Nothing Special   »   [go: up one dir, main page]

JP3882948B2 - Asymmetric azines - Google Patents

Asymmetric azines Download PDF

Info

Publication number
JP3882948B2
JP3882948B2 JP22121296A JP22121296A JP3882948B2 JP 3882948 B2 JP3882948 B2 JP 3882948B2 JP 22121296 A JP22121296 A JP 22121296A JP 22121296 A JP22121296 A JP 22121296A JP 3882948 B2 JP3882948 B2 JP 3882948B2
Authority
JP
Japan
Prior art keywords
liquid crystal
hydrazine
compound
general formula
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22121296A
Other languages
Japanese (ja)
Other versions
JPH1059918A (en
Inventor
貞夫 竹原
真 根岸
晴義 高津
政志 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22121296A priority Critical patent/JP3882948B2/en
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to CNB971177104A priority patent/CN1199938C/en
Priority to EP97114465A priority patent/EP0825176B1/en
Priority to SG1997003016A priority patent/SG67415A1/en
Priority to DE69708231T priority patent/DE69708231T2/en
Priority to US08/916,026 priority patent/US6010642A/en
Priority to TW086112162A priority patent/TW402632B/en
Publication of JPH1059918A publication Critical patent/JPH1059918A/en
Priority to HK98110969A priority patent/HK1010188A1/en
Application granted granted Critical
Publication of JP3882948B2 publication Critical patent/JP3882948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有機電子材料や医農薬、特に電気光学的液晶表示用ネマチック液晶材料として有用な非対称アジン類に関する。
【0002】
【従来の技術】
液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型あるいはFLC(強誘電性液晶)等があり、また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、さらに単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。これらの表示方式や駆動方式に応じて、液晶材料としても種々の特性が要求されており、このためこれまでにも非常に多くの液晶化合物が合成されている。
【0003】
こうした液晶化合物の中で、一般式(A)
【0004】
【化2】

Figure 0003882948
【0005】
(式中、Raはアルキル基を表す。)で表されるアジン誘導体は比較的古くから知られており、(i)液晶相上限温度が高い、(ii)化学的に比較的安定、(iii)製造が容易かつ安価である、等の特性を有する優れた液晶材料である。しかも、本発明者らの検討によると、現在汎用されている液晶組成物に添加することにより、その応答時間を非常に改善できる効果を有することが確認されている。
【0006】
しかしながら、この(A)の化合物はその融点が高く、他の液晶化合物との相溶性が悪いという問題点があった。
この問題点を改善した化合物として、特開昭54−87688号公報には一般式(B)
【0007】
【化3】
Figure 0003882948
【0008】
(式中、Raはアルキル基を、RbはRaと異なるアルキル基を表す。)で表される非対称アジン類が報告されている。この(B)の化合物は(A)の化合物と同程度に高い液晶相上限温度を示すのに加えて、(A)の化合物と比較して融点が低く他の液晶化合物との相溶性も良いといった優れた特徴を有する。
【0009】
ただし、この(B)の化合物は誘電率異方性が小さいいわゆるN型の液晶であり、液晶組成物の閾値電圧を低減することはできない。
上記の特開昭54−87688号公報には、一般式(C)
【0010】
【化4】
Figure 0003882948
【0011】
(式中、Raはアルキル基を表す。)で表されるシアノベンゼン誘導体である非対称アジン類が報告されている。この(C)の化合物は誘電率異方性が大きいいわゆるP型液晶であり、低い閾値電圧が要求される場合にも有効である。しかしながら(C)の化合物はシアノ基が存在するために粘性が増大し応答性においては(A)や(B)の化合物には及ばない。従って、高速応答性を必要とする用途やあるいは信頼性が重視される用途には適していない。
【0012】
P型液晶でありながら粘性を低下させるためには、極性基としてフッ素等のハロゲン原子やトリフルオロメトキシ基等のフッ素置換アルコキシル基やアルキル基を用いることが効果的である。アジン系の液晶化合物でこうした極性基を有する化合物としては唯一、上記の特開昭54−87688号公報に式(D)の化合物が記載されている。
【0013】
【化5】
Figure 0003882948
【0014】
しかしながら、この(D)の化合物はアジン骨格中に存在するメチル分岐基のために、ネマチック相の上限温度が75℃と低く、69℃以下ではスメクチック相を発現してしまい、さらに粘性が上昇して高速応答には適さない化合物となっている。
【0015】
従って、アジン系のP型液晶化合物であって、粘性が低く、低電圧駆動と高速応答が可能であり、かつネマチック相上限温度の高い液晶化合物が求められる。
【0016】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記の目的に応じるため、非対称アジン系の新規P型液晶化合物を提供し、さらにこれを用いて高速応答と低電圧駆動が可能な液晶組成物を提供する。
【0017】
【課題を解決するための手段】
本発明は、上記課題を解決するために、
1. 一般式(I)
【0018】
【化6】
Figure 0003882948
【0019】
(式中、Rは炭素原子数1〜12のアルキル基又はアルコキシル基を表し、Zはフッ素原子、塩素原子、−OCF3、−OCF2H、−CF3又は−OCH2CF3を表す。)で表される化合物。
2. 一般式(I)において、Zがフッ素原子であるところの上記1記載の化合物。
3. 一般式(I)において、Zが−OCF3であるところの上記1記載の化合物。
4. 一般式(I)において、Rが炭素原子数1〜7の直鎖状アルキル基であるところの上記1、2又は3記載の化合物。
5. 上記1記載の一般式(I)の化合物を含有する液晶組成物。
を前記課題の解決手段として見出した。
【0020】
【発明の実施の形態】
以下に本発明の一例について説明する。
一般式(I)において、Rは炭素原子数は1〜7が好ましく、直鎖状アルキル基がさらに好ましい。Zはフッ素原子又は−OCF3が好ましい。
【0021】
一般式(I)の化合物は以下のようにして製造することができる。
即ち、一般式(II)
【0022】
【化7】
Figure 0003882948
【0023】
(式中、Rは一般式(I)におけるとおなじ意味を表す。)で表されるヒドラゾンと一般式(III)
【0024】
【化8】
Figure 0003882948
【0025】
(式中、Zは一般式(I)におけるとおなじ意味を表す。)で表されるベンズアルデヒド誘導体とを反応させることにより容易に得ることができる。この際に、式(IV)や式(V)等の対称系のアジン
【0026】
【化9】
Figure 0003882948
【0027】
(式中、R及びZは一般式(I)と同じ意味を表す。)
の生成を抑止するためにアミンの存在下に反応させることが好ましい。
アミン類としては2級アミンあるいは3級アミンが好ましく、3級アミンが特に好ましい。さらに3級アミンとしてはトリエチルアミン、トリメチルアミン、トリブチルアミン等のトリアルキルアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の芳香族アミン、ピリジン等の環状アミン類等が用いられるが、トリエチルアミン等のトリアルキルアミンが特に好ましい。
【0028】
アミンの使用量は(II)のヒドラゾンに対して0.1〜20モル量が好ましく、0.5〜10モル量がさらに好ましい。
これらアミン類は(II)のヒドラゾンと(III)のベンズアルデヒドとを反応させる際に系内に添加してもよいが、(II)のヒドラゾンを調製する際に、後処理の工程で加えておくことによりアミンを含んだヒドラゾンと(III)のベンズアルデヒドを反応させても良い。即ち、一般式(VI)
【0029】
【化10】
Figure 0003882948
【0030】
(式中、Rは一般式(I)におけると同じ意味を表す。)で表されるベンズアルデヒド誘導体をエタノール等の溶媒中で大過剰のヒドラジンと反応させて(II)のヒドラゾンを調製し、反応終了後ジクロロメタン等の水に不溶の溶媒を加え、水洗を繰り返して過剰のヒドラジンを除去する。溶媒の大半を溜去後、必要に応じてアミンを追加し、エタノール等の溶媒中で(III)のベンズアルデヒドを加え反応させる。この反応は冷却下に、あるいは加熱下に行ってもよいが、通常は室温付近で実施することが好ましい。反応終了後は同様にジクロロメタン等の水に不溶の溶媒を加え、水洗を繰り返した後、溶媒を溜去し、メタノール等の溶媒から再結晶して精製する。また、必要に応じて塩基性アルミナによるカラムクロマトグラフィーを用いて、精製することも好ましい。
【0031】
斯くして製造された一般式(I)のアジン誘導体の例をその相転移温度とともに第1表に掲げる。
【0032】
【表1】
Figure 0003882948
【0033】
表中、Crは結晶相を、Sは帰属不明のスメクチック相を、SAはスメクチックA相を、Nはネマチック相を、またIは等方性液体相をそれぞれ表す。相転移温度は「℃」を表す。
【0034】
第1表からわかるように、本発明の一般式(I)の化合物はいずれも高いネマチック相上限温度を示す。
一般式(I)の化合物を従来の液晶組成物に添加することにより得られる優れた効果は以下のように明らかである。
【0035】
ホスト液晶(H)
【0036】
【化11】
Figure 0003882948
【0037】
(式中、「%」は『重量%』を表す。)
を調製した。このホスト液晶(H)は116.7℃以下でネマチック相を示し、その融点は11℃である。これを厚さ4.5μmのTNセルに封入して液晶素子を作製し、その応答時間を測定したところ21.5m秒であった。ここで応答時間は立ち上がり時間と立ち下がり時間が等しくなる電界印加時の測定値である。また、この素子のしきい値電圧を測定したところ1.88Vであった。
【0038】
次に、ホスト液晶(H)80重量%及び第1表中のNo.(I−2)
【0039】
【化12】
Figure 0003882948
【0040】
の化合物20重量%からなる液晶組成物(M−2)を調製した。この(M−2)のネマチック相上限温度(TN-I)は104℃であり、ホスト液晶(H)よりわずかに低下した。また、この組成物を0℃で24時間放置したが、結晶の析出等は観察できなかった。これを用いて同様にして素子を作成し、その応答時間を測定したところ、14m秒と大幅に高速化することができた。次に、その閾値電圧を測定したところ、2.07Vであり、ホスト液晶(H)よりやや高くなった。
【0041】
これに対して、N型のアジン誘導体である(B−1)
【0042】
【化13】
Figure 0003882948
【0043】
20重量%及びホスト液晶(H)80重量%からなる液晶組成物(M−B)を調製した。
(M−B)のネマチック相上限温度(TN-I)は115.6℃で、ホスト液晶(H)と同程度であり、(M−2)よりわずかに高くなった。次に、同様にして液晶素子を作成しその応答時間を測定したところ、15.3m秒と(M−2)にはやや及ばないもののやはり、ホスト液晶(H)よりかなり高速になった。ところが、この素子の閾値電圧を測定したところ2.54Vであり、ホスト液晶(H)や(M−2)と比較して大幅に上昇してしまった。
【0044】
以上から、本発明の化合物が、閾値電圧を上昇させたり、その温度範囲を低下させることなく、その応答時間を大幅に改善するうえにおいて、非常に有効であることがわかる。
【0045】
【実施例】
以下に本発明の実施例を示し、本発明を更に説明する。しかし、本発明はこれらの実施例に限定されるものではない。
【0046】
化合物の構造は、核磁気共鳴スペクトル(NMR)、質量スペクトル(MS)及び赤外吸収スペクトル(IR)により確認し、相転移温度の測定は温度調節ステージを備えた偏光顕微鏡と示差走査熱量計(DSC)を併用して行った。また、組成物における「%」は『重量%』を表す。
(実施例1) 1−(4−フルオロベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジン(第1表中No.(I−2)の化合物)の合成
【0047】
【化14】
Figure 0003882948
【0048】
ヒドラジン1水和物140gに4−プロピルベンズアルデヒド50gをエタノール250mLに溶解して加え、室温で1時間攪拌した。ジクロロメタン400mLを加えた後、300mLの飽和炭酸水素ナトリウム水溶液で3回洗滌した。有機層にトリエチルアミン15mLを加え、無水硫酸ナトリウムで脱水乾燥させた。減圧下に溶媒を溜去し、トリエチルアミン15mLを追加し、エタノール250mL及び4−フルオロベンズアルデヒド43gを加え、室温でさらに6時間攪拌した。ジクロロメタン400mLを加え、300mLの飽和炭酸水素ナトリウム水溶液で洗滌後、減圧下に溶媒を溜去した。残渣をアルミナ(塩基性)カラムクロマトグラフィー(ジクロロメタン)を用いて精製し、さらにメタノールから再結晶させて、1−(4−フルオロベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジン26.9gを得た。この化合物の融点は70.5℃であり、96.5℃までネマチック相を示した。
【0049】
また、上記において、4−プロピルベンズアルデヒドに換えて、4−メチルベンズアルデヒド、4−エチルベンズアルデヒド、4−ブチルベンズアルデヒド、4−ペンチルベンズアルデヒド、4−ヘプチルベンズアルデヒド、又は4−メトキシベンズアルデヒドを用いることにより、以下の化合物を得た。
【0050】
1−(4−フルオロベンジリデン)−2−(4−メチルベンジリデン)ヒドラジン
1−(4−フルオロベンジリデン)−2−(4−エチルベンジリデン)ヒドラジン(第1表中No.(I−1)の化合物)
1−(4−フルオロベンジリデン)−2−(4−ブチルベンジリデン)ヒドラジン(第1表中No.(I−3)の化合物)
1−(4−フルオロベンジリデン)−2−(4−ペンチルベンジリデン)ヒドラジン
1−(4−フルオロベンジリデン)−2−(4−ヘプチルベンジリデン)ヒドラジン
1−(4−フルオロベンジリデン)−2−(4−メトキシベンジリデン)ヒドラジン
(実施例2) 1−(4−トリフルオロメトキシベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジン(第1表中No.(I−4)の化合物)の合成
【0051】
【化15】
Figure 0003882948
【0052】
実施例1において4−フルオロベンズアルデヒドに換えて、4−トリフルオロメトキシベンゼンを用いた以外は実施例1と同様にして、1−(4−トリフルオロメトキシベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジンを得た。この化合物の相転移温度は第1表にまとめて示した。
【0053】
同様にして以下の化合物を得た。
1−(4−トリフルオロメトキシベンジリデン)−2−(4−メチルベンジリデン)ヒドラジン
1−(4−トリフルオロメトキシベンジリデン)−2−(4−エチルベンジリデン)ヒドラジン
1−(4−トリフルオロメトキシベンジリデン)−2−(4−ブチルベンジリデン)ヒドラジン
1−(4−トリフルオロメトキシベンジリデン)−2−(4−ペンチルベンジリデン)ヒドラジン
1−(4−トリフルオロメトキシベンジリデン)−2−(4−ヘプチルベンジリデン)ヒドラジン
1−(4−トリフルオロメトキシベンジリデン)−2−(4−メトキシベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−メチルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−エチルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−ブチルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−ペンチルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−ヘプチルベンジリデン)ヒドラジン
1−(4−トリフルオロメチルベンジリデン)−2−(4−メトキシベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−メチルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−エチルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−プロピルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−ブチルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−ペンチルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−ヘプチルベンジリデン)ヒドラジン
1−(4−ジフルオロメトキシベンジリデン)−2−(4−メトキシベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−メチルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−エチルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−プロピルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−ブチルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−ペンチルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−ヘプチルベンジリデン)ヒドラジン
1−[4−(2,2,2−トリフルオロエトキシ)ベンジリデン]−2−(4−メトキシベンジリデン)ヒドラジン
(実施例3) 液晶組成物の調製(1)
ホスト液晶(H)
【0054】
【化16】
Figure 0003882948
【0055】
は116.7℃以下でネマチック相を示し、その融点は11℃である。これを厚さ4.5μmのTNセルに充填して液晶素子を作製し、測定した応答時間は21.5m秒であった。(立ち下がり時間と立ち上がり時間が等しくなる電圧印加時)また、この素子の閾値電圧は1.88Vであった。
【0056】
このホスト液晶(H)80%及び実施例1で得た(I−2)の化合物20%からなる液晶組成物(M−2)を調製したところ、ネマチック相上限温度(TN-I)は104℃であり、あまり低下しなかった。同様にして液晶素子を作製し、その応答時間を測定したところ、14.0m秒と大幅に高速化されていることがわかった。また、この素子の閾値電圧は2.07Vであり、あまり上昇していなかった。
【0057】
なお、この組成物を0℃で24時間放置したが、結晶の析出は見られなかった。
(実施例4) 液晶組成物の調製(2)
ホスト液晶(H)80%及び実施例2で得た(I−4)の化合物20%からなる液晶組成物(M−4)を調製した。この(M−4)のネマチック相上限温度(TN-I)は98℃であり、(M−2)よりわずかに低くなった。同様にして液晶素子を作製し、その応答時間を測定したところ15.8m秒であり、(M−2)よりもやや遅いが、ホスト液晶(H)と比較するとやはり大幅に改善することができた。また、同様にして素子を作製し閾値電圧を測定したところ、1.85Vであり、(M−2)よりも低減することができた。
【0058】
なお、この組成物を0℃で24時間放置したが、やはり結晶の析出は見られなかった。
(比較例)
ホスト液晶(H)の80%及びN型のアジン誘導体である(B−1)
【0059】
【化17】
Figure 0003882948
【0060】
の化合物20%からなる液晶組成物(M−B)を調製した。
(M−B)のネマチック相上限温度(TN-I)は115.6℃で、ホスト液晶(H)と同程度であり、(M−2)や(M−4)よりわずかに高くなった。次に、同様にして液晶素子を作製しその応答時間を測定したところ、15.3m秒であり、(M−2)にはやや及ばないもののやはり、ホスト液晶(H)よりかなり高速になった。ところが、この素子の閾値電圧を測定したところ、2.54Vと(H)や(M−2)あるいは(M−4)と比較して大幅に上昇してしまった。
【0061】
以上から、本発明の化合物が、閾値電圧を上昇させたり、その温度範囲を低下させることなく、その応答時間を大幅に改善するうえにおいて、非常に有効であることがわかる。
【0062】
【発明の効果】
本発明により提供される、一般式(I)で表される非対称P型アジン誘導体である新規液晶化合物は熱、光等に対し化学的に安定で、液晶性に優れ、しかも工業的にも容易に製造することができる。得られた一般式(I)の化合物は、従来の液晶化合物あるいは液晶組成物との相溶性にも優れ、この添加により液晶組成物の応答時間を大幅に改善することができる。しかもその閾値電圧をほとんど上昇させることがない。
【0063】
従って、温度範囲が広く、低電圧駆動と高速応答が可能な液晶表示素子用の液晶材料の構成成分として非常に実用的である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to asymmetric azines useful as organic electronic materials and medical pesticides, particularly as nematic liquid crystal materials for electro-optical liquid crystal displays.
[0002]
[Prior art]
Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, etc., including watches and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), or FLC (ferroelectric liquid crystal). In addition, as a driving method, a multiplex drive is generally used instead of a conventional static drive, and a simple matrix method and recently an active matrix method have been put into practical use. Various characteristics are required as a liquid crystal material in accordance with these display methods and driving methods, and so many liquid crystal compounds have been synthesized so far.
[0003]
Among these liquid crystal compounds, the general formula (A)
[0004]
[Chemical 2]
Figure 0003882948
[0005]
(Wherein R a represents an alkyl group), the azine derivative represented by the formula has been known for a relatively long time, (i) the liquid crystal phase upper limit temperature is high, (ii) chemically relatively stable, iii) It is an excellent liquid crystal material having characteristics such as easy manufacture and low cost. Moreover, according to the study by the present inventors, it has been confirmed that by adding to a liquid crystal composition that is currently widely used, the response time can be greatly improved.
[0006]
However, the compound (A) has a problem that its melting point is high and compatibility with other liquid crystal compounds is poor.
As a compound which has improved this problem, Japanese Patent Application Laid-Open No. 54-87688 discloses a general formula (B).
[0007]
[Chemical 3]
Figure 0003882948
[0008]
(Wherein R a represents an alkyl group and R b represents an alkyl group different from R a ), and asymmetric azines have been reported. In addition to the liquid crystal phase upper limit temperature being as high as that of the compound (A), the compound (B) has a lower melting point than the compound (A) and is compatible with other liquid crystal compounds. It has excellent characteristics such as
[0009]
However, the compound (B) is a so-called N-type liquid crystal having a small dielectric anisotropy, and the threshold voltage of the liquid crystal composition cannot be reduced.
JP-A-54-87688 discloses a general formula (C).
[0010]
[Formula 4]
Figure 0003882948
[0011]
Asymmetric azines that are cyanobenzene derivatives represented by the formula (wherein R a represents an alkyl group) have been reported. The compound (C) is a so-called P-type liquid crystal having a large dielectric anisotropy, and is effective even when a low threshold voltage is required. However, since the compound (C) has a cyano group, the viscosity increases and the response is not as good as the compounds (A) and (B). Therefore, it is not suitable for applications requiring high-speed response or applications where reliability is important.
[0012]
In order to reduce the viscosity while being a P-type liquid crystal, it is effective to use a halogen atom such as fluorine, a fluorine-substituted alkoxyl group such as a trifluoromethoxy group, or an alkyl group as a polar group. The only compound having such a polar group as an azine-based liquid crystal compound is described in JP-A No. 54-87688 as described above.
[0013]
[Chemical formula 5]
Figure 0003882948
[0014]
However, since the compound (D) has a methyl branching group present in the azine skeleton, the upper limit temperature of the nematic phase is as low as 75 ° C., and below 69 ° C., a smectic phase is developed and the viscosity further increases. Therefore, the compound is not suitable for high-speed response.
[0015]
Accordingly, there is a demand for an azine-based P-type liquid crystal compound that has a low viscosity, can be driven at a low voltage, can respond at high speed, and has a high nematic phase upper limit temperature.
[0016]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a new asymmetric azine P-type liquid crystal compound and to provide a liquid crystal composition capable of high-speed response and low-voltage driving using the same. .
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
1. Formula (I)
[0018]
[Chemical 6]
Figure 0003882948
[0019]
(In the formula, R represents an alkyl group having 1 to 12 carbon atoms or an alkoxyl group, and Z represents a fluorine atom, a chlorine atom, —OCF 3 , —OCF 2 H, —CF 3, or —OCH 2 CF 3 . ) A compound represented by
2. 2. The compound according to 1 above, wherein in general formula (I), Z is a fluorine atom.
3. 2. The compound according to 1 above, wherein in the general formula (I), Z is —OCF 3 .
4). 4. The compound according to 1, 2 or 3, wherein in general formula (I), R is a linear alkyl group having 1 to 7 carbon atoms.
5). 2. A liquid crystal composition comprising the compound of general formula (I) according to 1 above.
Has been found as means for solving the above problems.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An example of the present invention will be described below.
In general formula (I), R preferably has 1 to 7 carbon atoms, and more preferably a linear alkyl group. Z is preferably a fluorine atom or —OCF 3 .
[0021]
The compound of general formula (I) can be manufactured as follows.
That is, the general formula (II)
[0022]
[Chemical 7]
Figure 0003882948
[0023]
(Wherein R represents the same meaning as in general formula (I)) and hydrazone represented by general formula (III)
[0024]
[Chemical 8]
Figure 0003882948
[0025]
(Wherein Z represents the same meaning as in general formula (I)) and can be easily obtained by reacting with the benzaldehyde derivative represented by formula (I). In this case, a symmetrical azine such as formula (IV) or formula (V)
[Chemical 9]
Figure 0003882948
[0027]
(In the formula, R and Z represent the same meaning as in general formula (I).)
It is preferable to react in the presence of an amine in order to suppress the formation of.
As amines, secondary amines or tertiary amines are preferable, and tertiary amines are particularly preferable. Further, as the tertiary amine, trialkylamines such as triethylamine, trimethylamine and tributylamine, aromatic amines such as N, N-dimethylaniline and N, N-diethylaniline, cyclic amines such as pyridine, etc. are used. Particularly preferred are trialkylamines such as
[0028]
The amount of amine used is preferably from 0.1 to 20 moles, more preferably from 0.5 to 10 moles, based on the hydrazone of (II).
These amines may be added to the system when reacting the hydrazone of (II) with the benzaldehyde of (III), but are added in the post-treatment step when preparing the hydrazone of (II). The hydrazone containing amine may be reacted with benzaldehyde (III). That is, the general formula (VI)
[0029]
[Chemical Formula 10]
Figure 0003882948
[0030]
(In the formula, R represents the same meaning as in general formula (I).) The benzaldehyde derivative represented by formula (I) is reacted with a large excess of hydrazine in a solvent such as ethanol to prepare hydrazone of (II), and the reaction After completion, an insoluble solvent such as dichloromethane is added, and washing with water is repeated to remove excess hydrazine. After most of the solvent is distilled off, an amine is added if necessary, and (III) benzaldehyde is added and reacted in a solvent such as ethanol. This reaction may be carried out under cooling or under heating, but usually it is preferably carried out at around room temperature. After completion of the reaction, an insoluble solvent such as dichloromethane is added in the same manner and repeated washing with water is carried out, and then the solvent is distilled off and purified by recrystallization from a solvent such as methanol. Moreover, it is also preferable to refine | purify using the column chromatography by basic alumina as needed.
[0031]
Examples of the azine derivatives of the general formula (I) thus produced are listed in Table 1 together with their phase transition temperatures.
[0032]
[Table 1]
Figure 0003882948
[0033]
In the table, Cr represents a crystalline phase, S represents an unidentified smectic phase, SA represents a smectic A phase, N represents a nematic phase, and I represents an isotropic liquid phase. The phase transition temperature represents “° C.”.
[0034]
As can be seen from Table 1, all the compounds of the general formula (I) of the present invention exhibit a high nematic phase upper limit temperature.
The excellent effect obtained by adding the compound of the general formula (I) to the conventional liquid crystal composition is apparent as follows.
[0035]
Host liquid crystal (H)
[0036]
Embedded image
Figure 0003882948
[0037]
(In the formula, “%” represents “% by weight”.)
Was prepared. This host liquid crystal (H) exhibits a nematic phase at 116.7 ° C. or lower, and its melting point is 11 ° C. This was sealed in a TN cell having a thickness of 4.5 μm to produce a liquid crystal element, and the response time was measured and found to be 21.5 ms. Here, the response time is a measured value when an electric field is applied in which the rise time and the fall time are equal. Further, the threshold voltage of this device was measured and found to be 1.88V.
[0038]
Next, host liquid crystal (H) 80% by weight and No. 1 in Table 1 were used. (I-2)
[0039]
Embedded image
Figure 0003882948
[0040]
A liquid crystal composition (M-2) comprising 20% by weight of the above compound was prepared. This (M-2) had a nematic phase upper limit temperature (T NI ) of 104 ° C., which was slightly lower than that of the host liquid crystal (H). The composition was allowed to stand at 0 ° C. for 24 hours, but no crystal precipitation or the like could be observed. Using this, an element was produced in the same manner, and the response time was measured. As a result, the speed was significantly increased to 14 milliseconds. Next, when the threshold voltage was measured, it was 2.07 V, which was slightly higher than that of the host liquid crystal (H).
[0041]
In contrast, it is an N-type azine derivative (B-1)
[0042]
Embedded image
Figure 0003882948
[0043]
A liquid crystal composition (MB) comprising 20% by weight and host liquid crystal (H) 80% by weight was prepared.
The nematic phase upper limit temperature (T NI ) of (MB) was 115.6 ° C., similar to the host liquid crystal (H), and slightly higher than (M-2). Next, a liquid crystal element was produced in the same manner and its response time was measured. As a result, it was considerably faster than the host liquid crystal (H), although it was slightly less than 15.3 milliseconds (M-2). However, when the threshold voltage of this element was measured, it was 2.54 V, which was significantly higher than that of the host liquid crystals (H) and (M-2).
[0044]
From the above, it can be seen that the compound of the present invention is very effective in greatly improving the response time without increasing the threshold voltage or decreasing the temperature range.
[0045]
【Example】
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
[0046]
The structure of the compound was confirmed by nuclear magnetic resonance spectrum (NMR), mass spectrum (MS) and infrared absorption spectrum (IR), and the phase transition temperature was measured with a polarizing microscope equipped with a temperature control stage and a differential scanning calorimeter ( DSC). Further, “%” in the composition represents “% by weight”.
Example 1 Synthesis of 1- (4-fluorobenzylidene) -2- (4-propylbenzylidene) hydrazine (Compound No. (I-2) in Table 1)
Embedded image
Figure 0003882948
[0048]
To 140 g of hydrazine monohydrate, 50 g of 4-propylbenzaldehyde was dissolved in 250 mL of ethanol, and the mixture was stirred at room temperature for 1 hour. After adding 400 mL of dichloromethane, it was washed 3 times with 300 mL of saturated aqueous sodium hydrogen carbonate solution. 15 mL of triethylamine was added to the organic layer, and dehydrated and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, 15 mL of triethylamine was added, 250 mL of ethanol and 43 g of 4-fluorobenzaldehyde were added, and the mixture was further stirred at room temperature for 6 hours. After adding 400 mL of dichloromethane and washing with 300 mL of saturated aqueous sodium hydrogen carbonate solution, the solvent was distilled off under reduced pressure. The residue was purified using alumina (basic) column chromatography (dichloromethane) and further recrystallized from methanol to obtain 26.9 g of 1- (4-fluorobenzylidene) -2- (4-propylbenzylidene) hydrazine. It was. This compound had a melting point of 70.5 ° C. and exhibited a nematic phase up to 96.5 ° C.
[0049]
In the above, instead of 4-propylbenzaldehyde, by using 4-methylbenzaldehyde, 4-ethylbenzaldehyde, 4-butylbenzaldehyde, 4-pentylbenzaldehyde, 4-heptylbenzaldehyde, or 4-methoxybenzaldehyde, A compound was obtained.
[0050]
1- (4-Fluorobenzylidene) -2- (4-methylbenzylidene) hydrazine 1- (4-Fluorobenzylidene) -2- (4-ethylbenzylidene) hydrazine (Compound No. (I-1) in Table 1) )
1- (4-Fluorobenzylidene) -2- (4-butylbenzylidene) hydrazine (No. (I-3) compound in Table 1)
1- (4-Fluorobenzylidene) -2- (4-pentylbenzylidene) hydrazine 1- (4-fluorobenzylidene) -2- (4-heptylbenzylidene) hydrazine 1- (4-fluorobenzylidene) -2- (4- Methoxybenzylidene) hydrazine (Example 2) Synthesis of 1- (4-trifluoromethoxybenzylidene) -2- (4-propylbenzylidene) hydrazine (compound No. (I-4) in Table 1)
Embedded image
Figure 0003882948
[0052]
1- (4-trifluoromethoxybenzylidene) -2- (4-propylbenzylidene) was used in the same manner as in Example 1 except that 4-trifluoromethoxybenzene was used instead of 4-fluorobenzaldehyde in Example 1. Hydrazine was obtained. The phase transition temperatures of this compound are summarized in Table 1.
[0053]
Similarly, the following compounds were obtained.
1- (4-trifluoromethoxybenzylidene) -2- (4-methylbenzylidene) hydrazine 1- (4-trifluoromethoxybenzylidene) -2- (4-ethylbenzylidene) hydrazine 1- (4-trifluoromethoxybenzylidene) 2- (4-Butylbenzylidene) hydrazine 1- (4-trifluoromethoxybenzylidene) -2- (4-pentylbenzylidene) hydrazine 1- (4-trifluoromethoxybenzylidene) -2- (4-heptylbenzylidene) hydrazine 1- (4-trifluoromethoxybenzylidene) -2- (4-methoxybenzylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-methylbenzylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-Ethyl Nylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-propylbenzylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-butylbenzylidene) hydrazine 1- (4-trifluoro) Methylbenzylidene) -2- (4-pentylbenzylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-heptylbenzylidene) hydrazine 1- (4-trifluoromethylbenzylidene) -2- (4-methoxy Benzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2- (4-methylbenzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2- (4-ethylbenzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2 (4-propylbenzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2- (4-butylbenzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2- (4-pentylbenzylidene) hydrazine 1- (4- Difluoromethoxybenzylidene) -2- (4-heptylbenzylidene) hydrazine 1- (4-difluoromethoxybenzylidene) -2- (4-methoxybenzylidene) hydrazine 1- [4- (2,2,2-trifluoroethoxy) benzylidene ] -2- (4-Methylbenzylidene) hydrazine 1- [4- (2,2,2-trifluoroethoxy) benzylidene] -2- (4-ethylbenzylidene) hydrazine 1- [4- (2,2,2) -Trifluoroethoxy) benzylidene] -2- (4-propylbenzene) Nylidene) hydrazine 1- [4- (2,2,2-trifluoroethoxy) benzylidene] -2- (4-butylbenzylidene) hydrazine 1- [4- (2,2,2-trifluoroethoxy) benzylidene]- 2- (4-Pentylbenzylidene) hydrazine 1- [4- (2,2,2-trifluoroethoxy) benzylidene] -2- (4-heptylbenzylidene) hydrazine 1- [4- (2,2,2-tri Fluoroethoxy) benzylidene] -2- (4-methoxybenzylidene) hydrazine (Example 3) Preparation of liquid crystal composition (1)
Host liquid crystal (H)
[0054]
Embedded image
Figure 0003882948
[0055]
Shows a nematic phase below 116.7 ° C., and its melting point is 11 ° C. This was filled in a 4.5 μm thick TN cell to produce a liquid crystal device, and the measured response time was 21.5 ms. (At the time of voltage application in which the fall time and the rise time are equal) The threshold voltage of this element was 1.88V.
[0056]
When a liquid crystal composition (M-2) comprising 80% of the host liquid crystal (H) and 20% of the compound (I-2) obtained in Example 1 was prepared, the nematic phase upper limit temperature (T NI ) was 104 ° C. And did not drop much. Similarly, when a liquid crystal element was manufactured and its response time was measured, it was found that the speed was significantly increased to 14.0 milliseconds. Further, the threshold voltage of this element was 2.07 V, and it did not increase so much.
[0057]
This composition was allowed to stand at 0 ° C. for 24 hours, but no crystal deposition was observed.
(Example 4) Preparation of liquid crystal composition (2)
A liquid crystal composition (M-4) comprising 80% of the host liquid crystal (H) and 20% of the compound (I-4) obtained in Example 2 was prepared. This (M-4) had a nematic phase upper limit temperature (T NI ) of 98 ° C., which was slightly lower than (M-2). Similarly, a liquid crystal element was manufactured and its response time was measured to be 15.8 milliseconds, which is slightly slower than (M-2), but it can be significantly improved compared to the host liquid crystal (H). It was. Similarly, when a device was produced and the threshold voltage was measured, it was 1.85 V, which was lower than (M-2).
[0058]
This composition was allowed to stand at 0 ° C. for 24 hours, but no crystal deposition was observed.
(Comparative example)
80% of the host liquid crystal (H) and N-type azine derivative (B-1)
[0059]
Embedded image
Figure 0003882948
[0060]
A liquid crystal composition (MB) comprising 20% of the above compound was prepared.
The nematic phase upper limit temperature (T NI ) of (MB) was 115.6 ° C., similar to the host liquid crystal (H), and slightly higher than (M-2) and (M-4). Next, a liquid crystal element was produced in the same manner and its response time was measured. As a result, it was 15.3 ms, which was slightly faster than the host liquid crystal (H), although it was slightly less than (M-2). . However, when the threshold voltage of this element was measured, it was 2.54 V, which was significantly higher than (H), (M-2) or (M-4).
[0061]
From the above, it can be seen that the compound of the present invention is very effective in greatly improving the response time without increasing the threshold voltage or decreasing the temperature range.
[0062]
【The invention's effect】
The novel liquid crystal compound which is an asymmetric P-type azine derivative represented by the general formula (I) provided by the present invention is chemically stable to heat, light, etc., has excellent liquid crystallinity, and is industrially easy. Can be manufactured. The obtained compound of the general formula (I) is excellent in compatibility with the conventional liquid crystal compound or liquid crystal composition, and the addition can greatly improve the response time of the liquid crystal composition. Moreover, the threshold voltage is hardly increased.
[0063]
Therefore, it is very practical as a component of a liquid crystal material for a liquid crystal display element that has a wide temperature range and can be driven at a low voltage and can respond at high speed.

Claims (5)

一般式(I)
Figure 0003882948
(式中、Rは炭素原子数1〜12のアルキル基又はアルコキシル基を表し、Zはフッ素原子、−OCF 3 、−CF 3 又は−OCH 2 CF 3 を表す。)で表される化合物。
Formula (I)
Figure 0003882948
(Wherein, R represents an alkyl group or an alkoxyl group having 1 to 12 carbon atoms, Z is a fluorine atom, -OCF 3, it represents a -CF 3 or -OCH 2 CF 3.) The compound represented by.
一般式(I)において、Zがフッ素原子であるところの請求項1記載の化合物。The compound according to claim 1, wherein Z is a fluorine atom in the general formula (I). 一般式(I)において、Zが−OCF3であるところの請求項1記載の化合物。In the general formula (I), Z is A compound according to claim 1, wherein where a -OCF 3. 一般式(I)において、Rが炭素原子数1〜7の直鎖状アルキル基であるところの請求項1、2又は3記載の化合物。The compound according to claim 1, 2 or 3, wherein in the general formula (I), R is a linear alkyl group having 1 to 7 carbon atoms. 請求項1記載の一般式(I)の化合物を含有する液晶組成物。A liquid crystal composition comprising the compound of the general formula (I) according to claim 1.
JP22121296A 1996-08-22 1996-08-22 Asymmetric azines Expired - Fee Related JP3882948B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP22121296A JP3882948B2 (en) 1996-08-22 1996-08-22 Asymmetric azines
EP97114465A EP0825176B1 (en) 1996-08-22 1997-08-21 Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
SG1997003016A SG67415A1 (en) 1996-08-22 1997-08-21 Azine derivative process for the preparation thereof nematic liquid crystal composition and liquid crystal display system comprising same
DE69708231T DE69708231T2 (en) 1996-08-22 1997-08-21 Azine derivative, process for its preparation, nematic liquid crystalline composition containing the same and liquid crystalline display device containing the same
CNB971177104A CN1199938C (en) 1996-08-22 1997-08-21 Azine compound, process for preparation thereof, nematic liquid crystal composition and use in liquid crystal display system
US08/916,026 US6010642A (en) 1996-08-22 1997-08-21 Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
TW086112162A TW402632B (en) 1996-08-22 1997-08-22 Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
HK98110969A HK1010188A1 (en) 1996-08-22 1998-09-25 Azine derivative, process for preparation thereof,nematic liquid crystal composition and liquid crystal display system comprising same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22121296A JP3882948B2 (en) 1996-08-22 1996-08-22 Asymmetric azines

Publications (2)

Publication Number Publication Date
JPH1059918A JPH1059918A (en) 1998-03-03
JP3882948B2 true JP3882948B2 (en) 2007-02-21

Family

ID=16763230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22121296A Expired - Fee Related JP3882948B2 (en) 1996-08-22 1996-08-22 Asymmetric azines

Country Status (1)

Country Link
JP (1) JP3882948B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876314B2 (en) * 2001-01-23 2012-02-15 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP4512975B2 (en) * 2003-10-31 2010-07-28 Dic株式会社 Liquid crystal composition and liquid crystal display element
JP6024950B2 (en) * 2012-07-03 2016-11-16 Dic株式会社 Nematic liquid crystal composition and liquid crystal display device using the same
CN113583684A (en) * 2021-09-07 2021-11-02 石家庄诚志永华显示材料有限公司 Liquid crystal composition and liquid crystal display device

Also Published As

Publication number Publication date
JPH1059918A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
US5049308A (en) Ferroelectric smectic liquid crystal compound and composition containing the same
JP3931995B2 (en) Alkenylazines
JPH0977692A (en) Bicyclohexane derivative
JP3882948B2 (en) Asymmetric azines
JPH1171338A (en) Tricyclic azine
JP3841182B2 (en) Fluorine-substituted azine
JP3851992B2 (en) Method for producing asymmetric azines
JPS6345258A (en) Optically active 6-substituted-pyridine-3-carboxylic acid ester compound and liquid crystal
JP2855346B2 (en) Optically active oxazolidone derivative, intermediate thereof, liquid crystal material and liquid crystal display device
JP4193077B2 (en) 1,3-phenylene derivatives
JP3538820B2 (en) (Fluoroalkenyl) cyclohexane derivative and liquid crystal composition
JP4239242B2 (en) Phenylnaphthalene derivative
JPH11199558A (en) Azine compound
JP2900482B2 (en) Compound having an oxymethylene bond
JP2579810B2 (en) Alkylthiobenzoic acid derivatives
JPH06102635B2 (en) Novel liquid crystal compound and liquid crystal composition
JP3101984B2 (en) Pyrazine derivatives and ferroelectric liquid crystal compositions containing the same
JPH11140446A (en) Production of azine-based mixed liquid crystal
JPH06247886A (en) Trifluorobenzene derivative
JP3505731B2 (en) Optically active compound and liquid crystal composition
JPH08157409A (en) 5-substituted-2-alkynyloxy group-containing optically active compound and liquid crystal composition
JPH0678280B2 (en) Ferroelectric compound and liquid crystal composition
JPH0791227B2 (en) Triester liquid crystal compound
JPH05125002A (en) Fluorine-substituted cyclohexane derivative and liquid crystal composition containing the same derivative
JPH11228460A (en) Diphenylbutadiyne derivative

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees