Nothing Special   »   [go: up one dir, main page]

JP3874046B2 - Heat insulation box - Google Patents

Heat insulation box Download PDF

Info

Publication number
JP3874046B2
JP3874046B2 JP06817399A JP6817399A JP3874046B2 JP 3874046 B2 JP3874046 B2 JP 3874046B2 JP 06817399 A JP06817399 A JP 06817399A JP 6817399 A JP6817399 A JP 6817399A JP 3874046 B2 JP3874046 B2 JP 3874046B2
Authority
JP
Japan
Prior art keywords
box
heat insulation
outer box
vacuum
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06817399A
Other languages
Japanese (ja)
Other versions
JP2000266459A (en
Inventor
芳夫 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06817399A priority Critical patent/JP3874046B2/en
Publication of JP2000266459A publication Critical patent/JP2000266459A/en
Application granted granted Critical
Publication of JP3874046B2 publication Critical patent/JP3874046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば冷蔵庫や保冷車等に用いられる断熱箱体の構造に関するものである。
【0002】
【従来の技術】
従来、冷蔵庫や保冷車等の断熱箱体は、鉄板等の金属製薄板で成型された外箱と、外箱に嵌合され樹脂等で成型された内箱と、内箱と外箱の間の空間部に充填された断熱性の発泡ウレタンとで構成されている。この発泡ウレタンの発泡剤には、断熱性の優れたハイドロクロロフルオロカーボン類である1,1-ジクロロ-1-フルオロエタンが用いられてきたが、近年、オゾン層破壊の原因となる塩素を分子中に含まないハイドロフルオロカーボン類やハイドロカーボン類に代替えが進んでいる。
【0003】
これら発泡剤の適用は、例えば、特開平2−235982号公報、特開平3−152160号公報等に開示されており、前者の先行技術では1,1,2,2,3-ペンタフルオロプロパンや1,1,1,4,4,4-ヘキサフルオロブタン等のハイドロフルオロカーボン類を、後者の先行技術ではシクロペンタン等の可燃性物質を発泡剤として適用したことが記載され、これら発泡ウレタンの冷蔵庫等への適用は断熱性が17〜20mw/mK であった。
【0004】
オゾン層破壊の原因物質を用いず、しかもリサイクル等によって資源を有効に活用できることに併せて、消費電力の低減が求められている冷蔵庫等では、断熱材である発泡ウレタンに対する断熱性能の向上に限界があることから、図6の比較図に示す如く発泡ウレタンの2倍以上の断熱性能を有する真空断熱パネルを応用した技術が提案されている。例えば特開昭58−106374号公報に開示されているように、外箱の内面に接着剤を塗布して真空断熱パネルを取り付け、この外箱に内箱を嵌合して形成される残りの空間部に発泡ウレタンを充填した断熱箱体が挙げられている。
【0005】
前述した先行技術をはじめとする真空断熱パネルは、図7に示すように外部及び内部で発生したガスを吸着するゲッター剤3を含む芯材2を包装材4に収納して真空引きしたものである。この真空断熱パネル1の芯材2には、例えば、特開昭60−243471号公報に開示されているように発泡ウレタンを粉砕した粒子を合成樹脂袋に投入してボード状に真空パックしたものや、特開昭60−205164号公報に示されるように連通気泡の発泡ウレタンや、また、特開平7−96580号公報に記載されているようにガラスの長繊維を無機微粉末にフィビリル化した樹脂繊維を固化してなるボードが用いられている。
【0006】
包装材4は、一枚のシートを中央で折り曲げて重ねて左右の端辺をシールして袋状にしたものや、二枚のシートを重ねて三方の端辺をシールして袋状に成形したもので、各シートは複数のシートを積層してなっている。例えば袋状にしたときに内側となる層には熱溶着が可能な熱可塑性樹脂が用いられ、外側となる層には傷付き等に耐性のあるナイロンやポリエステル等の樹脂が使用され、その間の中間層には外気の侵入を完全に遮断するアルミ等の金属箔が用いられている。
【0007】
ここで、真空断熱パネルの製造方法の概要を図8に基づいて説明する。図8は真空包装機による真空断熱パネルの製造方法の概要を示す説明図である。
まず、連通気泡を有する板状の発泡樹脂の芯材2を袋状の包装材4に入れる(S1)。次に、芯材2を収納した包装材4を真空包装機11に固定してチャンバーを密閉し、真空包装機11の内部を1torr以下、好ましくは10-2torr以下の真空状態を真空調整用バルブ(図示せず)で真空引きする(S2)。その後は、シール用加圧装置12により融着ヒータ13を閉じ、包装材4の端辺5を加熱してその内側の熱可塑性樹脂を溶融しシールする(S3)。シールした後は、真空調整用バルブを開放して真空状態を解除し、真空断熱パネル1として取り出す。
【0008】
次に、この真空断熱パネルを用いた冷蔵庫の製造方法を図9に基づいて説明する。図9は従来の冷蔵庫の製造方法を示す工程図である。
まず、背面を含む外箱の内面に接着剤を塗布して真空断熱パネルを貼り付ける(S11)。次に、別途に真空成型法等によって成型した内箱をその外箱に嵌合し(S12)、その外殻に関連する各部材を装着して冷蔵庫の箱体を組み立てる(S13)。そして、この箱体を、背面側を上に向けた状態で治具に固定する。これは、発泡ウレタンで断熱層を形成する際に受ける圧力によってその箱体が変形しないようにするためである。
【0009】
その後は、2種の原料を高圧発泡機等で混合して得た発泡ウレタンの混合液を、外箱の背面に設けた注入口から箱体の各側面部に注入して断熱層を形成する(S14)。この混合液は、数秒後に発泡を開始して注入直下の各側面部を起点として放射状に広がり、箱体の上面部、底面部及び背面部に充填して真空断熱パネル1を除く空間部の全てを埋める。混合液による充填は、原料の反応熱による気化と副生成物として生成されたガスによる発泡とに伴って膨張する泡の状態で隅々まで流動する。そして、混合液の注入から4分〜8分後に樹脂が硬化して断熱層が形成される。
【0010】
断熱層が形成された後は、箱体を断熱箱体として治具から取り出して、この断熱箱体に内装部品と冷媒回路部品を装着する製品組立を行う(S15)。組立が完了したときは製品検査を行い(S16)、この検査に合格したものだけを冷蔵庫として完成する(S17)。
【0011】
【発明が解決しようとする課題】
しかしながら、前述した従来の断熱箱体では、真空断熱パネル1が断熱箱体の外箱の内面に固定されているので、図10に示すように高温域である外気からの熱が、真空断熱パネル1の包装材4の芯材2を貫通することなく、包装材4の中間層のアルミ箔を伝熱路として包装材4の外周の端辺に伝わって、特にその端辺から内箱に至って内部の低温域側に伝わり、断熱性能の低下を招く要因となっていた。
【0012】
本発明は、かかる課題を解決するためになされたもので、真空断熱パネルの包装材の端辺によって生じる断熱性能の低下を抑制する断熱箱体を得ることを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る断熱箱体は、前方開放の箱状の外箱と、外箱の内面に取り付けられた複数の真空断熱パネルと、外箱の内側に真空断熱パネルを覆うように嵌合された内箱と、外箱と内箱との間の間隙に充填された発泡樹脂とを備え、外箱の角部に、真空断熱パネルの包装材の外周部に形成された端辺を配置し、外箱の角部の内面と端辺との間に成型品の断熱材を配置し、断熱材は、発泡樹脂が充填される前に配置され、外箱と内箱との間の間隙に発泡樹脂が充填されたとき、端辺が外箱の内面への接触を防止する。
【0015】
【発明の実施の形態】
まず、本発明の実施形態に係る断熱箱体の各部材の構造及びその断熱箱体の構造について説明する。
[真空断熱パネルの芯材]
芯材は、例えば、国際特許WO96/07942(特表平8−503720、特願平6−509062)及び国際特許WO96/16876(特表平8−505895、特願平6−517001)に記載されているように、平均分子量が2*105 のポリスチレンに、主発泡剤の炭酸ガスと例えばHFC−134a(1,1,1,2-tetrafluoroetane)や、HFC−152a(1,1-difluoroetane) 等の補助発泡剤とを好適に用いて、押出し混合、発泡、フォームの急冷によって得られた連通気泡の含有率が100%近く、気泡径の小さな発泡ポリスチレンからなっている。
【0016】
この発泡ポリスチレンの押出し成型品を芯材として用いる場合は、発泡ポリスチレンの内部が融点以下で熱変形温度以上の温度を十分に保持しているので、圧縮応力を付加して気泡を扁平化する。この時、気泡の扁平化に伴って樹脂内に発生した応力を除去するために、この圧縮された状態を維持しながら熱変形温度を維持してアニールした後、その成型品を熱変形温度以下、好ましくはガラス転移温度以下に冷却し、これを例えば厚さ20mm、面200×200mmの大きさに加工する。
【0017】
なお、この発泡ポリスチレンの他に発泡ウレタンを芯材に用いてもよい。この発泡ウレタンは、例えば、ポリオール液を中心に触媒、整泡剤、破泡剤、発泡剤等の助剤が混合されたプレミックス液と、イソシアネートを主成分とするイソシアネート液の2液をインペラー形のミキサー等にそれぞれ規定量投入して混合し、次いで、数秒後に開始される発泡に間に合うように30℃〜60℃、好ましくは40℃〜50℃に保温した深さ100mmのアルミ製の金型内に投入し、この状態を5分以上放置して完全に硬化させて得られたもので、この板状の発泡ウレタンを芯材として用いる場合は、表層部分に多くの独立の気泡が存在するので、これを排除する目的で表面層を5mm以上、好ましくは10mm以上削除した後、前記と同様の大きさに加工する。
【0018】
[包装材]
包装材は、例えば2枚の多層シートを重ねて三方の端辺を線状に加熱しながら加圧してシールし、袋状に形成されたものである。この多層シートは、例えばポリエチレンテレフタレート等のフィルムの一方の面に、ナイロン等の耐傷性に優れたフィルムを接着剤等で貼り付け、そのポリエチレンテレフタレートのフィルムのもう一方の面にアルミ箔の多層シートを重ね、さらに、そのアルミ箔上に熱融着が可能な熱可塑性樹脂の高密度ポリエチレンフィルムを貼り合わせたものである。
【0019】
[真空断熱パネル]
真空断熱パネルは、前述した芯材及び包装材からなり、芯材が収納された包装材内を真空引きしたもので、その内部の真空度は例えば10-2torrになっている。この真空断熱パネルは、従来例と同様に芯材を収納した包装材を真空包装機に固定してチャンバーを密閉し、前記真空度が得られるまで真空調整用バルブで真空引きし、その後は、シール用加圧装置により融着ヒータを閉じて、包装材の開口部の端辺を加熱でシールして得られたものである。芯材と包装材は、真空包装機に固定する前に100℃以上の温度で乾燥させたものである。
【0020】
[固定用の発泡ウレタン]
固定用の発泡ウレタンは、外箱の内面に配設された真空断熱パネルを固定するためのもので、例えば、ポリオール、整泡剤、触媒、水、発泡剤を均一に混合してなるR液と、イソシアネートであるP液の2種の原料液を混合してなり、発泡剤にはオゾン層の破壊と地球の温暖化に影響を及ぼしにくいシクロペンタンが用いられている。この2種の原料の混合液は、外箱と内箱との間の狭い空間部の充填が容易で、充填後は樹脂化反応が急速に進行して硬化し易く、断熱性能に優れた独立気泡を有する発泡ウレタンとなる。
【0021】
[断熱箱体]
断熱箱体は、鋼板を成型してなる外箱と、外箱の鋼板上に両面テープを介して固着された前記真空断熱パネルと、ABS樹脂シートを真空成型してなり、その真空断熱パネルを覆うように前記外箱に嵌合された内箱と、外箱と内箱との間に形成される空間部に充填された前記発泡ウレタンとで構成されている。その空間部に前記混合液(R液、P液)を充填するときは、外箱と内箱が発泡及び充填に伴って発生する圧力によって変形しないように、50℃に保温した発泡治具に挿入して固定する。その混合液の注入量は充填に要する量の例えば15%程度多く注入する。これは、発泡ウレタンの諸物性を飛躍的に向上させると共に均質化させる上で有効である。
【0022】
実施形態1.
次に、前述した断熱箱体の真空断熱パネルの配置について説明する。図1は本発明の実施形態1に係る断熱箱体の角部の断面図、図2は実施形態1における真空断熱パネルの配置を示す外箱の展開図、図3は各真空断熱パネルの端辺の隣接個所を示す外箱の展開図である。
【0023】
実施形態1における真空断熱パネル13は、図2に示すように外箱12の背面部12a、各側面部12b,12c及び上面部12dにそれぞれ配置され、背面部12aにおいてはその上方に取り付けられ、各側面部12b,12cにおいては背面部12aの真空断熱パネル13の左右端辺にそれぞれ隣接するように取り付けられ、上面部12dにおいては背面部12aの真空断熱パネル13の上端辺に隣接するように取り付けられ、各真空断熱パネル13の隣接個所は5個所となっている(図3参照)。
【0024】
隣接する各真空断熱パネル13の端辺13aは、図1に示すように断熱箱体11の各角部、即ち外箱12の背面部12aと上面部12dを連結する角部及び背面部12aと各側面部12b,12cを連結する角部において、相互に接触することのないように外箱12の内面から真空断熱パネル13の厚みの半分に相当する5mm以上の距離、好ましくは10mm以内の距離を隔てた線上に配置されている。
【0025】
このように真空断熱パネル13が配置された断熱箱体11においては、各角部に位置する端辺13a側から放熱される熱は、固定用の発泡ウレタン14の厚さが増しているので、断熱箱体11内の低温域に到達することなく放散して吸収される。
【0026】
以上のように実施形態1によれば、各真空断熱パネル13を、その外周の端辺13aのうち二つの端辺13aが断熱箱体11のそれぞれの角部に位置するよう配置して、その端辺13a側と断熱箱体11の内箱15との間の距離が長くなるようにしたので、当該角部に位置する真空断熱パネル13の端辺13a側からの熱侵入を抑制し、断熱箱体11の断熱性能を向上させることができるという効果がある。
【0027】
実施形態2.
図4は本発明の実施形態2に係る断熱箱体の角部の断面図である。本実施形態2は、実施形態1と同様に真空断熱パネル13を外箱12に配置して(図2参照)、外箱12の背面部12aと各側面部12b,12cを連結する各角部、即ちその角部に位置する真空断熱パネル13の端辺13a側と外箱12の角部との間に例えば発泡ポリスチレン16の成型品を設けた断熱箱体11である。
【0028】
この発泡ポリスチレン16の成型品は、外箱12の背面部12aの両端がL字状に折り曲げられて各側面部12b,12cと切り離された状態の外箱12に対してなされたもので、固定用の発泡ウレタン14の充填時にその部分から洩れないようにすると共に、その発泡ウレタン14により角部の端辺13a側が折れ曲がって外箱12に接触しないようにしたものである。
【0029】
このように外箱12の背面部12aと各側面部12b,12cを連結する各角部が切り離された断熱箱体11においては、その角部に位置する端辺13a側が折れ曲がって外箱12に接触するということがなくなるので、接触した端辺13a側から他の端辺13aに熱が伝わって断熱箱体11の断熱性能を低下させるということがなくなり、また、前記角部に位置する端辺13a側と断熱箱体11の内箱15との間の距離を長くとれるので、断熱箱体11の角部に位置する真空断熱パネル13の端辺13a側からの熱侵入を抑制し、断熱箱体11の断熱性能を向上させることができるという効果がある。
【0030】
なお、前記の実施形態2では、外箱12の背面部12aと各側面部12b,12cを連結する各角部こ発泡ポリスチレン16の成型品を設けてその角部の端辺13a側が外箱12に接触しないようにしたが、外箱12の背面部12aと上面部12dを連結する角部、各側面部12b,12cと上面部12dを連結する各角部にそれぞれ発泡ポリスチレン16の成型品を設けてその角部の端辺13a側が外箱12に接触しないようにしてもよい。
【0031】
また、外箱12を成型した際に形成される各角部に発泡ポリスチレン16の成型品を設けてもよい。これは、各角部にできる可能性のある傷の隙間を塞ぐためで、固定用の発泡ウレタン14の洩れを防止する。
【0032】
さらに、真空断熱パネル13の端辺13aと外箱12の角部との間に設けた成型品に発泡ポリスチレン16を用いたが、これに限定されることはなく、無機又は有機質の多孔体でもよい。
【0033】
【実施例】
ここで、前記のように構成された例えば実施形態1の断熱箱体11を冷蔵庫に用いた場合の熱漏洩量について述べる。
[比較試料]
比較対照の断熱箱体は、各部材が実施形態1の断熱箱体11と同じもので、外箱12の背面部12a、各側面部12b,12c及び上面部12dの各面のほぼ中央部にそれぞれ真空断熱パネル13を配置(図5参照)したものを従来例の冷蔵庫とした。
【0034】
[評価の方法]
庫内の温度を+30℃に保った実施例の冷蔵庫と従来例の冷蔵庫を、恒温0℃の室内に設置してそれぞれの熱の漏洩量を測定した。
【0035】
[結果]
熱漏洩量の測定結果は下記の表1に示すように実施例では11.7Kcal/h、従来例では13.1Kcal/hとなり、実施形態1の断熱箱体11を用いた冷蔵庫の方が断熱性能が優れているという効果が得られた。
【0036】
【表1】

Figure 0003874046
【0037】
なお、前記の実施例では、実施形態1の断熱箱体11を冷蔵庫に用いて説明したが、実施形態2に示す断熱箱体11を冷蔵庫に用いてもよい。また、前述のごとく断熱箱体11を冷蔵庫に適用して説明したが、これに限定されることはなく、例えば、車載用の小型冷蔵庫、プレハブ式簡易冷蔵庫や保冷車、また、パイプや建築物の保温材等、保温及び保冷用製品の断熱用部品としての応用も可能であり、その要旨を脱し得ない範囲で種々変形して実施することができる。
【0038】
【発明の効果】
以上のように本発明によれば、外箱の角部に、真空断熱パネルの包装材の外周部に形成された端辺を配置し、外箱の角部の内面と端辺との間に成型品の断熱材を配置したので、発泡樹脂の充填時に角部に位置する真空断熱パネルの端辺が折れ曲がって外箱の内面に接触するということがなくなり、このため、接触した端辺から他の端辺に熱が伝わって断熱箱体の断熱性能を低下させるということがなくなった。また、外箱の角部においては端辺と内箱との間の距離を長くとれるので、断熱箱体の角部に位置する真空断熱パネルの端辺側からの熱侵入を抑制し、断熱箱体の断熱性能を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施形態1に係る断熱箱体の角部の断面図である。
【図2】 実施形態1における真空断熱パネルの配置を示す外箱の展開図である。
【図3】 各真空断熱パネルの端辺の隣接個所を示す外箱の展開図である。
【図4】 本発明の実施形態2に係る断熱箱体の角部の断面図である。
【図5】 従来の冷蔵庫の断熱箱体の角部を示す断面図である。
【図6】 各種断熱材の断熱性能を示す比較図である。
【図7】 真空断熱パネルの断面図である。
【図8】 真空包装機による真空断熱パネルの製造方法の概要を示す図である。
【図9】 従来の冷蔵庫の製造方法を示す工程図である。
【図10】 従来の冷蔵庫の断熱箱体における真空断熱パネルの配設状態と熱の流れを示す図である。
【符号の説明】
11 断熱箱体、12 外箱、13 真空断熱パネル、14 固定用の発泡ウレタン、15 内箱、16 発泡ポリスチレン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a heat insulating box used for a refrigerator, a cold car, and the like, for example.
[0002]
[Prior art]
Conventionally, a heat insulating box such as a refrigerator or a cold car has an outer box formed of a thin metal plate such as an iron plate, an inner box fitted to the outer box and molded of resin, and the like between the inner box and the outer box. It is comprised with the heat insulation foaming urethane with which the space part was filled. 1,1-dichloro-1-fluoroethane, a hydrochlorofluorocarbon with excellent heat insulation properties, has been used as the foaming agent for this urethane foam. Substitution is progressing to hydrofluorocarbons and hydrocarbons not included in.
[0003]
The application of these foaming agents is disclosed in, for example, JP-A-2-235882, JP-A-3-152160, etc., and in the former prior art, 1,1,2,2,3-pentafluoropropane and It was described that hydrofluorocarbons such as 1,1,1,4,4,4-hexafluorobutane and the latter prior art applied flammable substances such as cyclopentane as blowing agents. The thermal insulation was 17-20 mw / mK.
[0004]
In refrigerators, etc. that require reduction of power consumption, in addition to being able to use resources effectively by recycling, etc., without using substances that cause ozone layer destruction, there is a limit to improving the heat insulation performance of urethane foam, a heat insulating material. Therefore, as shown in the comparison diagram of FIG. 6, a technique using a vacuum heat insulation panel having a heat insulation performance more than twice that of urethane foam has been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 58-106374, an adhesive is applied to the inner surface of the outer box and a vacuum heat insulating panel is attached, and the inner box is fitted to the outer box, and the remaining box is formed. The heat insulation box which filled foaming urethane in the space part is mentioned.
[0005]
As shown in FIG. 7, the vacuum heat insulation panel including the above-described prior art is the one in which the core material 2 including the getter agent 3 that adsorbs the gas generated outside and inside is housed in the packaging material 4 and is evacuated. is there. The core material 2 of the vacuum heat insulating panel 1 is, for example, a material obtained by pulverizing urethane foam into a synthetic resin bag and vacuum-packed in a board shape as disclosed in Japanese Patent Application Laid-Open No. 60-243471 Further, open-cell foamed urethane as disclosed in JP-A-60-205164, or long glass fibers as fibrillated into inorganic fine powder as described in JP-A-7-96580. Boards made by solidifying resin fibers are used.
[0006]
The packaging material 4 is formed by folding one sheet at the center and stacking it to seal the left and right sides into a bag shape, or stacking two sheets and sealing the three sides to form a bag shape. Each sheet is formed by laminating a plurality of sheets. For example, a thermoplastic resin that can be thermally welded is used for the inner layer when it is made into a bag shape, and a resin such as nylon or polyester that is resistant to scratches is used for the outer layer. The intermediate layer is made of a metal foil such as aluminum that completely blocks the entry of outside air.
[0007]
Here, the outline | summary of the manufacturing method of a vacuum heat insulation panel is demonstrated based on FIG. FIG. 8 is an explanatory view showing an outline of a method for manufacturing a vacuum heat insulation panel by a vacuum packaging machine.
First, a plate-shaped foamed resin core material 2 having open air bubbles is put into a bag-shaped packaging material 4 (S1). Next, the packaging material 4 containing the core material 2 is fixed to the vacuum packaging machine 11 to seal the chamber, and the vacuum inside the vacuum packaging machine 11 is set to 1 torr or less, preferably 10 -2 torr or less. A vacuum is drawn with a valve (not shown) (S2). Thereafter, the fusion heater 13 is closed by the sealing pressure device 12, and the end 5 of the packaging material 4 is heated to melt and seal the inner thermoplastic resin (S3). After sealing, the vacuum adjustment valve is opened to release the vacuum state, and the vacuum heat insulation panel 1 is taken out.
[0008]
Next, the manufacturing method of the refrigerator using this vacuum heat insulation panel is demonstrated based on FIG. FIG. 9 is a process diagram showing a conventional refrigerator manufacturing method.
First, an adhesive is apply | coated to the inner surface of the outer box containing a back surface, and a vacuum heat insulation panel is affixed (S11). Next, an inner box separately molded by a vacuum molding method or the like is fitted into the outer box (S12), and members related to the outer shell are mounted to assemble a refrigerator box (S13). And this box is fixed to a jig in the state where the back side turned up. This is to prevent the box from being deformed by the pressure received when the heat insulating layer is formed with urethane foam.
[0009]
After that, a mixed liquid of urethane foam obtained by mixing two kinds of raw materials with a high-pressure foaming machine or the like is injected into each side surface portion of the box from an injection port provided on the back surface of the outer box to form a heat insulating layer. (S14). This mixed solution begins to foam after a few seconds and spreads radially starting from each side portion directly under the injection, filling the top, bottom and back portions of the box to fill the entire space except for the vacuum insulation panel 1 Fill. Filling with the mixed liquid flows to every corner in the form of bubbles that expand with vaporization of the raw material by reaction heat and foaming with gas generated as a by-product. And resin hardens | cures 4 to 8 minutes after injection | pouring of a liquid mixture, and a heat insulation layer is formed.
[0010]
After the heat insulation layer is formed, the box body is taken out from the jig as a heat insulation box body, and product assembly is performed in which the interior parts and the refrigerant circuit parts are mounted on the heat insulation box body (S15). When the assembly is completed, product inspection is performed (S16), and only those that pass this inspection are completed as a refrigerator (S17).
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional heat insulation box, the vacuum heat insulation panel 1 is fixed to the inner surface of the outer box of the heat insulation box, so that the heat from the outside air in the high temperature region, as shown in FIG. Without passing through the core material 2 of the packaging material 1, the aluminum foil of the intermediate layer of the packaging material 4 is transmitted as a heat transfer path to the outer peripheral edge of the packaging material 4, particularly from the end side to the inner box. It was transmitted to the internal low temperature region side, causing a decrease in heat insulation performance.
[0012]
This invention was made in order to solve this subject, and it aims at obtaining the heat insulation box which suppresses the fall of the heat insulation performance produced by the edge of the packaging material of a vacuum heat insulation panel.
[0013]
[Means for Solving the Problems]
The heat insulation box according to the present invention is fitted to cover the vacuum heat insulation panel on the inner side of the outer box , a box-shaped outer box opened frontward, a plurality of vacuum heat insulation panels attached to the inner surface of the outer box. An inner box, and a foamed resin filled in a gap between the outer box and the inner box, and at the corner of the outer box, an end formed on the outer peripheral portion of the packaging material of the vacuum heat insulation panel is disposed, Place the heat insulating material of the molded product between the inner surface and the edge of the corner of the outer box, the heat insulating material is placed before filling with foamed resin, and foamed in the gap between the outer box and the inner box When the resin is filled, the edges prevent contact with the inner surface of the outer box.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the structure of each member of the heat insulation box according to the embodiment of the present invention and the structure of the heat insulation box will be described.
[Vacuum insulation panel core]
The core material is described in, for example, International Patent WO96 / 07942 (Japanese Patent Application No. Hei 8-503720, Japanese Patent Application No. Hei 6-509062) and International Patent WO 96/16876 (Japanese Patent Application No. Hei 8-505895, Japanese Patent Application No. Hei 6-517001). As shown in the figure, polystyrene having an average molecular weight of 2 * 10 5 is mixed with carbon dioxide as a main foaming agent and, for example, HFC-134a (1,1,1,2-tetrafluoroetane) or HFC-152a (1,1-difluoroetane). The content of open cells obtained by extrusion mixing, foaming, and rapid quenching of foam is close to 100%, and it is made of expanded polystyrene having a small cell diameter.
[0016]
When this extruded polystyrene foam is used as the core material, the inside of the expanded polystyrene is sufficiently maintained at a temperature below the melting point and above the heat deformation temperature, so that compressive stress is applied to flatten the bubbles. At this time, in order to remove the stress generated in the resin due to the flattening of the bubbles, after annealing while maintaining the heat distortion temperature while maintaining this compressed state, the molded product is below the heat deformation temperature Preferably, it is cooled below the glass transition temperature and processed into a size of, for example, a thickness of 20 mm and a surface of 200 × 200 mm.
[0017]
In addition to foamed polystyrene, foamed urethane may be used as the core material. This foamed urethane impellers two liquids, for example, a premix liquid in which an auxiliary agent such as a catalyst, a foam stabilizer, a foam breaker, and a foaming agent is mixed mainly with a polyol liquid, and an isocyanate liquid mainly composed of isocyanate. 100 mm deep aluminum gold kept at 30 ° C. to 60 ° C., preferably 40 ° C. to 50 ° C. in time for foaming started after a few seconds. It was obtained by putting it in a mold and leaving it in this state for 5 minutes or more to completely cure. When this plate-like urethane foam is used as a core material, there are many independent bubbles in the surface layer. Therefore, in order to eliminate this, the surface layer is removed by 5 mm or more, preferably 10 mm or more, and then processed into the same size as described above.
[0018]
[Packaging materials]
The packaging material is formed into a bag shape, for example, by stacking two multilayer sheets and applying pressure while heating the three sides to form a linear shape. This multi-layer sheet is made of, for example, a film having excellent scratch resistance, such as nylon, attached to one surface of a film such as polyethylene terephthalate with an adhesive, and the other surface of the polyethylene terephthalate film is made of an aluminum foil multi-layer sheet. Further, a high-density polyethylene film of a thermoplastic resin that can be heat-sealed is bonded onto the aluminum foil.
[0019]
[Vacuum insulation panel]
The vacuum heat insulation panel is composed of the core material and the packaging material described above, and the inside of the packaging material in which the core material is accommodated is evacuated, and the degree of vacuum inside thereof is, for example, 10 −2 torr. As in the conventional example, this vacuum heat insulation panel fixes the packaging material containing the core material to the vacuum packaging machine, seals the chamber, and evacuates with a vacuum adjustment valve until the degree of vacuum is obtained. It is obtained by closing the fusion heater with a sealing pressure device and sealing the edge of the opening of the packaging material by heating. The core material and the packaging material are dried at a temperature of 100 ° C. or higher before being fixed to the vacuum packaging machine.
[0020]
[Foamed urethane for fixing]
The urethane foam for fixing is for fixing the vacuum heat insulation panel disposed on the inner surface of the outer box. For example, R liquid obtained by uniformly mixing polyol, foam stabilizer, catalyst, water, and foaming agent. In addition, cyclopentane is used as the foaming agent, which hardly affects the destruction of the ozone layer and the global warming. The mixture of these two raw materials is easy to fill a narrow space between the outer box and the inner box, and after filling, the resinification reaction proceeds rapidly and is easy to cure, and has an independent heat insulation performance. The foamed urethane has air bubbles.
[0021]
[Insulated box]
The heat insulation box is formed by vacuum-molding an outer box formed by molding a steel plate, the vacuum heat insulation panel fixed on the steel plate of the outer box via a double-sided tape, and an ABS resin sheet. The inner box is fitted in the outer box so as to cover the foamed urethane filled in the space formed between the outer box and the inner box. When filling the space with the mixed liquid (R liquid, P liquid), a foaming jig kept at 50 ° C. is kept so that the outer box and the inner box are not deformed by the pressure generated by foaming and filling. Insert and fix. The amount of the mixed solution injected is, for example, about 15% larger than the amount required for filling. This is effective in dramatically improving and homogenizing various physical properties of urethane foam.
[0022]
Embodiment 1. FIG.
Next, arrangement | positioning of the vacuum heat insulation panel of the heat insulation box mentioned above is demonstrated. 1 is a cross-sectional view of a corner portion of a heat insulation box according to Embodiment 1 of the present invention, FIG. 2 is a developed view of an outer box showing the arrangement of the vacuum heat insulation panel in Embodiment 1, and FIG. 3 is an end of each vacuum heat insulation panel. It is an expanded view of the outer box which shows the adjacent part of a side.
[0023]
As shown in FIG. 2, the vacuum heat insulation panel 13 in the first embodiment is disposed on the back surface portion 12a, the side surface portions 12b and 12c, and the top surface portion 12d of the outer box 12, respectively, and the back surface portion 12a is attached to the upper side thereof. In each side surface part 12b, 12c, it attaches so that it may each adjoin to the right-and-left edge of the vacuum heat insulation panel 13 of the back surface part 12a, and in upper surface part 12d, it adjoins the upper end edge of the vacuum heat insulation panel 13 of the back surface part 12a. It is attached, and there are five adjacent portions of each vacuum heat insulating panel 13 (see FIG. 3).
[0024]
As shown in FIG. 1, the edge 13a of each adjacent vacuum heat insulation panel 13 has each corner of the heat insulation box 11, that is, the corner and back surface 12a connecting the back surface 12a and the top surface 12d of the outer box 12. A distance of 5 mm or more corresponding to half the thickness of the vacuum heat insulation panel 13 from the inner surface of the outer box 12 so as not to contact each other at the corners connecting the side surfaces 12b and 12c, preferably a distance within 10 mm Are arranged on a line separated from each other.
[0025]
In the heat insulating box 11 in which the vacuum heat insulating panel 13 is arranged in this way, the heat radiated from the end side 13a located at each corner is increased in the thickness of the fixing urethane foam 14, It is dissipated and absorbed without reaching the low temperature region in the heat insulating box 11.
[0026]
As described above, according to the first embodiment, each vacuum heat insulation panel 13 is arranged such that two end sides 13a among the end sides 13a of the outer periphery are positioned at the respective corners of the heat insulation box 11, Since the distance between the end side 13a side and the inner box 15 of the heat insulation box 11 is increased, heat intrusion from the end side 13a side of the vacuum heat insulation panel 13 located at the corner is suppressed, and heat insulation There exists an effect that the heat insulation performance of the box 11 can be improved.
[0027]
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view of a corner portion of a heat insulation box according to Embodiment 2 of the present invention. In the second embodiment, the vacuum heat insulating panel 13 is arranged in the outer box 12 (see FIG. 2), similarly to the first embodiment, and each corner portion connecting the back surface portion 12a and the side surface portions 12b and 12c of the outer box 12. That is, it is the heat insulation box 11 in which, for example, a molded product of expanded polystyrene 16 is provided between the end 13a side of the vacuum heat insulation panel 13 located at the corner and the corner of the outer box 12.
[0028]
The molded product of the expanded polystyrene 16 is formed on the outer box 12 in a state where both ends of the back surface portion 12a of the outer box 12 are bent in an L shape and separated from the side surface portions 12b and 12c. The foamed urethane 14 is prevented from leaking from the portion when the foamed urethane 14 is filled, and the foamed urethane 14 is bent so that the end 13a side of the corner portion is bent so as not to contact the outer box 12.
[0029]
Thus, in the heat insulation box 11 from which each corner | angular part which connects the back surface part 12a of the outer box 12 and each side part 12b, 12c was cut | disconnected, the edge 13a side located in the corner | angular part is bent, and it becomes the outer box 12 Since the contact does not occur, heat is not transmitted from the contacted end side 13a side to the other end side 13a and the heat insulating performance of the heat insulating box 11 is not deteriorated. Since the distance between the side 13a and the inner box 15 of the heat insulation box 11 can be increased, heat intrusion from the side 13a side of the vacuum heat insulation panel 13 located at the corner of the heat insulation box 11 is suppressed, and the heat insulation box There is an effect that the heat insulation performance of the body 11 can be improved.
[0030]
In the second embodiment, a molded product of each corner portion foamed polystyrene 16 that connects the back surface portion 12a of the outer box 12 and the side surface portions 12b and 12c is provided, and the end 13a side of the corner portion is the outer box 12 side. The molded product of expanded polystyrene 16 is respectively connected to the corners connecting the back surface portion 12a and the upper surface portion 12d of the outer box 12, and the corner portions connecting the side surface portions 12b and 12c to the upper surface portion 12d. It may be provided so that the end 13 a side of the corner does not contact the outer box 12.
[0031]
Moreover, you may provide the molded article of the expanded polystyrene 16 in each corner | angular part formed when the outer box 12 is shape | molded. This is to close the gap between the scratches that may be formed at each corner, and prevents the fixing urethane foam 14 from leaking.
[0032]
Furthermore, although the expanded polystyrene 16 was used for the molded product provided between the edge 13a of the vacuum heat insulation panel 13 and the corner | angular part of the outer box 12, it is not limited to this, Even if it is an inorganic or organic porous body Good.
[0033]
【Example】
Here, the amount of heat leakage when the heat insulating box 11 of the first embodiment configured as described above is used for a refrigerator will be described.
[Comparative sample]
In the heat insulating box for comparison, each member is the same as the heat insulating box 11 of the first embodiment, and is substantially at the center of each surface of the back surface portion 12a, each side surface portion 12b, 12c and the top surface portion 12d of the outer box 12. Each of the vacuum insulation panels 13 (see FIG. 5) was used as a conventional refrigerator.
[0034]
[Method of evaluation]
The refrigerator of the Example and the refrigerator of the conventional example which maintained the temperature in the store | chamber at +30 degreeC were installed in the room | chamber interior of constant temperature 0 degreeC, and the amount of each heat leak was measured.
[0035]
[result]
As shown in Table 1 below, the measurement results of the heat leakage amount are 11.7 Kcal / h in the example and 13.1 Kcal / h in the conventional example, and the refrigerator using the heat insulating box 11 of the first embodiment is more thermally insulated. The effect of excellent performance was obtained.
[0036]
[Table 1]
Figure 0003874046
[0037]
In addition, in the said Example, although the heat insulation box 11 of Embodiment 1 was demonstrated using the refrigerator, you may use the heat insulation box 11 shown in Embodiment 2 for a refrigerator. Further, as described above, the heat insulating box 11 has been described as applied to a refrigerator. However, the present invention is not limited to this. For example, an in-vehicle small refrigerator, a prefabricated simple refrigerator or a cold car, a pipe or a building It can be applied as a heat insulation component of a product for heat insulation and cold insulation, such as a heat insulation material, and various modifications can be made without departing from the scope of the invention.
[0038]
【The invention's effect】
As described above, according to the present invention, the edge formed on the outer peripheral portion of the packaging material of the vacuum heat insulation panel is arranged at the corner of the outer box, and between the inner surface and the edge of the corner of the outer box. Since the heat insulating material of the molded product is arranged, the edge of the vacuum heat insulation panel located at the corner when filling with the foamed resin is not bent and touches the inner surface of the outer box. Heat is no longer transmitted to the edges of the heat sink and the heat insulation performance of the heat insulation box is not reduced. In addition, since the distance between the edge and the inner box can be increased at the corner of the outer box, heat penetration from the edge of the vacuum insulation panel located at the corner of the heat insulation box is suppressed, and the heat insulation box There is an effect that the heat insulation performance of the body can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a corner portion of a heat insulation box according to Embodiment 1 of the present invention.
FIG. 2 is a development view of the outer box showing the arrangement of the vacuum heat insulation panel in the first embodiment.
FIG. 3 is a development view of an outer box showing adjacent portions of the end sides of each vacuum heat insulating panel.
FIG. 4 is a cross-sectional view of a corner portion of a heat insulation box according to Embodiment 2 of the present invention.
FIG. 5 is a cross-sectional view showing a corner portion of a heat insulation box of a conventional refrigerator.
FIG. 6 is a comparative view showing the heat insulating performance of various heat insulating materials.
FIG. 7 is a cross-sectional view of a vacuum heat insulation panel.
FIG. 8 is a diagram showing an outline of a method for manufacturing a vacuum heat insulation panel by a vacuum packaging machine.
FIG. 9 is a process diagram showing a conventional refrigerator manufacturing method.
FIG. 10 is a diagram showing a state of arrangement of a vacuum heat insulation panel and a heat flow in a heat insulation box of a conventional refrigerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Heat insulation box, 12 outer box, 13 vacuum heat insulation panel, 14 foaming urethane for fixing, 15 inner box, 16 expanded polystyrene.

Claims (1)

前方開放の箱状の外箱と、
該外箱の内面に取り付けられた複数の真空断熱パネルと、
前記外箱の内側に前記真空断熱パネルを覆うように嵌合された内箱と、
前記外箱と前記内箱との間の間隙に充填された発泡樹脂とを備え、
前記外箱の角部に、前記真空断熱パネルの包装材の外周部に形成された端辺を配置し、
前記外箱の角部の内面と前記端辺との間に成型品の断熱材を配置し、
該断熱材は、前記発泡樹脂が充填される前に配置され、前記外箱と前記内箱との間の間隙に前記発泡樹脂が充填されたとき、前記端辺が前記外箱の内面への接触を防止することを特徴とする断熱箱体。
A box-shaped outer box that opens forward;
A plurality of vacuum insulation panels attached to the inner surface of the outer box ;
An inner box fitted to cover the vacuum insulation panel inside the outer box;
A foamed resin filled in a gap between the outer box and the inner box ;
At the corner of the outer box, place the edge formed on the outer periphery of the packaging material of the vacuum insulation panel,
Between the inner surface of the corner portion of the outer box and the end side, arrange the heat insulating material of the molded product,
The heat insulating material is disposed before the foamed resin is filled, and when the foamed resin is filled in the gap between the outer box and the inner box, the end side faces the inner surface of the outer box. A heat insulating box characterized by preventing contact .
JP06817399A 1999-03-15 1999-03-15 Heat insulation box Expired - Lifetime JP3874046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06817399A JP3874046B2 (en) 1999-03-15 1999-03-15 Heat insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06817399A JP3874046B2 (en) 1999-03-15 1999-03-15 Heat insulation box

Publications (2)

Publication Number Publication Date
JP2000266459A JP2000266459A (en) 2000-09-29
JP3874046B2 true JP3874046B2 (en) 2007-01-31

Family

ID=13366130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06817399A Expired - Lifetime JP3874046B2 (en) 1999-03-15 1999-03-15 Heat insulation box

Country Status (1)

Country Link
JP (1) JP3874046B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224761A (en) * 2012-04-20 2013-10-31 Panasonic Corp Refrigerator
CN204675121U (en) * 2014-02-26 2015-09-30 常州山由帝奥绝缘材料制造有限公司 A kind of thermal insulative board
JP6325514B2 (en) * 2015-12-25 2018-05-16 東芝ライフスタイル株式会社 refrigerator
JP6215407B2 (en) * 2016-07-26 2017-10-18 東芝ライフスタイル株式会社 Insulation cabinet
JP6495402B2 (en) * 2017-09-11 2019-04-03 東芝ライフスタイル株式会社 Insulation cabinet
KR20220059328A (en) * 2020-11-02 2022-05-10 엘지전자 주식회사 Vacuum adiabatic body

Also Published As

Publication number Publication date
JP2000266459A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
TW554159B (en) Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body
US6164030A (en) Fixed vacuum insulation panel
EP1344008B1 (en) An insulated unit
JP3968612B2 (en) FULL VACUUM INSULATION BOX, REFRIGERATOR USING THE VACUUM VACUUM INSULATION BOX, METHOD FOR PRODUCING THE FULL VACUUM INSULATION BOX, AND METHOD OF DECOMPOSING
JP3792801B2 (en) Vacuum insulation
JP2000320958A (en) Vacuum heat insulating body and heat insulating structural body
TW568929B (en) Open-celled rigid polyurethane foam and method for producing the same
JPH10300331A (en) Vacuum heat insulating panel, its manufacture and refrigerator using the same
KR100617666B1 (en) Refrigerator
JPH11159693A (en) Vacuum heat insulating panel and manufacture therefor and heat insulating box body using it
WO2003089859A1 (en) Refrigerator
JP2006194559A (en) Heat insulating box body using vacuum heat insulating material
JP2009243742A (en) Refrigerator
JP3874046B2 (en) Heat insulation box
JP3852537B2 (en) Heat insulation box
JPH09286089A (en) Resin sheet, vacuum heat insulating panel and production thereof
JP4085209B2 (en) Vacuum insulation panel and insulation box
JPH11130161A (en) Heat insulating wall structure
JP3938439B2 (en) Refrigerator and method of manufacturing connection plate used therefor
JP2000018485A (en) Evacuated insulation panel
JP3136713B2 (en) Refrigerator manufacturing method
JP4273466B2 (en) Vacuum insulation panel, method for manufacturing the same, and refrigerator using this vacuum insulation panel
JP7063974B2 (en) refrigerator
JPH08291965A (en) Vacuum thermal insulating material
JPH11304083A (en) Vacuum insulating panel and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term