Nothing Special   »   [go: up one dir, main page]

JP3883936B2 - レーザ照射方法および半導体装置の作製方法 - Google Patents

レーザ照射方法および半導体装置の作製方法 Download PDF

Info

Publication number
JP3883936B2
JP3883936B2 JP2002252888A JP2002252888A JP3883936B2 JP 3883936 B2 JP3883936 B2 JP 3883936B2 JP 2002252888 A JP2002252888 A JP 2002252888A JP 2002252888 A JP2002252888 A JP 2002252888A JP 3883936 B2 JP3883936 B2 JP 3883936B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
energy density
film
attenuation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002252888A
Other languages
English (en)
Other versions
JP2004095727A5 (ja
JP2004095727A (ja
Inventor
幸一郎 田中
智昭 森若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002252888A priority Critical patent/JP3883936B2/ja
Publication of JP2004095727A publication Critical patent/JP2004095727A/ja
Publication of JP2004095727A5 publication Critical patent/JP2004095727A5/ja
Application granted granted Critical
Publication of JP3883936B2 publication Critical patent/JP3883936B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はレーザ光(レーザビーム)の照射方法およびそれを行うためのレーザ照射装置(レーザと該レーザから出力されるレーザ光(レーザビーム)を被照射体まで導くための光学系を含む装置)に関する。また、レーザ光(レーザビーム)の照射を工程に含んで作製された半導体装置の作製方法に関する。なお、ここでいう半導体装置には、液晶表示装置や発光装置等の電気光学装置及び該電気光学装置を部品として含む電子装置も含まれるものとする。
【0002】
【従来の技術】
近年、ガラス等の絶縁基板上に形成された半導体膜に対し、レーザアニールを施して、結晶化させたり、結晶性を向上させ結晶性半導体膜を得たり、不純物元素の活性化を行う技術が広く研究されている。なお、本明細書中において、結晶性半導体膜とは、結晶化領域が存在する半導体膜のことを言い、全面が結晶化している半導体膜も含む。
【0003】
エキシマレーザ等のパルスレーザ光(レーザビーム)を、被照射面において、数cm角の四角いスポットや、長さ100mm以上の線状となるように光学系にて成形し、レーザ光(レーザビーム)を移動させて(あるいはレーザ光(レーザビーム)の照射位置を被照射面に対し相対的に移動させて)アニールを行う方法が生産性が高く工業的に優れている。また、ここでいう「線状」は、厳密な意味で「線」を意味しているのではなく、アスペクト比の大きい長方形(もしくは長楕円形)を意味する。例えば、アスペクト比が10以上(好ましくは100〜10000)のもの指す。なお、線状とするのは被照射体に対して十分なアニールを行うためのエネルギー密度を確保するためであり、矩形状や面状であっても被照射体に対して十分なアニールを行えるのであれば構わない。現状で15J/パルスのエキシマレーザが市販されており、将来的には面状のレーザ光(レーザビーム)を用いてレーザアニールを行う可能性もある。
【0004】
図7に、被照射面においてレーザ光(レーザビーム)の形状を線状にするための光学系の構成の例を示す。この構成は極めて一般的なものであり、あらゆる前記光学系は図7の構成に準じている。この構成は、レーザ光(レーザビーム)の断面形状を線状に変換するだけでなく、同時に、被照射面におけるレーザ光(レーザビーム)のエネルギー密度の分布の均一化を果たすものである。一般にレーザ光(レーザビーム)のエネルギー密度の分布の均一化を行う光学系をビームホモジナイザと呼ぶ。
【0005】
レーザ101から出たレーザ光(レーザビーム)は、シリンドリカルレンズ群(以下、シリンドリカルレンズアレイと示す)103により、レーザ光(レーザビーム)の進行方向に対して直角方向に分割され、線状のレーザ光(レーザビーム)の長尺方向の長さが決定される。該方向を本明細書中では、第1の方向と呼ぶことにする。前記第1の方向は、光学系の途中にミラー挿入したとき、前記ミラーが曲げた光の方向応じて曲がるものとする。図7の上面図の構成では、7分割となっている。その後、レーザ光(レーザビーム)は、シリンドリカルレンズ105により、被照射面109において合成され、線状のレーザ光(レーザビーム)の長尺方向のエネルギー密度の分布が均一化される。
【0006】
次に、図7の側面図について説明する。レーザ101から出たレーザ光(レーザビーム)は、シリンドリカルレンズアレイ102aと102bにより、レーザ光(レーザビーム)の進行方向および前記第1の方向に直角方向に分割され、線状のレーザ光(レーザビーム)の短尺方向の長さが決定される。前記方向を本明細書中では、第2の方向と呼ぶことにする。前記第2の方向は、光学系の途中にミラーを挿入したとき、前記ミラーが曲げた光の方向に応じて曲がるものとする。なお、図7の側面図のリンドリカルレンズアレイ102aおよび102bは、それぞれ4分割となっている。これらの分割されたレーザ光(レーザビーム)は、シリンドリカルレンズ104により、いったん合成される。その後、レーザー光(レーザビーム)はミラー107で反射され、その後、ダブレットシリンドリカルレンズ108により、被照射面109にて再び1つのレーザ光(レーザビーム)に集光される。ダブレットシリンドリカルレンズとは、2枚のシリンドリカルレンズで構成されているレンズのことを言う。これらにより、線状のレーザ光(レーザビーム)の短尺方向のエネルギー密度の分布が均一化される。
【0007】
例えば、レーザ101として、レーザの出口で10mm×30mm(共にビームプロファイルにおける半値幅)であるエキシマレーザを用い、図7に示した構成を持つ光学系により成形すると、被照射面109においてエネルギー密度の分布の一様な125mm×0.4mmの線状のレーザ光(レーザビーム)とすることができる。
【0008】
このとき、上記光学系の母材を、例えば全て石英とするとの高い透過率が得られる。なお、使用するエキシマレーザの波長に対して透過率が99%以上得られるように、光学系をコーティングすると良い。
【0009】
そして、上記の構成で形成された線状のレーザ光(レーザビーム)を、そのレーザ光(レーザビーム)の短尺方向に徐々にずらしながら重ねて照射することにより、非晶質半導体の全面に対し、レーザアニールを施して、非晶質半導体を結晶化したり、結晶性を向上させ結晶性半導体膜を得たり、不純物元素の活性化を行うことができる。
【0010】
また、半導体装置の作製に用いる基板の大面積化はますます進んでいる。これは、1枚のガラス基板上に、例えば、画素部用と駆動回路用(ソースドライバー部およびゲートドライバー部)のTFTを作製して1つの液晶表示装置用パネルなどの半導体装置を作製するより、1枚の大面積基板を用いて複数の液晶表示装置用パネルなどの半導体装置を作製する方が、スループットが高く、コストの低減が実現できるためである。(図9)。現在では、大面積基板として、例えば600mm×720mmの基板、円形の12インチ(直径約300mm)の基板等が使用されるようになっている。さらに、将来的には一辺が1000mmを越える基板も用いられると予測される。
【0011】
【発明が解決しようとする課題】
光学系により被照射面またはその近傍において形成される線状や矩形状、面状のレーザ光(レーザビーム)の端部は、レンズの収差などにより、エネルギー密度が徐々に減衰している。(図8(A))本明細書中では、線状や矩形状、面状のレーザ光(レーザビーム)の端部においてエネルギー密度が徐々に減衰する領域を減衰領域と呼ぶ。
【0012】
また、基板の大面積化、レーザの大出力化に伴って、より長い線状のレーザ光(レーザビーム)や矩形状のレーザ光(レーザビーム)、より大きな面状のレーザ光(レーザビーム)が形成されつつある。これは、このようなレーザ光(レーザビーム)によりアニールを行う方が効率が良いためである。しかしながら、レーザから発振されるレーザ光(レーザビーム)の端部のエネルギー密度は、中心付近と比較して低いため、光学系によってこれまで以上にレーザ光(レーザビーム)を拡大すると、減衰領域がますます顕著化する傾向にある。
【0013】
レーザ光(レーザビーム)の減衰領域は、エネルギー密度の均一性が高い領域に比べてエネルギー密度が十分でなく、しかも徐々に減衰している。このため、前記減衰領域を有するレーザ光(レーザビーム)を用いてアニールを行っても、被照射体に対して一様なアニールを行うことはできない。(図8(B))。また、レーザ光(レーザビーム)の減衰領域を重ねて走査する方法によりアニールを行っても、エネルギー密度の均一性が高い領域とは明らかにアニールの条件が異なるため、やはり被照射体に対して一様にアニールすることができない。このように、レーザ光(レーザビーム)の減衰領域によりアニールされた領域とレーザ光(レーザビーム)のエネルギー密度の均一性が高い領域によってアニールされた領域とを同等に扱うことはできない。
【0014】
例えば、被照射体が半導体膜である場合には、レーザ光(レーザビーム)の減衰領域によりアニールされた領域とレーザ光(レーザビーム)のエネルギー密度の均一性が高い領域によってアニールされた領域とでは、結晶性が異なる。そのため、このような半導体膜によりTFTを作製しても、レーザ光(レーザビーム)の減衰領域によりアニールされた領域で作製されるTFTの電気的特性が低下し、同一基板内におけるTFTのばらつきの要因となる。実際には、このようなレーザ光(レーザビーム)の減衰領域によりアニールされた領域を用いてTFTを作製し、半導体装置を作製することはほとんどなく、基板1枚あたりに使用可能なTFTの数は減少し、スループットが低下する原因となっている。
【0015】
そこで本発明は、レーザ光(レーザビーム)の端部における減衰領域を除去し、効率良くアニールを行うことのできるレーザ照射装置を提供することを課題とする。また、このようなレーザ照射装置を用いたレーザ照射方法を提供し、前記レーザ照射方法を工程に含む半導体装置の作製方法を提供することを課題とする。
【0016】
【課題を解決するための手段】
本発明は、図1(A)のように被照射面のごく近傍にスリットを用いて、レーザ光(レーザビーム)の減衰領域、少なくともレーザ光(レーザビーム)の移動方向と平行な部分の減衰領域を除去または低減して、図2(A)で示すようにレーザ光(レーザビーム)の端部におけるエネルギー密度の分布を急峻なものとすることを特徴とする。なお、レーザ光(レーザビーム)の移動方向と平行な部分の減衰領域及びレーザ光(レーザビーム)の移動方向と垂直な部分の減衰領域を除去または低減してもよい。被照射面のごく近傍に設置するのは、レーザ光(レーザビーム)の拡がりを抑えるためである。このため、スリットは、装置が許容する範囲内で、基板に近接(代表的には1cm以内)させる。また、被照射面に接して設置してもよい。さらに、本発明は、図1(B)のようにミラーを用いて、レーザ光(レーザビーム)の減衰領域を折り返して減衰領域同士で強め合い、減衰領域を小さくして、レーザ光(レーザビーム)の端部におけるエネルギー密度の分布を急峻なものとすることを特徴とする。
【0017】
レーザ光(レーザビーム)の端部、少なくともレーザ光(レーザビーム)の移動方向と平行な部分の減衰領域が急峻なものであれば、該レーザ光(レーザビーム)はエネルギー密度の均一性が高いものとなるので、被照射体に対して一様なアニールを行うことができ、効率良くアニールすることが可能となる。なお、レーザ光(レーザビーム)の移動方向と平行な部分の減衰領域及びレーザ光(レーザビーム)の移動方向と垂直な部分の減衰領域を除去または低減してもよい。(図2(B))。
【0018】
本明細書で開示するレーザ照射装置に関する発明の構成は、レーザと、前記レーザから射出されたレーザ光(レーザビーム)の被照射面における第1のエネルギー密度の分布を、第2のエネルギー密度の分布とする第1の手段と、前記第2のエネルギー密度の分布を有するレーザ光(レーザビーム)の端部のエネルギー密度を均一にする第2の手段を有し、前記第2の手段は、前記被照射面と前記第1の手段との間に設けられていることを特徴としている。
【0019】
また、本明細書で開示するレーザ照射装置に関する発明の構成は、レーザと、前記レーザから射出されたレーザ光(レーザビーム)の断面形状を第1の形状に変形して被照射面に照射する第1の手段と、前記第1の形状に変形されたレーザ光(レーザビーム)の端部のエネルギー密度を均一にする第2の手段を有し、前記第2の手段は、前記光学系と前記被照射面との間に設けられていることを特徴としている。
【0020】
また、本明細書で開示するレーザ照射方法に関する発明の構成は、レーザから射出されたレーザ光(レーザビーム)の被照射面における第1のエネルギー密度の分布を、第1の手段により第2のエネルギー密度の分布とし、第2の手段により、前記第2のエネルギー密度の分布を有するレーザ光(レーザビーム)の端部のエネルギー密度を均一にしたレーザ光(レーザビーム)を、被照射面に対して相対的に移動しながら照射することを特徴としている。
【0021】
また、本明細書で開示するレーザ照射方法に関する発明の構成は、レーザから射出されたレーザ光(レーザビーム)の断面形状を、第1の手段により第1の形状に変形して被照射面に照射し、第2の手段により、前記第1の形状に変形されたレーザ光(レーザビーム)の端部のエネルギー密度を均一にしたレーザ光(レーザビーム)を、被照射面に対して相対的に移動しながら照射することを特徴としている。
【0022】
また、本明細書で開示する半導体装置の作製方法に関する発明の構成は、レーザから射出されたレーザ光(レーザビーム)の被照射面における第1のエネルギー密度の分布を、第1の手段により第2のエネルギー密度の分布とし、第2の手段により、前記第2のエネルギー密度の分布を有するレーザ光(レーザビーム)の端部のエネルギー密度を均一にしたレーザ光(レーザビーム)を、被照射面に対して相対的に移動しながら照射することを特徴としている。
【0023】
また、本明細書で開示する半導体装置の作製方法に関する発明の構成は、レーザから射出されたレーザ光(レーザビーム)の断面形状を、第1の手段により第1の形状に変形して被照射面に照射し、第2の手段により、前記第1の形状に変形されたレーザ光(レーザビーム)の端部のエネルギー密度を均一にしたレーザ光(レーザビーム)を、被照射面に対して相対的に移動しながら照射することを特徴としている。
【0024】
また、上記の構成において、前記第1の手段は、前記レーザ光(レーザビーム)の光軸と直交するように配置されたホモジナイザーであることを特徴としている。
【0025】
また、上記の構成において、前記第1の手段は、前記レーザ光(レーザビーム)の光軸と直交するように並列に配置され、前記レーザ光(レーザビーム)を配置方向に分割する複数のシリンドリカルレンズ群であることを特徴としている。
【0026】
また、上記の構成において、前記第1の手段は、前記レーザ光(レーザビーム)の光軸と直交するように並列に配置され、前記レーザ光(レーザビーム)を配置方向に分割する複数のシリンドリカルレンズ群と、前記シリンドリカルレンズ群の透過側に配置され前記分割されたレーザ光(レーザビーム)を合成するレンズとであることを特徴としている。
【0027】
また、上記の構成において前記第1の手段は、前記レーザ光(レーザビーム)の光軸と直交するように配置され、前記レーザ光(レーザビーム)を分割するフライアイレンズであることを特徴としている。
【0028】
また、上記の構成において、前記第1の手段は、前記レーザ光(レーザビーム)の光軸と直交するように配置され、前記レーザ光(レーザビーム)を分割するフライアイレンズと、前記フライアイレンズの透過側に配置され前記分割されたレーザ光(レーザビーム)を合成する球面レンズとであることを特徴としている。
【0029】
また、上記の構成において、前記第2の手段は、前記被照射面に近接されたスリット、または前記第2のエネルギー密度の分布を有するレーザ光(レーザビーム)の端部に設置されたミラーであることを特徴としている。
【0030】
また、上記の構成において、前記レーザ光(レーザビーム)の端部は、前記レーザ光(レーザビーム)の移動方向と平行な領域であることを特徴としている。
【0031】
また、上記構成において、前記レーザ光(レーザビーム)は、非線形光学素子により高調波に変換してもよい。例えば、YAGレーザは、基本波として、波長1065nmのレーザ光(レーザビーム)を出すことで知られている。このレーザ光(レーザビーム)の珪素膜に対する吸収係数は非常に低く、このままでは半導体膜の1つである非晶質珪素膜の結晶化を行うことは技術的に困難である。ところが、このレーザ光(レーザビーム)は非線形光学素子を用いることにより、より短波長に変換することができ、高調波として、第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm)、第5高調波(213nm)が挙げられる。これらの高調波は非晶質珪素膜に対し吸収係数が高いので、非晶質珪素膜の結晶化に用いる事ができる。
【0032】
上記構成において、前記レーザは、連続発振またはパルス発振の固体レーザまたは気体レーザであることを特徴としている。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ等が挙げられる。
【0033】
また、上記構成において、前記レーザ光(レーザビーム)は、非線形光学素子により高調波に変換されていてもよい。
【0034】
上記構成において、前記レーザは、連続発振またはパルス発振の固体レーザまたは気体レーザであることを特徴としている。なお、前記固体レーザとしては連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ等があり、前記気体レーザとしては連続発振またはパルス発振のエキシマレーザ、Arレーザ、Krレーザ等が挙げられる。
【0035】
被照射面のごく近傍又は被照射面上にスリットを設置する、又はレーザ光(レーザビーム)の減衰領域、代表的には減衰領域の中間付近にミラーを設置することにより、被照射面またはその近傍におけるレーザ光(レーザビーム)のエネルギー密度の分布を均一性の優れたものにすることが可能であり、被照射体に対して一様にアニールすることができる。
従来は、図7のシリンドリカルレンズ105によって、分割されたレーザ光(レーザビーム)を合成し、減衰領域を縮小していたが、本発明により、光学系にシリンドリカルレンズ105を設けなくても、レーザ光(レーザビーム)の端部におけるエネルギー密度の分布を急峻なものとすることができる。このことにより、光学系に用いるレンズの数が減少し、光学調整がしやすくなり、かつ、一様なアニールを行うことができる。なお、シリンドリカルレンズ105を用いた場合、レーザ光(レーザビーム)の減衰領域を縮小することができるため、被照射面のごく近傍又は被照射面に接してに設置されたスリットまたは、レーザ光(レーザビーム)の減衰領域の中間付近に設置されたミラーに照射されるレーザ光(レーザビーム)の面積を抑制することができるため、より小型なミラー又はスリットを使用することができるという効果がある。
一様なアニールを行うことは、被照射体の性質を一様なものとするために大変重要なことである。また本発明は特に、大面積基板をアニールする場合に有効である。例えば、大面積基板の長さよりも短いレーザ光(レーザビーム)を照射して被照射体をアニールする場合、前記大面積基板に対して相対的に複数回の走査を行ってアニールする必要があるが、本発明により形成されるレーザ光(レーザビーム)は、特にレーザ光(レーザビーム)の移動方向と平行な部分においてエネルギー分布の非常に優れたレーザ光(レーザビーム)であるため、レーザ光(レーザビーム)の走査された領域が隣り合う箇所においても、一様にアニールすることができる。これは大面積基板のどの部分においてもアニールのばらつきがなくなるため、大面積基板を無駄なく利用することができ、スループットの向上が可能となる。例えば、前記大面積基板上に半導体膜が形成されているならば、一様にアニールされた半導体膜の膜質は一様なものとなり、このような半導体膜を用いて作製されたTFTの電気的特性のばらつきを低減することを可能とする。そして、このようなTFTから作製された半導体装置の動作特性および信頼性をも向上し得る。
【0036】
【発明の実施の形態】
本実施形態では、スリットにより減衰領域を除去する方法について図3を用いて説明する。図3(a)に長尺方向を垂直から見た光学系を、図3(b)に短尺方向を垂直から見た光学系を示す。
【0037】
レーザ1101から射出されたレーザ光は、ビームエキスパンダーにより長尺方向および短尺方向ともにそれぞれ約2倍に拡大される。なお、ビームエキスパンダーはレーザから射出されたレーザ光(レーザビーム)の形状が小さい場合に特に有効なものであり、レーザ光(レーザビーム)の大きさ等によっては用いなくてもよい。
【0038】
ビームエキスパンダーから射出されたレーザ光(レーザビーム)は、第1形成手段であるシリンドリカルレンズアレイ1103a、1103b、シリンドリカルレンズ1104に入射する。これら3つのレンズは、レーザ光(レーザビーム)の曲率が長尺方向に平行になるよう配置されており、レーザ光(レーザビーム)は長尺方向にエネルギー密度の分布が均一化される。
【0039】
シリンドリカルレンズ1104から射出されたレーザ光(レーザビーム)は、第3形成手段であるシリンドリカルレンズアレイ1105a、シリンドリカルレンズアレイ1105b、シリンドリカルレンズ1106、2枚のシリンドリカルレンズ1107a、1107bから構成されるダブレットシリンドリカルレンズ1107に入射する。これらのレンズは曲率がレーザ光(レーザビーム)の短尺方向に平行になるよう配置されており、レーザ光(レーザビーム)は短尺方向においてエネルギー密度の分布が均一化されると同時に幅が縮められる。
【0040】
そして、被照射面のごく近傍に第2形成手段であるスリット1108を配置し、レーザ光(レーザビーム)における減衰領域をスリット1108で遮蔽し、被照射面1109にレーザ光(レーザビーム)の減衰領域が到達しないようにスリット1108の幅と位置を設定する。代表的には、被照射面のごく近傍に設置することが好ましい。これは、レーザ光(レーザビーム)の拡がりを抑えるためである。このため、スリットは、装置が許容する範囲内で、基板に近接(代表的には1cm以内)させる。また、被照射面に接して設置してもよい。これにより、レーザ光(レーザビーム)端部のエネルギーの密度の分布が急峻な線状のレーザ光(レーザビーム)を得ることができる。
【0041】
このようなレーザ照射装置を用いて半導体膜のアニールを行えば、該半導体膜を結晶化させたり、結晶性を向上させて結晶性半導体膜を得たり、不純物元素の活性化を行うことができる。
【0042】
また、本実施形態では、スリットを用いているが、これに限らず、ミラーを用いることもできる。ミラーを用いる場合には、レーザ光(レーザビーム)の減衰領域、少なくともレーザ光(レーザビーム)の移動方向と平行な部分の減衰領域で、代表的には減衰領域の幅の中間付近にミラーを設置すると、減衰領域の中央付近でレーザ光(レーザビーム)が反射される。反射されない部分と反射された部分とで減衰領域のエネルギー密度が合成されるため、エネルギー密度の分布が均一な領域と同等のエネルギー密度にすることができる。なお、レーザ光(レーザビーム)の移動方向と平行な部分の減衰領域及びレーザ光(レーザビーム)の移動方向と垂直な部分の減衰領域の中央付近において、ミラーを設置してもよい。代表的には減衰領域の幅の中間付近にミラーを設置すると、さらに、エネルギー密度の分布が均一な領域と同等のエネルギー密度にすることができる。
【0043】
また、用いるレーザの波長により合成石英ガラスの表面に施されているコーティングを適切なものに変えれば、さまざまなレーザを本発明に適用できる。
【0044】
なお、本実施形態では、被照射面における形状が線状であるレーザ光(レーザビーム)を形成しているが、本発明は線状に限らない。また、レーザから射出されたレーザの種類によって異なるので、光学系によって成形しても、元の形状の影響を受けやすい。例えば、XeClエキシマレーザ(波長308nm、パルス幅30ns)射出されたレーザ光(レーザビーム)の形状は、10mm×30mm(共にビームプロファイルにおける半値幅)の矩形状であり、固体レーザから射出されたレーザ光(レーザビーム)の形状は、ロッド形状が円筒形であれば円状となり、スラブ型であれば矩形状である。いずれの形状においても、被照射体のアニールに十分なエネルギー密度であるのなら問題はなく、本発明を適用することが可能である。
【0045】
以上の構成でなる本発明について、以下に示す実施例によりさらに詳細な説明を行うこととする。
【0046】
【実施例】
[実施例1]
本実施例では、スリットを用いて、線状のレーザ光(レーザビーム)の端部を急峻なものとする方法について図3を用いて説明する。図3(a)にレーザ光(レーザビーム)の長尺方向を垂直から見た光学系を、図3(b)にレーザ光(レーザビーム)の短尺方向を垂直から見た光学系を示す。
【0047】
なお、本明細書において、レンズの配置についての説明は、レーザ光(レーザビーム)の進行方向を前方としている。また、レンズはレーザ光(レーザビーム)の入射側を第1面、射出側を第2面とし、第1面の曲率半径をR1、第2面の曲率半径をR2で表す。そして、用いる曲率半径の符号は、曲率中心がレンズからみてレーザ光(レーザビーム)の入射側にあるときは負、射出側にあるときは正とし、平面の場合は∞とする。さらに、用いるレンズはすべて合成石英ガラス製(屈折率1.485634)とするが、これに限らない。
【0048】
レーザ1101から射出されたレーザ光(レーザビーム)は、ビームエキスパンダー(半径50mm、厚さ7mm、R1=−220mm、R2=∞の球面レンズ1102aと1102aから400mmの位置にある半径50mm、厚さ7mm、R1=∞、R2=−400mmの球面レンズ1102b)によって長尺方向および短尺方向に約2倍に拡大される。
【0049】
ビームエキスパンダーから射出されたレーザ光(レーザビーム)は、ビームエキスパンダー1102bの前方50mmに配置されたシリンドリカルレンズアレイ1103aに入射後、シリンドリカルレンズアレイ1103aから88mm前方のシリンドリカルレンズアレイ1103bを通過し、さらにシリンドリカルレンズアレイ1103bの前方120mmに配置したシリンドリカルレンズ1104に入射する。シリンドリカルレンズアレイ1103aは、長さ60mm、幅2mm、厚さ5mm、R1=28mm、R2=∞のシリンドリカルレンズを40本アレイ状にしたものである。シリンドリカルレンズアレイ1103bは、長さ60mm、幅2mm、厚さ5mm、R1=−13.33mm、R2=∞のシリンドリカルレンズを40本アレイ状にしたものである。シリンドリカルレンズ1104は、長さ150mm、幅60mm、厚さ20mm、R1=2140mm、R2=∞のシリンドリカルレンズである。シリンドリカルレンズアレイ1103a、1103b、シリンドリカルレンズ1104はともに曲率が長尺方向に平行になるよう配置する。シリンドリカルレンズアレイ1103a、1103bによって光線が分割され、シリンドリカルレンズ1104により分割された光線が重ね合わされて、エネルギー密度の分布が均一化される。これら3つのレンズによって、レーザ光(レーザビーム)は長尺方向にエネルギー密度の分布が均一化される。
【0050】
シリンドリカルレンズ1104から射出されたレーザ光(レーザビーム)は、シリンドリカルレンズ1104の前方395mmのシリンドリカルレンズアレイ1105aに入射後、65mm前方のシリンドリカルレンズアレイ1105bを通過し、さらにシリンドリカルレンズアレイ1105bの1600mm前方のシリンドリカルレンズ1106に入射する。シリンドリカルレンズアレイ1105aは、長さ150mm、幅2mm、厚さ5mm、R1=100mm、R2=∞ のシリンドリカルレンズを16本アレイ状にしたものである。シリンドリカルレンズアレイ1105bは、長さ150mm、幅2mm、厚さ5mm、R1=∞、R2=80mmのシリンドリカルレンズを16本アレイ状にしたものである。シリンドリカルレンズ1106は、長さ900mm、幅60mm、厚さ20mm、R1=∞、R2=−486mmのシリンドリカルレンズである。シリンドリカルレンズアレイ1105a、1105b、シリンドリカルレンズ1106はすべて曲率が短尺方向に平行になるよう配置する。これら3つのレンズによって、レーザ光(レーザビーム)は短尺方向のエネルギー密度の分布が均一化されると同時に幅が縮められ、シリンドリカルレンズ1106の前方800mmに幅2mmの線状のレーザ光(レーザビーム)がつくられる。
【0051】
上記した幅2mmの線状のレーザ光(レーザビーム)をさらに縮めるために、シリンドリカルレンズ1106の前方2050mmに、ダブレットシリンドリカルレンズ1107を配置する。ダブレットシリンドリカルレンズ1107は、2枚のシリンドリカルレンズ1107a、1107bから構成される。シリンドリカルレンズ1107aは長さ400mm、幅70mm、厚さ10mm 、R1=125mm、R2=77mmのシリンドリカルレンズである。シリンドリカルレンズ1107bは長さ400mm、幅70mm、厚さ10mm、R1=97mm、R2=−200mmのシリンドリカルレンズである。また、シリンドリカルレンズ1107aと1107bには5.5mmの間隔を持たせる。シリンドリカルレンズ1107a、1107bはともに曲率が短尺方向に平行になるよう配置する。
【0052】
ダブレットシリンドリカルレンズ1107の前方237.7mmの平面上1109に長さ300mm、幅0.4mmの線状のレーザ光(レーザビーム)がつくられる。このとき形成された線状のレーザ光(レーザビーム)は、長尺方向の端部が徐々に減衰する形状のエネルギー密度の分布を持つ。このエネルギー減衰領域を除去するために、被照射面のごく近傍にスリット1108を配置する。エネルギー減衰領域に相当する光線をスリット1108で遮蔽し、被照射面1109にその光線が到達しないようにスリット1108の幅と位置を設定する。これにより、端部におけるエネルギー分布が急峻な線状のレーザ光(レーザビーム)を得ることができる。本実施例では、基板から2mm離れた位置にスリットを設置した。
【0053】
また、シリンドリカルレンズアレイ1103a、1103b、シリンドリカルレンズ1104の3つのレンズ、または、シリンドリカルレンズアレイ1105a、1105b、シリンドリカルレンズ1106の3つのレンズの代わりに図19で示すホモジナイザを用いても良い。このホモジナイザを用いても、被照射面またはその近傍におけるレーザ光(レーザビーム)は端部に減衰領域を有しているため、スリットを設けて、減衰領域を除去してエネルギー分布が急峻な線状のレーザ光(レーザビーム)を形成する。
【0054】
このようなレーザ照射装置を用いれば、被照射体に対して一様なアニールを行うことができる。例えば、被照射体に半導体膜を用いてアニールを行えば、該半導体膜を結晶化させたり、結晶性を向上させて一様な結晶性を有する半導体膜を得たり、不純物元素の活性化を行うことができる。
【0055】
[実施例2]
本実施例では、ミラーを用いて、線状のレーザ光(レーザビーム)の端部を急峻なものとする方法について説明する。
【0056】
実施例1で示した光学系を用いて線状のレーザ光(レーザビーム)を成形する。ただし、図1(B)にあるように、スリットの側面をミラーにし、エネルギー減衰領域のほぼ中央付近に配置する。ミラーでエネルギー減衰領域の光線を折り返し、残存するエネルギー減衰領域に照射する。これにより、減衰領域が小さくなり、レーザ光(レーザビーム)の端が急峻なエネルギー分布をもつ線状のレーザ光(レーザビーム)が被照射面に形成される。
【0057】
このようなレーザ照射装置を用いれば、被照射体に対して一様なアニールを行うことができる。例えば、被照射体に半導体膜を用いてアニールを行えば、該半導体膜を結晶化させたり、結晶性を向上させて一様な結晶性を有する結晶性半導体膜を得たり、不純物元素の活性化を行うことができる。
【0058】
[実施例3]
本実施例では、面状のレーザ光(レーザビーム)の端部を急峻なものとする方法について図4および図5を用いて説明する。
【0059】
レーザ1101から射出されたレーザ光(レーザビーム)を、フライアイレンズ1302に入射する。なお、発振装置からフライアイレンズの間に、入射レーザ光(レーザビーム)の縦横比を1:1にするためにビームエキスパンダーとしてシリンドリカルレンズを挿入してもよい。フライアイレンズ1302はR1=10mm、R2=∞、厚さ5mm、1mm角の球面レンズを図5aのように配列させたものである。なお、入射レーザ光(レーザビーム)の形状によってアレイを、エネルギー分布の均一化に最適な配列にする(配列の例:図5b)。また、アレイをレーザアニールする半導体膜と相似形にするために、例えば図5c(長方形)、d(平行四辺形)、e(菱形)、f(正六角形)のような形状にすることも考えられる。フライアイレンズ1302の前方20mmに球面レンズ1303を配置する。球面レンズ1303は、R1=300mm、R2=∞、厚さ20mm、150mm角である。
【0060】
フライアイレンズ1302によって分割された光線が、球面レンズ1303で重ね合わされ、フライアイレンズ1302の前方600mmの被照射面1305にエネルギー分布が均一化された30mm×30mmの面状のレーザ光(レーザビーム)が形成される。このとき形成される面状のレーザ光(レーザビーム)は、端のエネルギーが減衰しているので、それを除去するために、被照射面のごく近傍にスリット1304を設置する。スリット1304を光線の入射側から見た図を図4に示す。エネルギー減衰領域に相当する光線を遮蔽し、その光線が被照射面1305に到達しないようにスリット1304の幅と位置を設定する。レーザ光(レーザビーム)の端が急峻なエネルギー分布をもつ正方形の面状のレーザ光(レーザビーム)が被照射面1305に形成される。本実施例では、基板から2mm離れた位置にスリットを設置した。なお、スリットをミラーに置き換えても同様に線状のレーザ光(レーザビーム)や面状のレーザ光(レーザビーム)を形成することができる。
【0061】
このようなレーザ照射装置を用いれば、被照射体に対して一様なアニールを行うことができる。例えば、被照射体に半導体膜を用いてアニールを行えば、該半導体膜を結晶化させたり、結晶性を向上させて一様な結晶性を有する結晶性半導体膜を得たり、不純物元素の活性化を行うことができる。
【0062】
[実施例4]
本実施例では、大面積基板にレーザアニールを行う場合について図6を用いて説明する。
【0063】
まず、実施例1乃至3のいずれか一にしたがって、エネルギー密度の均一性が高いレーザ光(レーザビーム)を形成する。そして、前記レーザ光(レーザビーム)を大面積基板に対して相対的に移動させながら照射する。(図6(A))このとき、前記レーザ光(レーザビーム)の長尺方向の長さが大面積基板の一辺より短いため、一方向の走査だけではアニールできず、少なくとも2方向への移動と複数回の走査が必要となり、図6(B)で示すように、レーザ光(レーザビーム)の走査が隣り合う箇所が形成される。しかしながら、本発明により形成されるレーザ光(レーザビーム)は端部が急峻なレーザ光(レーザビーム)であり、減衰領域を有しない。そのためレーザ光(レーザビーム)の走査が隣り合う箇所においても一様なアニールを行うことが実現できる。そのため、大面積基板を無駄なく利用することができるのでスループットが著しく向上する。
【0064】
[実施例5]
本実施例ではアクティブマトリクス基板の作製方法について図10〜図13を用いて説明する。本明細書ではCMOS回路、及び駆動回路と、画素TFT、保持容量とを有する画素部を同一基板上に形成された基板を、便宜上アクティブマトリクス基板と呼ぶ。
【0065】
まず、本実施例ではバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからなる基板400を用いる。なお、基板400としては、石英基板やシリコン基板、金属基板またはステンレス基板の表面に絶縁膜を形成したものを用いても良い。また、本実施例の処理温度に耐えうる耐熱性が有するプラスチック基板を用いてもよい。なお、本発明はエネルギー分布の均一性が非常に優れたレーザ光(レーザビーム)を用いてアニールを行うことができるため、大面積基板を用いることが可能である。
【0066】
次いで、基板400上に酸化珪素膜、窒化珪素膜または酸化窒化珪素膜などの絶縁膜から成る下地膜401を公知の手段により形成する。本実施例では下地膜401として2層構造を用いるが、前記絶縁膜の単層膜または2層以上積層させた構造を用いても良い。
【0067】
次いで、下地膜上に半導体層402〜406を形成する。半導体層402〜406は公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により25〜80nm(好ましくは30〜60nm)の厚さで半導体膜を成膜し、レーザ結晶化法により結晶化させる。レーザ結晶化法は、実施例1乃至実施例4のいずれか一を適用して、レーザから射出されたレーザ光(レーザビーム)を半導体膜に照射する。もちろん、レーザ結晶化法だけでなく、他の公知の結晶化法(RTAやファーネスアニール炉を用いた熱結晶化法、結晶化を助長する金属元素を用いた熱結晶化法等)と組み合わせて行ってもよい。そして、得られた結晶質半導体膜を所望の形状にパターニングして半導体層402〜406を形成する。前記半導体膜としては、非晶質半導体膜や微結晶半導体膜、結晶質半導体膜などがあり、非晶質珪素ゲルマニウム膜などの非晶質構造を有する化合物半導体膜を適用しても良い。
【0068】
本実施例では、プラズマCVD法を用い、55nmの非晶質珪素膜を成膜する。そして、この非晶質珪素膜に脱水素化(500℃、1時間)を行った後、出力10Wの連続発振のYVO4レーザから射出されたレーザ光(レーザビーム)を非線形光学素子により第2高調波に変換したのち、実施例1乃至実施例3のいずれか一に示す光学系よりレーザ光(レーザビーム)を形成して照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。また、エキシマレーザを用いる場合には、パルス発振周波数300Hzとし、レーザーエネルギー密度を100〜1000mJ/cm2(代表的には200〜700mJ/cm2)とするのが望ましい。そして、0.5〜2000cm/s程度の速度でレーザ光(レーザビーム)に対して相対的にステージを動かして照射し、結晶性珪素膜を形成する。そして、フォトリソグラフィ法を用いたパターニング処理によって半導体層402〜406を形成する。
【0069】
また、半導体層402〜406を形成した後、TFTのしきい値を制御するために微量な不純物元素(ボロンまたはリン)のドーピングを行ってもよい。
【0070】
次いで、半導体層402〜406を覆うゲート絶縁膜407を形成する。ゲート絶縁膜407はプラズマCVD法またはスパッタ法を用い、厚さを40〜150nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により110nmの厚さで酸化窒化珪素膜(組成比Si=32%、O=59%、N=7%、H=2%)で形成した。勿論、ゲート絶縁膜は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0071】
また、酸化珪素膜を用いる場合には、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。このようにして作製される酸化珪素膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。
【0072】
次いで、ゲート絶縁膜407上に膜厚20〜100nmの第1の導電膜408と、膜厚100〜400nmの第2の導電膜409とを積層形成する。本実施例では、膜厚30nmのTaN膜からなる第1の導電膜408と、膜厚370nmのW膜からなる第2の導電膜409を積層形成する。TaN膜はスパッタ法で形成し、Taのターゲットを用い、窒素を含む雰囲気内でスパッタする。また、W膜は、Wのターゲットを用いたスパッタ法で形成した。その他に6フッ化タングステン(WF6)を用いる熱CVD法で形成することもできる。いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。
【0073】
なお、本実施例では、第1の導電膜408をTaN、第2の導電膜409をWとしているが、特に限定されず、いずれもTa、W、Ti、Mo、Al、Cu、Cr、Ndから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料で形成してもよい。また、リン等の不純物元素をドーピングした多結晶珪素膜に代表される半導体膜を用いてもよい。また、AgPdCu合金を用いてもよい。
【0074】
次に、フォトリソグラフィ法を用いてレジストからなるマスク410〜415を形成し、電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。(図10(B))本実施例では第1のエッチング条件として、ICP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用い、エッチング用ガスにCF4とCl2とO2とを用い、それぞれのガス流量比を25:25:10(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成してエッチングを行う。基板側(試料ステージ)にも150WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。
【0075】
この後、レジストからなるマスク410〜415を除去せずに第2のエッチング条件に変え、エッチング用ガスにCF4とCl2とを用い、それぞれのガス流量比を30:30(sccm)とし、1Paの圧力でコイル型の電極に500WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行う。基板側(試料ステージ)にも20WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。CF4とCl2を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増加させると良い。
【0076】
上記第1のエッチング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15〜45°となる。こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層417〜422(第1の導電層417a〜422aと第2の導電層417b〜422b)を形成する。416はゲート絶縁膜であり、第1の形状の導電層417〜422で覆われない領域は20〜50nm程度エッチングされ薄くなった領域が形成される。
【0077】
次いで、レジストからなるマスクを除去せずに第2のエッチング処理を行う。(図10(C))ここでは、エッチングガスにCF4とCl2とO2とを用い、W膜を選択的にエッチングする。この時、第2のエッチング処理により第2の導電層428b〜433bを形成する。一方、第1の導電層417a〜422aは、ほとんどエッチングされず、第2の形状の導電層428〜433を形成する。
【0078】
そして、レジストからなるマスクを除去せずに第1のドーピング処理を行い、半導体層にn型を付与する不純物元素を低濃度に添加する。ドーピング処理はイオンドープ法、若しくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を1×1013〜5×1014/cm2とし、加速電圧を40〜80keVとして行う。本実施例ではドーズ量を1.5×1013/cm2とし、加速電圧を60keVとして行う。n型を付与する不純物元素として15族に属する元素、典型的にはリン(P)または砒素(As)を用いるが、ここではリン(P)を用いる。この場合、導電層428〜433がn型を付与する不純物元素に対するマスクとなり、自己整合的に不純物領域423〜427が形成される。不純物領域423〜427には1×1018〜1×1020/cm3の濃度範囲でn型を付与する不純物元素を添加する。
【0079】
レジストからなるマスクを除去した後、新たにレジストからなるマスク434a〜434cを形成して第1のドーピング処理よりも高い加速電圧で第2のドーピング処理を行う。イオンドープ法の条件はドーズ量を1×1013〜1×1015/cm2とし、加速電圧を60〜120keVとして行う。ドーピング処理は第2の導電層428b〜432bを不純物元素に対するマスクとして用い、第1の導電層のテーパー部の下方の半導体層に不純物元素が添加されるようにドーピングする。続いて、第2のドーピング処理より加速電圧を下げて第3のドーピング処理を行って図11(A)の状態を得る。イオンドープ法の条件はドーズ量を1×1015〜1×1017/cm2とし、加速電圧を50〜100keVとして行う。第2のドーピング処理および第3のドーピング処理により、第1の導電層と重なる低濃度不純物領域436、442、448には1×1018〜5×1019/cm3の濃度範囲でn型を付与する不純物元素を添加され、高濃度不純物領域435、438、441、444、447には1×1019〜5×1021/cm3の濃度範囲でn型を付与する不純物元素を添加される。
【0080】
もちろん、適当な加速電圧にすることで、第2のドーピング処理および第3のドーピング処理は1回のドーピング処理で、低濃度不純物領域および高濃度不純物領域を形成することも可能である。
【0081】
次いで、レジストからなるマスクを除去した後、新たにレジストからなるマスク450a〜450cを形成して第4のドーピング処理を行う。この第4のドーピング処理により、pチャネル型TFTの活性層となる半導体層に前記一導電型とは逆の導電型を付与する不純物元素が添加された不純物領域453〜455、459、460を形成する。第2の導電層428a〜432aを不純物元素に対するマスクとして用い、p型を付与する不純物元素を添加して自己整合的に不純物領域を形成する。本実施例では、不純物領域453〜455、459、460はジボラン(B26)を用いたイオンドープ法で形成する。(図11(B))この第4のドーピング処理の際には、nチャネル型TFTを形成する半導体層はレジストからなるマスク450a〜450cで覆われている。第1乃至3のドーピング処理によって、不純物領域439、447、448にはそれぞれ異なる濃度でリンが添加されているが、そのいずれの領域においてもp型を付与する不純物元素の濃度を1×1019〜5×1021atoms/cm3となるようにドーピング処理することにより、pチャネル型TFTのソース領域およびドレイン領域として機能するために何ら問題は生じない。
【0082】
以上までの工程で、それぞれの半導体層に不純物領域が形成される。
【0083】
次いで、レジストからなるマスク450a〜450cを除去して第1の層間絶縁膜461を形成する。この第1の層間絶縁膜461としては、プラズマCVD法またはスパッタ法を用い、厚さを100〜200nmとして珪素を含む絶縁膜で形成する。本実施例では、プラズマCVD法により膜厚150nmの酸化窒化珪素膜を形成した。勿論、第1の層間絶縁膜461は酸化窒化珪素膜に限定されるものでなく、他の珪素を含む絶縁膜を単層または積層構造として用いても良い。
【0084】
次いで、図11(C)に示すように、レーザ光(レーザビーム)を照射して、半導体層の結晶性の回復、それぞれの半導体層に添加された不純物元素の活性化を行う。このとき、レーザ光(レーザビーム)のエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.01〜10MW/cm2)が必要であり、レーザ光(レーザビーム)に対して相対的に基板を0.5〜2000cm/sの速度で移動させる。なお、レーザアニール法の他に、熱アニール法、またはラピッドサーマルアニール法(RTA法)などを適用することができる。
【0085】
また、第1の層間絶縁膜を形成する前に加熱処理を行っても良い。ただし、用いた配線材料が熱に弱い場合には、本実施例のように配線等を保護するため層間絶縁膜(珪素を主成分とする絶縁膜、例えば窒化珪素膜)を形成した後で活性化処理を行うことが好ましい。
【0086】
そして、熱処理(300〜550℃で1〜12時間の熱処理)を行うと水素化を行うことができる。この工程は第1の層間絶縁膜461に含まれる水素により半導体層のダングリングボンドを終端する工程である。第1の層間絶縁膜の存在に関係なく半導体層を水素化することができる。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)や、3〜100%の水素を含む雰囲気中で300〜450℃で1〜12時間の熱処理を行っても良い。
【0087】
次いで、第1の層間絶縁膜461上に無機絶縁膜材料または有機絶縁物材料から成る第2の層間絶縁膜462を形成する。本実施例では、膜厚1.6μmのアクリル樹脂膜を形成したが、粘度が10〜1000cp、好ましくは40〜200cpのものを用い、表面に凸凹が形成されるものを用いる。
【0088】
本実施例では、鏡面反射を防ぐため、表面に凸凹が形成される第2の層間絶縁膜を形成することによって画素電極の表面に凸凹を形成した。また、画素電極の表面に凹凸を持たせて光散乱性を図るため、画素電極の下方の領域に凸部を形成してもよい。その場合、凸部の形成は、TFTの形成と同じフォトマスクで行うことができるため、工程数の増加なく形成することができる。なお、この凸部は配線及びTFT部以外の画素部領域の基板上に適宜設ければよい。こうして、凸部を覆う絶縁膜の表面に形成された凸凹に沿って画素電極の表面に凸凹が形成される。
【0089】
また、第2の層間絶縁膜462として表面が平坦化する膜を用いてもよい。その場合は、画素電極を形成した後、公知のサンドブラスト法やエッチング法等の工程を追加して表面を凹凸化させて、鏡面反射を防ぎ、反射光を散乱させることによって白色度を増加させることが好ましい。
【0090】
そして、駆動回路506において、各不純物領域とそれぞれ電気的に接続する配線463〜467を形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。もちろん、二層構造に限らず、単層構造でもよいし、三層以上の積層構造にしてもよい。また、配線の材料としては、AlとTiに限らない。例えば、TaN膜上にAlやCuを形成し、さらにTi膜を形成した積層膜をパターニングして配線を形成してもよい。(図12)
【0091】
また、画素部507においては、画素電極470、ゲート配線469、接続電極468を形成する。この接続電極468によりソース配線(443aと443bの積層)は、画素TFTと電気的な接続が形成される。また、ゲート配線469は、画素TFTのゲート電極と電気的な接続が形成される。また、画素電極470は、画素TFTのドレイン領域471と電気的な接続が形成され、さらに保持容量を形成する一方の電極として機能する半導体層459と電気的な接続が形成される。また、画素電極470としては、AlまたはAgを主成分とする膜、またはそれらの積層膜等の反射性の優れた材料を用いることが望ましい。
【0092】
以上の様にして、nチャネル型TFT501とpチャネル型TFT502からなるCMOS回路、及びnチャネル型TFT503を有する駆動回路506と、画素TFT504、保持容量505とを有する画素部507を同一基板上に形成することができる。こうして、アクティブマトリクス基板が完成する。
【0093】
駆動回路506のnチャネル型TFT501はチャネル形成領域437、ゲート電極の一部を構成する第1の導電層428aと重なる低濃度不純物領域436(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域452とを有している。このnチャネル型TFT501と電極466で接続してCMOS回路を形成するpチャネル型TFT502にはチャネル形成領域440、ゲート電極の一部を構成する第1の導電層429aと重なる低濃度不純物領域453(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域453とを有している。また、nチャネル型TFT503にはチャネル形成領域443、ゲート電極の一部を構成する第1の導電層430aと重なる低濃度不純物領域442(GOLD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域456とを有している。
【0094】
画素部の画素TFT504にはチャネル形成領域446、ゲート電極の外側に形成される低濃度不純物領域445(LDD領域)、ソース領域またはドレイン領域として機能する高濃度不純物領域458とを有している。また、保持容量505の一方の電極として機能する半導体層には、n型を付与する不純物元素およびp型を付与する不純物元素が添加されている。保持容量505は、絶縁膜416を誘電体として、電極(432aと432bの積層)と、半導体層とで形成している。
【0095】
本実施例の画素構造は、ブラックマトリクスを用いることなく、画素電極間の隙間が遮光されるように、画素電極の端部をソース配線と重なるように配置形成する。
【0096】
また、本実施例で作製するアクティブマトリクス基板の画素部の上面図を図13に示す。なお、図10〜図13に対応する部分には同じ符号を用いている。図12中の鎖線A−A’は図13中の鎖線A―A’で切断した断面図に対応している。また、図12中の鎖線B−B’は図13中の鎖線B―B’で切断した断面図に対応している。
【0097】
[実施例6]
本実施例では、実施例5で作製したアクティブマトリクス基板から、反射型液晶表示装置を作製する工程を以下に説明する。説明には図14を用いる。
【0098】
まず、実施例5に従い、図12の状態のアクティブマトリクス基板を得た後、図12のアクティブマトリクス基板上、少なくとも画素電極470上に配向膜567を形成しラビング処理を行う。なお、本実施例では配向膜567を形成する前に、アクリル樹脂膜等の有機樹脂膜をパターニングすることによって基板間隔を保持するための柱状のスペーサ572を所望の位置に形成した。また、柱状のスペーサに代えて、球状のスペーサを基板全面に散布してもよい。
【0099】
次いで、対向基板569を用意する。次いで、対向基板569上に着色層570、571、平坦化膜573を形成する。赤色の着色層570と青色の着色層571とを重ねて、遮光部を形成する。また、赤色の着色層と緑色の着色層とを一部重ねて、遮光部を形成してもよい。
【0100】
本実施例では、実施例5に示す基板を用いている。従って、実施例5の画素部の上面図を示す図13では、少なくともゲート配線469と画素電極470の間隙と、ゲート配線469と接続電極468の間隙と、接続電極468と画素電極470の間隙を遮光する必要がある。本実施例では、それらの遮光すべき位置に着色層の積層からなる遮光部が重なるように各着色層を配置して、対向基板を貼り合わせた。
【0101】
このように、ブラックマスク等の遮光層を形成することなく、各画素間の隙間を着色層の積層からなる遮光部で遮光することによって工程数の低減を可能とした。
【0102】
次いで、平坦化膜573上に透明導電膜からなる対向電極576を少なくとも画素部に形成し、対向基板の全面に配向膜574を形成し、ラビング処理を施した。
【0103】
そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材568で貼り合わせる。シール材568にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な間隔を持って2枚の基板が貼り合わせられる。その後、両基板の間に液晶材料575を注入し、封止剤(図示せず)によって完全に封止する。液晶材料575には公知の液晶材料を用いれば良い。このようにして図14に示す反射型液晶表示装置が完成する。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、対向基板のみに偏光板(図示しない)を貼りつけた。そして、公知の技術を用いてFPCを貼りつけた。
【0104】
以上のようにして作製される液晶表示装置はエネルギー分布の均一性が非常に優れたレーザ光(レーザビーム)が照射されているため一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記液晶表示装置の動作特性や信頼性を十分なものとなり得る。そして、このような液晶表示装置は各種電子機器の表示部として用いることができる。
【0105】
なお、本実施例は実施例1乃至5と自由に組み合わせることが可能である。
【0106】
[実施例7]
本実施例では、実施例5で示したアクティブマトリクス基板を作製するときのTFTの作製方法を用いて、発光装置を作製した例について説明する。本明細書において、発光装置とは、基板上に形成された発光素子を該基板とカバー材の間に封入した表示用パネルおよび該表示用パネルにTFTを備えた表示用モジュールを総称したものである。なお、発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる化合物を含む層(発光体)と陽極層と、陰極層とを有する。また、化合物におけるルミネッセンスには、一重項励起状態から基底状態に戻る際の発光(蛍光)と三重項励起状態から基底状態に戻る際の発光(リン光)があり、これらのうちどちらか、あるいは両方の発光を含む。
【0107】
なお、本明細書中では、発光素子において陽極と陰極の間に形成された全ての層を発光体と定義する。発光体には具体的に、発光層、正孔注入層、電子注入層、正孔輸送層、電子輸送層等が含まれる。基本的に発光素子は、陽極層、発光層、陰極層が順に積層された構造を有しており、この構造に加えて、陽極層、正孔注入層、発光層、陰極層や、陽極層、正孔注入層、発光層、電子輸送層、陰極層等の順に積層した構造を有していることもある。
【0108】
図15は本実施例の発光装置の断面図である。図15において、基板700上に設けられたスイッチングTFT603は図12のnチャネル型TFT503を用いて形成される。したがって、構造の説明はnチャネル型TFT503の説明を参照すれば良い。
【0109】
なお、本実施例ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。
【0110】
基板700上に設けられた駆動回路は図12のCMOS回路を用いて形成される。従って、構造の説明はnチャネル型TFT501とpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0111】
また、配線701、703はCMOS回路のソース配線、702はドレイン配線として機能する。また、配線704はソース配線708とスイッチングTFTのソース領域とを電気的に接続する配線として機能し、配線705はドレイン配線とスイッチングTFTのドレイン領域とを電気的に接続する配線として機能する。
【0112】
なお、電流制御TFT604は図12のpチャネル型TFT502を用いて形成される。従って、構造の説明はpチャネル型TFT502の説明を参照すれば良い。なお、本実施例ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。
【0113】
また、配線706は電流制御TFTのソース配線(電流供給線に相当する)であり、707は電流制御TFTの画素電極711上に重ねることで画素電極711と電気的に接続する電極である。
【0114】
なお、711は、透明導電膜からなる画素電極(発光素子の陽極)である。透明導電膜としては、酸化インジウムと酸化スズとの化合物、酸化インジウムと酸化亜鉛との化合物、酸化亜鉛、酸化スズまたは酸化インジウムを用いることができる。また、前記透明導電膜にガリウムを添加したものを用いても良い。画素電極711は、上記配線を形成する前に平坦な層間絶縁膜710上に形成する。本実施例においては、樹脂からなる平坦化膜710を用いてTFTによる段差を平坦化することは非常に重要である。後に形成される発光層は非常に薄いため、段差が存在することによって発光不良を起こす場合がある。従って、発光層をできるだけ平坦面に形成しうるように画素電極を形成する前に平坦化しておくことが望ましい。
【0115】
配線701〜707を形成後、図15に示すようにバンク712を形成する。バンク712は100〜400nmの珪素を含む絶縁膜もしくは有機樹脂膜をパターニングして形成すれば良い。
【0116】
なお、バンク712は絶縁膜であるため、成膜時における素子の静電破壊には注意が必要である。本実施例ではバンク712の材料となる絶縁膜中にカーボン粒子や金属粒子を添加して抵抗率を下げ、静電気の発生を抑制する。この際、抵抗率は1×106〜1×1012Ωm(好ましくは1×108〜1×1010Ωm)となるようにカーボン粒子や金属粒子の添加量を調節すれば良い。
【0117】
画素電極711の上には発光体713が形成される。なお、図15では一画素しか図示していないが、本実施例ではR(赤)、G(緑)、B(青)の各色に対応した発光体を作り分けている。また、本実施例では蒸着法により低分子系有機発光材料を形成している。具体的には、正孔注入層として20nm厚の銅フタロシアニン(CuPc)膜を設け、その上に発光層として70nm厚のトリス−8−キノリノラトアルミニウム錯体(Alq3)膜を設けた積層構造としている。Alq3にキナクリドン、ペリレンもしくはDCM1といった蛍光色素を添加することで発光色を制御することができる。
【0118】
但し、以上の例は発光体として用いることのできる有機発光材料の一例であって、これに限定する必要はまったくない。発光層、電荷輸送層または電荷注入層を自由に組み合わせて発光体(発光及びそのためのキャリアの移動を行わせるための層)を形成すれば良い。例えば、本実施例では低分子系有機発光材料を発光層として用いる例を示したが、中分子系有機発光材料や高分子系有機発光材料を用いても良い。なお、本明細書中において、昇華性を有さず、かつ、分子数が20以下または連鎖する分子の長さが10μm以下の有機発光材料を中分子系有機発光材料とする。また、高分子系有機発光材料を用いる例として、正孔注入層として20nmのポリチオフェン(PEDOT)膜をスピン塗布法により設け、その上に発光層として100nm程度のパラフェニレンビニレン(PPV)膜を設けた積層構造としても良い。なお、PPVのπ共役系高分子を用いると、赤色から青色まで発光波長を選択できる。また、電荷輸送層や電荷注入層として炭化珪素等の無機材料を用いることも可能である。これらの有機発光材料や無機材料は公知の材料を用いることができる。
【0119】
次に、発光体713の上には導電膜からなる陰極714が設けられる。本実施例の場合、導電膜としてアルミニウムとリチウムとの合金膜を用いる。勿論、公知のMgAg膜(マグネシウムと銀との合金膜)を用いても良い。陰極材料としては、周期表の1族もしくは2族に属する元素からなる導電膜もしくはそれらの元素を添加した導電膜を用いれば良い。
【0120】
この陰極714まで形成された時点で発光素子715が完成する。なお、ここでいう発光素子715は、画素電極(陽極)711、発光層713及び陰極714で形成されたダイオードを指す。
【0121】
発光素子715を完全に覆うようにしてパッシベーション膜716を設けることは有効である。パッシベーション膜716としては、炭素膜、窒化珪素膜もしくは窒化酸化珪素膜を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層で用いる。
【0122】
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC(ダイヤモンドライクカーボン)膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い発光層713の上方にも容易に成膜することができる。また、DLC膜は酸素に対するブロッキング効果が高く、発光層713の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に発光層713が酸化するといった問題を防止できる。
【0123】
さらに、パッシベーション膜716上に封止材717を設け、カバー材718を貼り合わせる。封止材717としては紫外線硬化樹脂を用いれば良く、内部に吸湿効果を有する物質もしくは酸化防止効果を有する物質を設けることは有効である。また、本実施例においてカバー材718はガラス基板や石英基板やプラスチック基板(プラスチックフィルムも含む)の両面に炭素膜(好ましくはダイヤモンドライクカーボン膜)を形成したものを用いる。
【0124】
こうして図15に示すような構造の発光装置が完成する。なお、バンク712を形成した後、パッシベーション膜716を形成するまでの工程をマルチチャンバー方式(またはインライン方式)の成膜装置を用いて、大気解放せずに連続的に処理することは有効である。また、さらに発展させてカバー材718を貼り合わせる工程までを大気解放せずに連続的に処理することも可能である。
【0125】
こうして、基板700上にnチャネル型TFT601、pチャネル型TFT602、スイッチングTFT(nチャネル型TFT)603および電流制御TFT(nチャネル型TFT)604が形成される。
【0126】
さらに、図15を用いて説明したように、ゲート電極に絶縁膜を介して重なる不純物領域を設けることによりホットキャリア効果に起因する劣化に強いnチャネル型TFTを形成することができる。そのため、信頼性の高い発光装置を実現できる。
【0127】
また、本実施例では画素部と駆動回路の構成のみ示しているが、本実施例の製造工程に従えば、その他にも信号分割回路、D/Aコンバータ、オペアンプ、γ補正回路などの論理回路を同一の絶縁体上に形成可能であり、さらにはメモリやマイクロプロセッサをも形成しうる。
【0128】
以上のようにして作製される発光装置はエネルギー分布の均一性が非常に優れたレーザ光(レーザビーム)が照射されているため一様にアニールされた半導体膜を用いて作製されたTFTを有しており、前記発光装置の動作特性や信頼性を十分なものとなり得る。そして、このような発光装置は各種電子機器の表示部として用いることができる。
【0129】
なお、本実施例は実施例1乃至5と自由に組み合わせることが可能である。
【0130】
[実施例8]
本発明を適用して、様々な半導体装置(アクティブマトリクス型液晶表示装置、アクティブマトリクス型発光装置、アクティブマトリクス型EC表示装置)を作製することができる。即ち、それら電気光学装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。
【0131】
その様な電子機器としては、ビデオカメラ、デジタルカメラ、プロジェクター、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの例を図16、図17及び図18に示す。
【0132】
図16(A)はパーソナルコンピュータであり、本体3001、画像入力部3002、表示部3003、キーボード3004等を含む。本発明を表示部3003に適用することができる。
【0133】
図16(B)はビデオカメラであり、本体3101、表示部3102、音声入力部3103、操作スイッチ3104、バッテリー3105、受像部3106等を含む。本発明を表示部3102に適用することができる。
【0134】
図16(C)はモバイルコンピュータ(モービルコンピュータ)であり、本体3201、カメラ部3202、受像部3203、操作スイッチ3204、表示部3205等を含む。本発明は表示部3205に適用できる。
【0135】
図16(D)はゴーグル型ディスプレイであり、本体3301、表示部3302、アーム部3303等を含む。本発明は表示部3302に適用することができる。
【0136】
図16(E)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体3401、表示部3402、スピーカ部3403、記録媒体3404、操作スイッチ3405等を含む。なお、このプレーヤーは記録媒体としてDVD(Digtial Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。本発明は表示部3402に適用することができる。
【0137】
図16(F)はデジタルカメラであり、本体3501、表示部3502、接眼部3503、操作スイッチ3504、受像部(図示しない)等を含む。本発明を表示部3502に適用することができる。
【0138】
図17(A)はフロント型プロジェクターであり、投射装置3601、スクリーン3602等を含む。本発明は投射装置3601の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0139】
図17(B)はリア型プロジェクターであり、本体3701、投射装置3702、ミラー3703、スクリーン3704等を含む。本発明は投射装置3702の一部を構成する液晶表示装置3808やその他の駆動回路に適用することができる。
【0140】
なお、図17(C)は、図17(A)及び図17(B)中における投射装置3601、3702の構造の一例を示した図である。投射装置3601、3702は、光源光学系3801、ミラー3802、3804〜3806、ダイクロイックミラー3803、プリズム3807、液晶表示装置3808、位相差板3809、投射光学系3810で構成される。投射光学系3810は、投射レンズを含む光学系で構成される。本実施例は三板式の例を示したが、特に限定されず、例えば単板式であってもよい。また、図17(C)中において矢印で示した光路に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するためのフィルム、IRフィルム等の光学系を設けてもよい。
【0141】
また、図17(D)は、図17(C)中における光源光学系3801の構造の一例を示した図である。本実施例では、光源光学系3801は、リフレクター3811、光源3812、レンズアレイ3813、3814、偏光変換素子3815、集光レンズ3816で構成される。なお、図17(D)に示した光源光学系は一例であって特に限定されない。例えば、光源光学系に実施者が適宜、光学レンズや、偏光機能を有するフィルムや、位相差を調節するフィルム、IRフィルム等の光学系を設けてもよい。
【0142】
ただし、図17に示したプロジェクターにおいては、透過型の電気光学装置を用いた場合を示しており、反射型の電気光学装置及び発光装置での適用例は図示していない。
【0143】
図18(A)は携帯電話であり、本体3901、音声出力部3902、音声入力部3903、表示部3904、操作スイッチ3905、アンテナ3906等を含む。本発明を表示部3904に適用することができる。
【0144】
図18(B)は携帯書籍(電子書籍)であり、本体4001、表示部4002、4003、記憶媒体4004、操作スイッチ4005、アンテナ4006等を含む。本発明は表示部4002、4003に適用することができる。
【0145】
図18(C)はディスプレイであり、本体4101、支持台4102、表示部4103等を含む。本発明は表示部4103に適用することができる。本発明のディスプレイは特に大画面化した場合において有利であり、対角10インチ以上(特に30インチ以上)のディスプレイには有利である。
【0146】
以上の様に、本発明の適用範囲は極めて広く、さまざま分野の電子機器に適用することが可能である。また、本実施例の電子機器は実施例1〜6または7の組み合わせからなる構成を用いても実現することができる。
【0147】
【発明の効果】
本発明の構成を採用することにより、以下に示すような基本的有意性を得ることが出来る。
(a)被照射面またはその近傍の平面においてエネルギー密度の分布の非常に優れたレーザ光(レーザビーム)を形成することを可能とする。
(b)被照射体に対して一様にアニールすることを可能とする。これは、大面積基板の場合に特に有効である。
(c)スループットを向上させることを可能とする。
(d)以上の利点を満たした上で、アクティブマトリクス型の液晶表示装置に代表される半導体装置において、半導体装置の動作特性および信頼性の向上を実現することができる。さらに、半導体装置の製造コストの低減を実現することができる。
【図面の簡単な説明】
【図1】 (A)スリットを設置するときの光路の例を示す図。
(B) ミラーを設置するときの光路の例を示す図。
【図2】 (A)本発明におけるレーザ光(レーザビーム)のエネルギー密度の分布の例を示す図。
(B) 図2(A)で示すレーザ光(レーザビーム)により大面積基板をアニールする例を示す図。
【図3】 本発明の光学系の例を示す図。
【図4】 本発明の光学系の例を示す図。
【図5】 フライアイレンズの例を示す図。
【図6】 本発明により形成されるレーザ光(レーザビーム)により大面積基板をアニールする例を示す図。
【図7】 従来の光学系の例を示す図。
【図8】 (A)従来の光学系により形成されるレーザ光(レーザビーム)のエネルギー密度の分布の例を示す図。
(B) 図8(A)で示すレーザ光(レーザビーム)により大面積基板をアニールする例を示す図。
【図9】 大面積基板の例を示す図。
【図10】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図11】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図12】 画素TFT、駆動回路のTFTの作製工程を示す断面図。
【図13】 画素TFTの構成を示す上面図。
【図14】 アクティブマトリクス型液晶表示装置の断面図。
【図15】 発光装置の駆動回路及び画素部の断面構造図。
【図16】 半導体装置の例を示す図。
【図17】 半導体装置の例を示す図。
【図18】 半導体装置の例を示す図。
【図19】 ホモジナイザの例を示す図。

Claims (22)

  1. 第1の手段により、レーザから射出されたレーザビームの被照射面におけるエネルギー密度の分布を、エネルギー密度が均一化された領域及び減衰領域とする第1のレーザビームを成形し、
    第2の手段により、前記減衰領域を強め合い、当該減衰領域のエネルギー密度を均一化された領域とする第2のレーザビームを成形し、
    前記第2のレーザビームを、被照射面に照射し、
    前記第2の手段は、被照射面近傍に設置されたミラーであることを特徴とするレーザ照射方法。
  2. 第1の手段により、レーザから射出されたレーザビームの被照射面におけるエネルギー密度の分布を、エネルギー密度が均一化された領域及び減衰領域とする第1の線状レーザビームを成形し、
    第2の手段により、前記減衰領域を強め合い、当該減衰領域のエネルギー密度を均一化された領域とする第2の線状レーザビームを成形し、
    前記第2の線状レーザビームを、被照射面に対して相対的に移動しながら照射し、
    前記第2の手段は、被照射面近傍に設置されたミラーであることを特徴とするレーザ照射方法。
  3. 請求項1又は請求項において、前記第1の手段は、前記レーザビームの光軸と直交するように配置されたホモジナイザーであることを特徴とするレーザ照射方法。
  4. 請求項1又は請求項において、前記第1の手段は、前記レーザビームの光軸と直交するように並列に配置され、前記レーザビームを配置方向に分割する複数のシリンドリカルレンズアレイであることを特徴とするレーザ照射方法。
  5. 請求項1又は請求項において、前記第1の手段は、前記レーザビームの光軸と直交するように並列に配置され、前記レーザビームを配置方向に分割する複数のシリンドリカルレンズ群と、前記シリンドリカルレンズ群の透過側に配置され前記分割されたレーザビームを合成するレンズとであることを特徴とするレーザ照射方法。
  6. 請求項において、前記第1の手段は、前記レーザビームの光軸と直交するように配置され、前記レーザビームを分割するフライアイレンズであることを特徴とするレーザ照射方法。
  7. 請求項において、前記第1の手段は、前記レーザビームの光軸と直交するように配置され、前記レーザビームを分割するフライアイレンズと、前記フライアイレンズの透過側に配置され前記分割されたレーザビームを合成する球面レンズとであることを特徴とするレーザ照射方法。
  8. 請求項1乃至請求項のいずれか一項において、前記レーザは、連続発振またはパルス発振の固体レーザまたは気体レーザであることを特徴とするレーザ照射方法。
  9. 請求項1乃至請求項のいずれか一項において、前記レーザは、連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、又はTi:サファイアレーザであることを特徴とするレーザ照射方法。
  10. 請求項1乃至請求項のいずれか一項において、前記レーザは、連続発振またはパルス発振のエキシマレーザ、Arレーザ、またはKrレーザであることを特徴とするレーザ照射方法。
  11. 請求項1乃至請求項10のいずれか一項において、前記ミラーは、前記減衰領域の幅の中央付近に設置されていることを特徴とするレーザ照射方法。
  12. 第1の手段により、レーザから射出されたレーザビームの被照射面におけるエネルギー密度の分布を、エネルギー密度が均一化された領域及び減衰領域とする第1のレーザビームを成形し、
    第2の手段により、前記減衰領域を強め合い、当該減衰領域のエネルギー密度を均一化された領域とする第2のレーザビームを成形し、
    前記第2のレーザビームを、被照射面となる半導体膜に照射し、
    前記第2の手段は、被照射面近傍に設置されたミラーであることを特徴とする半導体装置の作製方法。
  13. 第1の手段により、レーザから射出されたレーザビームの被照射面におけるエネルギー密度の分布を、エネルギー密度が均一化された領域及び減衰領域とする第1の線状レーザビームを成形し、
    第2の手段により、前記減衰領域を強め合い、当該減衰領域のうちの一部のエネルギー密度を均一化された領域とする第2の線状レーザビームを成形し、
    前記第2の線状レーザビームを、被照射面となる半導体膜に対して相対的に移動しながら照射し、
    前記第2の手段は、被照射面近傍に設置されたミラーであることを特徴とする半導体装置の作製方法。
  14. 請求項12又は請求項13において、前記第1の手段は、前記レーザビームの光軸と直交するように配置されたホモジナイザーであることを特徴とする半導体装置の作製方法。
  15. 請求項12又は請求項13において、前記第1の手段は、前記レーザビームの光軸と直交するように並列に配置され、前記レーザビームを配置方向に分割する複数のシリンドリカルレンズであることを特徴とする半導体装置の作製方法。
  16. 請求項12又は請求項13において、前記第1の手段は、前記レーザビームの光軸と直交するように並列に配置され、前記レーザビームを配置方向に分割する複数のシリンドリカルレンズ群と、前記シリンドリカルレンズ群の透過側に配置され前記分割されたレーザビームを合成するレンズとであることを特徴とする半導体装置の作製方法。
  17. 請求項12において、前記第1の手段は、前記レーザビームの光軸と直交するように配置され、前記レーザビームを分割するフライアイレンズであることを特徴とする半導体装置の作製方法。
  18. 請求項12において、前記第1の手段は、前記レーザビームの光軸と直交するように配置され、前記レーザビームを分割するフライアイレンズと、前記フライアイレンズの透過側に配置され前記分割されたレーザビームを合成する球面レンズとであることを特徴とする半導体装置の作製方法。
  19. 請求項12乃至請求項18のいずれか一項において、前記レーザは、連続発振またはパルス発振の固体レーザまたは気体レーザであることを特徴とする半導体装置の作製方法。
  20. 請求項12乃至請求項18のいずれか一項において、前記レーザは、連続発振またはパルス発振のYAGレーザ、YVO4レーザ、YLFレーザ、YAlO3レーザ、ガラスレーザ、ルビーレーザ、アレキサンドライトレーザ、又はTi:サファイアレーザであることを特徴とする半導体装置の作製方法。
  21. 請求項12乃至請求項18のいずれか一項において、前記レーザは、連続発振またはパルス発振のエキシマレーザ、Arレーザ、またはKrレーザであることを特徴とする半導体装置の作製方法。
  22. 請求項12乃至請求項21のいずれか一項において、前記ミラーは、前記減衰領域の幅の中央付近に設置されていることを特徴とする半導体装置の作製方法。
JP2002252888A 2001-08-31 2002-08-30 レーザ照射方法および半導体装置の作製方法 Expired - Fee Related JP3883936B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252888A JP3883936B2 (ja) 2001-08-31 2002-08-30 レーザ照射方法および半導体装置の作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001264561 2001-08-31
JP2002252888A JP3883936B2 (ja) 2001-08-31 2002-08-30 レーザ照射方法および半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002252455A Division JP3883935B2 (ja) 2001-08-31 2002-08-30 レーザ照射装置

Publications (3)

Publication Number Publication Date
JP2004095727A JP2004095727A (ja) 2004-03-25
JP2004095727A5 JP2004095727A5 (ja) 2005-11-04
JP3883936B2 true JP3883936B2 (ja) 2007-02-21

Family

ID=32059053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252888A Expired - Fee Related JP3883936B2 (ja) 2001-08-31 2002-08-30 レーザ照射方法および半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP3883936B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677061B (zh) 2004-03-26 2013-04-03 株式会社半导体能源研究所 激光辐照方法和激光辐照装置
JP2007116136A (ja) * 2005-09-22 2007-05-10 Advanced Lcd Technologies Development Center Co Ltd 位相変調素子、位相変調素子の製造方法、結晶化装置および結晶化方法
JP2007214527A (ja) 2006-01-13 2007-08-23 Ihi Corp レーザアニール方法およびレーザアニール装置

Also Published As

Publication number Publication date
JP2004095727A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4397571B2 (ja) レーザ照射方法およびレーザ照射装置、並びに半導体装置の作製方法
JP3977038B2 (ja) レーザ照射装置およびレーザ照射方法
JP3949564B2 (ja) レーザ照射装置及び半導体装置の作製方法
JP5227900B2 (ja) 半導体装置の作製方法
US20040266223A1 (en) Laser irradiation method, laser irradiation apparatus, and method of manufacturing a semiconductor device
US6844523B2 (en) Laser apparatus, laser irradiation method, manufacturing method for a semiconductor device, semiconductor device and electronic equipment
JP2004179389A6 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP3973882B2 (ja) レーザ照射装置およびレーザ照射方法
JP3883935B2 (ja) レーザ照射装置
JP4579217B2 (ja) 半導体装置の作製方法
JP4515473B2 (ja) 半導体装置の作製方法
JP3908153B2 (ja) 半導体装置の作製方法
JP3883936B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3910524B2 (ja) レーザ照射方法および半導体装置の作製方法
JP3908124B2 (ja) レーザー装置及びレーザー照射方法
JP3871993B2 (ja) レーザ照射装置
JP4397582B2 (ja) 半導体装置の作製方法
JP3908128B2 (ja) 半導体装置の作製方法
JP4515088B2 (ja) 半導体装置の作製方法
JP3910523B2 (ja) レーザ照射装置
JP3908129B2 (ja) 半導体装置の作製方法
JP4159858B2 (ja) 半導体装置の作製方法
JP3949709B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP4646894B2 (ja) 半導体装置の作製方法
JP4566504B2 (ja) レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees