側のrf電極を含む改善された構造がプラズマ密度を制御することができ、反応容器の径方向におけるプラズマ密度の均一性を達成することができるので、大面積ウェハーの処理に有用である。
【図面の簡単な説明】
【図1】この図は本発明の第1実施形態を示す断面図である。
【図2】この図は第1実施形態に基づいて中央と外側のrf電極によって分離してかつ同時に生成されたプラズマ密度の径方向の分布形状を示す。
【図3】この図は本発明の第2実施形態を示す断面図である。
【図4】この図は本発明の第3実施形態を示す断面図である。
【図5】この図は第4実施形態を示す断面図である。
【図6】この図は第4実施形態における中央rf電極、単一ループアンテナ、誘電体リング、rf電気的接続の上面図である。
【図7】この図は第4実施形態における中央rf電極、単一ループアンテナ、誘電体リング、rf電気的接続の上面図である。
【図8】この図は第5実施形態の断面図である。
【図9】この図は第6実施形態の断面図である。
【図10】この図は従来の平行平板容量結合型プラズマ源である。
【図11】この図は、図10に示された従来のプラズマ源における径方向プラズマ密度の分布形状の変化である。
【参照符号の説明】
1 中央rf電極
2 外側rf電極
3 下部電極
4 側壁
5 ガス導入口
6 排気ポート
7,8 誘電体リング
9,10 ガスリザーバ
13,14 rf発生器
15,16 整合回路
17,18 rfフィルタ
19 ウェハーホルダ
26,27,28 プラズマ密度の径方向の形状
30 深い円形溝
31 直流電圧供給器
33,34 rfカットオフフィルタ
38 単一ループrfアンテナ
39 流路
45,46 位相シフタ
Claims (8)
- 容量的結合機構または容量的および誘導的な結合機構によるプラズマ発生のための二重同心rf電極であって、そこでは前記二重同心rf電極の中央rf電極は円形または円形に近い形状であり、それに対して前記二重同心rf電極の外側rf電極は前記中央rf電極の周りに配置される前記二重同心rf電極と、
前記中央rf電極と前記外側rf電極の間に配置される誘電体部材と、
前記中央rf電極と前記外側rf電極に対して整合回路とrfフィルタを経由してそれぞれに接続される2つのrf発生器と、
前記中央rf電極と前記外側rf電極に対してrfカットフィルタを経由してそれぞれに接続される2つの直流電圧供給器と、
前記二重同心rf電極に対して平行な下側平面に配置されるウェハーホルダとしての第3の平板rf電極と、そして
第4の電極として電気的に接地される反応容器側壁とから成り、
前記中央rf電極と前記外側rf電極の各々は、各々に対応する前記rf発生器と前記直流電圧供給器とからrf電流と負にバイアスされた直流電圧とを供給され、そして1つの電極に結合された前記rf発生器と前記直流電圧供給器は、他のrf電極に接続された前記rf発生器と前記直流電圧供給器から独立である、
ことを特徴とするプラズマ処理装置。 - 前記外側rf電極は容量的結合機構によってプラズマを発生するためプラズマに対向する平坦な表面を有することを特徴とする請求項1記載のプラズマ処理装置。
- 前記外側rf電極の代わりに単一ループアンテナが誘導的結合機構によってプラズマを生成するために用いられることを特徴とする請求項1記載のプラズマ処理装置。
- プラズマに対向する前記中央と外側のrf電極のいずれか1つの下面または前記両方の下面は誘電体部材または半導体部材によって覆われていることを特徴とする請求項1または2記載のプラズマ処理装置。
- 前記中央と外側のrf電極のいずれか1つまたは両方は反応チャンバの中へプロセスガスを導入するためガスリザーバと複数のガス導入口を含むことを特徴とする請求項1〜4のいずれか1項に記載のプラズマ処理装置。
- 前記中央と外側のrf電極は、それらの表面温度を制御するための機構を含むことを特徴とする請求項1〜4のいずれか1項に記載のプラズマ処理装置。
- 前記二重同心rf電極は、同じrf周波数で動作するかまたは2つの異なるrf周波数によって動作しかつその周波数が1〜100MHzの範囲にある2つの異なるrf発生器によって個別に2つのrf電流が供給されることを特徴とする請求項1〜6のいずれか1項に記載のプラズマ処理装置。
- 前記二重同心rf電極の各rf電極は整合回路と位相シフタを介して対応するrf発生器に接続されていることを特徴とする請求項1〜6のいずれか1項に記載のプラズマ処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001306743A JP3814176B2 (ja) | 2001-10-02 | 2001-10-02 | プラズマ処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001306743A JP3814176B2 (ja) | 2001-10-02 | 2001-10-02 | プラズマ処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003115400A JP2003115400A (ja) | 2003-04-18 |
JP3814176B2 true JP3814176B2 (ja) | 2006-08-23 |
Family
ID=19126337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001306743A Expired - Fee Related JP3814176B2 (ja) | 2001-10-02 | 2001-10-02 | プラズマ処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3814176B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101114131B1 (ko) * | 2005-07-29 | 2012-03-13 | 어플라이드 머티어리얼스, 인코포레이티드 | 듀얼 주파수 바이어스를 갖는 화학적 기상 증착 챔버 및이를 이용하여 포토마스크를 제조하기 위한 방법 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7144521B2 (en) * | 2003-08-22 | 2006-12-05 | Lam Research Corporation | High aspect ratio etch using modulation of RF powers of various frequencies |
US7381291B2 (en) * | 2004-07-29 | 2008-06-03 | Asm Japan K.K. | Dual-chamber plasma processing apparatus |
JP2006134913A (ja) * | 2004-11-02 | 2006-05-25 | Ulvac Japan Ltd | Ru膜形成方法及びトンネル磁気抵抗効果多層膜 |
JP5348919B2 (ja) * | 2008-03-27 | 2013-11-20 | 東京エレクトロン株式会社 | 電極構造及び基板処理装置 |
JP5231573B2 (ja) * | 2008-12-26 | 2013-07-10 | キヤノンアネルバ株式会社 | スパッタ装置及び磁気記憶媒体の製造方法 |
US20130220548A1 (en) | 2010-09-10 | 2013-08-29 | Emd Corporation | Plasma processing device |
US9396908B2 (en) * | 2011-11-22 | 2016-07-19 | Lam Research Corporation | Systems and methods for controlling a plasma edge region |
US9786471B2 (en) * | 2011-12-27 | 2017-10-10 | Taiwan Semiconductor Manufacturing Co., Ltd. | Plasma etcher design with effective no-damage in-situ ash |
JP2012151504A (ja) * | 2012-04-09 | 2012-08-09 | Sony Corp | 薄膜形成方法 |
WO2019212059A1 (ja) * | 2018-05-02 | 2019-11-07 | 東京エレクトロン株式会社 | 上部電極およびプラズマ処理装置 |
CN112259550A (zh) * | 2020-10-21 | 2021-01-22 | 长江存储科技有限责任公司 | 半导体器件的刻蚀方法及刻蚀装置 |
JP2024000194A (ja) * | 2022-06-20 | 2024-01-05 | 東京エレクトロン株式会社 | プラズマ処理装置 |
-
2001
- 2001-10-02 JP JP2001306743A patent/JP3814176B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101114131B1 (ko) * | 2005-07-29 | 2012-03-13 | 어플라이드 머티어리얼스, 인코포레이티드 | 듀얼 주파수 바이어스를 갖는 화학적 기상 증착 챔버 및이를 이용하여 포토마스크를 제조하기 위한 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP2003115400A (ja) | 2003-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10615004B2 (en) | Distributed electrode array for plasma processing | |
CN107710378B (zh) | 多电极基板支撑组件与相位控制系统 | |
JP6120527B2 (ja) | プラズマ処理方法 | |
US6422172B1 (en) | Plasma processing apparatus and plasma processing method | |
JP3123883U (ja) | プラズマ処理チャンバ内で使用されるプロセスキット | |
JP4584565B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
US7153387B1 (en) | Plasma processing apparatus and method of plasma processing | |
US20110214813A1 (en) | Plasma processing method and apparatus | |
TWI734185B (zh) | 電漿處理裝置 | |
JP2005142568A (ja) | ヘリカル共振器型のプラズマ処理装置 | |
JP2010532099A (ja) | 基材処理のための方法および装置 | |
JP3726477B2 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
CN111837231A (zh) | 具有多个射频网孔以控制等离子体均匀性的静电卡盘 | |
JP3814176B2 (ja) | プラズマ処理装置 | |
JP2016506592A (ja) | 均一なプラズマ密度を有する容量結合プラズマ装置 | |
JP2010525612A (ja) | 環状のバッフル | |
US7767055B2 (en) | Capacitive coupling plasma processing apparatus | |
TW202139786A (zh) | 用於在電漿處理裝置中的一邊緣環處操控功率的設備及方法 | |
JP4467667B2 (ja) | プラズマ処理装置 | |
US20030010453A1 (en) | Plasma processing apparatus and plasma processing method | |
CN115398602A (zh) | 等离子处理装置以及等离子处理方法 | |
KR100404723B1 (ko) | 낮은 종횡비를 갖는 유도결합형 플라즈마 발생장치 | |
KR100391180B1 (ko) | 기재표면의 플라즈마 화학처리 방법 및 장치 | |
WO2023175690A1 (ja) | プラズマ処理装置 | |
JP2019160714A (ja) | プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060530 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060602 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3814176 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110609 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120609 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130609 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |