JP3886329B2 - Al-Mg-Si aluminum alloy extruded material for cutting - Google Patents
Al-Mg-Si aluminum alloy extruded material for cutting Download PDFInfo
- Publication number
- JP3886329B2 JP3886329B2 JP2000309943A JP2000309943A JP3886329B2 JP 3886329 B2 JP3886329 B2 JP 3886329B2 JP 2000309943 A JP2000309943 A JP 2000309943A JP 2000309943 A JP2000309943 A JP 2000309943A JP 3886329 B2 JP3886329 B2 JP 3886329B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- cutting
- extruded material
- charpy impact
- impact value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Extrusion Of Metal (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、製造の過程で切削加工を多用する機械部品等に適する切削用Al−Mg−Si系アルミニウム合金押出材に関する。
【0002】
【従来の技術】
従来の切削用Al−Mg−Si系アルミニウム合金は、AA6262合金(Si:0.4〜0.8%、Mg:0.8〜1.2%、Cu:0.15〜0.4%、Pb:0.4〜0.7%、Bi:0.4〜0.7%、残部Al)に代表されるように、有効添加元素としてPb、Bi、Sn等の低融点金属を含有する。これら低融点金属はアルミニウム中にほとんど固溶せず、アルミニウム合金中に粒状にミクロ偏析し、その低融点金属粒子が切削加工時の加工発熱により溶融して切粉を分断し、アルミニウム合金の切削性を向上させる。このAA6262合金は、製造の過程で切削加工、特にドリル加工が多用される機械部品、例えば自動車のアンチスキッド・ブレーキ・システムのハウジングの素材として従来より使用されている
【0003】
ところが、低融点金属が添加されたAl−Mg−Si系アルミニウム合金は、切削性が向上する反面耐食性が低下し、また、低融点金属は熱脆性を引き起こす欠点もあり、使用環境に十分な注意を払う必要があった。さらに、合金をスクラップとしてリサイクルする場合、Pb、Bi等を必要とする比較的少ない合金種にしか転用ができず、転用範囲が狭まるためにリサイクル性に不利であるという問題を有していた。
また、機械構造部品は耐食性、耐摩耗性又は装飾効果を高めるために、表面にアルマイト処理を施す場合があるが、PbやBiが添加されたアルミニウム合金の場合、表面にPbやBiが露出した箇所において酸化皮膜が形成されず、不均質で光沢のないアルマイト皮膜しか得られないという問題があった。
【0004】
【発明が解決しようとする課題】
そこで、従来切削性を向上させる目的で添加されていたPb、Bi、Snなどの低融点金属を添加せずに切削性を高めたAl−Mg−Si系アルミニウム合金押出材の開発が進められ、それは、例えば特開平9−249931号公報、特開平10−8175号公報、特開平11−189837号公報、特開平11−323472号公報等に開示されている。
本発明もその延長上に位置するものであり、切削性に優れた、切削用Al−Mg−Si系アルミニウム合金押出材を得ることを目的とする。
【0005】
【課題を解決するための手段】
上記公報に記載された発明は、Al−Mg−Si系アルミニウム合金押出材の切削性と組成及び析出組織の関係を調べ、優れた切削性を示す範囲を特定したものであるが、本発明者らは、実用的な押出性及び機械的性質を示す組成のAl−Mg−Si系アルミニウム合金押出材について、その切削性を詳しく調査する過程で、シャルピー衝撃値と切削性に一定の関係があることを見いだした。本発明は、これらの知見に基づいてなされたものである。
すなわち、本発明に係る切削用Al−Mg−Si系アルミニウム合金押出材は、Si:1.5〜7.0%、Mg:0.5〜1.0%を含有し、シャルピー衝撃値が6.0〜9.5N・m/cm2であることを特徴とする。
【0006】
【発明の実施の形態】
上記Al−Mg−Si系アルミニウム合金は、基本的に上記範囲のSi、Mg及び残部Alと不純物からなり、必要に応じてさらに、▲1▼Cu:0.1〜1.0%、▲2▼Mn、Cr、Zrの1種又は2種以上を各々0.05〜0.5%、▲3▼Ti:0.01〜0.1%、以上▲1▼〜▲3▼を単独又は2以上の適宜の組み合わせで含み得る。
本発明における組成範囲の限定理由は次の通りである。
【0007】
Si、Mg
SiとMgは共存することによりMg2Siとして析出し、強度を高める効果がある。しかし、Siが1.5%未満又はMgが0.5%未満ではその効果が得られず、一方、Siが7%を越えるとSi系化合物の生成により押出性が低下し、Mgが1.0%を越えるとMg単体の固溶強化により変形抵抗が増加し、同じく押出性が低下する。従って、Siの添加量は1.5〜7.0%、Mgの添加量は0.5〜1.0%の範囲とする。Siのより望ましい範囲は1.7〜5.0%、さらに望ましくは1.7〜3.5%であり、Mgのより望ましい範囲は0.6〜0.8%である。
【0008】
Cu
Cuは熱処理により強度を高める効果があり必要に応じて添加されるが、0.1%未満ではその効果に乏しく、一方、1.0%を越えて添加すると耐食性が低下し、また押出性も低下する。従って、Cuの添加量は0.1〜1.0%の範囲とする。より望ましくは0.2〜0.8%の範囲である。
Mn、Cr、Zr
Mn、Cr、Zrはそれぞれ固溶体化して素材の強度を高める効果があり、1種又は2種以上が必要に応じて添加されるが、それぞれ0.05%未満では充分な効果が得られず、一方、0.5%を越えて添加しても効果が飽和し、押出性も低下する。従って、各元素の添加量はそれぞれ0.05〜0.5%の範囲とする。より望ましくはそれぞれ0.15〜0.35%の範囲である。
【0009】
Ti
Tiは鋳造組織を微細化して機械的性質を安定化するため、必要に応じて添加されるが、0.01%未満ではその効果が得られず、一方、0.1%を越えて添加してもそれ以上微細化効果は向上しない。従って、Tiの添加量は0.01〜0.1%の範囲とする。
不純物
不純物のうちFeはアルミニウム合金に最も多く含まれる不純物であり、0.35%を超えて前記アルミニウム合金中に存在すると粗大な金属間化合物を晶出し、合金の機械的性質を損なう。従って、Feの含有量は0.35%以下に規制する。また、アルミニウム合金を鋳造する際には地金、添加元素の中間合金等様々な経路より不純物が混入する。混入する元素は様々であるが、Fe以外の不純物は単体で0.05%以下、総量で0.15%以下であれば前記アルミニウム合金の特性にほとんど影響を及ぼさない。従って、これらの不純物は単体で0.05%以下、総量で0.15%以下とする。なお、不純物のうちBについては、Tiの添加に伴い合金中にTiの1/5程度の量で混入するが、より望ましい範囲は0.02%以下、さらに0.01%以下が望ましい。
【0010】
シャルピー衝撃値
切削現象は、被削材が工具より受ける高速変形現象と考えることができる。一方、シャルピー衝撃値は、工具よりの切削変形に対する切りくず破断の抵抗力を示し、この値が低い方が切削歪が集中し切りくず分断性が向上する。そこで、本発明では、前記組成を有するアルミニウム合金押出材において、シャルピー衝撃値を9.5N・m/cm2以下と規定した。この値が9.5N・m/cm2を越えるようであると切削性が劣る。一方、シャルピー値が低すぎると構造材料としての信頼性に欠けることになるので、シャルピー値は6.0〜9.5N・m/cm2の範囲とする。
【0011】
【実施例】
以下、本発明の実施例について、比較例と比較して具体的に説明する。
(実施例1)
表1に示した化学組成の合金を溶解し半連続鋳造により160mm径の押出ビレットを作成し、470℃で4時間均質化熱処理を施した後、500℃の押出温度でφ30mm径に押し出し、押出中に押出材を水冷することにより焼入れを行った(プレス焼入れ)。焼入れ後の各押出材に対し室温×7daysの室温時効、及び190℃×4hr、160℃×6hr、230℃×4hr、300℃×4hrの人工時効処理を行った。これを供試材とし、引張特性、シャルピー衝撃値及び切削性を下記要領で測定した。また、押出性をみるため上記押出では押出荷重を一定(600トン)とし、その押出速度(押出材が出てくるときの速度)を計測し、各押出材の押出性を下記の要領で評価し、その結果を表2に示す。
【0012】
【表1】
【0013】
引張特性;押出方向に採取したJIS4号引張試験片を用い、JISZ2241に規定する金属材料試験方法に準じ、引張強さ、耐力、及び伸びを測定した。
シャルピー衝撃値;押出方向に採取したJIS4号衝撃試験片を用い、JISZ2242に規定する金属材料衝撃試験方法に準じ、シャルピー衝撃値を測定した。
切削性;市販の高速度鋼製の4mm径ドリルを用い、回転数1500rpm、送り速度300mm/分の条件にて切削し、ドリルへの巻き付き発生の有無を観察するとともに、切り屑分断性を調べるために切り屑100g当りの切り屑個数を測定した。
押出性;押出速度の値が5m/分より大のとき◎(優れている)、2〜5m/分のとき○(使用可能である)、1〜2m/分のとき△(やや劣る)、1m/分より小のとき×(使用に耐えない)と評価した。
【0014】
【表2】
【0015】
合金組成が適切でシャルピー衝撃値が本発明の規定の範囲内であるNo.1〜11は、いずれも優れた機械的性質及び切削性を示す。また、押出材にはむしれや焼き付き痕はなく表面性状は良好で、押出性も優れている。
これに対し、No.12〜21は組成が不適切又は熱処理が不適切であるため、いずれも何らかの特性がNo.1〜11に比べ劣っている。すなわち、No.12、14〜19はシャルピー衝撃値が9.5N・m/cm2を越えるため切り屑質量100g当りの個数が少なく(3000個以下;切り屑1つ当りの質量が大きい)、ドリルへの巻付きが起こった。また、No.13は押出性が悪く伸びが劣り、No.20、21も伸びが劣る。
なお、表2のシャルピー衝撃値と切削性(切り屑個数及び巻き付き)の関係を図1に示す。図1をみると、シャルピー衝撃値9.5N・m/cm2以下の範囲で切削性が優れている。
【0016】
【発明の効果】
本発明によれば、切り屑分断性に優れ、切り屑のドリルへの巻き付きが防止される切削用Al−Mg−Si系アルミニウム合金押出材を得ることができる。
この切削用Al−Mg−Si系アルミニウム合金押出材は、ABSのハウジンブやピストン、コンプレッサー用バルブやトルクコンバーターバルブ等のバルブ類、ハードディスク用モーターハブ、オーディオ部品のボリューム軸、ブレーキホイールシリンダーやクラッチマスターシリンダー等のシリンダー類、カメラや顕微鏡の筒材のような光学機器、その他の機械部品などに好適である。
【図面の簡単な説明】
【図1】 シャルピー衝撃値と切削性の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cutting Al—Mg—Si-based aluminum alloy extruded material suitable for machine parts and the like that frequently use cutting in the course of manufacturing.
[0002]
[Prior art]
A conventional Al-Mg-Si-based aluminum alloy for cutting is an AA6262 alloy (Si: 0.4-0.8%, Mg: 0.8-1.2%, Cu: 0.15-0.4%, As represented by Pb: 0.4 to 0.7%, Bi: 0.4 to 0.7% and the balance Al), it contains a low-melting-point metal such as Pb, Bi, or Sn as an effective additive element. These low-melting-point metals hardly dissolve in aluminum, but microsegregate in an aluminum alloy in the form of particles. The low-melting-point metal particles melt due to processing heat generated during cutting and cut off the chips, thereby cutting the aluminum alloy. Improve sexiness. This AA6262 alloy is conventionally used as a material of a machine part that is frequently used in machining, particularly drilling, for example, a housing of an automobile anti-skid brake system.
However, Al-Mg-Si based aluminum alloys to which low melting point metals have been added have improved machinability but reduced corrosion resistance, and low melting point metals have the drawback of causing thermal embrittlement, so that sufficient attention should be paid to the usage environment. Had to pay. Further, when the alloy is recycled as scrap, it can be diverted only to a relatively small number of alloy types that require Pb, Bi, etc., and the diversion range is narrowed, which is disadvantageous for recyclability.
In addition, in order to improve the corrosion resistance, wear resistance or decorative effect, mechanical structural parts may be anodized on the surface, but in the case of an aluminum alloy to which Pb and Bi are added, Pb and Bi are exposed on the surface. There was a problem that an oxide film was not formed at the location, and only a non-homogeneous and glossy alumite film was obtained.
[0004]
[Problems to be solved by the invention]
Therefore, development of an Al—Mg—Si-based aluminum alloy extruded material with improved machinability without adding a low melting point metal such as Pb, Bi, Sn, etc., which has been added for the purpose of improving machinability, This is disclosed, for example, in JP-A-9-249931, JP-A-10-8175, JP-A-11-189837, JP-A-11-323472, and the like.
The present invention is also located on the extension thereof, and an object thereof is to obtain an Al-Mg-Si-based aluminum alloy extruded material for cutting that is excellent in machinability.
[0005]
[Means for Solving the Problems]
The invention described in the above publication is a study of the relationship between the machinability, composition and precipitation structure of an Al—Mg—Si-based aluminum alloy extruded material, and specifies a range showing excellent machinability. Have a certain relationship between Charpy impact value and machinability in the process of investigating the machinability of Al-Mg-Si-based aluminum alloy extruded materials having a composition exhibiting practical extrudability and mechanical properties. I found out. The present invention has been made based on these findings.
That is, the cutting Al—Mg—Si-based aluminum alloy extruded material according to the present invention contains Si: 1.5 to 7.0%, Mg: 0.5 to 1.0%, and a Charpy impact value of 6 0.0 to 9.5 N · m / cm 2 .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The Al—Mg—Si based aluminum alloy basically consists of Si, Mg and the balance Al and impurities in the above ranges, and if necessary, (1) Cu: 0.1 to 1.0%, (2) ▼ 0.05% to 0.5% of one or more of Mn, Cr, and Zr, respectively. (3) Ti: 0.01 to 0.1%, or more of (1) to (3) alone or 2. They can be included in any appropriate combination.
The reason for limiting the composition range in the present invention is as follows.
[0007]
Si, Mg
When Si and Mg coexist, they are precipitated as Mg 2 Si and have the effect of increasing the strength. However, if the Si content is less than 1.5% or the Mg content is less than 0.5%, the effect cannot be obtained. On the other hand, if the Si content exceeds 7%, the extrudability decreases due to the formation of the Si-based compound. If it exceeds 0%, deformation resistance increases due to solid solution strengthening of Mg alone, and the extrudability also decreases. Therefore, the addition amount of Si is 1.5 to 7.0%, and the addition amount of Mg is 0.5 to 1.0%. A more desirable range of Si is 1.7 to 5.0%, more desirably 1.7 to 3.5%, and a more desirable range of Mg is 0.6 to 0.8%.
[0008]
Cu
Cu has the effect of increasing the strength by heat treatment and is added as necessary. However, if it is less than 0.1%, the effect is poor. On the other hand, if it exceeds 1.0%, the corrosion resistance decreases, and the extrudability also increases. descend. Therefore, the amount of Cu added is in the range of 0.1 to 1.0%. More desirably, it is 0.2 to 0.8% of range.
Mn, Cr, Zr
Mn, Cr, and Zr are each in the form of a solid solution to increase the strength of the material, and one or more are added as necessary, but if less than 0.05%, sufficient effects cannot be obtained. On the other hand, even if added over 0.5%, the effect is saturated and the extrudability is also lowered. Therefore, the amount of each element added is in the range of 0.05 to 0.5%. More desirably, it is in the range of 0.15 to 0.35%.
[0009]
Ti
Ti is added as necessary to refine the cast structure and stabilize the mechanical properties. However, if less than 0.01%, the effect cannot be obtained, while adding over 0.1%. However, the effect of further miniaturization is not improved. Therefore, the amount of Ti added is in the range of 0.01 to 0.1%.
Of the impurity impurities, Fe is the most abundant impurity in the aluminum alloy, and if it exceeds 0.35% in the aluminum alloy, coarse intermetallic compounds are crystallized and the mechanical properties of the alloy are impaired. Therefore, the Fe content is restricted to 0.35% or less. Further, when casting an aluminum alloy, impurities are mixed from various paths such as a metal base and an intermediate alloy of an additive element. The elements to be mixed vary, but impurities other than Fe alone are 0.05% or less, and if the total amount is 0.15% or less, the characteristics of the aluminum alloy are hardly affected. Accordingly, these impurities are 0.05% or less as a single substance, and the total amount is 0.15% or less. B in the impurity is mixed in the alloy in an amount of about 1/5 of Ti with the addition of Ti, but a more desirable range is 0.02% or less, and further preferably 0.01% or less.
[0010]
The Charpy impact value cutting phenomenon can be considered as a high-speed deformation phenomenon that a workpiece receives from a tool. On the other hand, the Charpy impact value indicates the resistance of chip breaking to cutting deformation from the tool, and the lower the value, the more the cutting strain is concentrated and the chip breaking property is improved. Therefore, in the present invention, in the aluminum alloy extruded material having the above composition, the Charpy impact value is defined as 9.5 N · m / cm 2 or less. If this value exceeds 9.5 N · m / cm 2 , the machinability is poor. On the other hand, if the Charpy value is too low, the reliability as a structural material is lacking, so the Charpy value is in the range of 6.0 to 9.5 N · m / cm 2 .
[ 0011 ]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
Example 1
An alloy with the chemical composition shown in Table 1 was melted and an extruded billet with a diameter of 160 mm was prepared by semi-continuous casting, subjected to homogenization heat treatment at 470 ° C. for 4 hours, and then extruded to a diameter of 30 mm at an extrusion temperature of 500 ° C. The extruded material was quenched by water cooling (press quenching). Each extruded material after quenching was subjected to room temperature aging at room temperature × 7 days and artificial aging treatment at 190 ° C. × 4 hr, 160 ° C. × 6 hr, 230 ° C. × 4 hr, 300 ° C. × 4 hr. Using this as a test material, the tensile properties, Charpy impact value and machinability were measured as follows. In order to check extrudability, in the above extrusion, the extrusion load is constant (600 tons), the extrusion speed (speed when the extruded material comes out) is measured, and the extrudability of each extruded material is evaluated as follows. The results are shown in Table 2.
[0012]
[Table 1]
[ 0013 ]
Tensile properties: Tensile strength, proof stress, and elongation were measured using a JIS No. 4 tensile test piece collected in the extrusion direction according to the metal material test method specified in JISZ2241.
Charpy impact value: Using a JIS No. 4 impact test specimen collected in the extrusion direction, the Charpy impact value was measured according to the metal material impact test method specified in JISZ2242.
Cutting performance: Using a commercially available 4 mm diameter drill made of high-speed steel, cutting was performed under the conditions of a rotation speed of 1500 rpm and a feed rate of 300 mm / min. Therefore, the number of chips per 100 g of chips was measured.
Extrudability: When the value of the extrusion speed is larger than 5 m / min. ◎ (excellent), when 2-5 m / min. When it was less than 1 m / min, it was evaluated as x (cannot withstand use).
[ 0014 ]
[Table 2]
[0015]
No. 1 having an appropriate alloy composition and a Charpy impact value within the specified range of the present invention. 1 to 11 all show excellent mechanical properties and machinability. In addition, the extruded material has no peeling or burn-in trace, has a good surface property, and has excellent extrudability.
In contrast, no. Nos. 12 to 21 have an inappropriate composition or an inappropriate heat treatment. It is inferior to 1-11. That is, no. Nos. 12, 14 to 19 have a Charpy impact value exceeding 9.5 N · m / cm 2 , so the number of chips per 100 g of the chip is small (3000 or less; the mass per chip is large) Attached happened. No. No. 13 has poor extrudability and poor elongation. 20 and 21 are also inferior in elongation.
In addition, the relationship between the Charpy impact value of Table 2 and machinability (the number of chips and winding) is shown in FIG. When FIG. 1 is seen, machinability is excellent in the range of Charpy impact value of 9.5 N · m / cm 2 or less.
[ 0016 ]
【The invention's effect】
According to the present invention, it is possible to obtain a cutting Al—Mg—Si-based aluminum alloy extruded material that is excellent in chip breaking property and prevents chips from being wound around a drill.
This cutting Al-Mg-Si-based aluminum alloy extrusion material is ABS housing and pistons, valves such as compressor valves and torque converter valves, hard disk motor hubs, audio parts volume shafts, brake wheel cylinders and clutch masters. It is suitable for cylinders such as cylinders, optical equipment such as camera and microscope cylinders, and other mechanical parts.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Charpy impact value and machinability.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309943A JP3886329B2 (en) | 2000-05-26 | 2000-10-10 | Al-Mg-Si aluminum alloy extruded material for cutting |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000156119 | 2000-05-26 | ||
JP2000-156119 | 2000-05-26 | ||
JP2000309943A JP3886329B2 (en) | 2000-05-26 | 2000-10-10 | Al-Mg-Si aluminum alloy extruded material for cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002047525A JP2002047525A (en) | 2002-02-15 |
JP3886329B2 true JP3886329B2 (en) | 2007-02-28 |
Family
ID=26592683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000309943A Expired - Lifetime JP3886329B2 (en) | 2000-05-26 | 2000-10-10 | Al-Mg-Si aluminum alloy extruded material for cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3886329B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5777782B2 (en) * | 2013-08-29 | 2015-09-09 | 株式会社神戸製鋼所 | Manufacturing method of extruded aluminum alloy with excellent machinability |
JP6017625B2 (en) * | 2013-08-29 | 2016-11-02 | 株式会社神戸製鋼所 | Aluminum alloy extruded material with excellent machinability |
KR101688358B1 (en) | 2014-07-31 | 2016-12-20 | 가부시키가이샤 고베 세이코쇼 | Aluminum alloy extruded material having excellent machinability and method for manufacturing same |
TWI702295B (en) * | 2019-10-17 | 2020-08-21 | 國家中山科學研究院 | A heat-resistant aluminum alloy |
-
2000
- 2000-10-10 JP JP2000309943A patent/JP3886329B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9663846B2 (en) | 2011-09-16 | 2017-05-30 | Ball Corporation | Impact extruded containers from recycled aluminum scrap |
US10584402B2 (en) | 2011-09-16 | 2020-03-10 | Ball Corporation | Aluminum alloy slug for impact extrusion |
US9517498B2 (en) | 2013-04-09 | 2016-12-13 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US9844805B2 (en) | 2013-04-09 | 2017-12-19 | Ball Corporation | Aluminum impact extruded bottle with threaded neck made from recycled aluminum and enhanced alloys |
US11459223B2 (en) | 2016-08-12 | 2022-10-04 | Ball Corporation | Methods of capping metallic bottles |
US11519057B2 (en) | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US10875684B2 (en) | 2017-02-16 | 2020-12-29 | Ball Corporation | Apparatus and methods of forming and applying roll-on pilfer proof closures on the threaded neck of metal containers |
US11185909B2 (en) | 2017-09-15 | 2021-11-30 | Ball Corporation | System and method of forming a metallic closure for a threaded container |
Also Published As
Publication number | Publication date |
---|---|
JP2002047525A (en) | 2002-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3301919B2 (en) | Aluminum alloy extruded material with excellent chip breaking performance | |
EP2664687B1 (en) | Improved free-machining wrought aluminium alloy product and manufacturing process thereof | |
US8454766B2 (en) | Extruded material of a free-cutting aluminum alloy excellent in embrittlement resistance at a high temperature | |
JP3335732B2 (en) | Hypoeutectic Al-Si alloy and casting method thereof | |
JP3886270B2 (en) | High corrosion resistance aluminum alloy with excellent machinability | |
JP3886329B2 (en) | Al-Mg-Si aluminum alloy extruded material for cutting | |
JP3846702B2 (en) | Al-Mg-Si aluminum alloy extruded material for cutting | |
JP3324093B2 (en) | Aluminum alloy material for forging for automotive parts and forged automotive parts | |
JPH07145440A (en) | Aluminum alloy forging stock | |
JP4534181B2 (en) | Aluminum alloy extruded material for machine parts with excellent strength, machinability and clinching properties | |
JP3969672B2 (en) | Aluminum alloy wrought material with excellent hot forgeability and machinability | |
JP2002047524A (en) | Aluminum alloy extrusion material for machine parts having excellent strength, machinability and clinching property | |
JP3865430B2 (en) | Heat and wear resistant magnesium alloy | |
JP3379901B2 (en) | Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same | |
JPH11152552A (en) | Method for working aluminum-zinc-silicon alloy | |
JPH07150312A (en) | Manufacture of aluminum alloy forged base stock | |
JP3504917B2 (en) | Aluminum-beryllium-silicon alloy for automotive engine moving parts and casing members | |
JPH055146A (en) | Aluminum alloy excellent in wear resistance and thermal conductivity | |
JP3453607B2 (en) | High-strength aluminum alloy extruded material with excellent chip breaking performance | |
JP4707075B2 (en) | Aluminum alloy with excellent machinability | |
JP4150995B2 (en) | Aluminum alloy extruded material with excellent corrosion resistance, strength, machinability and clinching properties | |
JP2551882B2 (en) | Aluminum alloy for forging | |
JP2002206132A (en) | Aluminum alloy extrusion material having excellent machinability and production method therefor | |
JPH09202933A (en) | High strength aluminum alloy excellent in hardenability | |
JP2023146389A (en) | Aluminum alloy extruded material for cutting work, recycling method of blazing sheet waste, and manufacturing method of aluminum alloy extruded material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061121 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3886329 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101201 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111201 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131201 Year of fee payment: 7 |