JP3885248B2 - Photocatalyst composition - Google Patents
Photocatalyst composition Download PDFInfo
- Publication number
- JP3885248B2 JP3885248B2 JP05514596A JP5514596A JP3885248B2 JP 3885248 B2 JP3885248 B2 JP 3885248B2 JP 05514596 A JP05514596 A JP 05514596A JP 5514596 A JP5514596 A JP 5514596A JP 3885248 B2 JP3885248 B2 JP 3885248B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- titanium oxide
- photocatalyst
- photocatalyst composition
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 54
- 239000000203 mixture Substances 0.000 title claims description 36
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 74
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 51
- 239000002245 particle Substances 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000010419 fine particle Substances 0.000 claims description 14
- 230000001699 photocatalysis Effects 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 239000000243 solution Substances 0.000 description 31
- 239000010408 film Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 20
- 230000003197 catalytic effect Effects 0.000 description 19
- 239000011521 glass Substances 0.000 description 16
- 239000002243 precursor Substances 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 230000000844 anti-bacterial effect Effects 0.000 description 9
- -1 chlorine ions Chemical class 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000005329 float glass Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 6
- 230000003373 anti-fouling effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000356 contaminant Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000003993 interaction Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000001877 deodorizing effect Effects 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003980 solgel method Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 3
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 2
- OBTMJWHTGJPHPJ-UHFFFAOYSA-N C1(=CC=CC=C1)C.[O-2].[Ti+4].[O-2] Chemical compound C1(=CC=CC=C1)C.[O-2].[Ti+4].[O-2] OBTMJWHTGJPHPJ-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 238000013032 photocatalytic reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- YTIBVPZUWWELHA-UHFFFAOYSA-N zinc oxygen(2-) toluene Chemical compound C1(=CC=CC=C1)C.[O-2].[Zn+2] YTIBVPZUWWELHA-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は光触媒組成物に関する。
【0002】
【従来の技術】
半導体微粒子が禁制帯ギャップを越えるエネルギの光を吸収すると、電子−正孔対が励起子を作る。この励起子がその構造緩和の過程で電荷移動や表面捕捉反応を起すと、それぞれ還元反応・酸化反応を進行させ、光エネルギと化学エネルギの変換が行われる。かかる半導体を用いた光触媒反応は、太陽エネルギから直接燃料を作る方法として注目されたが、最近は環境浄化への応用を目指す動き[化学と工業 48,167(1995)]を強めている。
【0003】
光触媒としては、酸化チタンが報告されている[Nature 237,37(1972)]。酸化チタンの光触媒反応は固体表面で強い酸化力を発現し、多くの有機物をその最終的状態にまで酸化させることができることから、防汚、抗菌、防臭といった環境浄化の目的にも有効に機能すると考えられ、例えば、特開平6−198196号公報、特開平6−278241号公報等で提案されている。
【0004】
酸化チタン粒子を水中に分散させた系で、トリクロロエチレンが二酸化炭素や塩素イオン等に分解されることも報告されている[J.Catal.,82,404(1983)]。しかしこのような系では分散された酸化チタンの分離、回収が困難なため、工業的利用には進展していない。
【0005】
酸化チタンを固定化させる手法も種々提案されている。例えば水中で解膠させた酸化チタンゾルを基板上に施し、乾燥後、500℃程度で熱処理して調製した酸化チタン被膜は、高い触媒活性を持つ粒子と同等の触媒効果を発現したことが報告されている[Chem.Lett.,723(1994)、特開平6−278241]。しかしこのようにして形成された酸化チタン被膜は、一時的に膜状形態を持つが、脆く、容易に破壊されて触媒効果を失う欠点があった。
【0006】
またシリカゲルに酸化チタン粒子を担持させる試みもなされている[Bull.Chem.Soc.Jpn.,61,359(1988)、J.Ceram.Soc.Jpn.,102,702(1994)]が、実質的に触媒濃度を下げてしまい、実用的ではなかった。
【0007】
また、酸化チタン光触媒を用いた抗菌タイルについても提案されている[工業材料 43,96(1995)]。これは酸化チタン粒子を混合してタイルを焼成したり、あるいは釉薬で酸化チタンをタイルに固定する方法で製造された[国際公開WO94/11092]ものであり、シリカゲル担持の場合と同様に触媒粒子の表面を広く遮蔽し、活性が低く、実用的ではなかった。そこでこのタイルは、低い活性を補い暗時の抗菌性を高めるために、銀や銅といった金属のイオンを担持させている。
【0008】
また、同様に銀イオンを担持させて抗菌効果を持たせた衛生陶器も知られている[日経マテリアルズ&テクノロジー 144,57(1994)]。これらのタイルや衛生陶器は抗菌性は有するが防汚性は充分ではない。
【0009】
一方、ゾル・ゲル法による金属酸化物膜の形成方法を用い、基板上に酸化チタンの被膜を設ける試みもなされている。例えば酸化チタンをコートした石英板や石英管を用いて水中のトリクロロエチレンを分解できることが報告されている[特開平7−100378号公報、水環境学会誌 17,324(1994)]。しかしこれらの酸化チタンコート層は、製膜工程を数回〜20回程繰返して初めて光触媒活性を発現できるもので、工業的にはほとんど利用されていない。
【0010】
その他、微細粒子を重ねた形状で被膜形成できるCVD膜[J.Chem.Soc.Faraday Trans.,1,81,3117(1985)]を用い、粒子同等の高い触媒活性を発現しようとした試み[J.Photochem.Photobiol.A,50,283(1989)]や、たばこのヤニを光分解するとした酸化チタンコートガラスなども提案されている[日刊工業新聞 1995年1月5日]が、エネルギの高い紫外光の照射を必要とし、一般の住環境下での効果は不充分であった。
【0011】
このように酸化チタン等の多くの半導体光触媒化合物は、無尽蔵な太陽光を利用して環境浄化の機能を発揮しうる材料として着目されたが、従来その効果を損なうことなく、実用的使用形態に加工する技術がなかったため、活性化のために通常得られる太陽光よりも短波長側の光を必要としたり、短期のきわめて限られた用途にしか使用できなかったりと、従来は半導体光触媒化合物の機能を充分に発現させえなかった。
【0012】
酸化チタンは通常、アナターゼ型とルチル型の2つの結晶相に大別され、両相ともに光触媒活性を示すことが知られている。一般にはアナターゼ型の方が高い効果を持つと考えられているが、活性化の因子は結晶相以外にも多く、一概には決められない。
【0013】
ガラス等の基板上にゾル・ゲル法やスパッタリング等で酸化チタン膜を設けると、通常アナターゼ型が得られる。こうしたアナターゼ型のUVスペクトルを観察すると、400nm近傍の光とはほとんど相互作用を持たないことが報告されている[J.Mater.Sci.,23,2259(1988)、Bull.Chem.Soc.Jpn.,67,843(1994)]。したがって太陽光からは励起に必要なエネルギは得られず、触媒効果はほとんど見られなかった。
【0014】
ゾル・ゲル法で得られたアナターゼ型を1000℃で焼成すると、ルチル型に転位する[J.Mater.Sci.,28,2353(1993)]。また、チタンアルコキシドとジエタノールアミンのアルコール溶液から調製されたゾルを用い、650℃で焼成してもルチル型が得られる[溶融塩 31,158(1988)]。
【0015】
これらのルチル型は白濁状を呈するものの、400nm近傍の光と強い相互作用を持つことから太陽光下でも強い活性を発現するものと期待されたが、実際はこれらの膜もほとんど触媒効果を発現しなかった。これは、ルチル型膜が触媒活性の小さい(110)面に配向するためと考えられている[化学工業 1988,482、Chem.Lett.,1994,855]。
【0016】
このように、アナターゼ型では太陽エネルギを吸収せず、ルチル型では活性を持たないうえに白濁してしまうといった課題があったため、従来は酸化チタン膜を太陽光下で有効に利用できなかった。
【0017】
【発明が解決しようとする課題】
本発明は、太陽光や室内照明光の下で、優れた防汚、防臭、抗菌性を発現する光触媒組成物の提供を目的とする。
【0018】
【課題を解決するための手段】
本発明は、半導体光触媒化合物からなる成分(1)と、365±45nmの波長域の光を吸収し、成分(1)に励起子を形成させる化合物からなる成分(2)とを含有する光触媒組成物であって、前記成分(1)はアナターゼ型の酸化チタンであり、かつ前記成分(2)のマトリクスまたはバインダとしての機能を有し、前記成分(2)は微粒子の酸化チタンであり、前記微粒子の酸化チタンはルチル型の酸化チタンである光触媒組成物を提供する。
【0019】
本発明の光触媒組成物における成分(1)は光触媒活性が高く、成分(2)は太陽光中でも高エネルギ域の光を効率良く吸収する。成分(1)と成分(2)は相互に補完しあって、高い触媒活性を発現する。すなわち、従来は機能を充分に発現できなかった半導体光触媒化合物を効率よく利用できる。
【0020】
本発明で用いる成分(1)の半導体光触媒化合物としては、バンドギャップ、相当するエネルギを持つ光の波長、安定性、安全性等の観点から判断すると、酸化チタンが最適である。なかでも形状や環境にほとんど依存することなく高い触媒活性を発現することから、アナターゼ型を用いる。
【0021】
しかし、本発明の成分(1)は、加工、成形(例えばコーティングなど)されて、本発明の光触媒組成物に特定の連続した形状を付与する機能と、成分(2)のマトリクスまたはバインダとしての機能とを担う。したがって本発明における成分(1)は、成形加工性(例えば成膜性)に優れるものが好ましい。特に、適当な加熱処理等によって半導体光触媒化合物に変換でき、しかも易成形加工性(例えば易成膜性)を有するその前駆体化合物を経て形成されるものが好ましい。
【0022】
【0023】
本発明における酸化チタンを形成するための前駆体化合物としては、最終的に酸化チタンとなる化合物の全てを使用でき、チタンのアルコキシド、アセチルアセトネート、カルボキシレート、キレート、およびペルオキソチタン酸またはこれらの部分縮合体等が、取扱の容易な点で特に好ましい。
【0024】
成分(2)は、成分(1)の中に散在し、365±45nmの波長域の光の吸収能を有する。成分(2)は、(a)この波長域の光を吸収して電荷分離を起こしたり、または、(b)接する成分(1)に作用して電荷分離を引き起こす。(a)と(b)の作用を同時に奏することもある。
【0025】
電荷分離とは、1)電子−正孔対が励起子を形成した状態、2)独立した電子および独立した正孔に分離した状態、3)電子−正孔対の励起子、独立した電子、独立した正孔が、それぞれ電荷移動と、表面および/または界面での捕捉反応を経て、酸化・還元反応を起こし消滅するまでの、1)から3)に至るすべての状態を指す。
【0026】
本発明で用いる成分(2)は、前記の(a)または(b)の作用が高く、成分(1)と安定した複合体を形成できる、365±45nmの波長域の光との相互作用が高いルチル型の酸化チタンを用いる。
【0027】
また本発明の光触媒組成物を構成する成分(2)には、金属酸化物の微粒子を用いるのも好適である。その理由としては、1)触媒活性等の相互作用が、表面および/または界面での反応であるため微粒子状であることが有効であること、2)微粒子粒径を変えることにより、強い相互作用を持つ波長域を制御できること、などが挙げられる。
【0028】
例えば酸化チタンの場合では、1〜100nmの粒径の微粒子が好適である。1nm未満では相互作用を持つ光の波長域が小さくなり、太陽光エネルギでは活性を示さなくなる。100nm超では強靭な薄膜が得にくくなる。
【0029】
【0030】
さらに成分(2)には、光触媒用として市販されている酸化チタン粒子を使用できる。かかる粒子は前述のように合理的な固定化方法がなく、工業的利用は進んでいなかった。本発明においては、成分(1)が、成分(2)である光触媒用酸化チタン粒子を分散・固化させるマトリクスおよび/またはバインダとして機能する。加えて励起された成分(2)から強力な作用を受け、成分(1)自体も、単独であるよりさらに活性化され、特に高効率の光触媒組成物が製造できる。
【0031】
本発明の光触媒組成物には、その他にも種々の化合物を配合できる。特に成分(1)の担う形態保持、マトリクス、バインダ等の機能を補完、補強する目的、および成形加工性(例えば成膜性)を高める目的等から、他の金属酸化物を加えることは好ましい。なかでも酸化アルミニウム、酸化ケイ素、酸化ジルコニウム等は、一般に成形加工性(例えば成膜性)を高め、強靭性を付与できる点から好ましく用いられる。
【0032】
【0033】
本発明の光触媒組成物は、さまざまな形態で利用できる。光触媒の作用部位は前述のように表面であることから、粒子状形態が最も効果的であるが、反応の場のみならず反応後の取扱いも含め、粒子の取扱いは困難である。一方、バルクなブロック形態のものでは利用効率が低い。
【0034】
成形加工性、取扱い、利用効率等の点から、薄膜の形態が最も有効である。本発明の光触媒組成物は薄膜成形が容易であり、薄膜での触媒活性も高い。薄膜形態の場合、その膜厚は薄いほど利用効率は高いが、成形性の観点から、10nm以上であることが好ましい。また厚くしても利用効率を上げることは少なくなることから、100μm以下であることが好ましい。
【0035】
本発明の光触媒組成物は、透明膜または半透明膜に容易に成形できるため、光エネルギを有効に取込みうる。しかも透明基材にも適用でき、基材の外観、表情を損なうことなく、新たな機能を付与できる。
【0036】
本発明の光触媒組成物は、多くの有機物をその最終段階にまで酸化し、防汚、防臭、抗菌する。膜状に成形された本発明の光触媒組成物は、種々の形状の成形加工体に適用できるので、種々の製品に防汚、防臭、抗菌性能を付与できる。
【0037】
本発明の光触媒組成物を表面に施したガラス、セラミックス、タイル、セメント、コンクリート等は、窓、鏡、壁、屋根、床、天井、内装材等に、有効に用いられる。さらにソーラー電池、ソーラー温水器等の受光面に用いることも、汚れの付着や藻の発生を防止できるので効果的である。
【0038】
本発明における成分(1)および成分(2)には、市販材料をそのまま、または、一般的な処理や反応を施して使用できる。
【0039】
成分(2)の添加量は、成分(1)および成分(2)の総量に対して0.01〜68重量%であることが好ましい。0.01重量%以上で限られた光エネルギを有効に取込むことができ、68重量%以下で高い光活性と耐久性が得られる。一方、68重量%超では膜は脆くなったり、安定性を失ったりし、高い光活性を発現、維持するのが困難となる。
【0040】
成分(1)と成分(2)の一体化も、一般的に行われている化学的手法、物理的手法、およびそれらを組合わせた手法等を用い、容易に行える。例えば、成分(1)の前駆体であるチタンアルコキシドのアルコール溶液に、成分(2)の市販の酸化チタン微粒子を加えて混合したゾル液を用いると、アナターゼ型中に金属酸化物微粒子を分散して複合化させた、本発明の光触媒組成物が調製できる。かかる複合体を用いた被膜は、その金属酸化物の屈折率や粒子径の選択により、透明膜ともなりうる。
【0041】
【0042】
【0043】
ただし、成分(2)に酸化チタンの微粒子を用いる場合は、成分(1)である酸化チタンの前駆体溶液および/または分散液と微粒子分散液との間に、ゲル化や凝集といった好ましくない現象を起こすことが多いので、特に注意を要する。このような現象を避ける方法としては、例えば酸化チタン微粒子にポリメチルシロキサン、脂肪酸、高級アルコールなどを修飾させた後、エタノール、キシレンなどの有機溶液に分散させた有機系酸化チタン分散液を、酸化チタン前駆体の有機溶液などと混合する方法が例示できる。
【0044】
かかる有機系の酸化チタン分散液と有機系の前駆体溶液との混合液は、一方を撹拌しながら他方を添加する方法によっても、あるいは両方を混合した後、1〜2分撹拌する方法によっても容易に調製できる。
【0045】
他の方法としては、水で解膠させた水系酸化チタンゾルをペルオキソチタン酸等の水溶液および/または水分散液と混合する方法等がある。かかる水系のゾルと水系の前駆体溶液および/または分散液の混合も、pH調整等により容易に行える。
【0046】
アナターゼ型酸化チタンへの金属イオンドーピングも、チタンアルコキシド等の溶液にドープ金属の塩化合物等を加えたゾル液を用い、上記のようなゾル・ゲル法を用いて行える。
【0047】
本発明の光触媒組成物からなる膜を成形体等に施す方法は、触媒組成、成形体形状等をも加味して決められるが、光触媒組成物を形成する原料をスプレーコート、ディップコート、スピンコート、スパッタリング等の方法を用いて行える。
【0048】
上記のようにして調合され、特定の形状を付与された光触媒組成物の原料成分は、乾燥され、焼成されて、本発明の光触媒組成物となる。乾燥は、溶媒や分散媒にも依存するが、通常は室温〜200℃の範囲で行われる。室温より低い温度では長時間を要したり、乾燥不良を起こしがちで好ましくない。一方、200℃を超える温度では、本来光触媒組成物の形成に寄与すべき前駆体成分の一部までも揮散させるので好ましくない。
【0049】
焼成は、前駆体化合物の特性にも依存するが、100〜1000℃の範囲で行うのが一般的である。例えば前駆体化合物にペルオキソチタン酸類を用いると、100℃程度でも強力な連続体に焼成できる。しかしこれより低い温度では脆くなり、好ましくない。一方、1000℃超では、アナターゼ型を残したまま焼成するのが困難となるので好ましくない。焼成方法は、瞬間的に焼成温度に至らせる方法や、数時間かけて焼成する方法など種々採用できる。
【0050】
例えば所定温度に加熱された基板に本発明の光触媒組成物を形成する原料を施し、一時に乾燥、焼成および成形加工を行う方法をも採用できる。かかる方法では、乾燥温度が200℃以上である場合が多いが、揮散してしまう前駆体化合物を加味して原料成分を調合し対処することにより、所定温度に加熱された基板上にも成形加工でき、連続生産に適する方法となりうる。
【0051】
【作用】
本発明の光触媒組成物は、太陽光等の一般住環境下で得られる光エネルギによって励起され、高い触媒活性を示す。本発明の光触媒組成物は、光エネルギ源として太陽光が好適であるが、一般の室内照明灯である蛍光灯の発する光においても有効である。さらにブラックライト、フィラメントランプ、水銀灯からの光等においても有効である。
【0052】
本発明の光触媒組成物は、光エネルギの取込みと触媒活性作用とを機能的に結び付け、高効率の光触媒機能を発現している。
【0053】
触媒がその機能を発現するためには、a)光エネルギを吸収する、b)吸収したエネルギで励起子を形成する、c)励起子は反応の場に移動してその機能を発現する、といった経路を経る。例えば酸化チタンは現在最も優れた光触媒であると考えられている。しかも酸化チタンのバンドギャップに相当するエネルギを持つ光の波長が400nm前後であることから、太陽光からも充分な励起エネルギを得ることができるものと期待された。
【0054】
しかし、本発明の光触媒組成物を構成する成分(1)でもある酸化チタンのアナターゼ型薄膜単体に、300nm近傍の紫外線を照射すると膜表面で強力な酸化力が発現されるのに対し、太陽光を照射してもほとんど触媒効果は観察されない。すなわちアナターゼ型薄膜は、励起に必要なエネルギを吸収しさえすれば上記のb)とc)を支障なく進められるが、太陽光からのエネルギは吸収できないため、太陽光下では触媒活性をほとんど示さなかったものと判断された。
【0055】
そこで上記a)の役割を担うものとして、本発明では新たに成分(2)を導入している。すなわち成分(2)は、365±45nm波長域の光を吸収し、成分(2)に吸収された光エネルギは直接的および/または間接的に成分(1)に作用し、成分(1)に励起子を形成させ、触媒活性を発現させている。
【0056】
成分(2)自体が触媒効果を持つ場合は、本発明の光触媒組成物の触媒効果がさらに高まる。また、成分(2)に金属イオンを含有する場合は、金属イオンが光吸収能が高いことに加えて、優れた励起子トラップ作用を有する。そしてトラップされた励起子は反応の場に効率良く運ばれ触媒作用をさらに高める。
【0057】
【実施例】
[例1(比較例)]
5gのアセチルアセトン、55gのイソプロパノール、20gのエチレングリコール、20gのテトラヒドロフランを混合した溶液に、100mmolのテトラブトキシチタンを加えて溶解させた。この溶液に、1mmolの硝酸と200mmolの水を加えて1時間撹拌混合し、ゾル液Aを得た。このゾル液Aを市販のフロートガラスにスピンコートして120℃にて乾燥後、800℃にて20分間焼成して、光触媒コートガラスを得た。
【0058】
この光触媒コートガラスについて、X線回折分析したところ、アナターゼ型とルチル型の両方の生成が確認され、成分(2)のルチル型の含有割合は、X線回折パターンのピーク面積から20重量%であると推定された。
【0059】
[例2(比較例)]
ゾル液Aの100gに、酸化亜鉛のトルエン分散液(粒径が10〜25nmである市販の酸化亜鉛を2g含有)6.67gを加えて撹拌混合し、ゾル液Bを得た。このゾル液Bを市販のフロートガラスにスピンコートして120℃にて乾燥後、500℃にて10分間焼成して、光触媒コートガラスを得た。
【0060】
[例3(比較例)]
テトラブトキシチタン100mmolの代りにテトライソプロポキシチタン100mmolを用いた他は、例1と同様にしてゾル液Cを調製した。このゾル液Cの100gに、酸化チタンのトルエン分散液(粒径が15〜30μmである市販のアナターゼ型酸化チタンに1,3,5,7−テトラメチルシクロテトラシロキサンを8重量%グラフトさせた後、トルエンに分散させた分散液であって、酸化チタンを1.5g含有)7.5gを加えて撹拌混合し、ゾル液Dを得た。このゾル液Dを市販のフロートガラスにディップコートして120℃にて乾燥後、500℃にて10分間焼成して、光触媒コートガラスを得た。
【0061】
[例4]
例3で用いたアナターゼ型酸化チタンのトルエン分散液7.5gの代りにルチル型酸化チタンのトルエン分散液(粒径が10〜30μmである市販のルチル型酸化チタンに1,3,5,7−テトラメチルシクロテトラシロキサンを8重量%グラフトさせた後、トルエンに分散させた分散液であって、酸化チタンを1.5g含有)7.5gを用いた他は、例3と同様にして、ゾル液Eを得た。このゾル液Eを市販のフロートガラスにディップコートして120℃にて乾燥後、500℃にて10分間焼成して、光触媒コートガラスを得た。
【0062】
[例5(比較例)]
5gのアセチルアセトン、55gのイソプロパノール、20gのエチレングリコール、20gのテトラヒドロフランを混合した溶液に、80mmolのテトライソプロポキシチタンと14mmolの塩化スズを加えて溶解させた。この溶液に1mmolの硝酸と188mmolの水を加えて1時間撹拌混合し、ゾル液Fを得た。このゾル液Fを市販のフロートガラスにディップコートして120℃にて乾燥後、500℃にて10分間焼成して、光触媒コートガラスを得た。
【0063】
[例6(比較例)]
5gのアセチルアセトン、55gのイソプロパノール、20gのエチレングリコール、20gのテトラヒドロフランを混合した溶液に、100mmolのテトライソプロポキシチタンと0.1mmolの五塩化モリブデンを加えて溶解させた。この溶液に1mmolの硝酸と200mmolの水を加えて1時間撹拌混合し、ゾル液Gを得た。このゾル液Gを市販のフロートガラスにディップコートして120℃にて乾燥後、500℃にて10分間焼成して、光触媒コートガラスを得た。
【0064】
[例7〜8(比較例)]
ブランクテストとして、市販のフロートガラスのみを用いた場合(例7)と、焼成温度を800℃の代りに500℃とした他は例1と同様にして得た光触媒コートガスの場合(例8)についても試験した。例8の光触媒コートについて、X線回折分析したところ、成分(1)であるアナターゼ型のみが確認され、ルチル型は確認されなかった。
【0065】
[評価]
以上の例1〜8の光触媒コートガラス(ただし例7は市販のフロートガラス)について、汚染物除去率を測定した結果を表1に示す。なお、汚染物除去率は、市販水溶性染料の5%エタノール溶液でマーク後、10時〜16時の間太陽光下に暴露し、次式で求めた。
【0066】
汚染物除去率(%)=100(△E1 −△E2 )/△E1
ここで、△E1 は光触媒コートガラスに対する汚染物マークガラスの色差、△E2 は汚染物マークガラスを6時間太陽光下に暴露した後の光触媒コートガラスに対する色差を示す。
【0067】
表1より明らかなように、本発明の光触媒組成物を用いた光触媒コートガラスは汚染物除去率が高い。成分(2)として、酸化チタン粒子を用いた場合には、特に良好な結果が得られる。
【0068】
また、以上の評価とは別に、基材への密着性、強度、耐久性についても評価した結果、例1〜6はいずれの性能も実用上問題ない充分な性能を有することが確認された。
【0069】
【表1】
【0070】
【発明の効果】
本発明の光触媒組成物は、太陽光や室内照明光の下で、優れた防汚、防臭、抗菌性等を発現する。また本発明の光触媒組成物は、製造容易であり、種々の形状に加工できる。さらに基材への密着性も高く、強度、耐久性等にも優れる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic composition.
[0002]
[Prior art]
When semiconductor particles absorb light having energy exceeding the forbidden band gap, electron-hole pairs form excitons. When this exciton undergoes charge transfer or surface trapping reaction in the process of structural relaxation, the reduction reaction and the oxidation reaction proceed to convert light energy and chemical energy, respectively. The photocatalytic reaction using such semiconductors has attracted attention as a method of directly producing fuel from solar energy, but recently, a movement aimed at application to environmental purification [Chemical and Industrial 48, 167 (1995)] has been strengthened.
[0003]
Titanium oxide has been reported as a photocatalyst [Nature 237, 37 (1972)]. The photocatalytic reaction of titanium oxide expresses a strong oxidizing power on the solid surface and can oxidize many organic substances to their final state, so it can function effectively for the purpose of environmental purification such as antifouling, antibacterial, and deodorizing. For example, it has been proposed in Japanese Patent Laid-Open Nos. 6-198196 and 6-278241.
[0004]
It has also been reported that trichlorethylene is decomposed into carbon dioxide and chlorine ions in a system in which titanium oxide particles are dispersed in water [J. Catal. , 82, 404 (1983)]. However, in such a system, since it is difficult to separate and recover the dispersed titanium oxide, it has not been developed for industrial use.
[0005]
Various methods for immobilizing titanium oxide have been proposed. For example, it has been reported that a titanium oxide coating prepared by applying a titanium oxide sol peptized in water on a substrate, drying, and heat-treating at about 500 ° C. exhibits a catalytic effect equivalent to particles having high catalytic activity. [Chem. Lett. 723 (1994), JP-A-6-278241]. However, the titanium oxide film formed in this manner has a film-like form temporarily, but is brittle and has a drawback that it is easily broken and loses its catalytic effect.
[0006]
Attempts have also been made to support titanium oxide particles on silica gel [Bull. Chem. Soc. Jpn. 61, 359 (1988); Ceram. Soc. Jpn. , 102, 702 (1994)] substantially reduced the catalyst concentration and was not practical.
[0007]
An antibacterial tile using a titanium oxide photocatalyst has also been proposed [Industrial Materials 43, 96 (1995)]. This is produced by mixing titanium oxide particles and firing the tile, or fixing the titanium oxide to the tile with a glaze [International Publication WO94 / 11092]. It was not practical because it had a wide shielding surface and low activity. Therefore, this tile supports metal ions such as silver and copper in order to compensate for low activity and enhance antibacterial properties in the dark.
[0008]
Similarly, sanitary ware having silver ions carried thereon and having an antibacterial effect is also known [Nikkei Materials & Technology 144, 57 (1994)]. These tiles and sanitary ware have antibacterial properties but are not sufficiently antifouling.
[0009]
On the other hand, attempts have been made to provide a titanium oxide film on a substrate using a method of forming a metal oxide film by a sol-gel method. For example, it has been reported that trichlorethylene in water can be decomposed using a quartz plate coated with titanium oxide or a quartz tube [Japanese Patent Laid-Open No. 7-100378, Journal of Water Environment Society 17,324 (1994)]. However, these titanium oxide coat layers can exhibit photocatalytic activity only after repeating the film forming process several times to 20 times, and are hardly used industrially.
[0010]
In addition, a CVD film [J. Chem. Soc. Faraday Trans. , 1, 81, 3117 (1985)], an attempt to develop high catalytic activity equivalent to that of particles [J. Photochem. Photobiol. A, 50, 283 (1989)] and titanium oxide coated glass that has been photodegraded from cigarettes have been proposed [Nikkan Kogyo Shimbun, January 5, 1995]. Necessary and the effect in the general living environment was insufficient.
[0011]
As described above, many semiconductor photocatalytic compounds such as titanium oxide have attracted attention as materials capable of exhibiting the function of environmental purification using inexhaustible sunlight. Since there was no technology to process, it was necessary to use light on the shorter wavelength side than sunlight normally obtained for activation, and it could only be used for extremely limited applications in the short term. The function could not be fully expressed.
[0012]
Titanium oxide is generally roughly divided into two crystal phases of anatase type and rutile type, and both phases are known to exhibit photocatalytic activity. In general, the anatase type is considered to have a higher effect, but there are many activation factors other than the crystal phase, and it cannot be determined unconditionally.
[0013]
When a titanium oxide film is provided on a substrate such as glass by a sol-gel method or sputtering, an anatase type is usually obtained. Observation of such anatase type UV spectrum has been reported to have little interaction with light near 400 nm [J. Mater. Sci. , 23, 2259 (1988), Bull. Chem. Soc. Jpn. 67, 843 (1994)]. Therefore, the energy required for excitation was not obtained from sunlight, and almost no catalytic effect was seen.
[0014]
When the anatase type obtained by the sol-gel method is baked at 1000 ° C., it is rearranged to the rutile type [J. Mater. Sci. , 28, 2353 (1993)]. Further, a rutile type can be obtained even by baking at 650 ° C. using a sol prepared from an alcohol solution of titanium alkoxide and diethanolamine [molten salt 31,158 (1988)].
[0015]
Although these rutile types have white turbidity, they are expected to exhibit strong activity even under sunlight due to their strong interaction with light near 400 nm, but in fact, these films also exhibit a catalytic effect. There wasn't. This is thought to be due to the fact that the rutile-type film is oriented in the (110) plane having a small catalytic activity [Chemical Industry 1988, 482, Chem. Lett. , 1994, 855].
[0016]
As described above, since the anatase type does not absorb solar energy and the rutile type has no activity and becomes cloudy, conventionally, the titanium oxide film cannot be effectively used under sunlight.
[0017]
[Problems to be solved by the invention]
An object of the present invention is to provide a photocatalyst composition that exhibits excellent antifouling, deodorizing, and antibacterial properties under sunlight or indoor illumination light.
[0018]
[Means for Solving the Problems]
The present invention comprises a photocatalyst composition comprising a component (1) comprising a semiconductor photocatalyst compound and a component (2) comprising a compound that absorbs light in the wavelength range of 365 ± 45 nm and forms excitons in the component (1). The component (1) is anatase-type titanium oxide and functions as a matrix or binder of the component (2), and the component (2) is fine-particle titanium oxide, titanium oxide fine particles to provide a photocatalyst composition is titanium oxide of rutile type.
[0019]
The component (1) in the photocatalyst composition of the present invention has high photocatalytic activity, and the component (2) efficiently absorbs light in a high energy region even in sunlight. Component (1) and component (2) complement each other and express high catalytic activity. That is, it is possible to efficiently use a semiconductor photocatalyst compound that has not been able to sufficiently exhibit its function.
[0020]
As the semiconductor photocatalyst compound of component (1) used in the present invention, titanium oxide is optimal from the viewpoints of band gap, wavelength of light having a corresponding energy, stability, safety, and the like. Among them, anatase type is used because it exhibits high catalytic activity almost independent of shape and environment .
[0021]
However, the component (1) of the present invention is processed and molded (eg, coated) to give a specific continuous shape to the photocatalyst composition of the present invention, and as a matrix or binder of the component (2). Take on the function. Therefore, the component (1) in the present invention is preferably excellent in moldability (for example, film formability). In particular, those formed through a precursor compound that can be converted into a semiconductor photocatalytic compound by an appropriate heat treatment or the like and that has easy moldability (for example, easy film forming property) are preferred.
[0022]
[0023]
As the precursor compound for forming titanium oxide in the present invention, all compounds which finally become titanium oxide can be used, and titanium alkoxide, acetylacetonate, carboxylate, chelate, and peroxotitanic acid or these A partial condensate or the like is particularly preferable in terms of easy handling.
[0024]
The component (2) is scattered in the component (1) and has an ability to absorb light in a wavelength range of 365 ± 45 nm. Component (2) (a) absorbs light in this wavelength range to cause charge separation, or (b) acts on component (1) in contact with it to cause charge separation. The actions (a) and (b) may be performed at the same time.
[0025]
Charge separation means 1) a state in which an electron-hole pair forms an exciton, 2) a state in which the electron-hole pair is separated into an independent electron and an independent hole, 3) an exciton of an electron-hole pair, an independent electron, Independent holes refer to all states from 1) to 3) from charge transfer and trapping reaction at the surface and / or interface until oxidation / reduction reaction occurs and disappears.
[0026]
Mutual component (2) used in the present invention, the action of said (a) or (b) is rather high, Ru can be formed a stable complex components (1), and light in the wavelength range of 365 ± 45 nm action Ru using titanium oxide with high rutile.
[0027]
It is also preferable to use metal oxide fine particles for the component (2) constituting the photocatalyst composition of the present invention. The reason is that 1) the interaction such as the catalytic activity is a reaction at the surface and / or interface, so that it is effective to be in the form of fine particles, and 2) a strong interaction is obtained by changing the particle size of the fine particles. It is possible to control the wavelength region having
[0028]
For example, in the case of titanium oxide, fine particles having a particle diameter of 1 to 100 nm are suitable. If the wavelength is less than 1 nm, the wavelength range of light having an interaction becomes small, and the solar energy does not show activity. If it exceeds 100 nm, it is difficult to obtain a tough thin film.
[0029 ]
[0030]
Furthermore, as the component (2), titanium oxide particles commercially available for photocatalysts can be used. As described above, such particles have no rational immobilization method and have not been industrially utilized. In the present invention, the component (1) functions as a matrix and / or binder for dispersing and solidifying the photocatalyst titanium oxide particles as the component (2). In addition, it receives a strong action from the excited component (2), and the component (1) itself is further activated rather than being alone, and a particularly highly efficient photocatalytic composition can be produced.
[0031]
Various other compounds can be added to the photocatalyst composition of the present invention. In particular, it is preferable to add other metal oxides for the purpose of complementing and reinforcing the functions of the component (1), such as maintaining the form, matrix, binder, etc., and enhancing the moldability (for example, film formability). Of these, aluminum oxide, silicon oxide, zirconium oxide, and the like are preferably used because they generally improve moldability (for example, film formability) and can impart toughness.
[0032]
[0033]
The photocatalyst composition of the present invention can be used in various forms. Since the site of action of the photocatalyst is the surface as described above, the particulate form is most effective, but it is difficult to handle the particles including not only the reaction site but also after the reaction. On the other hand, the use efficiency is low in the bulk block form.
[0034]
From the viewpoint of moldability, handling, utilization efficiency, etc., the thin film form is the most effective. The photocatalyst composition of the present invention can be easily formed into a thin film and has high catalytic activity in the thin film. In the case of the thin film form, the use efficiency is higher as the film thickness is thinner, but it is preferably 10 nm or more from the viewpoint of moldability. Moreover, even if the thickness is increased, the use efficiency is less likely to be increased, so that the thickness is preferably 100 μm or less.
[0035]
Since the photocatalyst composition of the present invention can be easily formed into a transparent film or a translucent film, light energy can be taken in effectively. Moreover, it can be applied to a transparent substrate, and a new function can be imparted without impairing the appearance and expression of the substrate.
[0036]
The photocatalyst composition of the present invention oxidizes many organic substances up to the final stage, and is antifouling, deodorizing and antibacterial. Since the photocatalyst composition of the present invention formed into a film can be applied to molded products having various shapes, it can impart antifouling, deodorizing and antibacterial performance to various products.
[0037]
Glass, ceramics, tiles, cement, concrete, and the like, which are coated with the photocatalyst composition of the present invention, are effectively used for windows, mirrors, walls, roofs, floors, ceilings, interior materials, and the like. Furthermore, it is also effective to use it on the light-receiving surface of solar batteries, solar water heaters, etc., because it prevents adhesion of dirt and generation of algae.
[0038]
As the component (1) and the component (2) in the present invention, commercially available materials can be used as they are or after being subjected to general treatments and reactions.
[0039]
It is preferable that the addition amount of a component (2) is 0.01 to 68 weight% with respect to the total amount of a component (1) and a component (2). The limited light energy can be effectively taken in at 0.01% by weight or more, and high photoactivity and durability can be obtained at 68% by weight or less. On the other hand, if it exceeds 68% by weight, the film becomes brittle or loses stability, making it difficult to develop and maintain high photoactivity.
[0040]
Integration of the component (1) and the component (2) can be easily performed by using a commonly used chemical method, physical method, a method combining them, and the like. For example, when a sol solution obtained by adding and mixing commercially available titanium oxide fine particles of component (2) to an alcohol solution of titanium alkoxide which is a precursor of component (1) is used, metal oxide fine particles are dispersed in the anatase type. Thus, the photocatalyst composition of the present invention can be prepared. A film using such a composite can also be a transparent film by selecting the refractive index and particle diameter of the metal oxide.
[0041]
[0042]
[0043]
However, in the case where fine particles of titanium oxide are used as the component (2), an undesirable phenomenon such as gelation or aggregation between the precursor solution and / or dispersion of the titanium oxide as the component (1) and the fine particle dispersion. In particular, caution is required. As a method for avoiding such a phenomenon, for example, after modifying titanium oxide fine particles with polymethylsiloxane, fatty acid, higher alcohol, etc., an organic titanium oxide dispersion liquid dispersed in an organic solution such as ethanol, xylene is oxidized. The method of mixing with the organic solution etc. of a titanium precursor can be illustrated.
[0044]
The mixed liquid of the organic titanium oxide dispersion and the organic precursor solution may be added by stirring one or the other, or by mixing both and then stirring for 1 to 2 minutes. Easy to prepare.
[0045]
As another method, there is a method of mixing an aqueous titanium oxide sol peptized with water with an aqueous solution and / or an aqueous dispersion such as peroxotitanic acid. Mixing of the aqueous sol and the aqueous precursor solution and / or dispersion can be easily performed by adjusting the pH.
[0046]
Metal ion doping of anatase-type titanium oxide can also be performed using a sol-gel method as described above, using a sol solution obtained by adding a salt compound of a doped metal to a solution of titanium alkoxide or the like.
[0047]
The method of applying the film comprising the photocatalyst composition of the present invention to a molded body is determined in consideration of the catalyst composition, the shape of the molded body, etc., but the raw material for forming the photocatalyst composition is spray coated, dip coated, spin coated. , Sputtering or the like.
[0048]
The raw material component of the photocatalyst composition prepared as described above and given a specific shape is dried and baked to obtain the photocatalyst composition of the present invention. Although drying depends on the solvent and the dispersion medium, the drying is usually performed in the range of room temperature to 200 ° C. A temperature lower than room temperature is not preferred because it takes a long time or tends to cause drying failure. On the other hand, a temperature exceeding 200 ° C. is not preferable because a part of the precursor component that should originally contribute to the formation of the photocatalyst composition is volatilized.
[0049]
Firing is generally performed in the range of 100 to 1000 ° C., although it depends on the characteristics of the precursor compound. For example, when peroxotitanic acid is used as the precursor compound, it can be fired into a strong continuum even at about 100 ° C. However, a temperature lower than this is not preferable because it becomes brittle. On the other hand, if it exceeds 1000 ° C., it is difficult to perform baking while leaving the anatase type, which is not preferable. Various firing methods such as a method of instantaneously reaching the firing temperature and a method of firing over several hours can be employed.
[0050]
For example, a method in which a raw material for forming the photocatalyst composition of the present invention is applied to a substrate heated to a predetermined temperature, and drying, firing and molding processing at a time can be employed. In such a method, the drying temperature is often 200 ° C. or higher. However, by taking into account the precursor compound that volatilizes, the raw material components are prepared and dealt with, thereby forming the substrate on the substrate heated to a predetermined temperature. Can be a method suitable for continuous production.
[0051]
[Action]
The photocatalyst composition of the present invention is excited by light energy obtained in a general living environment such as sunlight, and exhibits high catalytic activity. The photocatalyst composition of the present invention is preferably sunlight as a light energy source, but is also effective in light emitted from a fluorescent lamp which is a general indoor illumination lamp. Furthermore, it is also effective for light from black light, filament lamp, mercury lamp, and the like.
[0052]
The photocatalyst composition of the present invention functionally combines the incorporation of light energy and the catalytic activity, and exhibits a highly efficient photocatalytic function.
[0053]
In order for the catalyst to exhibit its function, a) absorbs light energy, b) forms excitons with the absorbed energy, c) excitons move to the reaction field and exhibit their functions, etc. Go through the route. For example, titanium oxide is currently considered the best photocatalyst. Moreover, since the wavelength of light having energy corresponding to the band gap of titanium oxide is around 400 nm, it was expected that sufficient excitation energy could be obtained from sunlight.
[0054]
However, when the anatase thin film of titanium oxide, which is also the component (1) constituting the photocatalyst composition of the present invention, is irradiated with ultraviolet rays in the vicinity of 300 nm, a strong oxidizing power is expressed on the surface of the film. No catalytic effect is observed even when irradiated. In other words, the anatase-type thin film can proceed without any trouble as long as it absorbs the energy necessary for excitation, but it cannot absorb the energy from sunlight, so it shows almost no catalytic activity under sunlight. It was judged that there was not.
[0055]
In view of this, the component (2) is newly introduced in the present invention as a component that plays the role of a). That is, the component (2) absorbs light in the wavelength range of 365 ± 45 nm, and the light energy absorbed by the component (2) directly and / or indirectly acts on the component (1), and the component (1) Excitons are formed, and catalytic activity is expressed.
[0056]
When component (2) itself has a catalytic effect, the catalytic effect of the photocatalyst composition of the present invention is further enhanced. In addition, when the component (2) contains a metal ion, the metal ion has an excellent exciton trapping action in addition to the high light absorption ability. The trapped excitons are efficiently transferred to the reaction field to further enhance the catalytic action.
[0057]
【Example】
[Example 1 (comparative example)]
100 mmol of tetrabutoxytitanium was added to and dissolved in a mixed solution of 5 g of acetylacetone, 55 g of isopropanol, 20 g of ethylene glycol, and 20 g of tetrahydrofuran. To this solution, 1 mmol of nitric acid and 200 mmol of water were added and stirred for 1 hour to obtain a sol solution A. This sol solution A was spin-coated on a commercially available float glass, dried at 120 ° C., and then baked at 800 ° C. for 20 minutes to obtain a photocatalyst-coated glass.
[0058]
When this photocatalyst-coated glass was analyzed by X-ray diffraction, it was confirmed that both anatase type and rutile type were produced, and the content ratio of the rutile type of component (2) was 20% by weight from the peak area of the X-ray diffraction pattern. It was estimated that there was.
[0059]
[Example 2 (comparative example)]
To 100 g of the sol solution A, 6.67 g of a zinc oxide toluene dispersion (containing 2 g of commercially available zinc oxide having a particle size of 10 to 25 nm) was added and stirred to obtain a sol solution B. This sol solution B was spin-coated on a commercially available float glass, dried at 120 ° C., and then baked at 500 ° C. for 10 minutes to obtain a photocatalyst-coated glass.
[0060]
[Example 3 (Comparative example) ]
Sol solution C was prepared in the same manner as in Example 1 except that 100 mmol of tetraisopropoxy titanium was used instead of 100 mmol of tetrabutoxy titanium. 100 g of this sol solution C was grafted with 8% by weight of 1,3,5,7-tetramethylcyclotetrasiloxane on a toluene dispersion of titanium oxide (commercially anatase-type titanium oxide having a particle size of 15 to 30 μm). Thereafter, 7.5 g of a dispersion dispersed in toluene (containing 1.5 g of titanium oxide) was added and mixed by stirring to obtain a sol solution D. This sol solution D was dip-coated on a commercially available float glass, dried at 120 ° C., and then baked at 500 ° C. for 10 minutes to obtain a photocatalyst-coated glass.
[0061]
[Example 4]
In place of 7.5 g of the anatase-type titanium oxide toluene dispersion used in Example 3, a rutile-type titanium oxide toluene dispersion (1, 3, 5, 7 on a commercially available rutile-type titanium oxide having a particle size of 10 to 30 μm) Except for using 7.5 g of a dispersion obtained by grafting 8% by weight of tetramethylcyclotetrasiloxane and then dispersing in toluene and containing 1.5 g of titanium oxide) Sol solution E was obtained. This sol solution E was dip-coated on a commercially available float glass, dried at 120 ° C., and then baked at 500 ° C. for 10 minutes to obtain a photocatalyst-coated glass.
[0062]
[Example 5 (comparative example)]
80 mmol of tetraisopropoxytitanium and 14 mmol of tin chloride were added and dissolved in a solution in which 5 g of acetylacetone, 55 g of isopropanol, 20 g of ethylene glycol, and 20 g of tetrahydrofuran were mixed. 1 mmol of nitric acid and 188 mmol of water were added to this solution, and the mixture was stirred and mixed for 1 hour to obtain a sol solution F. This sol solution F was dip-coated on a commercially available float glass, dried at 120 ° C., and then baked at 500 ° C. for 10 minutes to obtain a photocatalyst-coated glass.
[0063]
[Example 6 (comparative example)]
To a solution obtained by mixing 5 g of acetylacetone, 55 g of isopropanol, 20 g of ethylene glycol, and 20 g of tetrahydrofuran, 100 mmol of tetraisopropoxytitanium and 0.1 mmol of molybdenum pentachloride were added and dissolved. To this solution, 1 mmol of nitric acid and 200 mmol of water were added and stirred for 1 hour to obtain a sol solution G. This sol solution G was dip-coated on a commercially available float glass, dried at 120 ° C., and then baked at 500 ° C. for 10 minutes to obtain a photocatalyst-coated glass.
[0064]
[Examples 7 to 8 (comparative examples)]
In the case of using only a commercially available float glass as a blank test (Example 7), and in the case of a photocatalyst coating gas obtained in the same manner as in Example 1 except that the baking temperature was set to 500 ° C. instead of 800 ° C. (Example 8) Were also tested. When the photocatalyst coat of Example 8 was analyzed by X-ray diffraction, only the anatase type component (1) was confirmed, and the rutile type was not confirmed.
[0065]
[Evaluation]
Table 1 shows the results of measuring the contaminant removal rate for the photocatalyst-coated glasses of Examples 1 to 8 described above (Example 7 is a commercially available float glass). The contaminant removal rate was determined by the following formula after marking with a 5% ethanol solution of a commercially available water-soluble dye and exposing to sunlight from 10:00 to 16:00.
[0066]
Contaminant removal rate (%) = 100 (ΔE 1 −ΔE 2 ) / ΔE 1
Here, ΔE 1 indicates the color difference of the contaminant mark glass with respect to the photocatalyst-coated glass, and ΔE 2 indicates the color difference with respect to the photocatalyst-coated glass after the contaminant mark glass has been exposed to sunlight for 6 hours.
[0067]
As is apparent from Table 1, the photocatalyst-coated glass using the photocatalyst composition of the present invention has a high contaminant removal rate. When titanium oxide particles are used as the component (2), particularly good results are obtained.
[0068]
Moreover, as a result of evaluating adhesiveness to the substrate, strength, and durability separately from the above evaluations, it was confirmed that Examples 1 to 6 have sufficient performance with no practical problems.
[0069]
[Table 1]
[0070]
【The invention's effect】
The photocatalyst composition of the present invention exhibits excellent antifouling, deodorization, antibacterial properties and the like under sunlight or indoor illumination light. Moreover, the photocatalyst composition of the present invention is easy to produce and can be processed into various shapes. Furthermore, the adhesiveness to a base material is also high, and it is excellent also in intensity | strength, durability, etc.
Claims (3)
前記成分(1)はアナターゼ型の酸化チタンであり、かつ前記成分(2)のマトリクスまたはバインダとしての機能を有し、
前記成分(2)は微粒子の酸化チタンであり、前記微粒子の酸化チタンはルチル型の酸化チタンである光触媒組成物。A photocatalyst composition comprising a component (1) composed of a semiconductor photocatalyst compound and a component (2) composed of a compound that absorbs light in a wavelength range of 365 ± 45 nm and forms excitons in the component (1). ,
The component (1) is anatase-type titanium oxide, and has a function as a matrix or binder of the component (2).
The component (2) is a fine particle titanium oxide, and the fine particle titanium oxide is a rutile type titanium oxide .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05514596A JP3885248B2 (en) | 1995-03-13 | 1996-03-12 | Photocatalyst composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5268195 | 1995-03-13 | ||
JP7-52681 | 1995-03-13 | ||
JP05514596A JP3885248B2 (en) | 1995-03-13 | 1996-03-12 | Photocatalyst composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08309203A JPH08309203A (en) | 1996-11-26 |
JP3885248B2 true JP3885248B2 (en) | 2007-02-21 |
Family
ID=26393318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05514596A Expired - Fee Related JP3885248B2 (en) | 1995-03-13 | 1996-03-12 | Photocatalyst composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3885248B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE326513T1 (en) * | 1995-03-20 | 2006-06-15 | Toto Ltd | USE OF A MATERIAL WITH ULTRAHYDROPHILIC AND PHOTOCATALYTIC SURFACE |
JP3690864B2 (en) * | 1996-03-29 | 2005-08-31 | 株式会社ティオテクノ | Production method of photocatalyst |
JP4672822B2 (en) * | 1997-02-24 | 2011-04-20 | 株式会社ティオテクノ | Hydrophilic coating agent and surface hydrophilic substrate |
JP2005137977A (en) * | 2003-11-04 | 2005-06-02 | Mitsubishi Plastics Ind Ltd | Composition for forming transparent photocatalyst layer |
JP2006082071A (en) * | 2004-02-20 | 2006-03-30 | Sekisui Jushi Co Ltd | Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance |
JP5288429B2 (en) * | 2005-08-11 | 2013-09-11 | 三重県 | Method for producing titania porous layer |
CN117504892B (en) * | 2023-12-14 | 2024-04-30 | 中国水产科学研究院渔业机械仪器研究所 | La-Fe co-doped SrTiO3/TiO2Composite material, preparation method and application thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63248443A (en) * | 1987-04-01 | 1988-10-14 | Agency Of Ind Science & Technol | Photooxidation catalyst and its production |
JPH01238867A (en) * | 1988-03-18 | 1989-09-25 | Matsushita Electric Ind Co Ltd | Deodorizing method by photocatalyst |
JP3592727B2 (en) * | 1992-05-11 | 2004-11-24 | 日本電池株式会社 | Photocatalyst |
JPH06278241A (en) * | 1992-09-22 | 1994-10-04 | Takenaka Komuten Co Ltd | Building material |
JP4018161B2 (en) * | 1993-02-10 | 2007-12-05 | 石原産業株式会社 | Method for producing titanium oxide for photocatalyst and method for removing harmful substances using the same |
-
1996
- 1996-03-12 JP JP05514596A patent/JP3885248B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08309203A (en) | 1996-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3690864B2 (en) | Production method of photocatalyst | |
JP4803180B2 (en) | Titanium oxide photocatalyst, its production method and use | |
Zaleska | Doped-TiO2: a review | |
JP3356437B2 (en) | Photocatalyst, method for producing the same, and multifunctional member | |
JP3959213B2 (en) | Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent | |
JP4686536B2 (en) | Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition | |
WO2009116181A1 (en) | Visible light-responsive photocatalyst and method for producing the same | |
JP2000051708A (en) | Photocatalytic film and method for forming the same | |
JP4507066B2 (en) | Tungsten oxide-containing titanium oxide sol, production method thereof, coating agent and optical functional body | |
JPWO2005102521A1 (en) | Titanium oxide photocatalyst, method for producing the same, and use thereof | |
JP3885248B2 (en) | Photocatalyst composition | |
JPH10167727A (en) | Modified titanium oxide sol, photocatalyst composition and its forming agent | |
JP3791067B2 (en) | Photocatalyst composition and glass article | |
US8343282B2 (en) | Photocatalytic auto-cleaning process of stains | |
JP4883913B2 (en) | Photocatalyst and method for producing the same | |
JP3806998B2 (en) | PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION | |
JP2005219966A (en) | Production method for titanium oxide solution, titanium oxide solution, and photocatalyst coating material | |
JP2002241522A (en) | Method and apparatus for carrying out prevention of pollution, purification of polluted fluid or production of radical by electroconductive polymer and electroconductive polymer and structure therefor | |
Aziz et al. | Recent progress on development of TiO2 thin film photocatalysts for pollutant removal | |
JP2004082088A (en) | Photocatalyst and photocatalyst material | |
JP2004154779A (en) | Substrate coated with photocatalytic film and method for forming photocatalytic film thereon | |
EP1831131B1 (en) | Photocatalytic auto-cleaning process of stains | |
KR100442919B1 (en) | Preparation method for photocatalyst sol having high transparency photoactivity | |
JPH11290696A (en) | Photocatalytic substrate | |
JPH11244706A (en) | Photocatalyst comprising anatase-type titanium oxide and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061113 |
|
LAPS | Cancellation because of no payment of annual fees |