Nothing Special   »   [go: up one dir, main page]

JP3812098B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP3812098B2
JP3812098B2 JP30191397A JP30191397A JP3812098B2 JP 3812098 B2 JP3812098 B2 JP 3812098B2 JP 30191397 A JP30191397 A JP 30191397A JP 30191397 A JP30191397 A JP 30191397A JP 3812098 B2 JP3812098 B2 JP 3812098B2
Authority
JP
Japan
Prior art keywords
activated carbon
potential
electrode
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30191397A
Other languages
Japanese (ja)
Other versions
JPH11145009A (en
Inventor
聡 平原
光雄 鈴木
公平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP30191397A priority Critical patent/JP3812098B2/en
Priority to EP98112660A priority patent/EP0890963A3/en
Priority to US09/111,765 priority patent/US6094338A/en
Publication of JPH11145009A publication Critical patent/JPH11145009A/en
Application granted granted Critical
Publication of JP3812098B2 publication Critical patent/JP3812098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain durability at the time of applying a high voltage and increase energy density, by optimizing material for adjusting the natural potential of activated carbon electrodes and its loadings, and setting the potentials of a positive pole and a negative pole at the time of applying the maximum voltage to be in the range that decomposition due to oxidation or reducing reaction of non-aqueous electrolyte is not generated. SOLUTION: In an electric double layer capacitor, non-aqueous solution is used as electrolyte and activated carbon electrodes are used as both poles. When electrodes whose natural potential is reduced by setting the amount of Li in both activated carbon electrodes to be 0.02-2 wt.% are used, the adjustment in a potential range that decomposition of the non-aqueous electrolyte is hardly generated is enabled, by setting the potential of a positive pole side in the electrolyte at the time of applying the maximum allowable voltage to the activated carbon electrodes to be 3.5-4.2 V (to Lm/Li+ ), and by setting the potential of a negative pole side to be 0.1-0.8 V (to Li/Li+ ). In order to increase the capacitance of the electric double layer capacitor, it is preferable that activated carbon whose specific surface area is large is used as activated carbon before Li is introduced.

Description

【0001】
【発明の属する技術分野】
本発明は、耐電圧、エネルギー密度が大きく、急速充放電でき、耐久性に優れた電気二重層キャパシターに関する。
【0002】
【従来の技術】
大電流で充放電できる電気二重層キャパシターは、電気自動車、補助電源等の用途に有望である。そのために、エネルギー密度が高く、急速充放電が可能であり、高電圧印加時の耐久性及び充放電サイクル耐久性に優れた電気二重層キャパシターの実現が望まれている。
【0003】
キャパシターのセルに蓄積されるエネルギーは、1/2・C・V2 で算出され、Cはセル当たりの容量(F)、Vはセルに印加可能な電圧(V)である。印可可能電圧Vは、その値の二乗がエネルギーに反映されるため、エネルギー密度の向上にはキャパシターに印加する電圧を上げるの効果的であるが、大きな電圧では電解液の分解が起こる。
【0004】
そのため、従来の電気二重層キャパシターでは使用する電解液の溶媒と溶質の種類にもよるが、単位セルあたりの耐電圧は、非水系電解液の電気二重層キャパシターの場合、約2.4Vであり(特開平7−145001号公報)、2.5V以上の高電圧で使用すると、内部直列抵抗の増加あるいは静電容量の減少が短時間で発生する。そこで、正負側の電極、セパレータ、電解液、容器等を詳細に検討し、2.5V〜2.8Vの電圧を印加することが試みられている。例えば、フェノール樹脂、石油コークス等をKOH賦活して得られる活性炭を用いた電極を不活性雰囲気中で熱処理して耐久性は向上するさせる方法や、原料を選定した結果、フェノール樹脂、フラン樹脂、ポリアクリロニトリル樹脂の場合に耐久性がわずかに向上したこと(特開平8−162375号公報)、キャパシターの集電体に多孔質アルミニウムを用いて耐久性向上を図る手法(特開平8−339941号公報)等が知られている。
【0005】
エネルギー密度を大きくするため、印加電圧を3V以上にする方法としては、特開平8−107048号公報にリチウム箔を接触させてリチウムを吸蔵させた黒鉛電極を負極に、活性炭を正極に、リチウムイオンを溶質に含んだ電解液を用いたキャパシターや特開平9−232190号公報では、活性炭粉末を含む分極性電極材料にステンレス鋼繊維の集電体が混在状態で組み合わしたものを正極としたキャパシターが提案されている。また、特開平9−205041号公報では、電解液に2−メチルスルホランを溶媒の主体とする電解液を用いて、耐電圧の向上を図っている。
【0006】
【発明が解決すべき課題】
しかしながらこれらの例は、いずれの程度の差こそあれ満足すべきものではなかった。例えば前述の、フェノール樹脂、石油コークス等をKOH賦活して得られる活性炭を用いた電極を不活性雰囲気中で熱処理する方法では、同時に初期静電容量も小さくなるという問題があった。また、特開平8−162375号公報、特開平8−339941号公報の方法では、根本的には耐久性を改善することはできないと言ってよい。印加電圧を3V以上にすることによるエネルギー密度向上策として、特開平9−232190号公報、特開平9−205041号公報は、最大の印加電圧は3.3Vであり、それより大きい電圧を印加することができない。また、特開平8−107048号公報の方法では、電極−電解液間で酸化還元反応を伴うため、耐久性が問題がある。また、負極(非分極性電極)にリチウムを含有するため、未充電の状態ですでに正極(分極性電極)は約3Vであり、記載の実施例のように4.3Vまで電圧を印加した場合の充電による電位変化は1.3V程度となる。従って、キャパシターとして使用した場合のエネルギー密度は通常のキャパシターより小さくなる。
【0007】
従来の電気二重層キャパシターに用いたられた活性炭電極では、2.5Vを越える高電圧の連続印加によって、ガス発生あるいは分極性電極上への反応生成物の付着が発生していた。これが、原因となって、著しい内部抵抗の増加あるいは静電容量の減少を起こすという欠点を有していた。
そこで、本発明者らは、特願平9−183670号公報において、炭素質電極の自然電位を任意に調節して充電時の電位を、電解液の高電位側(酸化側)の実質的な分解開始電圧以下にすることにより、電解液の分解が抑制され、電気二重層キャパシターの印加可能電圧、及び耐久性が改善できることを提案してる。
【0008】
これについて、簡単に説明する。代表的な非水系の電解液である4級アルキルアンモニウム塩のプロピレンカーボネート溶液の実質的に炭素質物質からなる電極を用いた場合、電解液の酸化側の分解開始電圧は4.4V(対Li/Li+ )付近であると言われている。一方、通常の活性炭電極の自然電位は3V(対Li/Li+ )付近であり、キャパシターの印加電圧が2.8Vの場合、充電後の正極側の分極は約1.4Vとなり、酸化側の電位は4.4V(対Li/Li+ )以上を示し、電解液の電気化学的分解がおこると考えられる。その結果、従来の活性炭電極を用いた場合、その電解液の分解により発生するガス等により容量は低下するため、長期間使用した場合に耐久性に問題であった。現行の電気二重層キャパシターの印加電圧2.5V以上で使用した場合、耐久性が低いのはキャパシターの正極、負極の電位変化と電解液の分解電圧との関係にある。従って、特願平9−183670号の発明では活性炭電極の自然電位を下げて充電後の正極側の電位が電解液の酸化分解開始電圧以下とすることによて、キャパシターの実質的な印加可能電圧が大幅に増加し、エネルギー密度を向上できることを見出した。
【0009】
しかしながら、高いエネルギー密度を有し且つ高い耐久性を示す活性炭電極の自然電位の調節に最適な物質及びその添加量については不明であった。また、キャパシター用活性炭電極の最大電圧を印加した際の電解液の分解が起こりにくい正極、負極の適切な電位についても不明であった。
【0010】
【発明が解決するための手段】
そこで、本発明者らは、上記の課題を検討すべく鋭意検討した結果、従来の電解液を分解しにくいものにしたり、電極の不純物を低減させたりするという方法とは異なる抜本的解決方法として、非水系溶液を電解液とし、両極に活性炭を用いた印加電圧が3.35V以上とすることが可能な電気二重層キャパシターにおいて、活性炭電極の自然電位を調節する物質及びその添加量を最適化して、最大電圧を印加した時の正極および負極の電位を非水系電解液の酸化または還元反応による分解が起こらない範囲にすることにより、高電圧印加時の耐久性を有し、かつ、エネルギー密度が大きいキャパシターが得られることを見出し、本発明に到達した。すなわち、本発明の目的は、3.35V以上の高電圧時の耐久性に優れ、かつエネルギー密度の大きい電気二重層キャパシターを提供することにあり、かかる目的は、活性炭電極両極中に含まれるLi量が0.02重量%以上2重量%以下とし、かつ、活性炭電極に最大許容印加電圧を印加した時の該電解液中での正極側の電位がLi/Li+ を対極とした場合、3.5V以上4.2V以下であり、かつ該電解液中での負極側での電位がLi/Li+ を対極とした場合、0.1V以上0.8V以下とすることにより容易に達成される。
尚、最大許容印加電圧とは、電解液が分解したりする等、キャパシターに実用上、不可逆なダメージを与えることなく印加できる最大電圧のことを言う。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明を最大の特徴は、非水系溶液を電解液とし、両極に活性炭電極を用いた電気二重層キャパシターにおいて、活性炭電極両極中のLi量が0.02重量%以上2重量%以下として自然電位を下げた電極を用いると活性炭電極に最大許容電圧を印加した時の該電解液中での正極側の電位が、3.5V以上4.2V以下(対Li/Li+ )であり、かつ負極側での電位が0.1V以上0.8V以下(対Li/Li+ )とすることにより、3.35V以上の高電圧を印加してもキャパシターの破壊が生じず、エネルギー密度を大幅に改善することができる点にある。
【0012】
本発明において、活性炭電極中へリチウムを導入することにより、電極の自然電位を下げる手法は特に限定するものではないが、電気化学的手法、化学的手法、物理的手法等により電極体に添加することが可能である。例えば、簡便な方法の一つとして、非常に卑な金属である金属リチウムまたはリチウムを含む物質からなるリチウム含有電極、活性炭を主とする炭素質電極、セパレータ及び非水系電解液で構成される電気化学セルにおいて、リチウム含有電極と炭素質電極を短絡またはリチウム含有電極を正極、炭素質電極を負極として充電することにより活性炭電極中にリチウムを導入させることができる。リチウムを含む物質としては、特に限定するものではないが、例えば、リチウム−アルミニウム合金、リチウム−マグネシウム合金等のリチウムを含む合金、リチウム金属間化合物、リチウムを含むマンガン酸化物、コバルト酸化物、ニッケル酸化物、バナジウム酸化物等の複合酸化物、リチウムを含む硫化チタン、セレン化ニオブ、硫化モリブデン等のカルコゲナイト、リチウムを含む炭素から選ばれる少なくとも1つ以上の物質を用いることが好ましい。卑な電位をもつ金属として、リチウム以外に、ナトリウム、カリウム等のアルカリ金属、カルシウム、マグネシウム等のアルカリ土類金属、イットリウム、ネオジウム等の希土類金属または、これらの金属を含む物質をリチウムの場合と同様に自然電位を下げる物質として用いてもよい。
【0013】
こうして得たリチウムが導入された活性炭電極を少なくとも1つの極に用いて、電気二重層キャパシターを組み立てる。一方の極のみリチウムが導入された活性炭電極を用いると、動作が不安定になるため好ましくない。
電極中の微量なリチウム量の定量は、ICP発光分析装置、原子吸光分光光度計等を用いることにより可能である。リチウムを添加した電極体の充電後の正極及び負極の電位測定は、通常の電気化学的手法を用いて行われる。非水系での電位測定は、水溶液での標準水素電極のような電位基準は厳密には定義されていないが、実際には、銀−塩化銀電極、白金電極、リチウム電極等の電極を用いて一般に広く行われている。本発明においても同様な方法で測定可能である。
【0014】
電極中のリチウムの含有量を0.01重量%以上2重量%以下、特に好ましくは0.2重量%以上、2重量%以下にすることにより、活性炭の嵩密度、比表面積、表面性状等により若干異なるにしても、活性炭電極の充電後の電位が、正極側(酸化側)が3.8V以上4.2V以下(対Li/Li+ )かつ負極側(負極側)での電位が0.1V以上0.8V以下(対Li/Li+ )となり非水系電解液の分解が起こりにくい電位範囲に調節することができる。特に、キャパシター用電極に好適な比表面積が約300〜2300m2 /gの活性炭を電極に用いる場合、リチウムの含有量が0.01重量%以上1.50重量%以下より好ましくは0.2重量%以上、2重量%以下であることが好ましい。リチウムの含有量が2重量%より大きい場合、キャパシターの充放電時に、電極上への金属リチウム、リチウム化合物の析出がおこり容量の低下を起こす場合がある。
【0015】
リチウムを導入する前の活性炭は、電気二重層キャパシターを大容量とするために比表面積の大きな活性炭を用いるのが好ましい。活性炭の比表面積は大きすぎると嵩密度が低下してエネルギー密度が低下するので、200〜3000m2 /gが好ましく、さらに好ましくは300〜2300m2 /gである。活性炭の原料としては、植物物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、あるいはそれらを熱分解した石炭および石油系ピッチ、タールピッチを紡糸した繊維、合成高分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリイミド樹脂、ポリアミド樹脂、液晶高分子、プラスチック廃棄物、廃タイヤ等多種多用である。これらの原料を炭化後、賦活するが、賦活法は、ガス賦活と薬品賦活に大別される。ガス賦活法は、薬品賦活が化学的な活性化であるのに対して、物理的な活性化ともいわれ、炭化された原料を高温で水蒸気、炭酸ガス、酸素、その他の酸化ガスなどと接触反応させて、活性炭が得られる。薬品賦活法は、原料に賦活薬品を均等に含侵させて、不活性ガス雰囲気中で加熱し、薬品の脱水および酸化反応により活性炭を得る方法である。使用される薬品としては、塩化亜鉛、りん酸、りん酸ナトリウム、塩化カルシウム、硫化カリウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、硫酸ナトリウム、硫酸カリウム、炭酸カルシウム等がある。活性炭の製法に関しては、上記に各種あげたが、特に問わない。活性炭はの形状は、破砕、造粒、顆粒、繊維、フェルト、織物、シート状等各種の形状があるが、いずれも本発明に使用することができる。これらの活性炭のうち、KOHを用いた薬品賦活で得られる活性炭は、水蒸気賦活品と比べて容量が大きい傾向にあることから、特に好ましい。さらに好ましくは、水蒸気賦活後にKOH賦活することである。
【0016】
賦活処理後の活性炭を、窒素、アルゴン、ヘリウム、キセノン等の不活性雰囲気下で、500〜2500℃、好ましくは700〜1500℃で熱処理し、不要な表面官能基を除去したり、炭素の結晶性を発達させて電子伝導性を増加させても良い。
粒状の活性炭の場合、電極の嵩密度の向上、内部抵抗の低減という点で、平均粒子径は30μm以下が好ましい。
活性炭を主体とする分極性電極は、活性炭、導電剤とバインダーから構成される。分極性電極は、従来より知られている方法により成形することが可能である。例えば、活性炭とアセチレンブラックの混合物に、ポリテトラフルオロエチレンを添加・混合した後、プレス成形して得られる。また、導電剤、バインダーを用いず、活性炭のみを焼結して分極性電極とすることも可能である。電極は、薄い塗布膜、シート状または板状の成形体、さらには複合物からなる板状成形体のいずれであっても良い。
【0017】
分極性電極に用いられる導電剤として、アセチレンブラック、ケッチェンブラック等のカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、アルミニウム、ニッケル等の金属ファイバーからなる群より選ばれる少なくとも一種の導電剤が好ましい。少量で効果的に導電性が向上する点で、アセチレンブラック及びケッチェンブラックが特に好ましく、活性炭との配合量は、活性炭の嵩密度により異なるが多すぎると活性炭の割合が減り容量が減少するため、活性炭の重量の5〜50%、特には10〜30%程度が好ましい。
バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂のうち少なくとも1種類以上用いるのが好ましい。
【0018】
集電体は電気化学的及び化学的に耐食性があればよく、特に限定するものではないが、例えば、正極ではステンレス、アルミニウム、チタン、タンタルがあり、負極では、ステンレス、ニッケル、銅等が好適に使用される。
非水系電解液の溶質は特に限定するものではないが、R4N+ 、R4P+ (ただし、RはCn 2n+1で示されるアルキル基)、トリエチルメチルアンモニウムイオン等でなる第4級オニウムカチオン及び、リチウムイオン、カリウムイオン等のアルカリ金属カチオンと、BF4 - 、PF6 - 、ClO4 - 、またはCF3 SO3 - なるアニオンとを組み合わせた塩を使用するのが好ましい。これらの塩の非水系電解液中の濃度は電気二重層キャパシターの特性が十分引き出せるように、0.1〜2.5モル/リットル、特に、0.3〜2.0モル/リットルが好ましい。また、非水系電解液の溶質は特に限定するものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、スルホラン、メチルスルホラン、γ−ブチロラクトン、γ−バレロラクトン、N−メチルオキサゾリジノン、ジメチルスルホキシド、及びトリメチルスルホキシドから選ばれる1種類以上からなる有機溶媒が好ましい。電気化学的及び化学的安定性、電気伝導性に優れる点から、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、スルホラン、メチルスルホラン、γ−ブチロラクトンから選ばれる1種類以上の有機溶媒が特に好ましい。高い耐電圧が得られるように、非水系電解液中の水分は200ppm以下、さらには50ppm以下が好ましい。
【0019】
【実施例】
以下、本発明を具体的な実施例で説明するが、本発明は以下の実施例により限定されない。
(実施例1)
はじめに、活性炭電極へのリチウムの添加方法について述べる。
KOH賦活処理して得られたリチウム元素を含まないコークス系活性炭粉末(比表面積1550m2 /g、平均粒子径10μm)80重量%、アセチレンブラック10重量%、ポリテトラフルオロエチレン10重量%からなる混合物を混練した後、日本分光製錠剤成型器を用い、油圧プレスで直径10mm,厚さ0.5mmとなるように50kgf/cm2 の圧力で加圧成形して円盤状の成型体を得た。この成型体を0.1torr以下の真空中、300℃で3時間乾燥し電極体とした。この方法で作製した2枚の電極の間に三菱化学製ポリエチレン製セパレータを入れた後、集電体に使う白金板2枚で全体を挟み込み、さらに集電体、活性炭電極、セパレータがよく接触するように一番外側から2枚の厚さ5mmで4個のボルト孔をもつテフロン板で挟み込んで、オープンセル型キャパシターを組み立てた。こうして得たオープンセル型キャパシターと白金板の先端に金属リチウム箔を圧着することにより作製したリチウム極をビーカー内の1モル/リットルの濃度のLiBF4 のプロピレンカーボネート溶液中に浸漬させた。次に、リチウム極と活性炭電極をリード線でつなぎ、約1時間短絡させた。その後、電極部を分解して活性炭電極体2枚を取り出した。得た活性炭電極中のリチウム含有量をバリアンインスツルメントリミテッド社製Spectr AA−40P型原子吸光分光光度計により定量したところ、0.26重量%であった。また、オープンセル型キャパシターに北斗電工製充放電装置「HJ201−B」を用いて、室温下で3.4Vの電圧を1時間印加した後の正極側の電位は4.0V(対Li/Li+ )、負極側の電位は0.6V(対Li/Li+ )を示した。同様に、3.8Vを印加した場合、正極側は、4.2V(対Li/Li+ )、負極側は0.4V(対Li/Li+ )の電位を示した。
【0020】
次に、リチウムを添加した活性炭電極を用いたキャパシターの作製方法について述べる。上記の方法で得たリチウムを含有する活性炭電極2枚に1モル/リットルの濃度の(C2 5 4 NBF4 のプロピレンカーボネート+エチレンカーボネート溶液を充分に含浸させたものを各々正極、負極とし、ポリエチレンセパレータを両極間に配置して図1に示すようなコインセル型電気二重層キャパシターを得た。得た電気二重層キャパシターに、北斗電工製充放電装置「HJ201−B」を用いて、室温下で3.4Vの電圧を1時間印加した後、1.16mAで1.0Vまで定電流放電して求めた初期のエネルギー密度は、15.1Wh/lであった。同様に3.8Vを印加したときのエネルギー密度は、19.2Wh/lであった。電圧印加条件下におけるキャパシターの長期的な作動信頼性を評価するため、このキャパシターを3.4Vの電圧を印加し、500時間経過後のエネルギー密度は14.5Wh/l(−4%)となり殆ど低下はなかった。また、印加電圧3.8Vで500時間経過後のエネルギー密度は、18.2Wh/l(−5%)であり初期の密度と比べて殆ど変化はなかった。
【0021】
(実施例2)
活性炭粉末を石炭ピッチをKOH賦活して得られたもの(比表面積1550m2 /g、平均粒子径10μm)とした以外は実施例1と同様な電気二重層キャパシターを構成した。活性炭両極中のリチウム含有量は0.16重量%であった。3.4Vで充電後の正極側の電位は3.9V(対Li/Li+ )、負極極側の電位は0.5V(対Li/Li+ )を示した。
同様に、3.8Vで充電した場合、正極の電位は、4.1V(対Li/Li+ )、負極極側の電位は0.3V(対Li/Li+ )を示した。得た電気二重層キャパシターの初期のエネルギー密度は、印加電圧3.4Vの場合では10.5Wh/l、印加電圧3.8Vの場合では、13.4Wh/lを示した。500時間後のエネルギー密度は、印加電圧3.4Vの場合では10.0Wh/l(−5%)、印加電圧3.8Vの場合では、12.5Wh/l(−7%)を示した。
【0022】
(実施例3)
活性炭粉末を石炭ピッチをKOH賦活して得られたもの(比表面積550m2 /g、平均粒子径10μm)としたことと、キャパシターの電解液をトリエチルメチルアンモニウム系電解液とした以外は実施例1と同様な電気二重層キャパシターを構成した。活性炭両極中のリチウム含有量は0.20重量%であった。3.4Vで充電後の正極側の電位は3.9V(対Li/Li+ )、負極極側の電位は0.5V(対Li/Li+ )を示した。
同様に、3.8Vで充電した場合、正極の電位は、4.1V(対Li/Li+ )、負極極側の電位は0.3V(対Li/Li+ )を示した。得た電気二重層キャパシターの初期のエネルギー密度は、印加電圧3.4Vの場合では16.6Wh/l、印加電圧3.8Vの場合では、23.3Wh/lを示した。500時間後のエネルギー密度は、印加電圧3.4Vの場合では16.0Wh/l(−4%)、印加電圧3.8Vの場合では、21.5Wh/l(−8%)を示した。
【0023】
(比較例1)
リチウム極と活性炭極の短絡処理を28時間行った以外は実施例1と同様な電気二重層キャパシターを構成した。活性炭両極中のリチウム含有量は2.3重量%であった。得た電気二重層キャパシターに3.4V及び3.8Vの電圧を印加したところ1時間以内に電圧降下が起こりエネルギー密度を測定することができなかった。
【0024】
(比較例2)
リチウム極と活性炭極の短絡処理を20秒間行った以外は実施例1と同様な電気二重層キャパシターを構成した。活性炭両極中のリチウム含有量は0.005重量%であった。また、3.4Vで充電後の正極側の電位は、4.5V(対Li/Li+ )、負極側は1.1V(対Li/Li+ )を示した。3.8Vで充電した場合、正極側は4.6V(対Li/Li+ )、負極側は0.8Vを示した。
得た電気二重層キャパシターの初期のエネルギー密度は、印加電圧3.4Vの場合では10.9Wh/l、印加電圧3.8Vの場合では、13.7Wh/lを示した。500時間後のエネルギー密度は、印加電圧3.4Vの場合では6.2Wh/l(−43%)、印加電圧3.8Vの場合では、6.4Wh/l(−53%)を示し、大幅なエネルギー密度の低下が見られた。
【0025】
(比較例3)
リチウム極と活性炭極の短絡処理を行わない以外は実施例1と同様な電気二重層キャパシターを構成した。3.4Vで充電後の正極側の電位は4.6V(対Li/Li+ )、負極側は1.2V(対Li/Li+ )を示した。得た電気二重層キャパシターの初期のエネルギー密度は、印加電圧3.4Vの場合では10.8Wh/l、印加電圧3.8Vの場合では、13.7Wh/lを示した。500時間後のエネルギー密度は、印加電圧3.4Vの場合では5.5Wh/l(−49%)、印加電圧3.8Vの場合では、5.5Wh/l(−60%)を示し、大幅なエネルギー密度の低下が見られた。
【0026】
【発明の効果】
本発明により、3.35V以上の高電圧をかけることのできる電気二重層キャパシターを提供できる。
【図面の簡単な説明】
【図1】図1は本発明の実施例1で測定用に用いたコインセル型キャパシターの模式図である。
【符号の説明】
1:ステンレス製容器のケース
2:活性炭成型体
3:ガスケット
4:セパレータ
5:活性炭成型体
6:ステンレス製容器の上蓋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor having a large withstand voltage and energy density, capable of rapid charge and discharge, and excellent durability.
[0002]
[Prior art]
Electric double layer capacitors that can be charged and discharged with a large current are promising for applications such as electric vehicles and auxiliary power supplies. Therefore, it is desired to realize an electric double layer capacitor having a high energy density, capable of rapid charge / discharge, and excellent durability during high voltage application and charge / discharge cycle durability.
[0003]
The energy stored in the capacitor cell is calculated by 1/2 · C · V 2 , where C is the capacity per cell (F), and V is the voltage (V) that can be applied to the cell. Since the square of the value of the applicable voltage V is reflected in the energy, it is effective to increase the voltage applied to the capacitor to improve the energy density, but the electrolytic solution is decomposed at a large voltage.
[0004]
Therefore, the withstand voltage per unit cell is about 2.4 V in the case of a non-aqueous electrolyte electric double layer capacitor, although it depends on the type of solvent and solute of the electrolyte used in the conventional electric double layer capacitor. (Japanese Patent Laid-Open No. 7-14001), when used at a high voltage of 2.5 V or more, an increase in internal series resistance or a decrease in capacitance occurs in a short time. Therefore, it is attempted to apply a voltage of 2.5V to 2.8V by examining in detail the positive and negative electrodes, separator, electrolyte, container, and the like. For example, as a result of selecting a method for improving durability by heat-treating an electrode using activated carbon obtained by KOH activation of phenol resin, petroleum coke or the like in an inert atmosphere, and selecting raw materials, phenol resin, furan resin, In the case of polyacrylonitrile resin, the durability was slightly improved (Japanese Patent Laid-Open No. 8-162375), and a method for improving the durability by using porous aluminum for the current collector of the capacitor (Japanese Patent Laid-Open No. 8-339941). ) Etc. are known.
[0005]
In order to increase the energy density, the applied voltage is set to 3 V or more as disclosed in Japanese Patent Application Laid-Open No. HEI 8-107048. The graphite electrode in which lithium foil is brought into contact with the lithium foil is used as the negative electrode, activated carbon as the positive electrode, lithium ion. In a capacitor using an electrolytic solution containing a solute as a solute, or in Japanese Patent Application Laid-Open No. 9-232190, a capacitor using a combination of a polarizable electrode material containing activated carbon powder and a collector of stainless steel fibers in a mixed state is used. Proposed. Japanese Patent Laid-Open No. 9-205041 uses an electrolytic solution mainly composed of 2-methylsulfolane as an electrolytic solution to improve the withstand voltage.
[0006]
[Problems to be Solved by the Invention]
However, these examples were not satisfactory to any extent. For example, the above-described method of heat-treating an electrode using activated carbon obtained by KOH activation of phenol resin, petroleum coke or the like in an inert atmosphere has a problem that the initial capacitance is simultaneously reduced. Further, it can be said that the durability cannot be fundamentally improved by the methods of JP-A-8-162375 and JP-A-8-339941. As measures for improving the energy density by setting the applied voltage to 3 V or higher, Japanese Patent Application Laid-Open Nos. 9-232190 and 9-205041 disclose that the maximum applied voltage is 3.3 V and a voltage higher than that is applied. I can't. Further, the method of JP-A-8-107048 has a problem in durability because it involves an oxidation-reduction reaction between the electrode and the electrolytic solution. In addition, since the negative electrode (nonpolarizable electrode) contains lithium, the positive electrode (polarizable electrode) is already about 3 V in an uncharged state, and a voltage of up to 4.3 V was applied as in the example described. In this case, the potential change due to charging is about 1.3V. Therefore, the energy density when used as a capacitor is smaller than that of a normal capacitor.
[0007]
In the activated carbon electrode used in the conventional electric double layer capacitor, gas generation or deposition of reaction products on the polarizable electrode occurred due to continuous application of a high voltage exceeding 2.5V. This has the disadvantage of causing a significant increase in internal resistance or a decrease in capacitance.
In view of this, the present inventors have disclosed in Japanese Patent Application No. 9-183670 that the natural potential of the carbonaceous electrode is arbitrarily adjusted so that the potential during charging is substantially equal to the high potential side (oxidation side) of the electrolyte. It has been proposed that the decomposition of the electrolytic solution can be suppressed and the voltage that can be applied and the durability of the electric double layer capacitor can be improved by making the decomposition start voltage or less.
[0008]
This will be briefly described. When an electrode made of a substantially carbonaceous material in a propylene carbonate solution of a quaternary alkyl ammonium salt, which is a typical non-aqueous electrolyte, is used, the decomposition initiation voltage on the oxidation side of the electrolyte is 4.4 V (vs. Li / Li + ). On the other hand, when the natural potential of a normal activated carbon electrode is around 3 V (vs. Li / Li + ) and the applied voltage of the capacitor is 2.8 V, the polarization on the positive electrode side after charging is about 1.4 V, The potential is 4.4 V (vs. Li / Li + ) or more, and it is considered that the electrolytic solution is electrochemically decomposed. As a result, when a conventional activated carbon electrode is used, the capacity decreases due to gas generated by the decomposition of the electrolytic solution, and thus there is a problem in durability when used for a long time. When the current electric double layer capacitor is used at an applied voltage of 2.5 V or higher, the durability is low because of the relationship between the potential change of the positive and negative electrodes of the capacitor and the decomposition voltage of the electrolyte. Accordingly, in the invention of Japanese Patent Application No. 9-183670, the natural potential of the activated carbon electrode is lowered so that the potential on the positive electrode side after charging is lower than the oxidative decomposition starting voltage of the electrolytic solution. It has been found that the voltage can be greatly increased and the energy density can be improved.
[0009]
However, it has been unclear as to the optimum substance for adjusting the natural potential of the activated carbon electrode having high energy density and high durability, and the amount of addition thereof. In addition, the appropriate potential of the positive electrode and the negative electrode, in which the electrolytic solution hardly decomposes when the maximum voltage of the activated carbon electrode for a capacitor is applied, was also unclear.
[0010]
[Means for Solving the Invention]
Therefore, as a result of intensive studies to examine the above-mentioned problems, the inventors have made a radical solution different from the conventional methods of making the electrolytic solution difficult to decompose or reducing the impurities of the electrode. In an electric double layer capacitor that uses non-aqueous solution as electrolyte and activated carbon on both electrodes, and the applied voltage can be 3.35V or more, the substance that adjusts the natural potential of activated carbon electrode and the amount of addition are optimized. In addition, by setting the potential of the positive electrode and the negative electrode when the maximum voltage is applied within a range in which decomposition due to oxidation or reduction reaction of the non-aqueous electrolyte does not occur, durability at high voltage application and energy density are achieved. The inventors have found that a capacitor having a large can be obtained, and have reached the present invention. That is, an object of the present invention is to provide an electric double layer capacitor that is excellent in durability at a high voltage of 3.35 V or more and has a large energy density, and such an object is to provide Li contained in both electrodes of the activated carbon electrode. When the amount is 0.02 wt% or more and 2 wt% or less and the potential on the positive electrode side in the electrolyte when the maximum allowable applied voltage is applied to the activated carbon electrode is Li / Li + as the counter electrode, 3 When the potential on the negative electrode side in the electrolytic solution is Li / Li + as a counter electrode, it is easily achieved by setting it to 0.1 V or more and 0.8 V or less. .
The maximum allowable applied voltage refers to the maximum voltage that can be applied without irreversibly damaging the capacitor practically, such as decomposition of the electrolyte.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The greatest feature of the present invention is that, in an electric double layer capacitor using a non-aqueous solution as an electrolytic solution and using activated carbon electrodes on both electrodes, the amount of Li in both electrodes of the activated carbon electrode is set to 0.02 wt% or more and 2 wt% or less. When an electrode with a reduced voltage is used, the potential on the positive electrode side in the electrolyte when the maximum allowable voltage is applied to the activated carbon electrode is 3.5 V or more and 4.2 V or less (vs. Li / Li + ), and the negative electrode By setting the potential on the side to 0.1 V or more and 0.8 V or less (vs. Li / Li + ), the capacitor is not destroyed even when a high voltage of 3.35 V or more is applied, and the energy density is greatly improved. There is a point that can be done.
[0012]
In the present invention, the method of lowering the natural potential of the electrode by introducing lithium into the activated carbon electrode is not particularly limited, but is added to the electrode body by an electrochemical method, a chemical method, a physical method, or the like. It is possible. For example, as one of the simple methods, a lithium-containing electrode made of a very basic metal, lithium or a substance containing lithium, a carbonaceous electrode mainly composed of activated carbon, a separator, and a non-aqueous electrolyte solution In the chemical cell, lithium can be introduced into the activated carbon electrode by charging the lithium-containing electrode and the carbonaceous electrode short-circuited or using the lithium-containing electrode as a positive electrode and the carbonaceous electrode as a negative electrode. The substance containing lithium is not particularly limited. For example, lithium-containing alloys such as lithium-aluminum alloys and lithium-magnesium alloys, lithium intermetallic compounds, manganese-containing lithium oxides, cobalt oxides, nickel It is preferable to use at least one substance selected from oxides, composite oxides such as vanadium oxide, titanium sulfide containing lithium, chalcogenite such as niobium selenide and molybdenum sulfide, and carbon containing lithium. In addition to lithium, as a metal having a base potential, an alkali metal such as sodium or potassium, an alkaline earth metal such as calcium or magnesium, a rare earth metal such as yttrium or neodymium, or a substance containing these metals is lithium. Similarly, it may be used as a substance that lowers the natural potential.
[0013]
The activated carbon electrode into which lithium thus obtained is introduced is used as at least one electrode to assemble an electric double layer capacitor. Use of an activated carbon electrode into which lithium is introduced in only one of the electrodes is not preferable because the operation becomes unstable.
A small amount of lithium in the electrode can be quantified by using an ICP emission spectrometer, an atomic absorption spectrophotometer, or the like. The potential measurement of the positive electrode and the negative electrode after charging the electrode body to which lithium is added is performed using a normal electrochemical technique. In non-aqueous potential measurement, a potential reference such as a standard hydrogen electrode in an aqueous solution is not strictly defined, but in practice, an electrode such as a silver-silver chloride electrode, a platinum electrode, or a lithium electrode is used. Generally done widely. In the present invention, it can be measured by the same method.
[0014]
By making the lithium content in the electrode 0.01% by weight or more and 2% by weight or less, particularly preferably 0.2% by weight or more and 2% by weight or less, depending on the bulk density, specific surface area, surface properties, etc. of the activated carbon Even if slightly different, the potential after charging of the activated carbon electrode is 3.8 V or more and 4.2 V or less (vs. Li / Li + ) on the positive electrode side (oxidation side) and the electric potential on the negative electrode side (negative electrode side) is 0. It becomes 1 V or more and 0.8 V or less (vs. Li / Li + ), and can be adjusted to a potential range in which decomposition of the non-aqueous electrolyte solution is difficult to occur. In particular, when activated carbon having a specific surface area of about 300 to 2300 m 2 / g suitable for an electrode for capacitors is used for the electrode, the lithium content is 0.01 wt% or more and 1.50 wt% or less, more preferably 0.2 wt%. % Or more and 2% by weight or less is preferable. When the content of lithium is larger than 2% by weight, metal lithium or lithium compound may be deposited on the electrode during charge / discharge of the capacitor, resulting in a decrease in capacity.
[0015]
As the activated carbon before introducing lithium, activated carbon having a large specific surface area is preferably used in order to increase the capacity of the electric double layer capacitor. Since the specific surface area of the activated carbon is decreased is too large the bulk density energy density decreases, 200~3000m 2 / g are preferred, more preferably 300~2300m 2 / g. As raw materials for activated carbon, plant-based wood, sawdust, coconut husk, pulp waste liquor, fossil fuel-based coal, heavy petroleum oil, or pyrolyzed coal, petroleum-based pitch, and tar pitch are spun. They are used in a wide variety of applications, including fibers, synthetic polymers, phenolic resins, furan resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyimide resins, polyamide resins, liquid crystal polymers, plastic waste, and waste tires. These raw materials are activated after carbonization, and activation methods are roughly classified into gas activation and chemical activation. The gas activation method is also called physical activation while chemical activation is chemical activation, and the carbonized raw material is contacted with water vapor, carbon dioxide, oxygen, other oxidizing gases, etc. at high temperatures. Activated carbon is obtained. The chemical activation method is a method in which an activated chemical is impregnated uniformly in a raw material, heated in an inert gas atmosphere, and activated carbon is obtained by dehydration and oxidation reaction of the chemical. Examples of chemicals used include zinc chloride, phosphoric acid, sodium phosphate, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, sodium sulfate, potassium sulfate, and calcium carbonate. Various methods for producing activated carbon have been described above, but there is no particular limitation. The activated carbon has various shapes such as crushing, granulation, granule, fiber, felt, woven fabric, and sheet shape, any of which can be used in the present invention. Among these activated carbons, activated carbon obtained by chemical activation using KOH is particularly preferable because it tends to have a larger capacity than a steam activated product. More preferably, KOH activation is performed after steam activation.
[0016]
The activated carbon after the activation treatment is heat-treated at 500 to 2500 ° C., preferably 700 to 1500 ° C. in an inert atmosphere such as nitrogen, argon, helium, xenon, etc. to remove unnecessary surface functional groups, The electronic conductivity may be increased by developing the sex.
In the case of granular activated carbon, the average particle diameter is preferably 30 μm or less in terms of improving the bulk density of the electrode and reducing internal resistance.
A polarizable electrode mainly composed of activated carbon is composed of activated carbon, a conductive agent and a binder. The polarizable electrode can be formed by a conventionally known method. For example, it can be obtained by adding and mixing polytetrafluoroethylene to a mixture of activated carbon and acetylene black, followed by press molding. Moreover, it is also possible to sinter only activated carbon without using a conductive agent and a binder to form a polarizable electrode. The electrode may be a thin coating film, a sheet-shaped or plate-shaped molded body, or a plate-shaped molded body made of a composite.
[0017]
The conductive agent used for the polarizable electrode is selected from the group consisting of carbon black such as acetylene black and ketjen black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, aluminum, nickel, and other metal fibers. At least one conductive agent is preferred. Acetylene black and ketjen black are particularly preferable in that the conductivity is effectively improved in a small amount, and the blending amount with activated carbon varies depending on the bulk density of the activated carbon, but if the amount is too large, the proportion of activated carbon decreases and the capacity decreases. The weight of activated carbon is preferably 5 to 50%, particularly about 10 to 30%.
As the binder, at least one of polytetrafluoroethylene, polyvinylidene fluoride, carboxymethylcellulose, fluoroolefin copolymer crosslinked polymer, polyvinyl alcohol, polyacrylic acid, polyimide, petroleum pitch, coal pitch, and phenol resin is used. preferable.
[0018]
The current collector need only be electrochemically and chemically corrosion resistant, and is not particularly limited. For example, there are stainless steel, aluminum, titanium, and tantalum for the positive electrode, and stainless steel, nickel, copper, and the like are suitable for the negative electrode. Used for.
The solute of the non-aqueous electrolyte is not particularly limited, but is a quaternary onium cation composed of R4N + , R4P + (where R is an alkyl group represented by C n H 2n + 1 ), triethylmethylammonium ion, and the like. Further, it is preferable to use a salt in which an alkali metal cation such as lithium ion or potassium ion and an anion of BF 4 , PF 6 , ClO 4 , or CF 3 SO 3 are combined. The concentration of these salts in the non-aqueous electrolytic solution is preferably 0.1 to 2.5 mol / liter, particularly 0.3 to 2.0 mol / liter so that the characteristics of the electric double layer capacitor can be sufficiently extracted. The solute of the non-aqueous electrolyte is not particularly limited, but propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, γ-butyrolactone, γ-valerolactone, An organic solvent composed of one or more selected from N-methyloxazolidinone, dimethyl sulfoxide, and trimethyl sulfoxide is preferable. One or more kinds selected from propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, sulfolane, methyl sulfolane, and γ-butyrolactone from the viewpoint of excellent electrochemical and chemical stability and electrical conductivity The organic solvent is particularly preferred. In order to obtain a high withstand voltage, the water content in the non-aqueous electrolyte is preferably 200 ppm or less, more preferably 50 ppm or less.
[0019]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated with a specific Example, this invention is not limited by a following example.
Example 1
First, a method for adding lithium to the activated carbon electrode will be described.
Coke-based activated carbon powder containing no lithium element (specific surface area 1550 m 2 / g, average particle size 10 μm) obtained by KOH activation treatment, 80% by weight, acetylene black 10% by weight, polytetrafluoroethylene 10% by weight After kneading, a disk-shaped molded body was obtained by using a tablet molding machine manufactured by JASCO Corporation and pressure-molding with a hydraulic press so as to have a diameter of 10 mm and a thickness of 0.5 mm at a pressure of 50 kgf / cm 2 . The molded body was dried at 300 ° C. for 3 hours in a vacuum of 0.1 torr or less to obtain an electrode body. After putting a polyethylene separator made by Mitsubishi Chemical between two electrodes produced by this method, the whole is sandwiched between two platinum plates used for the current collector, and the current collector, activated carbon electrode, and separator are in good contact As described above, an open cell type capacitor was assembled by sandwiching two Teflon plates having a thickness of 4 mm and two bolt holes from the outermost side. The thus obtained open cell capacitor and a lithium electrode produced by pressure bonding a metal lithium foil to the tip of a platinum plate were immersed in a 1 mol / liter propylene carbonate solution of LiBF 4 in a beaker. Next, the lithium electrode and the activated carbon electrode were connected by a lead wire and short-circuited for about 1 hour. Then, the electrode part was disassembled and two activated carbon electrode bodies were taken out. When the lithium content in the obtained activated carbon electrode was quantified by a Spectr AA-40P atomic absorption spectrophotometer manufactured by Varian Instruments Limited, it was 0.26% by weight. Moreover, the potential on the positive electrode side after applying a voltage of 3.4 V for 1 hour at room temperature using a charge / discharge device “HJ201-B” manufactured by Hokuto Denko for an open cell capacitor was 4.0 V (vs. Li / Li). + ), The potential on the negative electrode side was 0.6 V (vs. Li / Li + ). Similarly, when 3.8 V was applied, the positive electrode side showed a potential of 4.2 V (vs. Li / Li + ), and the negative electrode side showed a potential of 0.4 V (vs. Li / Li + ).
[0020]
Next, a method for manufacturing a capacitor using an activated carbon electrode to which lithium is added will be described. Two active carbon electrodes containing lithium obtained by the above method were sufficiently impregnated with a propylene carbonate + ethylene carbonate solution of (C 2 H 5 ) 4 NBF 4 having a concentration of 1 mol / liter, respectively. Then, a polyethylene cell separator was disposed between both electrodes to obtain a coin cell type electric double layer capacitor as shown in FIG. A voltage of 3.4 V was applied to the obtained electric double layer capacitor at room temperature for 1 hour using a charge / discharge device “HJ201-B” manufactured by Hokuto Denko, and then a constant current was discharged to 1.0 V at 1.16 mA. The initial energy density determined in this way was 15.1 Wh / l. Similarly, the energy density when 3.8 V was applied was 19.2 Wh / l. In order to evaluate the long-term operational reliability of the capacitor under voltage application conditions, a voltage of 3.4 V was applied to this capacitor, and the energy density after 500 hours was almost 14.5 Wh / l (-4%). There was no decline. In addition, the energy density after lapse of 500 hours at an applied voltage of 3.8 V was 18.2 Wh / l (−5%), and there was almost no change compared with the initial density.
[0021]
(Example 2)
An electric double layer capacitor similar to that of Example 1 was configured except that the activated carbon powder was obtained by KOH activation of coal pitch (specific surface area 1550 m 2 / g, average particle diameter 10 μm). The lithium content in the activated carbon bipolar electrode was 0.16% by weight. The potential on the positive electrode side after charging at 3.4 V was 3.9 V (vs. Li / Li + ), and the potential on the negative electrode side was 0.5 V (vs. Li / Li + ).
Similarly, when charged at 3.8 V, the positive electrode potential was 4.1 V (vs. Li / Li + ), and the negative electrode side potential was 0.3 V (vs. Li / Li + ). The initial energy density of the obtained electric double layer capacitor was 10.5 Wh / l when the applied voltage was 3.4 V, and 13.4 Wh / l when the applied voltage was 3.8 V. The energy density after 500 hours was 10.0 Wh / l (-5%) when the applied voltage was 3.4 V, and 12.5 Wh / l (-7%) when the applied voltage was 3.8 V.
[0022]
Example 3
Example 1 except that the activated carbon powder was obtained by KOH activation of coal pitch (specific surface area 550 m 2 / g, average particle diameter 10 μm) and that the electrolytic solution of the capacitor was a triethylmethylammonium electrolytic solution The same electric double layer capacitor was constructed. The lithium content in the activated carbon bipolar electrode was 0.20% by weight. The potential on the positive electrode side after charging at 3.4 V was 3.9 V (vs. Li / Li + ), and the potential on the negative electrode side was 0.5 V (vs. Li / Li + ).
Similarly, when charged at 3.8 V, the positive electrode potential was 4.1 V (vs. Li / Li + ), and the negative electrode side potential was 0.3 V (vs. Li / Li + ). The initial energy density of the obtained electric double layer capacitor was 16.6 Wh / l when the applied voltage was 3.4 V, and 23.3 Wh / l when the applied voltage was 3.8 V. The energy density after 500 hours was 16.0 Wh / l (−4%) when the applied voltage was 3.4 V, and 21.5 Wh / l (−8%) when the applied voltage was 3.8 V.
[0023]
(Comparative Example 1)
An electric double layer capacitor similar to that of Example 1 was configured except that the short-circuit treatment of the lithium electrode and the activated carbon electrode was performed for 28 hours. The lithium content in the activated carbon bipolar electrode was 2.3% by weight. When voltages of 3.4 V and 3.8 V were applied to the obtained electric double layer capacitor, a voltage drop occurred within 1 hour, and the energy density could not be measured.
[0024]
(Comparative Example 2)
An electric double layer capacitor similar to that of Example 1 was configured except that a short-circuit treatment between the lithium electrode and the activated carbon electrode was performed for 20 seconds. The lithium content in the activated carbon bipolar electrode was 0.005% by weight. The potential on the positive electrode side after charging at 3.4 V was 4.5 V (vs. Li / Li + ), and the negative electrode side was 1.1 V (vs. Li / Li + ). When charged at 3.8 V, the positive electrode side showed 4.6 V (vs. Li / Li + ) and the negative electrode side showed 0.8 V.
The initial energy density of the obtained electric double layer capacitor was 10.9 Wh / l when the applied voltage was 3.4 V, and 13.7 Wh / l when the applied voltage was 3.8 V. The energy density after 500 hours is 6.2 Wh / l (−43%) when the applied voltage is 3.4 V, and 6.4 Wh / l (−53%) when the applied voltage is 3.8 V. A significant decrease in energy density was observed.
[0025]
(Comparative Example 3)
An electric double layer capacitor similar to that of Example 1 was configured except that the short-circuit treatment between the lithium electrode and the activated carbon electrode was not performed. The potential on the positive electrode side after charging at 3.4 V was 4.6 V (vs. Li / Li + ), and the negative electrode side was 1.2 V (vs. Li / Li + ). The initial energy density of the obtained electric double layer capacitor was 10.8 Wh / l when the applied voltage was 3.4 V, and 13.7 Wh / l when the applied voltage was 3.8 V. The energy density after 500 hours is 5.5 Wh / l (−49%) when the applied voltage is 3.4 V, and 5.5 Wh / l (−60%) when the applied voltage is 3.8 V. A significant decrease in energy density was observed.
[0026]
【The invention's effect】
According to the present invention, an electric double layer capacitor capable of applying a high voltage of 3.35 V or more can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a coin cell type capacitor used for measurement in Example 1 of the present invention.
[Explanation of symbols]
1: Stainless steel container case 2: Activated carbon molded body 3: Gasket 4: Separator 5: Activated carbon molded body 6: Upper cover of stainless steel container

Claims (5)

非水系溶液を電解液とし、3.35V以上の電圧を印加して充電する電気二重層キャパシターであって、0.16重量%以上2重量%以下のリチウムを含有する活性炭を用いて形成した活性炭電極を両極に有していることを特徴とする電気二重層キャパシター。 An activated carbon formed by using an activated carbon containing lithium of 0.16 wt% or more and 2 wt% or less, which is an electric double layer capacitor charged with a non-aqueous solution as an electrolyte and applying a voltage of 3.35 V or more An electric double layer capacitor having electrodes on both electrodes . 極側の電位が3.5V以上4.2V以下負極側電位が0.1V以上0.8V以下(但し、電位はいずれもLi/Li + を対極とする値である)となるように
充電するものであることを特徴とする請求項1記載の電気二重層キャパシター。
The potential on the positive electrode side is 3.5 V or more and 4.2 V or less , and the potential on the negative electrode side is 0.1 V or more and 0.8 V or less (however, each potential is a value having Li / Li + as a counter electrode). like
The electric double layer capacitor according to claim 1, wherein the electric double layer capacitor is charged .
活性炭電極が0.2重量%以上のリチウムを含有する活性炭を用いて形成したものであることを特徴とする請求項1又は2記載の電気二重層キャパシター。 3. The electric double layer capacitor according to claim 1, wherein the activated carbon electrode is formed by using activated carbon containing 0.2% by weight or more of lithium . 非水系溶液を電解液とし、0.16重量%以上のリチウムを含有する活性炭を用いて形成した活性炭電極を両極に有している電気二重層キャパシターに、3.35V以上の電圧を印加して充電することを特徴とする電気二重層キャパシターの充電方法。A voltage of 3.35 V or more was applied to an electric double layer capacitor having a non-aqueous solution as an electrolyte and an activated carbon electrode formed on both electrodes using activated carbon containing 0.16 wt% or more of lithium. Charging method of electric double layer capacitor characterized by charging. 正極側の電位が3.5V以上4.2V以下、負極側の電位が0.1V以上0.8V以下(但し、電位はいずれもLi/LiThe potential on the positive electrode side is 3.5 V or more and 4.2 V or less, and the potential on the negative electrode side is 0.1 V or more and 0.8 V or less. ++ を対極とする値である)となるようにTo be the opposite electrode)
充電することを特徴とする請求項4記載の電気二重層キャパシターの充電方法。5. The method for charging an electric double layer capacitor according to claim 4, wherein charging is performed.
JP30191397A 1997-07-09 1997-11-04 Electric double layer capacitor Expired - Fee Related JP3812098B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30191397A JP3812098B2 (en) 1997-11-04 1997-11-04 Electric double layer capacitor
EP98112660A EP0890963A3 (en) 1997-07-09 1998-07-08 Electric double-layer capacitor
US09/111,765 US6094338A (en) 1997-07-09 1998-07-08 Electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30191397A JP3812098B2 (en) 1997-11-04 1997-11-04 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH11145009A JPH11145009A (en) 1999-05-28
JP3812098B2 true JP3812098B2 (en) 2006-08-23

Family

ID=17902628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30191397A Expired - Fee Related JP3812098B2 (en) 1997-07-09 1997-11-04 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3812098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106853967A (en) * 2008-12-15 2017-06-16 康宁股份有限公司 Method for forming the absorbent charcoal material of high-energy density super capacitor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436121B2 (en) * 2003-12-10 2010-03-24 イーメックス株式会社 Power storage device and method for manufacturing power storage device
JP4593379B2 (en) * 2005-06-17 2010-12-08 三菱電機株式会社 Electric double layer capacitor
JP4802868B2 (en) * 2006-05-31 2011-10-26 パナソニック株式会社 Electrochemical capacitor and manufacturing method thereof
JP2008117891A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Electrochemical energy accumulation device
JP5007595B2 (en) * 2007-03-30 2012-08-22 日本ケミコン株式会社 Method for manufacturing electrode for electric double layer capacitor
JP2009158532A (en) * 2007-12-25 2009-07-16 Mazda Motor Corp Carbonaceous electrode material and electric storage device using the same
JP2010050125A (en) * 2008-08-19 2010-03-04 Otsuka Chem Co Ltd Electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106853967A (en) * 2008-12-15 2017-06-16 康宁股份有限公司 Method for forming the absorbent charcoal material of high-energy density super capacitor

Also Published As

Publication number Publication date
JPH11145009A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
US6094338A (en) Electric double-layer capacitor
US6414837B1 (en) Electrochemical capacitor
JP3800799B2 (en) Electric double layer capacitor
US8107223B2 (en) Asymmetric electrochemical supercapacitor and method of manufacture thereof
JP4202334B2 (en) Electrochemical devices
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
JP4618929B2 (en) Activated carbon for electric double layer capacitors
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
JPH097896A (en) Electric double-layer capacitor
JPWO2008088050A1 (en) Electricity storage element
JP2009205918A (en) Power storage device
JP3812098B2 (en) Electric double layer capacitor
JP4527821B2 (en) Electrochemical capacitor
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP3837866B2 (en) Electric double layer capacitor
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2000208372A (en) Electrolytic solution and electric double-layer capacitor using the same
JP3800810B2 (en) Electric double layer capacitor
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JPH11307404A (en) Electric double layer capacitor and its manufacture, ana active carbon for positive electrode
JP3807854B2 (en) Electric double layer capacitor
JPH08162375A (en) Electrical double-layer capacitor and manufacture of polarizable electrode used therefor
JP4066506B2 (en) A method for producing a carbonaceous material.
JP3837880B2 (en) Electric double layer capacitor
JP5184013B2 (en) Electrolyte for electric double layer capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees