Nothing Special   »   [go: up one dir, main page]

JP3806320B2 - Method for producing polytrimethylene terephthalate short fiber - Google Patents

Method for producing polytrimethylene terephthalate short fiber Download PDF

Info

Publication number
JP3806320B2
JP3806320B2 JP2001225647A JP2001225647A JP3806320B2 JP 3806320 B2 JP3806320 B2 JP 3806320B2 JP 2001225647 A JP2001225647 A JP 2001225647A JP 2001225647 A JP2001225647 A JP 2001225647A JP 3806320 B2 JP3806320 B2 JP 3806320B2
Authority
JP
Japan
Prior art keywords
polytrimethylene terephthalate
polyester
polymer
fiber
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001225647A
Other languages
Japanese (ja)
Other versions
JP2003041435A (en
Inventor
敏弘 山田
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2001225647A priority Critical patent/JP3806320B2/en
Publication of JP2003041435A publication Critical patent/JP2003041435A/en
Application granted granted Critical
Publication of JP3806320B2 publication Critical patent/JP3806320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、三次元捲縮を有するポリトリメチレンテレフタレート系ポリエステル短繊維の製造方法に関する。
【0002】
【従来の技術】
ポリトリメチレンテレフタレート系ポリエステル短繊維はポリエステル本来の特性である優れた寸法安定性、耐光性、低吸湿性、熱セット性を維持し、かつ低弾性率、弾性回復率および易染性に優れた特性を持っており、詰綿、不織布、紡績糸織物等への実用化を目指して、様々な角度よりポリトリメチレンテレフタレート系ポリエステル短繊維製造技術が検討されている。
【0003】
たとえば、特公昭49−21256号公報には繊維屈曲復元性を改善したポリトリメチレンテレフタレート系ポリエステル短繊維の技術が開示されている。また、特開平11−189938号公報には伸張回復率、弾性回復率を改善したポリトリメチレンテレフタレート系ポリエステル短繊維の技術が開示されている。しかしながら、このような従来ポリエチレンテレフタレート短繊維を製造する方法および条件でポリトリメチレンテレフタレート系ポリエステル短繊維を製造しても、その捲縮性能は平面的な、いわゆる二次元捲縮にとどまり、詰綿等で要求される三次元捲縮は得られない。
【0004】
また、米国特許第3,681,188号には異方冷却、延伸後定長下アニーリングおよび熱弛緩処理により製造した三次元捲縮をもつポリトリメチレンテレフタレート系ポリエステル繊維が開示されている。しかしながら、このような従来ポリエチレンテレフタレート繊維で用いられている異方冷却条件下では、吐出されたポリトリメチレンテレフタレート系ポリエステルポリマー流に充分な異方冷却効果を付与することができず、得られたポリトリメチレンテレフタレート系ポリエステル繊維には充分な三次元捲縮は発現しない。一方、ポリエチレンテレフタレートと同様な異方冷却効果を得るためには、ポリトリメチレンテレフタレート系ポリエステル溶融時の温度を大幅に低下させる、冷却風を大幅に増量する、あるいは吐出ポリマー流を冷却板に直接接触させる等の操作が必要であり、このような方法においては、紡糸工程での断糸多発あるいは生産性の低い低紡糸速度領域での生産しかできないなどの問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、優れた三次元捲縮を有するポリトリメチレンテレフタレート系ポリエステル短繊維を安定して製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、ポリトリメチレンテレフタレート系ポリエステルにポリ乳酸を主成分とするポリエステルを1〜10重量%の割合で混合後溶融あるいは溶融後混合し、中空形成性吐出孔を有する紡糸口金より吐出し、異方冷却を施し、紡糸引き取りした後、熱処理することによって、優れた三次元捲縮を有するポリトリメチレンテレフタレート系ポリエステル短繊維を安定して製造できることを見出した。
【0007】
【発明の実施の形態】
本発明でいうポリトリメチレンテレフタレート系ポリエステルは、トリメチレンテレフタレート単位を主たる繰り返し単位とするポリエステルであって、本発明の目的を阻害しない範囲内で、例えば酸成分を基準として15モル%以下、好ましくは5モル%以下で第三成分を共重合したポリエステルであっても良い。
【0008】
好ましく用いられる第三成分としては、例えば、イソフタル酸、コハク酸、アジピン酸、2,6−ナフタレンジカルボン酸、金属スルホイソフタル酸等の酸成分や、1,4−ブタンジオール、1,6−ヘキサンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール等のグリコール成分など、各種のものを用いることができ、紡糸安定性などを考慮して適宜選択すれば良い。なお、ポリトリメチレンテレフタレート系ポリエステルの固有粘度(オルソ−クロロフェノールを溶媒として使用し温度35℃で測定)は0.5〜1.8の範囲のものであれば良い。
【0009】
また、必要に応じて、各種の添加剤、例えば、艶消し剤、熱安定剤、消泡剤、整色剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、蛍光増白剤、着色顔料などを添加したポリトリメチレンテレフタレート系ポリエステルであっても良い。
【0010】
本発明に用いるポリ乳酸を主成分とするポリエステルとは、乳酸を主たる繰り返し単位とするポリエステルをいい、L−乳酸及び/又はD−乳酸成分が50重量%以上の重合体であり、ポリL−乳酸ホモポリマー、ポリD−乳酸ホモポリマー、L−乳酸/D−乳酸共重合ポリマー及びそれらに50%以下の第2又は第3成分を共重合及び/又は混合した物を包含する。共重合成分としては、例えばエチレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオールなどのジオール、コハク酸、アジピン酸、セバシン酸などのジカルボン酸、ヒドロキシアルキルカルボン酸、ピバロラクトン、カプロラクトンなどの脂肪族ラクトン、ポリエチレングリコールなどが挙げられる。なお、分子量は100000〜300000の範囲ものが好ましい。
【0011】
本発明では先ず、紡糸口金から吐出する以前の工程で、ポリトリメチレンテレフタレート系ポリエステルとポリ乳酸を主成分とするポリエステル(以下ポリマーBと称する)とを混合することが重要である。ポリトリメチレンテレフタレート系ポリエステルとポリマーBとの混合は、溶融工程以前でお互いに固体の状態で混合しても良いし、別途溶融した後溶融体同士を合流させても良い。
【0012】
本発明者等は、ポリマーBを含んだ溶融ポリトリメチレンテレフタレート系ポリエステルポリマー流では、断面方向に非対称な冷却効果、すなわち異方冷却効果が顕著に発現することを見出した。
【0013】
すなわち、ポリマーBを1〜10重量%、より好ましくは4〜8重量%含み、中空形成性吐出孔を有する紡糸口金から吐出されたポリトリメチレンテレフタレート系ポリエステルポリマー流に対し、該ポリマー流の進行方向にほぼ垂直な方向から冷却風を吹き当てると、冷却・固化後のポリトリメチレンテレフタレート系ポリエステル繊維断面に顕著な構造異方性が生じ、熱処理後優れた三次元捲縮が発現する。ポリマーBの混合割合が10%を超えると、紡糸時曳糸性が悪くなり断糸が多発する。ポリマーBの混合割合が1%未満の場合は、異方冷却効果が充分に発現しない。また、ポリマーBの混合割合が1%未満の場合に、異方冷却効果を充分に発現させるためにはポリマー溶融温度を極端に下げたり、冷却風の送風速度を大幅に上げたりする必要があり、紡糸断糸が多発し安定な紡糸運転が不可能となる。
【0014】
該ポリマー流が異方冷却される時は、その内部に空隙が存在する、いわゆる中空構造となっていなければならない。空隙が存在しない中実構造のポリマー流では、ポリマーBを含んでいても異方冷却効果が充分に発現しない。なお、中空率(紡糸引き取りされた延伸前のポリトリメチレンテレフタレート系ポリエステル繊維の断面写真で測定する)が10〜50%、より好ましくは20〜40%であるとより顕著な異方冷却効果が発現する。中空率が50%を超えると紡糸断糸の発生が多くなったり、繊維の割れが発生し易い傾向が認められるので、好ましくない。なお、ポリマーBの混合割合が1%未満の場合には中空率を大きくすることが極めて難しくなる。
【0015】
繊維の断面および中空の形状は円形、三角等の多角形であっても良いが、円形が紡糸口金の作成上また運転安定性上最も好ましい。
【0016】
異方冷却・固化され、引き取りされた未延伸ポリトリメチレンテレフタレート系ポリエステル繊維は適当な繊度の未延伸トウとして引き揃えられる。次いで、温水等通常の方法で延伸され、弛緩熱処理を施されることにより、三次元捲縮が発現する。その後、用途に応じて20〜150mmの繊維長にカットされポリトリメチレンテレフタレート系ポリエステル短繊維となる。
【0017】
【実施例】
次に、実施例により本発明を具体的に説明する。なお、実施例における各項目は次の方法で測定した。
【0018】
1)固有粘度
オルソクロロフェノールを溶媒として、35℃の温度でウベローデ粘度管にて測定した。
【0019】
2)圧縮嵩
三次元捲縮を表す特性として圧縮嵩を以下の方法で測定した。
短繊維をカードに通して作成されたウェブを20cm四方の広さに切り取り、重ねて重さ40gのサンプル嵩を作成する。該サンプル嵩を温度18℃、相対湿度60%の雰囲気にて2時間放置した後、圧縮試験機にて11.8kPaの荷重を10分間掛け、除重した。次いで、温度18℃、相対湿度60%の雰囲気にて1.5時間放置した後、0.98kPaの荷重を掛けた時のサンプル嵩の高さを測定し、次の計算式によって求めた値を圧縮嵩とした。
圧縮嵩=測定値(cm)×サンプルの負荷面積(cm2)÷サンプルの重量(g)
なお、圧縮嵩の値が高いほど三次元捲縮は優れていることを示す。
【0020】
3)紡糸断糸
7時間の連続紡糸を行い、その間の断糸回数を記録した。
【0021】
4)中空率
紡糸引き取り後の未延伸トウの切断面を写真に撮り、20個の断面について中空部と単繊維断面の面積を測定し、単繊維断面の面積に対する中空部の面積百分率(%)の平均値を中空率とした。
【0022】
[実施例1]
固有粘度0.95のポリトリメチレンテレフタレートチップに、ポリマーBとして(株)島津製作所製の「ラクティ#9020」チップ(ポリ乳酸、重量平均分子量200000、融点175℃)を6重量%均一に混合した混合体を、145℃で7時間乾燥した後、250℃で溶融し、図1に示す形状で、表1に示す寸法の吐出孔を210個穿設した紡糸口金より吐出量400g/分で吐出し、口金面下2〜15cmの位置で25℃の冷却用空気を1.9m/秒の流速でポリマー流の片側から糸条の進行方向に垂直な角度で吹き当て、1100m/分の速度で紡糸引き取りし未延伸ポリトリメチレンテレフタレート繊維を得た。この未延伸ポリトリメチレンテレフタレート繊維の中空率は29%であった。次いで、得られた未延伸繊維を50万デシテックスのトウに引き揃えた後、第1段延伸温度55℃、第2段延伸温度90℃で2.35倍に温水延伸した。この延伸糸を135℃で弛緩熱収縮処理を施して、64mmの繊維長にカットし、繊度12デシテックスの捲縮綿を得た。製造条件および結果を表1に示す。
【0023】
[比較例1]
ポリマーB(ポリ乳酸ポリマー「ラクティ#9020」)の混合量を表1に示すように変更した以外は、実施例1と同様に乾燥、溶融、紡糸および延伸熱処理して、繊度12デシテックスの捲縮綿を得た。製造条件および結果を表1に示す。
【0024】
[実施例2〜3、及び、比較例2]
ポリマーB(ポリ乳酸ポリマー「ラクティ#9020」)の混合量、ポリマー溶融温度、冷却風速度および紡糸口金吐出孔の寸法とを表1に示すように変更した以外は、実施例1と同様に乾燥、溶融、紡糸および延伸熱処理して、繊度12デシテックスの捲縮綿を得た。製造条件および結果を表1に示す。
【0025】
[比較例3]
吐出孔径0.30mm、ランド長0.50mmの中実孔形成用円形吐出孔を210個穿設した紡糸口金を用い、冷却風速度を2.5m/秒とする以外は実施例1と同様に乾燥、溶融、紡糸および延伸熱処理して、繊度12デシテックスの捲縮綿を得た。製造条件および結果を表1に示す。なお、この条件で製造された捲縮綿は捲縮不足のためカードを通過せず、圧縮嵩測定用のサンプリングは不可であり、本条件では三次元捲縮はほとんど発現していないと判定した。
【0026】
【表1】

Figure 0003806320
【0027】
【発明の効果】
本発明によれば、通常のポリマー溶融温度および冷却風送風条件のもとで、優れた三次元捲縮を有するポリトリメチレンテレフタレート系ポリエステル短繊維を安定して製造することが出来る。
【図面の簡単な説明】
【図1】本発明に用いる紡糸口金の吐出孔形状の一実施態様を示した模式図。
【符号の説明】
W :吐出孔円弧スリット幅
D :吐出孔ピッチ円周直径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing polytrimethylene terephthalate polyester short fibers having three-dimensional crimps.
[0002]
[Prior art]
Polytrimethylene terephthalate polyester short fibers maintain the excellent dimensional stability, light resistance, low moisture absorption, and heat setting properties that are inherent to polyester, and are excellent in low elastic modulus, elastic recovery rate, and easy dyeability. The technology for producing polytrimethylene terephthalate-based polyester short fibers has been studied from various angles with the aim of putting them into practical use for stuffed cotton, non-woven fabrics, spun yarn fabrics and the like.
[0003]
For example, Japanese Patent Publication No. 49-21256 discloses a technique of polytrimethylene terephthalate polyester short fibers with improved fiber bending recovery. Japanese Patent Application Laid-Open No. 11-189938 discloses a technique of polytrimethylene terephthalate polyester short fibers having improved stretch recovery rate and elastic recovery rate. However, even if polytrimethylene terephthalate polyester short fibers are produced by the conventional method and conditions for producing polyethylene terephthalate short fibers, the crimping performance remains flat, so-called two-dimensional crimps, The three-dimensional crimp required by the above cannot be obtained.
[0004]
U.S. Pat. No. 3,681,188 discloses polytrimethylene terephthalate-based polyester fibers having three-dimensional crimps produced by anisotropic cooling, annealing after stretching at a constant length, and thermal relaxation treatment. However, under the anisotropic cooling conditions used in such conventional polyethylene terephthalate fibers, a sufficient anisotropic cooling effect could not be imparted to the discharged polytrimethylene terephthalate-based polyester polymer stream, and thus obtained. The polytrimethylene terephthalate polyester fiber does not exhibit sufficient three-dimensional crimp. On the other hand, in order to obtain an anisotropic cooling effect similar to that of polyethylene terephthalate, the temperature at the time of melting the polytrimethylene terephthalate polyester is greatly reduced, the cooling air is greatly increased, or the discharged polymer flow is directly applied to the cooling plate. Operation such as contact is necessary, and in such a method, there are problems such as frequent occurrence of yarn breakage in the spinning process or production only in a low spinning speed region where productivity is low.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for stably producing polytrimethylene terephthalate polyester short fibers having excellent three-dimensional crimps.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the inventors have mixed polytrimethylene terephthalate-based polyester with polylactic acid as a main component in a proportion of 1 to 10% by weight, and then melted or mixed after melting. Stable production of polytrimethylene terephthalate polyester short fibers with excellent three-dimensional crimping by discharging from a spinneret with hollow-forming discharge holes, anisotropic cooling, spinning take-off, and heat treatment I found out that I can do it.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The polytrimethylene terephthalate-based polyester referred to in the present invention is a polyester having a trimethylene terephthalate unit as a main repeating unit, and is within a range that does not impair the object of the present invention, for example, 15 mol% or less based on the acid component, preferably May be a polyester copolymerized with 5 mol% or less of the third component.
[0008]
As the third component preferably used, for example, acid components such as isophthalic acid, succinic acid, adipic acid, 2,6-naphthalenedicarboxylic acid, metal sulfoisophthalic acid, 1,4-butanediol, 1,6-hexane Various components such as glycol components such as diol, cyclohexanediol, and cyclohexanedimethanol can be used, and may be appropriately selected in consideration of spinning stability and the like. The intrinsic viscosity of polytrimethylene terephthalate polyester (measured at a temperature of 35 ° C. using ortho-chlorophenol as a solvent) may be in the range of 0.5 to 1.8.
[0009]
If necessary, various additives such as matting agents, heat stabilizers, antifoaming agents, color modifiers, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, fluorescent whitening agents, Polytrimethylene terephthalate-based polyester to which a coloring pigment or the like is added may be used.
[0010]
The polyester mainly composed of polylactic acid used in the present invention refers to a polyester having lactic acid as a main repeating unit, and is a polymer having an L-lactic acid and / or D-lactic acid component of 50% by weight or more. It includes a lactic acid homopolymer, a poly D-lactic acid homopolymer, an L-lactic acid / D-lactic acid copolymer, and a product obtained by copolymerizing and / or mixing 50% or less of the second or third component. Examples of the copolymer component include diols such as ethylene glycol, butanediol, hexanediol, octanediol, and decanediol, dicarboxylic acids such as succinic acid, adipic acid, and sebacic acid, and aliphatics such as hydroxyalkylcarboxylic acid, pivalolactone, and caprolactone. Examples include lactone and polyethylene glycol. The molecular weight is preferably in the range of 100,000 to 300,000.
[0011]
In the present invention, it is important to first mix a polytrimethylene terephthalate-based polyester and a polyester containing polylactic acid as a main component (hereinafter referred to as polymer B) in a step before discharging from the spinneret. The polytrimethylene terephthalate-based polyester and the polymer B may be mixed in a solid state before the melting step, or may be melted separately and the melts may be joined together.
[0012]
The present inventors have found that a molten polytrimethylene terephthalate-based polyester polymer stream containing polymer B exhibits a remarkable cooling effect that is asymmetric in the cross-sectional direction, that is, an anisotropic cooling effect.
[0013]
That is, the progress of the polymer flow with respect to the polytrimethylene terephthalate-based polyester polymer flow discharged from the spinneret having 1 to 10% by weight, more preferably 4 to 8% by weight of the polymer B and having the hollow-forming discharge holes. When cooling air is blown from a direction substantially perpendicular to the direction, remarkable structural anisotropy occurs in the cross-section of the polytrimethylene terephthalate-based polyester fiber after cooling and solidification, and excellent three-dimensional crimp is developed after heat treatment. When the mixing ratio of the polymer B exceeds 10%, the spinnability at the time of spinning deteriorates and the yarn breakage occurs frequently. When the mixing ratio of the polymer B is less than 1%, the anisotropic cooling effect is not sufficiently exhibited. In addition, when the mixing ratio of polymer B is less than 1%, it is necessary to extremely lower the polymer melting temperature or greatly increase the cooling air blowing speed in order to sufficiently exhibit the anisotropic cooling effect. As a result, spun yarns occur frequently, and stable spinning operation becomes impossible.
[0014]
When the polymer stream is anisotropically cooled, it must have a so-called hollow structure in which voids exist. In the solid polymer flow having no voids, the anisotropic cooling effect is not sufficiently exhibited even if the polymer B is included. In addition, when the hollow ratio (measured with a cross-sectional photograph of the polytrimethylene terephthalate-based polyester fiber taken after spinning) is 10 to 50%, more preferably 20 to 40%, a more remarkable anisotropic cooling effect is obtained. To express. When the hollow ratio exceeds 50%, the occurrence of spun yarn is increased, and the tendency for fiber breakage to be easily observed is not preferable. In addition, when the mixing ratio of the polymer B is less than 1%, it is extremely difficult to increase the hollow ratio.
[0015]
The cross section and hollow shape of the fiber may be a circle or a polygon such as a triangle, but the circle is most preferable in terms of producing the spinneret and the operational stability.
[0016]
The unstretched polytrimethylene terephthalate-based polyester fibers which have been anisotropically cooled, solidified and taken up are aligned as unstretched tows having an appropriate fineness. Next, the film is stretched by a normal method such as warm water and subjected to a relaxation heat treatment, whereby a three-dimensional crimp is developed. Then, it is cut into a fiber length of 20 to 150 mm according to the use, and becomes a polytrimethylene terephthalate polyester short fiber.
[0017]
【Example】
Next, the present invention will be described specifically by way of examples. In addition, each item in an Example was measured with the following method.
[0018]
1) Intrinsic viscosity Measured with an Ubbelohde viscosity tube at a temperature of 35 ° C. using orthochlorophenol as a solvent.
[0019]
2) Compressed bulk The compressed bulk was measured by the following method as a characteristic representing three-dimensional crimp.
A web formed by passing the short fibers through a card is cut into a 20 cm square area and stacked to create a sample bulk having a weight of 40 g. The sample bulk was allowed to stand for 2 hours in an atmosphere at a temperature of 18 ° C. and a relative humidity of 60%, and then depressurized by applying a load of 11.8 kPa for 10 minutes using a compression tester. Next, after standing for 1.5 hours in an atmosphere at a temperature of 18 ° C. and a relative humidity of 60%, the height of the sample bulk when a load of 0.98 kPa is applied is measured, and the value obtained by the following calculation formula is obtained. Compressed bulk.
Compacted bulk = measured value (cm) × sample loading area (cm 2) ÷ Sample Weight (g)
In addition, it shows that a three-dimensional crimp is excellent, so that the value of compression bulk is high.
[0020]
3) Spinning for 7 hours, continuous spinning was performed, and the number of times during which the yarn was broken was recorded.
[0021]
4) Take a photograph of the cut surface of the unstretched tow after pulling the hollow rate spinning, measure the area of the hollow part and the single fiber cross section for 20 cross sections, and the area percentage of the hollow part with respect to the area of the single fiber cross section (%) The average value was taken as the hollow ratio.
[0022]
[Example 1]
A polytrimethylene terephthalate chip having an intrinsic viscosity of 0.95 was mixed uniformly with Polymer B as “Lacty # 9020” chip (polylactic acid, weight average molecular weight 200,000, melting point 175 ° C.) manufactured by Shimadzu Corporation. The mixture was dried at 145 ° C. for 7 hours, melted at 250 ° C., and discharged at a discharge rate of 400 g / min from a spinneret having 210 discharge holes having the dimensions shown in Table 1 in the shape shown in FIG. Then, cooling air at 25 ° C. is blown at a flow rate of 1.9 m / sec at a position 2 to 15 cm below the die surface at an angle perpendicular to the direction of yarn travel from one side of the polymer flow at a speed of 1100 m / min. Spinning was taken out to obtain unstretched polytrimethylene terephthalate fibers. The hollow ratio of the unstretched polytrimethylene terephthalate fiber was 29%. Next, the obtained unstretched fibers were aligned on a 500,000 dtex tow, and then stretched warm water by 2.35 times at a first stage stretching temperature of 55 ° C. and a second stage stretching temperature of 90 ° C. The drawn yarn was subjected to a relaxation heat shrinkage treatment at 135 ° C. and cut into a fiber length of 64 mm to obtain a crimped cotton having a fineness of 12 dtex. Production conditions and results are shown in Table 1.
[0023]
[Comparative Example 1]
Except that the mixing amount of the polymer B (polylactic acid polymer “Lacty # 9020”) was changed as shown in Table 1, drying, melting, spinning, and drawing heat treatment were performed in the same manner as in Example 1 to crimp a fineness of 12 dtex. I got cotton. Production conditions and results are shown in Table 1.
[0024]
[Examples 2-3 and Comparative Example 2]
Drying was performed in the same manner as in Example 1 except that the mixing amount of polymer B (polylactic acid polymer “Lacty # 9020”), the polymer melting temperature, the cooling air speed, and the dimensions of the spinneret discharge holes were changed as shown in Table 1. Then, melted, spun and stretched heat-treated to obtain a crimped cotton having a fineness of 12 dtex. Production conditions and results are shown in Table 1.
[0025]
[Comparative Example 3]
The same as in Example 1 except that a spinneret having 210 circular discharge holes for forming solid holes with a discharge hole diameter of 0.30 mm and a land length of 0.50 mm was used and the cooling air speed was set to 2.5 m / sec. Drying, melting, spinning, and drawing heat treatment were performed to obtain crimped cotton having a fineness of 12 dtex. Production conditions and results are shown in Table 1. Note that the crimped cotton produced under these conditions does not pass through the card due to insufficient crimping, and sampling for measuring the compression bulk is impossible. Under these conditions, it was determined that almost no three-dimensional crimps were developed. .
[0026]
[Table 1]
Figure 0003806320
[0027]
【The invention's effect】
According to the present invention, polytrimethylene terephthalate polyester short fibers having excellent three-dimensional crimps can be stably produced under normal polymer melting temperature and cooling air blowing conditions.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of a discharge hole shape of a spinneret used in the present invention.
[Explanation of symbols]
W: discharge hole arc slit width D: discharge hole pitch circumferential diameter

Claims (2)

ポリトリメチレンテレフタレート系ポリエステルにポリ乳酸を主成分とするポリエステルを1〜10重量%の割合で混合後溶融あるいは溶融後混合し、中空形成性吐出孔を有する紡糸口金より吐出し、異方冷却を施し、紡糸引き取りした後、延伸し、熱処理によって捲縮を発現させるポリトリメチレンテレフタレート系ポリエステル短繊維の製造方法。Polytrimethylene terephthalate-based polyester is mixed with a polyester containing polylactic acid as a main component in a proportion of 1 to 10% by weight and then melted or mixed after melting, and discharged from a spinneret having a hollow-forming discharge hole for anisotropic cooling. A method for producing a polytrimethylene terephthalate-based polyester short fiber, which is drawn, spun and drawn, and then stretched to develop crimps by heat treatment. 紡糸引き取りされた延伸前のポリトリメチレンテレフタレート系ポリエステル繊維の中空率が10〜50%である請求項1記載のポリトリメチレンテレフタレート系ポリエステル短繊維の製造方法。The method for producing a short polytrimethylene terephthalate polyester fiber according to claim 1, wherein the hollowness of the stretched polytrimethylene terephthalate polyester fiber before stretching is 10 to 50%.
JP2001225647A 2001-07-26 2001-07-26 Method for producing polytrimethylene terephthalate short fiber Expired - Fee Related JP3806320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001225647A JP3806320B2 (en) 2001-07-26 2001-07-26 Method for producing polytrimethylene terephthalate short fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001225647A JP3806320B2 (en) 2001-07-26 2001-07-26 Method for producing polytrimethylene terephthalate short fiber

Publications (2)

Publication Number Publication Date
JP2003041435A JP2003041435A (en) 2003-02-13
JP3806320B2 true JP3806320B2 (en) 2006-08-09

Family

ID=19058605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001225647A Expired - Fee Related JP3806320B2 (en) 2001-07-26 2001-07-26 Method for producing polytrimethylene terephthalate short fiber

Country Status (1)

Country Link
JP (1) JP3806320B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129503A1 (en) 2005-12-07 2007-06-07 Kurian Joseph V Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) molded, shaped articles
US7666501B2 (en) * 2005-12-07 2010-02-23 E. I. Du Pont De Nemours And Company Poly(trimethylene terephthalate)/poly(alpha-hydroxy acid) bi-constituent filaments
JP5220220B1 (en) * 2012-08-30 2013-06-26 有限会社佐藤化成工業所 Method for producing polyester fiber sliver and cotton swab
CN108048924A (en) * 2017-12-06 2018-05-18 润益(嘉兴)新材料有限公司 A kind of acid fiber by polylactic color silk

Also Published As

Publication number Publication date
JP2003041435A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US20090035568A1 (en) Polytrimethylene terephthalate hollow composite staple fibers and process for producing same
EP2065500B1 (en) Heat-resistant non-woven fabric
JP4960908B2 (en) Polyethylene naphthalate fiber and short fiber nonwoven fabric comprising the same
JP3806320B2 (en) Method for producing polytrimethylene terephthalate short fiber
JP4574911B2 (en) Polyester-based hollow crimped fiber and method for producing the same
JP4270734B2 (en) Method for producing biodegradable fiber having bulkiness
JP2003082530A (en) Polyester-based conjugate fiber and method for producing the same
JP4943771B2 (en) Polyester staple fiber
CN113005562A (en) High-elasticity composite fiber and application thereof
JP4495874B2 (en) Split hollow polyester fiber
JPH1161561A (en) Biodegradable highly oriented undrawn yarn, and its production
JP2002061029A (en) Polyester conjugate fiber and method for producing the same
JP3845267B2 (en) Polyester fiber for hot press nonwoven fabric
JP5689626B2 (en) Wet short fiber nonwoven fabric
JP3693552B2 (en) Method for producing polyester fiber
JP2003119626A (en) Divided-type polyester conjugate fiber
JP2012112079A (en) Polyethylene naphthalate fiber and staple fiber nonwoven fabric therefrom
JPH1161560A (en) Biodegradable staple fiber and its production
KR100490790B1 (en) Method for manufacturing single component hollow fiber crimped fiber using capillary cooling device
JP2003129337A (en) Polytrimethylene terephthalate fiber and method for producing the same
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
EP1449941B1 (en) Method for producing polytrimethylene terephthalate short fiber
JPH10251919A (en) Polyester fiber and its production
JP3235868B2 (en) Core-sheath composite fiber
JP3188054B2 (en) Mixed fiber long-fiber nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees