Nothing Special   »   [go: up one dir, main page]

JP3888031B2 - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP3888031B2
JP3888031B2 JP2000163901A JP2000163901A JP3888031B2 JP 3888031 B2 JP3888031 B2 JP 3888031B2 JP 2000163901 A JP2000163901 A JP 2000163901A JP 2000163901 A JP2000163901 A JP 2000163901A JP 3888031 B2 JP3888031 B2 JP 3888031B2
Authority
JP
Japan
Prior art keywords
heat
contact
heat radiating
center
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000163901A
Other languages
Japanese (ja)
Other versions
JP2001345404A (en
Inventor
和宏 間嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000163901A priority Critical patent/JP3888031B2/en
Publication of JP2001345404A publication Critical patent/JP2001345404A/en
Application granted granted Critical
Publication of JP3888031B2 publication Critical patent/JP3888031B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電子機器に用いられる放熱器の分野に属するものである。
【0002】
【従来の技術】
図9及び図10は、従来の放熱器の構造を示す斜視図及び断面図である。これは、車載用ラジオのパワーアンプ用のIC11の放熱に用いられている放熱板12の取付構造の一例を示している。
IC11から発生する熱を周辺外気へ拡散するために、主にアルミニウムを材質とした複数の山形フィンを持つ一体構造の放熱板12が、IC11の表面に密着して装着されている。IC11と放熱板12の固着方法は、主に鉄製の固定金具13を介して2本のネジ14a、14bでIC11を放熱板12に締め付けて固着している。
【0003】
次に、放熱の動作について説明する。
IC11から発生した熱は、IC11の表面に密着した放熱板12の内部へ徐々に伝導していき、放熱板12の表面温度が次第に高くなっていく。放熱板12の表面温度が周辺の外気温よりも高くなると、熱は、主に広い表面積を持つ山形フィンの表面から輻射により周辺外気へ拡散されていく。これにより、IC11から発生する熱量と放熱板12より周辺外気へ拡散される熱量がバランスを保つことで、IC11が所定以上の高温になることを防止している。
【0004】
【発明が解決しようとする課題】
このような従来の車載用ラジオ等においては、回路基板や外装等のレイアウト設計上の制約により、IC11が常に放熱板12の中央に配置されるとは限らず、図9或いは図10に示すように、放熱板12の端の領域に片寄って配置される場合も多々発生する。
このような場合には、IC11から発生した熱は、放熱板12の全体へ均一に伝わらず、放熱板12の両端でその表面温度に大きな差が生じることになる。すなわち、発熱源であるIC11から遠ざかるほど、放熱板12の表面温度は急激に低くなってしまう。例えば、図9或いは図10に示すように、放熱板12のIC11に近い左端の領域と、IC11から離れた右端の領域の2箇所の表面温度を、各々Ta(℃)、Tb(℃)とすると、TaとTbの関係は、以下のようになる。
Ta ≫ Tb
すなわち、放熱板12のIC11に近い左端の領域の表面温度Taに比較し、IC11から離れた右端の領域の表面温度Tbは極端に低い温度となってしまう。
【0005】
このように、放熱板12の領域によってその表面温度に大きな差が生じると、周辺外気への放熱量も領域により大きな差が生じることになり、放熱板12の全表面が放熱面として最大限に機能せず、放熱板12全体としての放熱効率は非常に低いものになってしまう。
【0006】
以上のように、従来の放熱器においては、IC11の装着位置が放熱板12の中央に配置されない場合に、放熱板12の表面の温度分布が不均一となり、放熱効率が極端に低下してしまうという問題があった。
【0007】
本発明は上記のような問題点を解消するためになされたもので、発熱体の装着位置にかかわらず、放熱板の表面の温度分布が全面にわたり均一で、放熱効率の高い放熱器を得ることを目的としている。
【0008】
【課題を解決するための手段】
この発明に係る放熱器においては、中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、放熱手段と接触するよう発熱体と放熱手段の間に装着され放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段を備え、中心付近に放熱手段と熱伝導手段とが接触しないよう放熱手段と熱伝導手段との間を離して矩形状の非接触領域を形成するようにしたものである。
【0009】
また、この発明に係る放熱器においては、中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、この放熱手段と接触するよう発熱体と放熱手段との間に装着され放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段とを備え、中心付近には放熱手段と熱伝導手段とが接触しないよう放熱手段と熱伝導手段との間を離して矩形状の非接触領域を形成するとともに、中心付近に対して対称となる箇所には放熱手段と熱伝導手段とを接触させた接触領域を形成するようにしたものである。
【0010】
また、この発明に係る放熱器においては、熱伝導手段は、発熱体を固定する固定手段を一体構造にて備えるようにしたものである。
【0011】
また、この発明に係る放熱器においては、放熱手段は、アルミニウムを主成分とする材質からなり、熱伝導手段は、銅を主成分とする材質からなるようにしたものである。
【0012】
【発明の実施の形態】
実施の形態1.
図1及び図2は、この発明の実施の形態1を示す斜視図及び断面図である。
発熱体であるパワーアンプ用のIC1から発生する熱を周辺外気へ拡散するために、主にアルミニウムを材質とした複数の山形フィンを持つ一体構造の放熱手段としての放熱板2が装備されている。さらに、IC1と放熱板2の間には、放熱板2の材質よりも熱伝導率の高い材質からなる熱伝導手段としての熱伝導板3が、IC1と放熱板2の両表面に密着するように装着されている。IC1は、主に鉄製の固定金具4を介して2本のネジ5a、5bで熱伝導板3を挟んで放熱板2に締め付けて固着されている。熱伝導板3は、さらに別端で2本のネジ5c、5dにより放熱板2に締め付けて固着され、放熱板2への密着性が高められている。
【0013】
熱伝導板3の材質としては、例えば、放熱板2がアルミニウムを主成分とする材質であれば、これよりも約1.7倍の高い熱伝導率を有する銅を主成分とする材質が用いられており、このような材質の組み合わせにおいて良好な放熱効果が得られる。
【0014】
次に、放熱の動作について説明する。
IC1から発生した熱は、IC1の表面に密着し高い熱伝導率を有する熱伝導板3の内部へ急速に伝導していき、熱伝導板3の全表面温度が急速に高くなっていく。熱伝導板3の全表面温度が所定温度よりも高くなると、熱は、熱伝導板3に密着した放熱板2の内部へ徐々に伝導していき、今度は放熱板2の全表面温度が次第に高くなっていく。放熱板2の表面温度が周辺の外気温よりも高くなると、熱は、主に広い表面積を持つ山形フィンの表面から輻射により周辺外気へ拡散していく。このようにして、IC1から発生する熱量と放熱板2より拡散する熱量がバランスを保つことで、IC1が所定以上の高温になることを防止している。
【0015】
図1或いは図2において、放熱板2の表面温度の分布状態の一例を示すと次のようになる。放熱板2のIC1に近い左端の領域と、IC1から離れた右端の領域の2箇所の表面温度を、各々Ta(℃)、Tb(℃)とすると、TaとTbの関係は、以下のようになる。
Ta ≧ Tb
すなわち、放熱板2のIC1に近い左端の領域の表面温度Taに比較し、IC1から離れた右端の領域の表面温度Tbは、ほぼ等しいか若干低い温度となる。このように、IC1に直接放熱板2を密着させた場合に比べ、放熱板2の表面温度はほぼ均一に近い分布状態となり、これにより放熱効率が向上することになる。
【0016】
以上のように、実施の形態1によれば、中心から偏心した領域にあるIC1から発生した熱を周辺へ拡散する放熱板2と、IC1と放熱板2の間に装着され放熱板2の材質よりも熱伝導率の高い材質からなる熱伝導板3を備えるようにしたので、IC1の装着位置にかかわらず、放熱板2の表面の温度分布が全面にわたりほぼ均一となり、放熱効率の高い放熱器が得られる。
【0017】
また、実施の形態1によれば、IC1のパッケージが極端に小型で、接触面積が非常に狭いために、放熱板2に直接密着しても放熱板2への熱伝導が不充分となる場合でも、IC1の発生する熱が、熱伝導率の高い熱伝導板3を介してスムーズに放熱板2へ伝導されるため、良好な放熱効果が得られる。
【0018】
実施の形態2.
図3及び図4は、この発明の実施の形態2を示す斜視図及び断面図である。主な構成は実施の形態1と同様であるが、ここでは熱伝導板3が、その全面で放熱板2に密着するのではなく、非接触領域により分割された2箇所の領域で接触する場合の例を示している。
熱伝導板3は、IC1の装着された左方領域で一度放熱板2と密着している。次に、放熱板2の中心付近にて放熱板2から離れる矩形の形状により放熱板2と接触しない非接触領域を形成している。さらに、放熱板2の中心に対して先の左方領域と対称となる右方領域にて再度放熱板2と密着するように装着されている。
【0019】
熱伝導板3にこのような構造を持たすことにより、IC1から発生した熱は、熱伝導板3が放熱板2に接触する2箇所の領域より、放熱板2の内部へ伝導していくことになる。すなわち、放熱板2の中心に対して対称となる2箇所の接触領域より同時に熱が伝導することになる。これにより、放熱板2の表面の温度分布はより均一な状態となり、放熱板2全体としての放熱効率がさらに向上することになる。
【0020】
図3或いは図4において、放熱板2の表面温度の分布状態の一例を示すと次のようになる。放熱板2のIC1に近い左端の領域と、IC1から離れた右端の領域の2箇所の表面温度を、各々Ta(℃)、Tb(℃)とすると、TaとTbの関係は、以下のようになる。
Ta ≒ Tb
すなわち、放熱板2のIC1に近い左端の領域の表面温度Taと、IC1から離れた右端の領域の表面温度Tbは、ほぼ等しくなる。
このように、熱伝導板3がその全面で放熱板2に密着する場合に比べ、放熱板2の表面温度はより均一な分布状態となり、これにより放熱効率がさらに向上することになる。
【0021】
以上のように、実施の形態2によれば、熱伝導板3は、放熱板2との接触領域内において非接触領域を備えるようにしたので、IC1が放熱板2の端の領域に片寄って配置されている場合であっても、IC1から発生する熱が、熱伝導板3の非接触領域により分割された複数の接触領域を介して放熱板2へ一様に分配され、放熱板2の全表面の温度分布がより均一となり、放熱効率がさらに向上する。
【0022】
尚、実施の形態2では、熱伝導板3と放熱板2の非接触領域により分割された接触領域が2箇所の場合の例を示したが、IC1の装着位置や放熱板2の形状に応じて、3箇所や4箇所等のさらに多くの接触領域を備える様に、熱伝導板3の形状を変えても良く、この場合でも同様の効果を得ることができる。
【0023】
実施の形態3.
図5及び図6は、この発明の実施の形態3を示す斜視図及び断面図である。主な構成は実施の形態2と同様であるが、ここでは、レイアウト設計上の制約により、放熱板2の形状が分割されている場合の例を示している。
放熱板2は一体構造を保ちながら、山形フィンの形状領域が一様には形成されておらず、両端に分割されている。熱伝導板3は、分割された山形フィンの形状領域に対応して非接触領域により分割された2箇所の領域で放熱板2と密着するように装着されており、IC1から発生した熱を、この2箇所の領域から放熱板2へ伝導する。
【0024】
図5或いは図6において、放熱板2の表面温度の分布状態の一例を示すと次のようになる。放熱板2のIC1に近い左端の領域と、IC1から離れた右端の領域の2箇所の表面温度を、各々Ta(℃)、Tb(℃)とすると、TaとTbの関係は、以下のようになる。
Ta ≒ Tb
すなわち、放熱板2のIC1に近い左端の領域の表面温度Taと、IC1から離れた右端の領域の表面温度Tbは、ほぼ等しくなる。
このように、放熱板2の形状が分割されている場合でも、放熱板2の表面温度は均一な分布状態となり、これにより放熱効率が向上することになる。
【0025】
以上のように、実施の形態3によれば、放熱板2の形状が一様でない場合や分割されている場合であっても、IC1から発生する熱が、熱伝導板3の非接触領域により分割された複数の接触領域を介して放熱板2へ一様に分配されるので、放熱板2の全表面の温度分布が均一となり、放熱効率が向上する。
【0026】
尚、実施の形態3では、放熱板2として山形フィンの形状領域が2分割された形状の場合の例を示したが、3分割や4分割等のさらに多くの領域に分割された形状の場合でも、熱伝導板3に上記分割領域に対応して非接触領域により分割された複数の接触領域を形成する様な矩形形状を持たすことにより、同様の効果を得ることができる。
【0027】
実施の形態4.
図7及び図8は、この発明の実施の形態4を示す斜視図及び断面図である。ここでは、熱伝導板3がIC1を固定する固定手段を一体構造にて備える場合の例を示している。
実施の形態1から3では、IC1の固着方法として、固定金具4を介して2本のネジ5a、5bで熱伝導板3を挟んで放熱板2に締め付けて固着していた。この実施の形態4では、熱伝導板3に、IC1を挟み込む固定手段としての突起固定部を一体で形成し、この突起固定部を介して2本のネジ5a、5bでIC1を熱伝導板3並びに放熱板2に締め付けて固着するようにしている。
【0028】
以上のように、実施の形態4によれば、熱伝導板3は、IC1を固定する固定手段を一体構造にて備えるようにしたので、IC1を固定する固定金具4等の別金具が不要となり、構成部品が減り、材料費の削減ができる。
【0029】
尚、実施の形態4で示した、熱伝導板3が備える固定手段としての突起固定部の形状は一例であり、一体で形成できる他の形状であっても良く、この場合でも同様の効果が得られる。
【0030】
尚、実施の形態1から4では、IC1から発生した熱を放熱板2から周辺外気へ放熱するいわゆる空冷の場合の例について述べたが、放熱パイプによる水冷等の他の放熱方法を用いた場合に応用しても良く、この場合でも同様の効果が得られる。
【0031】
【発明の効果】
このように本発明は、以上説明したように構成されているので、以下に示すような効果がある。
【0032】
この発明に係る放熱器によれば、中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、放熱手段と接触するよう発熱体と放熱手段の間に装着され放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段を備え、中心付近に放熱手段と熱伝導手段とが接触しないよう放熱手段と熱伝導手段との間を離して矩形状の非接触領域を形成するようにしたので、発熱体から発生する熱が接触領域を介して放熱手段へ一様に分配され、放熱手段の全表面の温度分布が均一となり、放熱効率が向上するという効果がある。
【0033】
また、この発明に係る放熱器によれば、中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、この放熱手段と接触するよう発熱体と放熱手段との間に装着され放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段とを備え、中心付近には放熱手段と熱伝導手段とが接触しないよう放熱手段と熱伝導手段との間を離して矩形状の非接触領域を形成するとともに、中心付近に対して対称となる箇所には放熱手段と熱伝導手段とを接触させた接触領域を形成するようにしたので、発熱体から発生する熱が接触領域を介して放熱手段へ一様に分配され、放熱手段の全表面の温度分布が均一となり、放熱効率が向上するという効果がある。
【0034】
また、この発明に係る放熱器によれば、熱伝導手段は、発熱体を固定する固定手段を一体構造にて備えるようにしたので、発熱体を固定する別金具が不要となり、構成部品が減り、材料費の削減ができるという効果がある。
【0035】
また、この発明に係る放熱器によれば、放熱手段は、アルミニウムを主成分とする材質からなり、熱伝導手段は、銅を主成分とする材質からなるようにしたので、放熱効率の良好な放熱器が得られるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施の形態1を示す斜視図である。
【図2】 本発明の実施の形態1を示す断面図である。
【図3】 本発明の実施の形態2を示す斜視図である。
【図4】 本発明の実施の形態2を示す断面図である。
【図5】 本発明の実施の形態3を示す斜視図である。
【図6】 本発明の実施の形態3を示す断面図である。
【図7】 本発明の実施の形態4を示す斜視図である。
【図8】 本発明の実施の形態4を示す断面図である。
【図9】 従来の放熱器の構造を示す斜視図である。
【図10】 従来の放熱器の構造を示す断面図である。
【符号の説明】
1 IC、2 放熱板、3 熱伝導板、4 固定金具、5a、5b、5c、5dネジ、11 IC、12 放熱板、13 固定金具、14a、14b ネジ、Ta、Tb 表面温度(℃)
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the field of radiators used in electronic equipment.
[0002]
[Prior art]
9 and 10 are a perspective view and a sectional view showing the structure of a conventional radiator. This shows an example of the mounting structure of the heat sink 12 used for heat dissipation of the IC 11 for the power amplifier of the in-vehicle radio.
In order to diffuse the heat generated from the IC 11 to the surrounding outside air, a heat sink 12 having an integral structure having a plurality of angle fins mainly made of aluminum is attached in close contact with the surface of the IC 11. The IC 11 and the heat radiating plate 12 are fixed by mainly fastening the IC 11 to the heat radiating plate 12 with two screws 14a and 14b via an iron fixing bracket 13.
[0003]
Next, the heat radiation operation will be described.
The heat generated from the IC 11 is gradually conducted to the inside of the heat radiating plate 12 that is in close contact with the surface of the IC 11, and the surface temperature of the heat radiating plate 12 gradually increases. When the surface temperature of the heat radiating plate 12 becomes higher than the ambient outside air temperature, the heat is diffused mainly from the surface of the mountain fin having a large surface area to the surrounding ambient air by radiation. Thereby, the amount of heat generated from the IC 11 and the amount of heat diffused from the heat radiating plate 12 to the surrounding outside air are kept in balance, thereby preventing the IC 11 from being heated to a predetermined temperature or higher.
[0004]
[Problems to be solved by the invention]
In such a conventional in-vehicle radio or the like, the IC 11 is not always arranged at the center of the heat radiating plate 12 due to restrictions in layout design such as a circuit board and an exterior, as shown in FIG. 9 or FIG. In addition, there are many cases where the heat radiating plate 12 is arranged near the end region.
In such a case, the heat generated from the IC 11 is not uniformly transmitted to the entire heat radiating plate 12, and a large difference occurs in the surface temperature at both ends of the heat radiating plate 12. That is, the surface temperature of the heat radiating plate 12 rapidly decreases as the distance from the IC 11 that is a heat source increases. For example, as shown in FIG. 9 or FIG. 10, the surface temperatures of the left end region near the IC 11 of the heat sink 12 and the right end region away from the IC 11 are Ta (° C.) and Tb (° C.), respectively. Then, the relationship between Ta and Tb is as follows.
Ta >> Tb
That is, as compared with the surface temperature Ta of the left end region near the IC 11 of the heat sink 12, the surface temperature Tb of the right end region far from the IC 11 is extremely low.
[0005]
As described above, when a large difference in the surface temperature occurs depending on the region of the heat radiating plate 12, a large amount of heat radiation to the surrounding outside air also occurs depending on the region. It does not function, and the heat dissipation efficiency of the heat sink 12 as a whole is very low.
[0006]
As described above, in the conventional radiator, when the mounting position of the IC 11 is not arranged at the center of the radiator plate 12, the temperature distribution on the surface of the radiator plate 12 becomes uneven, and the heat radiation efficiency is extremely reduced. There was a problem.
[0007]
The present invention has been made to solve the above problems, and to obtain a heat radiator having a uniform temperature distribution over the entire surface of the heat sink regardless of the mounting position of the heating element and having a high heat radiation efficiency. It is an object.
[0008]
[Means for Solving the Problems]
In the radiator according to the present invention, a heat dissipating means for diffusing the heat generated from the heating element in the region that is eccentric from the center to the periphery, mounted radiator means between a heat generating body and a heat radiating means into contact with the heat dissipating means of example Bei and heat conducting means comprising a material having high thermal conductivity than the material, the heat dissipating means in the vicinity of the center and the heat conducting means and is non-rectangular apart between the radiation means and the heat conduction means so as not to contact A contact region is formed .
[0009]
In the radiator according to the invention, mounted between a heat radiation means for diffusing the heat generated from the heating element in the region that is eccentric from the center to the periphery, a heat generating body and a heat radiating means into contact with the heat dissipating means Heat conduction means made of a material having a higher thermal conductivity than that of the heat radiation means, and the heat radiation means and the heat conduction means are separated from each other in the vicinity of the center so that the heat radiation means and the heat conduction means are not in contact with each other. A non-contact area having a shape is formed, and a contact area in which the heat dissipating means and the heat conducting means are in contact with each other is formed at a position symmetrical with respect to the vicinity of the center .
[0010]
In the heat radiator according to the present invention, the heat conducting means is provided with a fixing means for fixing the heating element in an integral structure.
[0011]
In the radiator according to the present invention, the heat radiating means is made of a material mainly composed of aluminum, and the heat conducting means is made of a material mainly composed of copper.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 and 2 are a perspective view and a sectional view showing Embodiment 1 of the present invention.
In order to diffuse the heat generated from the power amplifier IC 1 which is a heating element to the surrounding outside air, a heat radiating plate 2 as a heat radiating means having a plurality of angle fins mainly made of aluminum is provided. . Further, between the IC 1 and the heat radiating plate 2, a heat conducting plate 3 as a heat conducting means made of a material having a higher thermal conductivity than the material of the heat radiating plate 2 is in close contact with both surfaces of the IC 1 and the heat radiating plate 2. It is attached to. The IC 1 is fixed by being fastened to the heat radiating plate 2 with the heat conducting plate 3 sandwiched between two screws 5a and 5b mainly through an iron fixing bracket 4. The heat conductive plate 3 is further fastened and fixed to the heat radiating plate 2 by two screws 5c and 5d at another end, and the adhesion to the heat radiating plate 2 is enhanced.
[0013]
As the material of the heat conductive plate 3, for example, if the heat radiating plate 2 is a material mainly composed of aluminum, a material mainly composed of copper having a heat conductivity approximately 1.7 times higher than this is used. In such a combination of materials, a good heat dissipation effect can be obtained.
[0014]
Next, the heat radiation operation will be described.
The heat generated from the IC 1 is rapidly conducted to the inside of the heat conductive plate 3 that is in close contact with the surface of the IC 1 and has high thermal conductivity, and the entire surface temperature of the heat conductive plate 3 is rapidly increased. When the total surface temperature of the heat conducting plate 3 becomes higher than a predetermined temperature, the heat is gradually conducted to the inside of the heat radiating plate 2 that is in close contact with the heat conducting plate 3, and this time the total surface temperature of the heat radiating plate 2 gradually increases. It gets higher. When the surface temperature of the heat radiating plate 2 becomes higher than the ambient outside air temperature, the heat diffuses mainly from the surface of the angle fin having a large surface area to the surrounding ambient air by radiation. In this way, the amount of heat generated from the IC 1 and the amount of heat diffused from the heat radiating plate 2 are kept in balance, thereby preventing the IC 1 from reaching a predetermined high temperature.
[0015]
In FIG. 1 or FIG. 2, an example of the distribution state of the surface temperature of the heat sink 2 is as follows. Assuming that the surface temperatures of the left end region near the IC 1 of the heat sink 2 and the right end region away from the IC 1 are Ta (° C.) and Tb (° C.), the relationship between Ta and Tb is as follows: become.
Ta ≧ Tb
That is, as compared with the surface temperature Ta of the left end region near the IC 1 of the heat sink 2, the surface temperature Tb of the right end region far from the IC 1 is substantially equal or slightly lower. As described above, the surface temperature of the heat radiating plate 2 becomes almost uniformly distributed as compared with the case where the heat radiating plate 2 is directly attached to the IC 1, thereby improving the heat radiating efficiency.
[0016]
As described above, according to the first embodiment, the heat radiating plate 2 that diffuses the heat generated from the IC 1 in the region eccentric from the center to the periphery, and the material of the heat radiating plate 2 that is mounted between the IC 1 and the heat radiating plate 2 Since the heat conduction plate 3 made of a material having higher heat conductivity is provided, the temperature distribution on the surface of the heat radiating plate 2 is almost uniform over the entire surface regardless of the mounting position of the IC 1, and the heat radiating device has high heat radiating efficiency. Is obtained.
[0017]
Further, according to the first embodiment, when the IC 1 package is extremely small and the contact area is very small, the heat conduction to the heat radiating plate 2 is insufficient even if it is in direct contact with the heat radiating plate 2. However, since the heat generated by the IC 1 is smoothly conducted to the heat radiating plate 2 through the heat conducting plate 3 having high thermal conductivity, a good heat radiating effect can be obtained.
[0018]
Embodiment 2. FIG.
3 and 4 are a perspective view and a sectional view showing Embodiment 2 of the present invention. The main configuration is the same as that of the first embodiment, but here, the heat conducting plate 3 is not in close contact with the heat radiating plate 2 on its entire surface, but in contact with two regions divided by a non-contact region. An example is shown.
The heat conducting plate 3 is in close contact with the heat radiating plate 2 once in the left region where the IC 1 is mounted. Next, the non-contact area | region which does not contact with the heat sink 2 is formed by the rectangular shape which leaves | separates from the heat sink 2 in the center vicinity of the heat sink 2. FIG. Further, the heat sink 2 is mounted so as to be in close contact with the heat sink 2 again in a right region symmetrical to the left region with respect to the center of the heat sink 2.
[0019]
By providing the heat conducting plate 3 with such a structure, the heat generated from the IC 1 is conducted from the two regions where the heat conducting plate 3 contacts the heat radiating plate 2 to the inside of the heat radiating plate 2. Become. That is, heat is conducted simultaneously from two contact areas that are symmetrical with respect to the center of the heat sink 2. Thereby, the temperature distribution of the surface of the heat sink 2 becomes a more uniform state, and the heat dissipation efficiency of the heat sink 2 as a whole is further improved.
[0020]
In FIG. 3 or FIG. 4, an example of the distribution state of the surface temperature of the heat sink 2 is as follows. Assuming that the surface temperatures of the left end region near the IC 1 of the heat sink 2 and the right end region away from the IC 1 are Ta (° C.) and Tb (° C.), the relationship between Ta and Tb is as follows: become.
Ta ≒ Tb
That is, the surface temperature Ta of the leftmost region near the IC1 of the heat sink 2 is substantially equal to the surface temperature Tb of the rightmost region away from the IC1.
Thus, compared with the case where the heat conductive plate 3 is in close contact with the heat radiating plate 2 over the entire surface, the surface temperature of the heat radiating plate 2 is more uniformly distributed, thereby further improving the heat radiating efficiency.
[0021]
As described above, according to the second embodiment, the heat conducting plate 3 is provided with the non-contact region in the contact region with the heat radiating plate 2, so that the IC 1 is shifted to the end region of the heat radiating plate 2. Even in the case of being arranged, the heat generated from the IC 1 is uniformly distributed to the heat radiating plate 2 through a plurality of contact regions divided by the non-contact region of the heat conducting plate 3. The temperature distribution on the entire surface becomes more uniform, further improving the heat dissipation efficiency.
[0022]
In the second embodiment, an example in which there are two contact regions divided by the non-contact region between the heat conducting plate 3 and the heat radiating plate 2 is shown. However, depending on the mounting position of the IC 1 and the shape of the heat radiating plate 2 Thus, the shape of the heat conductive plate 3 may be changed so as to have more contact areas such as three or four, and the same effect can be obtained even in this case.
[0023]
Embodiment 3 FIG.
5 and 6 are a perspective view and a sectional view showing Embodiment 3 of the present invention. The main configuration is the same as that of the second embodiment, but here, an example is shown in which the shape of the heat sink 2 is divided due to restrictions in layout design.
The heat radiating plate 2 has a monolithic shape, but the shape area of the chevron fins is not formed uniformly, but is divided at both ends. The heat conducting plate 3 is mounted so as to be in close contact with the heat radiating plate 2 in two regions divided by the non-contact region corresponding to the divided chevron fin shape region, and the heat generated from the IC 1 is Conduction is conducted from the two regions to the heat sink 2.
[0024]
In FIG. 5 or FIG. 6, an example of the distribution state of the surface temperature of the heat sink 2 is as follows. Assuming that the surface temperatures of the left end region near the IC 1 of the heat sink 2 and the right end region away from the IC 1 are Ta (° C.) and Tb (° C.), the relationship between Ta and Tb is as follows: become.
Ta ≒ Tb
That is, the surface temperature Ta of the leftmost region near the IC1 of the heat sink 2 is substantially equal to the surface temperature Tb of the rightmost region away from the IC1.
Thus, even when the shape of the heat radiating plate 2 is divided, the surface temperature of the heat radiating plate 2 is in a uniformly distributed state, thereby improving the heat radiating efficiency.
[0025]
As described above, according to the third embodiment, even when the shape of the heat radiating plate 2 is not uniform or divided, the heat generated from the IC 1 is caused by the non-contact region of the heat conducting plate 3. Since the heat is uniformly distributed to the heat sink 2 through the plurality of divided contact areas, the temperature distribution on the entire surface of the heat sink 2 is uniform, and the heat dissipation efficiency is improved.
[0026]
In the third embodiment, the example in which the shape area of the angle fin is divided into two as the heat sink 2 is shown. However, in the case of the shape divided into more areas such as three divisions or four divisions. However, the same effect can be obtained by providing the heat conducting plate 3 with a rectangular shape that forms a plurality of contact regions divided by non-contact regions corresponding to the divided regions.
[0027]
Embodiment 4 FIG.
7 and 8 are a perspective view and a sectional view showing Embodiment 4 of the present invention. Here, an example is shown in which the heat conducting plate 3 is provided with a fixing means for fixing the IC 1 in an integrated structure.
In the first to third embodiments, as a method for fixing the IC 1, the heat conduction plate 3 is sandwiched between the two screws 5 a and 5 b via the fixing bracket 4 and fastened to the heat radiating plate 2. In the fourth embodiment, a protrusion fixing portion as a fixing means for sandwiching the IC 1 is integrally formed on the heat conducting plate 3, and the IC 1 is connected to the heat conducting plate 3 with two screws 5a and 5b via the protrusion fixing portion. In addition, the heat radiating plate 2 is fastened and fixed.
[0028]
As described above, according to the fourth embodiment, the heat conducting plate 3 is provided with a fixing means for fixing the IC 1 in an integrated structure, so that a separate bracket such as the fixing bracket 4 for fixing the IC 1 is not required. , Component parts can be reduced, and material costs can be reduced.
[0029]
The shape of the protrusion fixing portion as the fixing means provided in the heat conduction plate 3 shown in the fourth embodiment is an example, and may be another shape that can be integrally formed. In this case, the same effect can be obtained. can get.
[0030]
In the first to fourth embodiments, an example of so-called air cooling in which heat generated from the IC 1 is radiated from the heat radiating plate 2 to the surrounding outside air has been described. However, when other heat radiating methods such as water cooling using a radiating pipe are used. In this case, the same effect can be obtained.
[0031]
【The invention's effect】
Since the present invention is configured as described above, the following effects are obtained.
[0032]
According to the radiator according to the present invention, it is mounted the heat generated by the heating element in an eccentric region from the center and radiating means for diffusing the surrounding, between a heat generating body and a heat radiating means into contact with the heat radiating means radiating e Bei a heat conducting means comprising a material having high thermal conductivity than the material of the unit, rectangular and the radiating unit and the heat conducting means near the center away between the radiation means and the heat conduction means so as not to contact Since the non-contact area is formed , the heat generated from the heating element is uniformly distributed to the heat dissipation means through the contact area, the temperature distribution on the entire surface of the heat dissipation means becomes uniform, and the heat dissipation efficiency is improved. effective.
[0033]
Further, according to the heat radiator according to the present invention, the heat radiating means for diffusing heat generated from the heat generating element in the region eccentric from the center to the periphery, and between the heat generating element and the heat radiating means so as to come into contact with the heat radiating means. A heat conduction means made of a material having a higher thermal conductivity than the material of the heat dissipation means, and the heat dissipation means and the heat conduction means are separated from each other so that the heat dissipation means and the heat conduction means do not contact each other near the center. A rectangular non-contact area is formed, and a contact area in which the heat dissipating means and the heat conducting means are in contact with each other is formed symmetrically with respect to the vicinity of the center. The heat is uniformly distributed to the heat radiating means through the contact region, and the temperature distribution on the entire surface of the heat radiating means becomes uniform, and the heat radiating efficiency is improved.
[0034]
Further, according to the radiator according to the present invention, the heat conducting means is provided with a fixing means for fixing the heating element in an integral structure, so that a separate bracket for fixing the heating element becomes unnecessary, and the number of components is reduced. The material cost can be reduced.
[0035]
Further, according to the radiator according to the present invention, the heat dissipation means is made of a material mainly composed of aluminum, and the heat conduction means is made of a material mainly composed of copper. There is an effect that a radiator is obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view showing Embodiment 1 of the present invention.
FIG. 3 is a perspective view showing Embodiment 2 of the present invention.
FIG. 4 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 5 is a perspective view showing Embodiment 3 of the present invention.
FIG. 6 is a cross-sectional view showing a third embodiment of the present invention.
FIG. 7 is a perspective view showing Embodiment 4 of the present invention.
FIG. 8 is a cross-sectional view showing a fourth embodiment of the present invention.
FIG. 9 is a perspective view showing the structure of a conventional radiator.
FIG. 10 is a cross-sectional view showing the structure of a conventional radiator.
[Explanation of symbols]
1 IC, 2 heat sink, 3 heat conduction plate, 4 fixing bracket, 5a, 5b, 5c, 5d screw, 11 IC, 12 heat sink, 13 fixing bracket, 14a, 14b screw, Ta, Tb surface temperature (° C)

Claims (4)

中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、この放熱手段と接触するよう前記発熱体と前記放熱手段の間に装着され前記放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段を備え、前記中心付近に前記放熱手段と前記熱伝導手段とが接触しないよう前記放熱手段と前記熱伝導手段との間を離して矩形状の非接触領域を形成したことを特徴とする放熱器。A radiating means for diffusing the heat generated from the heating element in an eccentric region from the center to the periphery, the heat than the material of said heat dissipating means is mounted between said heat dissipating means and the heating element into contact with the heat dissipating means e Bei a heat conducting means comprising a high conductivity material, the vicinity of the center in the heat dissipating means and rectangular non-away between the heat conducting means and the radiation means such that said heat conduction means are not in contact with A radiator having a contact area . 中心から偏心した領域にある発熱体から発生した熱を周辺へ拡散する放熱手段と、この放熱手段と接触するよう前記発熱体と前記放熱手段との間に装着され前記放熱手段の材質よりも熱伝導率の高い材質からなる熱伝導手段とを備え、前記中心付近には前記放熱手段と前記熱伝導手段とが接触しないよう前記放熱手段と前記熱伝導手段との間を離して矩形状の非接触領域を形成するとともに、前記中心付近に対して対称となる箇所には前記放熱手段と前記熱伝導手段とを接触させた接触領域を形成したことを特徴とする放熱器。 A heat dissipating means for diffusing heat generated from a heat generating element located in a region eccentric from the center to the periphery, and mounted between the heat generating element and the heat dissipating means so as to be in contact with the heat dissipating means. Heat conduction means made of a material having high conductivity, and the heat radiation means and the heat conduction means are spaced apart from each other in the vicinity of the center so that the heat radiation means and the heat conduction means are not in contact with each other. A radiator in which a contact region is formed, and a contact region in which the heat dissipating means and the heat conducting means are in contact with each other is formed at a location symmetrical to the vicinity of the center . 熱伝導手段は、発熱体を固定する固定手段を一体構造にて備えたことを特徴とする請求項1または請求項2に記載の放熱器。The heat radiator according to claim 1 or 2, wherein the heat conducting means includes a fixing means for fixing the heating element in an integral structure. 放熱手段は、アルミニウムを主成分とする材質からなり、熱伝導手段は、銅を主成分とする材質からなることを特徴とする請求項1乃至請求項3のいずれかに記載の放熱器。Radiating means comprises aluminum from a material whose main component, the heat transfer means, the radiator according to any one of claims 1 to 3, characterized by comprising a material containing copper as a main component.
JP2000163901A 2000-06-01 2000-06-01 Radiator Expired - Fee Related JP3888031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163901A JP3888031B2 (en) 2000-06-01 2000-06-01 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000163901A JP3888031B2 (en) 2000-06-01 2000-06-01 Radiator

Publications (2)

Publication Number Publication Date
JP2001345404A JP2001345404A (en) 2001-12-14
JP3888031B2 true JP3888031B2 (en) 2007-02-28

Family

ID=18667592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163901A Expired - Fee Related JP3888031B2 (en) 2000-06-01 2000-06-01 Radiator

Country Status (1)

Country Link
JP (1) JP3888031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909808B2 (en) * 2007-05-25 2012-04-04 株式会社日立製作所 Flat display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2001345404A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP3273505B2 (en) Heat sink provided with heat radiation fins and method of fixing heat radiation fins
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
JPH06252285A (en) Circuit board
JPH06209174A (en) Heat sink
CN110494018B (en) Optical module
JP2004228484A (en) Cooling device and electronic device
JP2004295718A (en) Liquid cooling system for information processor
JP4023054B2 (en) Electronic circuit unit
US7589962B1 (en) Apparatus for cooling a heat dissipating device located within a portable computer
JP2928236B1 (en) Heat dissipating member for heating element
JP2000269676A (en) Cooling device of electronic equipment
JP4438526B2 (en) Power component cooling system
JP3888031B2 (en) Radiator
JPS6255000A (en) Heat sink apparatus
JP3819316B2 (en) Tower type heat sink
JPH10107192A (en) Heat sink
JP4469101B2 (en) Electronic circuit device having heat dissipation structure
JP2001244669A (en) Heat dissipating structure of electronic component
CN216437821U (en) Heat sink module and solid state circuit breaker for electronic devices
JPH11312884A (en) Heat radiating structure for electronic unit
JP2000091481A (en) Power transistor case and power transistor
JPH11330747A (en) Cooling structure of electronic element
JP3711032B2 (en) Cooling structure for heat-generating electronic components
JP2813376B2 (en) Mounting board with built-in heat pipe
JP2599464B2 (en) Mounting board with built-in heat pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R151 Written notification of patent or utility model registration

Ref document number: 3888031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees