JP3880000B2 - High saturation magnetic flux density soft magnetic material - Google Patents
High saturation magnetic flux density soft magnetic material Download PDFInfo
- Publication number
- JP3880000B2 JP3880000B2 JP2003420448A JP2003420448A JP3880000B2 JP 3880000 B2 JP3880000 B2 JP 3880000B2 JP 2003420448 A JP2003420448 A JP 2003420448A JP 2003420448 A JP2003420448 A JP 2003420448A JP 3880000 B2 JP3880000 B2 JP 3880000B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- flux density
- soft magnetic
- magnetic flux
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Description
本発明は、高飽和磁束密度軟磁性材料に関し、特に高保磁力記録媒体にも対応できる磁気ヘッドのコア材料として好適に使用できる高飽和磁束密度軟磁性材料に関する。 The present invention relates to a high saturation magnetic flux density soft magnetic material, and more particularly, to a high saturation magnetic flux density soft magnetic material that can be suitably used as a core material of a magnetic head that can be applied to a high coercive force recording medium.
情報記録の大容量・高速化に伴い、情報ストレージ装置の近年の進歩にはめざましいものがある。特に、大容量・高速で、信頼性に優れ、情報の書き換えが可能なハードディスクは、情報ストレージ装置の中では確固たる地位を築いてきた。しかしながら、大容量化による記録密度の高密度化に伴って、記録媒体の保磁力が増大する傾向にあり、こうした高保磁力の記録媒体に記録をするための磁気記録ヘッドのコア材料にはより高い飽和磁束密度を持つ軟磁性膜が求められている。 With the increase in capacity and speed of information recording, there has been remarkable progress in information storage devices in recent years. In particular, hard disks with large capacity, high speed, excellent reliability, and capable of rewriting information have built a solid position among information storage devices. However, as the recording density is increased due to the increase in capacity, the coercive force of the recording medium tends to increase, and the core material of the magnetic recording head for recording on such a high coercive recording medium is higher. There is a need for a soft magnetic film having a saturation magnetic flux density.
磁気ヘッドコア材料に用いられる軟磁性膜には、第1に高い飽和磁束密度が求められ、最近では2.2T以上のものが精力的に研究されている。このような高い飽和磁束密度を示す材料としてはFexCo1-x(0.6≦x≦0.8)が有望である。この組成のFeCo合金は2.4T以上の高い飽和磁束密度を持つことが知られている。しかしながら、この組成のFeCo合金を通常のスパッタリング法により薄膜にした場合、保磁力が50〜100Oeと高くなってしまい、磁気ヘッドコア材料としては使用できない。 The soft magnetic film used for the magnetic head core material is first required to have a high saturation magnetic flux density. Recently, a soft magnetic film of 2.2 T or more has been energetically studied. Fe x Co 1-x (0.6 ≦ x ≦ 0.8) is promising as a material exhibiting such a high saturation magnetic flux density. It is known that the FeCo alloy having this composition has a high saturation magnetic flux density of 2.4 T or more. However, when a FeCo alloy having this composition is formed into a thin film by a normal sputtering method, the coercive force becomes as high as 50 to 100 Oe and cannot be used as a magnetic head core material.
従って、FeCo合金の飽和磁束密度を大きく低下させることなく、困難軸方向の保磁力を低下させることが重要な課題となる。 Therefore, it is an important issue to reduce the coercivity in the hard axis direction without greatly reducing the saturation magnetic flux density of the FeCo alloy.
従来、FeCo合金の保磁力を低下させるには、FeCoに第3成分を添加した合金ターゲットまたはFeCo合金ターゲットに第3成分のチップを載せた複合ターゲットを用い、アルゴンガス中に数%程度の窒素ガスや酸素ガスなどの添加ガスを導入して反応性スパッタリングを行う方法が知られている。第3成分は添加ガスと選択的に結合しやすい材料であり、添加ガスによるFeやCoへの影響を防ぐ機能を有する。しかしながら、この方法では、FeCo以外の第3成分を5%以上導入しないと良好な軟磁気特性を得ることができなかったため、作製された膜の飽和磁束密度は必然的に大きく低下していた。 Conventionally, in order to reduce the coercivity of an FeCo alloy, an alloy target in which a third component is added to FeCo or a composite target in which a third component chip is mounted on an FeCo alloy target is used. A method of performing reactive sputtering by introducing an additive gas such as gas or oxygen gas is known. The third component is a material that easily binds selectively to the additive gas, and has a function of preventing the additive gas from affecting the Fe and Co. However, in this method, unless a third component other than FeCo is introduced in an amount of 5% or more, good soft magnetic characteristics cannot be obtained, so that the saturation magnetic flux density of the produced film is inevitably greatly reduced.
別の方法として、軟磁性膜を下地膜とし、その上にFeCo系合金膜を積層させることで、軟磁気特性を改善することも報告されている(非特許文献1参照)が、製造プロセスなどに制約があった。このため、製造プロセスの制約なしに、FeCo系合金膜に良好な軟磁気特性を発揮させることができる下地膜が求められている。 As another method, it has also been reported that soft magnetic properties are improved by using a soft magnetic film as a base film and a FeCo-based alloy film laminated thereon (see Non-Patent Document 1). There were restrictions. For this reason, there is a need for a base film that can exhibit good soft magnetic properties in an FeCo-based alloy film without any restrictions on the manufacturing process.
また、記録密度の向上に伴い、記録ヘッドの磁区制御も重要になってきており、大きな異方性磁界が求められるようになってきている。 As the recording density is improved, the magnetic domain control of the recording head has become important, and a large anisotropic magnetic field has been demanded.
以上のような磁気特性の改善に加えて、磁気ヘッドの設計を容易にするためには、広い範囲の膜厚で安定した磁気特性が得られることが望ましい。
本発明の目的は、高い飽和磁束密度、低い保磁力、大きな異方性磁界を持つ高飽和磁束密度軟磁性材料を提供することにある。 An object of the present invention is to provide a high saturation magnetic flux density soft magnetic material having a high saturation magnetic flux density, a low coercive force, and a large anisotropic magnetic field.
本発明に係る高飽和磁束密度軟磁性材料は、下記一般式
MnaM1-a
(ここで、0.4≦a≦0.95であり、MはFe、Ir、Pt、Cr、Rh、Ru、Pd、Ni、Co、Au、Cu及びAgからなる群より選択される少なくとも1種である)
で表される、膜厚が0.2〜20nmのMn系合金下地膜と、下記一般式
(FexCo1-x)y(Al2Oz)1-y
(ここで、0.6≦x≦0.8、0<(1−y)≦0.05、2≦z≦5)
で表される、膜厚が50〜1000nmである膜とを含むことを特徴とする。
The high saturation magnetic flux density soft magnetic material according to the present invention has the following general formula : M a a M 1-a
(Where 0.4 ≦ a ≦ 0.95, and M is at least one selected from the group consisting of Fe, Ir, Pt, Cr, Rh, Ru, Pd, Ni, Co, Au, Cu, and Ag. Seeds)
In represented by a Mn-based alloy underlayer having a thickness of 0.2~20Nm, the following general formula (Fe x Co 1-x) y (Al 2 O z) 1-y
(Where 0.6 ≦ x ≦ 0.8, 0 <(1-y) ≦ 0.05, 2 ≦ z ≦ 5)
And a film having a film thickness of 50 to 1000 nm.
本発明に係る軟磁性材料は、高い飽和磁束密度、低い保磁力、大きな異方性磁界を有しているため、これを磁気ヘッドコア材料として用いた場合、高い保磁力を有する記録媒体への情報の書き込みが容易になり、記録媒体上に安定した磁区を形成できるため、再生信号品質も向上する。また、広い範囲の膜厚で所望の磁気特性が得られることから、磁気ヘッドの設計マージンおよび製造マージンを大きくすることができる。 Since the soft magnetic material according to the present invention has a high saturation magnetic flux density, a low coercive force, and a large anisotropic magnetic field, when this is used as a magnetic head core material, information to a recording medium having a high coercive force is obtained. Can be easily written and a stable magnetic domain can be formed on the recording medium, so that the reproduction signal quality is improved. In addition, since desired magnetic characteristics can be obtained with a wide range of film thickness, the design margin and manufacturing margin of the magnetic head can be increased.
以下、本発明に係る高飽和磁束密度軟磁性材料について、詳細に説明する。 Hereinafter, the high saturation magnetic flux density soft magnetic material according to the present invention will be described in detail.
本発明に係る高飽和磁束密度軟磁性材料において、下地膜はMn系合金で形成されている。具体的には、MnFe合金、MnIr合金、MnPt合金、MnCr合金、MnRh合金、MnRu合金、MnPd合金、MnNi合金、MnCo合金、MnAu合金、MnCu合金、MnAg合金、MnRhRu合金、MnFeRh合金、MnPtPd合金、MnPtCr合金、MnNiCr合金などが挙げられる。これらのMn系合金は、下記の高飽和磁束密度軟磁性膜の下地膜として用いたときに、高飽和磁束密度軟磁性膜の保磁力を低下させる必要がある。一般式MnaM1-a(MはFe、Ir、Pt、Cr、Rh、Ru、Pd、Ni、Co、Au、Cu及びAgからなる群より選択される少なくとも1種である)で表されるMn系合金のMn組成は、0.4≦a≦0.95であることが必要である。さらに、Ir、RhおよびRuを含有するMn系合金では0.5≦a≦0.95、それ以外の元素を含有するMn系合金では0.4≦a≦0.85であることが好ましい。 In the high saturation magnetic flux density soft magnetic material according to the present invention, the base film is made of a Mn-based alloy. Specifically, MnFe alloy, MnIr alloy, MnPt alloy, MnCr alloy, MnRh alloy, MnRu alloy, MnPd alloy, MnNi alloy, MnCo alloy, MnAu alloy, MnCu alloy, MnAg alloy, MnRhRu alloy, MnFeRh alloy, MnPtPd alloy, Examples thereof include MnPtCr alloy and MnNiCr alloy. These Mn-based alloys need to reduce the coercivity of the high saturation magnetic flux density soft magnetic film when used as an underlayer for the following high saturation magnetic flux density soft magnetic film. Is represented by the general formula Mn a M 1-a (M is at least one Fe, Ir, Pt, Cr, Rh, Ru, Pd, Ni, Co, Au, is selected from the group consisting of Cu and Ag) The Mn composition of the Mn-based alloy must be 0.4 ≦ a ≦ 0.95. Furthermore, it is preferable that 0.5 ≦ a ≦ 0.95 for an Mn-based alloy containing Ir, Rh and Ru, and 0.4 ≦ a ≦ 0.85 for an Mn-based alloy containing other elements.
下地膜上に形成される高飽和磁束密度軟磁性膜は、FexCo1-x(0.6≦x≦0.8)を主成分とする。適切な組成を有するFeCoは、スパッタリングターゲットや成膜条件を調整することによって、その飽和磁束密度が合金系で得られる最高値である2.45Tに到達することが知られている。FexCo1-x(0.6≦x≦0.8)で表される組成範囲のFeCo合金は、上記の値に近い飽和磁束密度を有する。本発明においては、FexCo1-x(0.6≦x≦0.8)に対して5%以下のAl2Oz(2≦z≦5)を含有した組成を有する高飽和磁束密度軟磁性膜が用いられる。Al2Oz(2≦z≦5)含有量は0.5〜5%であることが好ましい。Al2Oz(2≦z≦5)含有量が0.5%未満であると、困難軸方向の保磁力が高くなる傾向がある。Al2Oz(2≦z≦5)含有量が5%を越えると、飽和磁束密度が低下する傾向がある。 The high saturation magnetic flux density soft magnetic film formed on the base film contains Fe x Co 1-x (0.6 ≦ x ≦ 0.8) as a main component. It is known that FeCo having an appropriate composition reaches a maximum value of 2.45 T, which is the maximum value that can be obtained in an alloy system, by adjusting a sputtering target and film formation conditions. An FeCo alloy having a composition range represented by Fe x Co 1-x (0.6 ≦ x ≦ 0.8) has a saturation magnetic flux density close to the above value. In the present invention, high saturation magnetic flux density having a composition containing 5% or less of Al 2 O z (2 ≦ z ≦ 5) with respect to Fe x Co 1-x (0.6 ≦ x ≦ 0.8). A soft magnetic film is used. The Al 2 O z (2 ≦ z ≦ 5) content is preferably 0.5 to 5%. When the Al 2 O z (2 ≦ z ≦ 5) content is less than 0.5%, the coercive force in the hard axis direction tends to increase. When the Al 2 O z (2 ≦ z ≦ 5) content exceeds 5%, the saturation magnetic flux density tends to decrease.
本発明に係る高飽和磁束密度軟磁性材料は、Mn系合金下地膜上に(FexCo1-x)y(Al2Oz)1-y膜を形成したことにより、飽和磁束密度が2.3T以上、困難軸方向の保磁力が2Oe以下、異方性磁界が20Oe以上という、高飽和磁束密度および良好な軟磁気特性を示す。 High saturation flux density soft magnetic material according to the present invention, by forming on a Mn-based alloy underlayer of (Fe x Co 1-x) y (Al 2 O z) 1-y film, the saturation magnetic flux density is 2 High saturation magnetic flux density and good soft magnetic properties of 3T or more, coercive force in the hard axis direction of 2 Oe or less, and anisotropic magnetic field of 20 Oe or more are exhibited.
本発明の高飽和磁束密度軟磁性材料は、高い飽和磁束密度を有しているため、これを磁気ヘッドコア材料として用いた場合、高い保磁力を有する記録媒体への情報の書き込みが容易になり、記録媒体上に安定した磁区を形成できるため、再生信号品質も向上する。 Since the high saturation magnetic flux density soft magnetic material of the present invention has a high saturation magnetic flux density, when it is used as a magnetic head core material, it becomes easy to write information on a recording medium having a high coercive force, Since stable magnetic domains can be formed on the recording medium, the reproduction signal quality is also improved.
本発明に係る高飽和磁束密度軟磁性材料においては、Mn系合金下地膜の膜厚が0.2〜20nm、(FexCo1-x)y(Al2Oz)1-y膜の膜厚が50〜1000nmであることが好ましい。膜厚が上記の範囲であれば、困難軸方向の保磁力が2Oe以下になる。上記のように広い範囲の膜厚で所望の磁気特性が得られることから、磁気ヘッドの設計マージンおよび製造マージンも大きくすることができる。なお、全体の膜厚のうち、下地膜の膜厚の占める割合が小さいことが好ましく、下地膜の膜厚は全体の5%以下、さらには1%以下であることが好ましい。 In the high saturation flux density soft magnetic material according to the present invention, Mn-based alloy underlayer film thickness is 0.2~20nm, (Fe x Co 1- x) y (Al 2 O z) 1-y film with The thickness is preferably 50 to 1000 nm. When the film thickness is in the above range, the coercive force in the hard axis direction is 2 Oe or less. As described above, desired magnetic characteristics can be obtained in a wide range of film thicknesses, so that the design margin and manufacturing margin of the magnetic head can be increased. Note that the ratio of the film thickness of the base film to the total film thickness is preferably small, and the film thickness of the base film is preferably 5% or less, more preferably 1% or less.
本発明において、(FexCo1-x)y(Al2Oz)1-y膜はスパッタリング法により成膜することができる。具体的には、以下のような方法を用いることができる。 In the present invention, (Fe x Co 1-x ) y (Al 2 O z) 1-y film can be deposited by a sputtering method. Specifically, the following method can be used.
1)FeCoにAl2O3を5%以下含有させた焼結ターゲットを用いてスパッタリングを行う。 1) Sputtering is performed using a sintered target containing 5% or less of Al 2 O 3 in FeCo.
2)FeCo合金ターゲットとAl2O3ターゲットを用いて同時スパッタリングを行う。 2) Co-sputtering is performed using an FeCo alloy target and an Al 2 O 3 target.
3)FeCo合金ターゲット上にAl2O3チップを添付した複合ターゲットを用いてスパッタリングを行う。 3) Sputtering is performed using a composite target in which an Al 2 O 3 chip is attached on an FeCo alloy target.
なお、発明に係る高飽和磁束密度軟磁性材料は、製造条件によっては、Al−O成分が化学量論組成からはずれることもある。すなわち、本発明に係る高飽和磁束密度軟磁性材料は、ターゲット組成から予測すれば、(FexCo1-x)y(Al2O3)1-yという式で表されるはずであるが、実際に成膜された膜は、
(FexCo1-x)y(Al2Oz)1-y
(ここで、0.6≦x≦0.8、0<(1−y)≦0.05、2≦z≦5)
という式で表される組成範囲をとりうる。
In the high saturation magnetic flux density soft magnetic material according to the invention, the Al—O component may deviate from the stoichiometric composition depending on the manufacturing conditions. That is, the high saturation flux density soft magnetic material according to the present invention, if the prediction from the target composition, but it should be represented by the expression (Fe x Co 1-x) y (Al 2 O 3) 1-y The film actually formed is
(Fe x Co 1-x) y (Al 2 O z) 1-y
(Where 0.6 ≦ x ≦ 0.8, 0 <(1-y) ≦ 0.05, 2 ≦ z ≦ 5)
The composition range represented by the formula can be taken.
スパッタリング条件をいったん決定すれば、それ以降は安定して所望の磁気特性を有する高飽和磁束密度軟磁性材料を作製できる。 Once the sputtering conditions are determined, a high saturation magnetic flux density soft magnetic material having desired magnetic characteristics can be manufactured stably thereafter.
(実施例)
以下の実施例においては、図1に示す構成の高飽和磁束密度軟磁性材料を作製した。図1に示すように、基板1上にMn系合金下地膜2およびFeCo系膜3が形成される。
(Example)
In the following examples, a high saturation magnetic flux density soft magnetic material having the configuration shown in FIG. 1 was produced. As shown in FIG. 1, a Mn
実施例1
ターゲットとして、直径100mm、厚さ3mmの円盤状のMn0.5Pt0.5および(Fe0.70Co0.30)0.99(Al2O3)0.01焼結体を用いた。基板として、10mm角、厚さ1mmのシリコンの表面に酸化シリコンを形成したものを用いた。
Example 1
As targets, disc-shaped Mn 0.5 Pt 0.5 and (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 sintered bodies having a diameter of 100 mm and a thickness of 3 mm were used. A substrate in which silicon oxide was formed on the surface of a 10 mm square and 1 mm thick silicon was used.
上記の2つのターゲットおよび基板を、6ターゲットの高周波マグネトロンスパッタリング装置(トッキ製SPM−506)の真空槽内に固定し、基板とターゲットとの距離が約75mmになるように調整した。また、軟磁性膜に磁気異方性を付与するために、基板の外側に永久磁石を配置し、基板の中心部で100Oe以上の磁場が印加されるようにした。 The above two targets and the substrate were fixed in a vacuum chamber of a six-target high-frequency magnetron sputtering apparatus (SPM-506 manufactured by Tokki), and the distance between the substrate and the target was adjusted to about 75 mm. In order to impart magnetic anisotropy to the soft magnetic film, a permanent magnet is disposed outside the substrate so that a magnetic field of 100 Oe or more is applied at the center of the substrate.
真空槽内を2×10-5Paになるまで排気した。その後、真空槽内にArガスを導入し、圧力1Paになるようにガス流量を調整した。放電電力400W、放電周波数13.56MHzで高周波スパッタリングを行った。基板上にMn0.5Pt0.5合金ターゲットを用いて下地膜を1nm、(Fe0.70Co0.30)0.99(Al2O3)0.01合金ターゲットを用いてFeCo系膜を400nm堆積した。 The inside of the vacuum chamber was evacuated to 2 × 10 −5 Pa. Thereafter, Ar gas was introduced into the vacuum chamber, and the gas flow rate was adjusted so that the pressure was 1 Pa. High frequency sputtering was performed at a discharge power of 400 W and a discharge frequency of 13.56 MHz. On the substrate, an Mn 0.5 Pt 0.5 alloy target was used to deposit a base film of 1 nm, and a (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 alloy target was used to deposit an FeCo-based film of 400 nm.
比較例として、Al2O3を含有しないFe70Co30合金ターゲットのみを用い、MnPt下地膜を形成することなく、上記と同様の手順で基板上に厚さ約400nmのFe70Co30膜のみを堆積した。 As a comparative example, only an Fe 70 Co 30 film having a thickness of about 400 nm is formed on the substrate in the same procedure as described above, using only an Fe 70 Co 30 alloy target not containing Al 2 O 3 and without forming an MnPt underlayer. Deposited.
参考のために、MnPt下地膜を形成することなく、上記と同様の手順で基板上に厚さ約400nmの(Fe0.70Co0.30)0.99(Al2O3)0.01膜を堆積した。 For reference, a (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film having a thickness of about 400 nm was deposited on the substrate in the same procedure as above without forming the MnPt underlayer.
以上のようにして作製したFeCo系膜の特性評価を行った。測定にはVSMを用いた。 The characteristics of the FeCo film prepared as described above were evaluated. VSM was used for the measurement.
図2にMnPt下地膜と(Fe0.70Co0.30)0.99(Al2O3)0.01膜とを有する本実施例の軟磁性材料の磁化曲線を示す。飽和磁束密度は2.42T、困難軸方向の保磁力は0.3Oe、異方性磁界は25Oeとなり、高飽和磁束密度と良好な軟磁気特性を示していた。 FIG. 2 shows the magnetization curve of the soft magnetic material of this example having an MnPt underlayer and a (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 layer. The saturation magnetic flux density was 2.42 T, the coercivity in the hard axis direction was 0.3 Oe, and the anisotropic magnetic field was 25 Oe, indicating a high saturation magnetic flux density and good soft magnetic properties.
図3にFe70Co30膜のみの磁化曲線を示す。飽和磁束密度は2.45T、困難軸方向の保磁力は50Oeであった。 FIG. 3 shows the magnetization curve of only the Fe 70 Co 30 film. The saturation magnetic flux density was 2.45 T, and the coercive force in the hard axis direction was 50 Oe.
図4に(Fe0.70Co0.30)0.99(Al2O3)0.01膜のみの磁化曲線を示す。飽和磁束密度は2.42T、困難軸方向の保磁力は3Oeであった。 FIG. 4 shows the magnetization curve of only the (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film. The saturation magnetic flux density was 2.42 T, and the coercive force in the hard axis direction was 3 Oe.
図2〜図4の結果から、本実施例の軟磁性材料は、ごく薄いMnPt下地膜を設けたことにより、FeCo系膜の軟磁気特性を大幅に改善できることがわかる。 2 to 4, it can be seen that the soft magnetic material of this example can significantly improve the soft magnetic properties of the FeCo-based film by providing a very thin MnPt underlayer.
実施例2
実施例1と同様の手順で、基板上に形成するMnPt下地膜の膜厚を1nmに固定して、その上に(Fe0.70Co0.30)0.99(Al2O3)0.01膜を種々の膜厚で堆積した。
Example 2
In the same procedure as in Example 1, the thickness of the MnPt base film formed on the substrate is fixed to 1 nm, and (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film is formed thereon with various thicknesses. Deposited at.
図5に、得られた軟磁性材料について、困難軸方向の保磁力Hchと(Fe0.70Co0.30)0.99(Al2O3)0.01膜の膜厚との関係を示す。図5から、(Fe0.70Co0.30)0.99(Al2O3)0.01膜の膜厚が50〜1000nmの膜厚であれば、困難軸方向の保磁力Hchは1Oe以下であることがわかる。 FIG. 5 shows the relationship between the coercive force Hch in the hard axis direction and the film thickness of the (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film for the obtained soft magnetic material. FIG. 5 shows that the coercive force Hch in the hard axis direction is 1 Oe or less when the thickness of the (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film is 50 to 1000 nm.
また、(Fe0.70Co0.30)0.99(Al2O3)0.01膜の膜厚が図5に示す範囲にあるすべての軟磁性材料において、飽和磁束密度は2.42Tとほぼ一定であり、異方性磁界は20Oe以上であった。 Further, in all soft magnetic materials having a film thickness of (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 in the range shown in FIG. 5, the saturation magnetic flux density is substantially constant at 2.42 T, which is anisotropic. The magnetic field was 20 Oe or more.
実施例3
実施例1と同様の手順で、基板上にMnPt下地膜を種々の膜厚で堆積し、その上に(Fe0.70Co0.30)0.99(Al2O3)0.01膜を膜厚約400nmに固定して堆積した。
Example 3
In the same procedure as in Example 1, MnPt underlayers were deposited on the substrate with various thicknesses, and (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 layer was fixed on the thickness of about 400 nm on the substrate. And deposited.
図6に、得られた軟磁性材料について、困難軸方向の保磁力HchとMnPt下地膜の膜厚との関係を示す。図6から、MnPt下地膜の膜厚が0.2〜20nmの膜厚であれば、困難軸方向の保磁力Hchは1Oe以下であることがわかる。 FIG. 6 shows the relationship between the coercive force Hch in the hard axis direction and the film thickness of the MnPt underlayer for the obtained soft magnetic material. 6 that the coercive force Hch in the hard axis direction is 1 Oe or less when the thickness of the MnPt underlayer is 0.2 to 20 nm.
また、MnPt下地膜の膜厚が図6に示す範囲にあるすべての軟磁性材料において、飽和磁束密度は2.42Tとほぼ一定であり、異方性磁界は20Oe以上であった。 Further, in all soft magnetic materials in which the film thickness of the MnPt underlayer was in the range shown in FIG. 6, the saturation magnetic flux density was almost constant at 2.42 T, and the anisotropic magnetic field was 20 Oe or more.
実施例4
ターゲットとして、Al2O3含有量が異なる(Fe0.70Co0.30)y(Al2O3)1-y(0.005≦(1−y)≦0.06)焼結体を用いた以外、実施例1と同様の手順で、基板上にMnPt下地膜を介して(Fe0.70Co0.30)y(Al2O3)1-y膜を堆積した。
Example 4
Other than using (Fe 0.70 Co 0.30 ) y (Al 2 O 3 ) 1-y (0.005 ≦ (1-y) ≦ 0.06) sintered bodies having different Al 2 O 3 contents as targets, A (Fe 0.70 Co 0.30 ) y (Al 2 O 3 ) 1-y film was deposited on the substrate via the MnPt underlayer in the same procedure as in Example 1.
図7に、得られた軟磁性材料について、飽和磁束密度および困難軸方向の保磁力HchとFeCo系膜中のAl2O3含有量との関係を示す。図7から、Al2O3含有量が0.5〜3%であれば、飽和磁束密度は2.3T以上、困難軸方向の保磁力Hchは1Oe以下であることがわかる。 FIG. 7 shows the relationship between the saturation magnetic flux density and the coercive force Hch in the hard axis direction and the Al 2 O 3 content in the FeCo-based film for the obtained soft magnetic material. FIG. 7 shows that when the Al 2 O 3 content is 0.5 to 3%, the saturation magnetic flux density is 2.3 T or more and the coercive force Hch in the hard axis direction is 1 Oe or less.
また、(Fe0.70Co0.30)y(Al2O3)1-y膜の組成が図7に示す範囲にあるすべての軟磁性材料において、異方性磁界は20Oe以上であった。 Further, in all soft magnetic materials in which the composition of the (Fe 0.70 Co 0.30 ) y (Al 2 O 3 ) 1 -y film is in the range shown in FIG. 7, the anisotropic magnetic field was 20 Oe or more.
実施例5
ターゲットとして合金成分MがFe、Ir、Pt、Cr、Rh、Ru、Pd、Ni、Co、Au、CuまたはAgであるMnaM1-a(0.4≦a≦0.95)を用い、実施例1と同様の手順で、基板上にMn系合金下地膜を堆積し、その上に(Fe0.70Co0.30)0.99(Al2O3)0.01膜を堆積した。
Example 5
Mn a M 1-a (0.4 ≦ a ≦ 0.95) in which the alloy component M is Fe, Ir, Pt, Cr, Rh, Ru, Pd, Ni, Co, Au, Cu, or Ag is used as a target. In the same procedure as in Example 1, a Mn-based alloy base film was deposited on the substrate, and a (Fe 0.70 Co 0.30 ) 0.99 (Al 2 O 3 ) 0.01 film was deposited thereon.
表1に、得られた軟磁性材料について、飽和磁束密度(Bs)、困難軸方向の保磁力(Hch)、異方性磁界(Hk)の値を示す。 Table 1 shows the values of saturation magnetic flux density (Bs), hard axis coercivity (Hch), and anisotropic magnetic field (Hk) for the obtained soft magnetic material.
表1から、すべての軟磁性材料において、飽和磁束密度は2.3T以上、困難軸方向の保磁力は2Oe以下、異方性磁界は20Oe以上であることがわかる。
1…基板、2…Mn系合金下地膜、3…FeCo系膜。
DESCRIPTION OF
Claims (1)
MnaM1-a
(ここで、0.4≦a≦0.95であり、MはFe、Ir、Pt、Cr、Rh、Ru、Pd、Ni、Co、Au、Cu及びAgからなる群より選択される少なくとも1種である)
で表される、膜厚が0.2〜20nmのMn系合金下地膜と、下記一般式
(FexCo1-x)y(Al2Oz)1-y
(ここで、0.6≦x≦0.8、0<(1−y)≦0.05、2≦z≦5)
で表される、膜厚が50〜1000nmである膜とを含むことを特徴とする高飽和磁束密度軟磁性材料。 The following general formula Mn a M 1-a
(Where 0.4 ≦ a ≦ 0.95, and M is at least one selected from the group consisting of Fe, Ir, Pt, Cr, Rh, Ru, Pd, Ni, Co, Au, Cu, and Ag. Seeds)
In represented by a Mn-based alloy underlayer having a thickness of 0.2~20Nm, the following general formula (Fe x Co 1-x) y (Al 2 O z) 1-y
(Where 0.6 ≦ x ≦ 0.8, 0 <(1-y) ≦ 0.05, 2 ≦ z ≦ 5)
And a high saturation magnetic flux density soft magnetic material characterized by including a film having a film thickness of 50 to 1000 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420448A JP3880000B2 (en) | 2003-12-18 | 2003-12-18 | High saturation magnetic flux density soft magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003420448A JP3880000B2 (en) | 2003-12-18 | 2003-12-18 | High saturation magnetic flux density soft magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005183566A JP2005183566A (en) | 2005-07-07 |
JP3880000B2 true JP3880000B2 (en) | 2007-02-14 |
Family
ID=34781968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003420448A Expired - Fee Related JP3880000B2 (en) | 2003-12-18 | 2003-12-18 | High saturation magnetic flux density soft magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3880000B2 (en) |
-
2003
- 2003-12-18 JP JP2003420448A patent/JP3880000B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005183566A (en) | 2005-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2006003922A1 (en) | Perpendicular magnetic recording disk and manufacturing method thereof | |
JPWO2007116813A1 (en) | Method for manufacturing perpendicular magnetic recording disk and perpendicular magnetic recording disk | |
JP2555057B2 (en) | Corrosion resistant ferromagnetic film | |
US8034470B2 (en) | Perpendicular magnetic recording medium and method of manufacturing the medium | |
JP2008276833A (en) | Perpendicular magnetic recording medium and its manufacturing method | |
EP1850334A1 (en) | Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target | |
JPH07311929A (en) | Magnetic recording medium and its manufacture | |
JP2007164941A (en) | Perpendicular magnetic recording medium | |
US6686071B2 (en) | Magnetic recording medium and magnetic recording apparatus using the same | |
JP4102221B2 (en) | Method for manufacturing magnetic recording medium | |
JP3822387B2 (en) | Magnetic recording medium | |
US20120114975A1 (en) | Sputtering Targets And Recording Materials Of Hard Disk Formed From The Sputtering Target | |
JP4453479B2 (en) | Exchange coupling type soft magnetic material | |
JPH11238221A (en) | Magnetic record medium and magnetic disk device | |
JP3880000B2 (en) | High saturation magnetic flux density soft magnetic material | |
JP2508489B2 (en) | Soft magnetic thin film | |
JP2005196959A (en) | Perpendicular magnetic recording medium | |
US7125615B2 (en) | Magnetic recording medium and magnetic recording device | |
JP2004127502A (en) | Magnetic recording medium | |
JPWO2003096359A1 (en) | High saturation magnetic flux density soft magnetic material | |
JP2007102833A (en) | Perpendicular magnetic recording medium | |
JP2000215432A (en) | Perpendicular magnetic recording medium | |
JPH07192244A (en) | Perpendicular magnetic recording medium and its production | |
JP2002063712A (en) | Magnetic recording medium and magnetic recording apparatus using the same | |
JP2006265654A (en) | Fe-Co-B-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |