JP3871655B2 - Double-sided single layer submerged arc welding wire for high strength steel - Google Patents
Double-sided single layer submerged arc welding wire for high strength steel Download PDFInfo
- Publication number
- JP3871655B2 JP3871655B2 JP2003133905A JP2003133905A JP3871655B2 JP 3871655 B2 JP3871655 B2 JP 3871655B2 JP 2003133905 A JP2003133905 A JP 2003133905A JP 2003133905 A JP2003133905 A JP 2003133905A JP 3871655 B2 JP3871655 B2 JP 3871655B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- wire
- less
- welding
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高張力鋼用のサブマージアーク溶接用ワイヤに関し、特に、780N/mm2以上の張力を有する高張力鋼の溶接に適した高張力鋼用のサブマージアーク溶接用ワイヤに関する。
【0002】
【従来の技術】
高張力鋼は、圧力容器及び水圧鉄管等に広く使用されているが、近時これらの溶接構造物の大型化に伴って、板厚を薄くすることによる使用鋼材量の低減を可能にするため、更に一層の高強度化が進められている。更に、天然ガス又は石油を輸送するパイプラインに使用される鋼管は操業圧力を増加させ、輸送効率の向上を図るために高強度化が進められている。このような母材の改良に伴い、溶接金属の高強度化も必要である。
【0003】
従来の高張力鋼用サブマージアーク溶接用ワイヤについては、例えば、特開平9−308987号公報及び特開平10−113791号公報に、低温靭性に優れた溶接用ワイヤが提案されている。しかし、この公知の溶接ワイヤは、溶接金属部の高強度化を図ったものではない。
【0004】
また、特開昭61−147990号公報には、ワイヤの構成元素及び含有率を厳密に規定することによって、強度、低温靭性及び耐割れ性が優れた溶接金属部を得ることができると記載されている。
【0005】
【特許文献1】
特開平9−308987号公報
【特許文献2】
特開平10−113791号公報
【特許文献3】
特開昭61−147990号公報
【0006】
【発明が解決しようとする課題】
しかし、この従来の溶接ワイヤを使用して鋼管のシーム溶接のような両面一層高速溶接をしようとすると、ワイヤ組成により意図された溶接金属部の組成を母材成分が変えてしまう母材希釈が大きく、強度不足が問題となった。
【0007】
これは、母材成分系の考え方として、従前は高強度化を達成するために、炭素当量の高い成分系が使用されていたが、溶接性及び溶接熱影響部の靭性が劣るという問題点があった。そこで、近時、炭素当量の低減を図り、Mo、Nb及びVの添加による加速冷却法の適用により、良好な溶接性と溶接熱影響部の靭性を確保しつつ、高強度化を図っている。
【0008】
しかしながら、上述のとおり、溶接金属部は母材希釈の影響が大きく、母材の更に一層の高強度化と低炭素当量化に伴い、溶接金属部の組成が母材成分に希釈されてワイヤ組成により決まる所望の組成から外れてしまい、従来の溶接材料では強度と靭性の確保が困難であった。
【0009】
本発明はかかる問題点に鑑みてなされたものであって、低炭素当量の高張力鋼又は鋼管のシーム溶接で実施されているような母材希釈が大きい両面一層高速溶接の場合でも、優れた強度及び低温靭性を具備することができ、従来ワイヤでは困難であった780N/mm2以上の引張強さを有する高張力鋼を溶接対象として、優れた強度及び低温靭性を有する溶接金属部を得ることができ、両面一層の高速溶接性が優れた高張力鋼用のサブマージアーク溶接用ワイヤを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る高張力鋼用の両面一層サブマージアーク溶接用ワイヤは、C:0.10乃至0.20質量%、Mn:1.89乃至2.70質量%、Ni:2.00乃至4.00質量%、Cr:0.30乃至1.20質量%、Mo:0.60乃至2.00質量%を含有し、残部はFe及び不可避不純物であり、前記不可避的不純物のうち、P、S、Si、Ti、V、Cu、B及びNを、P:0.015質量%以下、S:0.015質量%以下、Si:0.25質量%以下、Ti:0.20質量%以下、V:0.20質量%以下、Cu:0.70質量%以下、B:0.020質量%以下、N:0.0080質量%以下に規制したことを特徴とする。
【0011】
なお、この溶接用ワイヤの引張強度は、1200N/mm2以下であることが好ましい。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。高張力鋼用のサブマージアーク溶接用ワイヤにおいて、強度を確保するためには、C、Mn、Ni、Cr及びMoを添加することが有効である。しかし、両面一層溶接における1st側(最初に溶接を実行する面側)の溶接金属が、2nd側(次に、溶接を実行する面側)の溶接の際に、熱影響を受ける場合でも、優れた靭性を得るためには、C、Mn及びMoの添加量は適度でなければならない。C、Mn及びMoを過度に添加してしまうと、前記熱影響により溶接金属部の靭性を劣化させてしまう。Niも過度に添加すると高温割れが発生しやすくなるため、適量に制限しなければならない。従って、従来の溶接ワイヤでは、強度の確保に限界があった。
【0013】
そこで、本発明者等が種々実験研究を繰り返した結果、Crは、強度を高める効果がある上、1st側(最初に溶接を実行する面側)の溶接金属部が熱影響を受けても、衝撃性能を著しく劣化させない作用があることを見出した。このため、Crを適量添加することにより、両面一層溶接において、優れた強度及び低温靭性を得ることができる。
【0014】
次に、本発明における成分添加理由及び組成限定理由について説明する。
【0015】
C:0.07乃至0.20質量%
Cは要求される強度を得るためには必要な成分であり、その影響度も大きい。ワイヤ中のC量が0.07質量%未満であると強度不足となる。一方、多すぎると強度が高くなり過ぎ、靭性が劣化するため、0.20質量%以下とする。
【0016】
Mn:1.70乃至2.70質量%
Mnは溶融金属中の酸素と結合してこれを除去する作用を有し、優れた靭性を得るため、さらには強度を確保するためにも必要な成分である。ワイヤ中のMn量が1.70質量%未満であると、靭性は劣化する上、強度不足となる。一方、ワイヤ中のMn量が2.70質量%を超えると、過度な焼き入れ組織となり、靭性が劣化する。
【0017】
Ni:2.00乃至4.00質量%
Niは低温靭性の安定化に有効であることは良く知られているが、強度確保にも有効な成分である。ワイヤ中のNi量が2.00質量%未満であると、強度不足となる。一方、NiはNiSという低融点の共晶を作り、高温割れを生じやすい成分でもある。従って、高温割れを防止するため、ワイヤ中のNi量は4.00質量%以下とする。
【0018】
Cr:0.30乃至1.20質量%
Crは強度確保に必要な成分である。また、両面一層溶接のように、2nd側(次に、溶接を実行する面側)の溶接熱により、1st側(最初に溶接を実行する面側)の溶接金属が熱影響を受ける場合、熱影響部は析出硬化し、衝撃性能が劣化する虞がある。本発明者らが種々実験した結果、Crは1st側(最初に溶接を実行する面側)が熱影響を受けても、衝撃性能を著しく劣化させないことを見出した。従って、要求される強度を確保し、かつ衝撃性能の安定化を図るために、Crの添加が有効である。ワイヤ中のCr量が0.30質量%未満であると、上記作用効果が不足して、強度不足となる。一方、Cr量が1.20質量%を超えると、強度が高くなり過ぎ、靭性が劣化する。
【0019】
Mo:0.60乃至2.00%
Moは強度を確保し、さらには焼き入れ性を向上させ、靭性を高める効果がある。ワイヤ中のMo量が0.6質量%未満であると、それらの効果が得られない。一方、ワイヤ中のMo量が2.0質量%を超えると、1st側(最初に溶接を実行する面側)の熱影響部に炭化物が著しく析出し、靭性が劣化する。
【0020】
本発明の溶接用ワイヤにおいて、残部はFe及び不可避的不純物である。この不可避的不純物の中で、P、S、Si、Ti,V、Cu、B及びNは以下の範囲に規制する必要がある。
【0021】
P:0.015質量%以下、S:0.015質量%以下
P及びSは、高温割れ、靭性及び曲げ性能等、溶接金属部の品質に悪影響を及ぼすので、0.015質量%以下に規制する必要がある。
【0022】
Si:0.25質量%以下
Siはワイヤ及び鋼板に含まれるSi量にもよるが、フラックスの主要成分であるSiO2が還元されて溶接金属部に歩留る場合が多い。ワイヤからSiを溶接金属部に添加すると、溶接金属中にSi量が歩留り過ぎ、靭性を劣化させる。従って、ワイヤ中のSi量は0.25質量%以下に抑制する必要がある。
【0023】
Cu:0.70質量%以下
Cuをワイヤに添加すると、溶接金属の強度は増加する。しかし、Cuは高温割れに悪影響を及ぼす成分であり、低く抑えるのが望ましい。ワイヤ中のCu量が0.70質量%を超えると、高温割れが発生しやすくなるため、0.70質量%以下とする。なお、本発明においては、ワイヤ素地に含有されているCu及びワイヤ表面のCuメッキ中のCuの総和で、Cu量を0.70質量%以下に抑える必要がある。
【0024】
Ti:0.20質量%以下
Tiを添加すると強度が増加する上、2nd側(次に、溶接を実行する面側)の熱影響により、1st側(最初に溶接を実行する面側)の熱影響部が硬化し、靭性を著しく劣化させる。従って、ワイヤ中のTi量は0.20質量%以下に規制する必要がある。
【0025】
B:0.020質量%以下
Bは少量の添加で強度を著しく上昇させるが、2nd側(次に、溶接を実行する面側)の熱影響により、1st側(最初に溶接を実行する面側)の熱影響部が硬化し、靭性を著しく劣化させる。従って、ワイヤ中のB量は0.020質量%以下に規制する必要がある。
【0026】
N:0.0080質量%以下
Nは溶接金属の靭性に悪影響を及ぼす成分であり、0.0080質量%以下に規制する必要がある。
【0027】
V:0.20質量%以下
溶接金属部の降伏比を高めることは、構造物の許容応力を高めることができるので、鋼構造物の板厚が薄くなり、重量の軽減を図ることができる。Vの少量添加は降伏比を向上させる効果を持つ。しかし、Tiよりも影響は小さいものの、Vは、2nd側(次に、溶接を実行する面側)の熱影響により1st側(最初に溶接を実行する面側)の熱影響部を硬化させ、靭性を劣化させる傾向がある。従って、高降伏比を望むのであれば、Vの若干の添加は有効であるものの、特に次パスの熱影響を受けるような溶接パスにおける溶接金属中のV量は低く抑えることが望ましい。ワイヤ中のV量が0.20質量%を超えると、靭性は劣化する。このため、Vは0.20質量%以下に規制する。
【0028】
ワイヤの引張強度は、1200N/mm2以下
高速溶接を行う場合、溶接速度が増加すればワイヤの送給速度も速くなる。そして、送給速度の増大に伴って送給性も厳しくなるため、ワイヤの特性としての送給性を確保することは重要である。本発明者等が種々検討した結果、ワイヤの引張強度が1200N/mm2を超えると、ワイヤの送給不良が発生しやすくなることを見出した。このため、ワイヤの引張強度は、1200N/mm2以下に抑えることが望ましい。
【0029】
なお、本発明の溶接ワイヤと組み合わせて使用されるフラックスは、溶融型及び焼成型のいずれでも良いが、溶接金属の低減を可能とし、高靭性を得ることができる高塩基性のフラックスが最適であり、具体的には、塩基度1.0以上のフラックスが最適である。
【0030】
【実施例】
以下、本発明の特許請求の範囲を満たす実施例の効果について、本発明の範囲から外れる比較例と比較して、具体的に説明する。
【0031】
供試鋼板の化学成分組成を下記表1に示す。また、下記表2は供試フラックスの化学成分組成を示し、表3は両面一層の溶接条件を示す。更に、下記表4及び表5はワイヤ組成を示し、表6及び表7は試験結果を示す。なお、表2において、塩基度は、塩基度=(CaF2+CaO+MgO+Na2O+K2O+MnO/2+FeO/2)/(SiO2+Al2O3/2+ZrO2/2+TiO2/2)として表される。この表2に示すフラックスは、溶融型フラックスである。
【0032】
下記表2に示すフラックスと表4に示す種々の組成(質量%)のワイヤを使用して、両面一層溶接を行った。図1は開先形状及び電極配置を示す。各電極の電極サイズ(直径mm)、溶接電流(A)及び溶接電圧(V)と、溶接速度(cpm:cm/分)は前述の如く表3に示した。溶接後に、図2に示す位置から試験片を採取し、引張試験及び衝撃試験を実施した。
【0033】
なお、強度レベルの判定基準としては、引張強さが母材と同等レベル以上の780N/mm2以上の場合に合格とした。衝撃値は、−20℃で評価し、3本の試験片の衝撃値の平均値が50J以上を合格とした。
【0034】
【表1】
【0035】
【表2】
【0036】
【表3】
【0037】
【表4】
【0038】
【表5】
【0039】
【表6】
【0040】
【表7】
【0041】
表4乃至表7において、実施例1、3乃至6、8乃至23は、本発明の請求項1を満たすので、溶接金属部から採取した試験片の引張強度は780N/mm2以上、衝撃値は50J以上であった。一方、比較例24は、ワイヤ中のC量が0.07質量%未満であるので、引張強度が不足した。比較例25は、ワイヤ中のC量が0.20質量%を超えているので、靭性が劣化した。比較例26は、ワイヤ中のSi量が0.25質量%を超えているので、靭性が劣化した。比較例27は、ワイヤ中のMn量が1.70質量%未満であるので、引張強度が不足する上、靭性が劣化した。比較例28は、ワイヤ中のMn量が2.70質量%を超えているので、靭性が劣化した。比較例29は、ワイヤ中のCu量が0.70質量%を超えているので、高温割れが発生した。比較例30は、ワイヤ中のNi量が2.00質量%未満であるので、引張強度が不足した。比較例31は、ワイヤ中のNi量が4.00質量%を超えているので、高温割れが発生した。比較例32は、ワイヤ中のCr量が0.30質量%未満であるので、引張強度が不足した。比較例33は、ワイヤ中のCr量が1.20質量%を超えているので、靭性が劣化した。比較例34は、ワイヤ中のMo量が0.60質量%未満であるので、引張強度が不足する上、靭性が劣化した。比較例35は、ワイヤ中のMo量が2.00質量%を超えているので、靭性が劣化した。比較例36は、ワイヤ中のTi量が0.20質量%を超えているので、靭性が劣化した。比較例37は、ワイヤ中のV量が0.20質量%を超えているので、靭性が劣化した。比較例38は、ワイヤ中のN量が0.0080質量%を超えているので、靭性が劣化した。比較例39は、ワイヤ中のB量が0.020質量%を超えているので、靭性が劣化した。
【0042】
次いで、本発明の実施例及び比較例の溶接ワイヤの送給性を試験した。図3は、ワイヤ送給性の試験装置である。リール1に巻回された溶接ワイヤ2を巻き解き、送給モータ3により溶接ワイヤ1を送り出し、この溶接ワイヤ1を送給パイプ4に通した。送給パイプ4は、送給モータ3側に300mmの直線部分と、その先の曲率半径450mmで湾曲する半円弧状部分とからなる。送給パイプ4の長さは1700mm、材質はステンレス鋼製であり、内径が6mm、外径が9mmである。また、ワイヤ送給速度は3.2m/分である。
【0043】
表4及び表6に示す実施例15の溶接ワイヤを焼鈍し、この焼鈍条件を種々変更することにより、種々の引張強度としたワイヤA乃至Eを作成し、各ワイヤA乃至Eの送給性を図3の試験装置により試験した。下記表8は各ワイヤA乃至Eの引張強度と、試験により得られた送給性とを示す。なお、焼鈍温度は、600乃至750℃であり、焼鈍時間は3乃至6時間であって、これらの焼鈍条件を組み合わせることにより、種々の引張強度を得た。
【0044】
【表8】
【0045】
ワイヤA乃至Dは引張強度が1200N/mm2以下であるので、送給性は良好であった。ワイヤDは引張強度が1200N/mm2を超えているため、送給性が不安定であった。よって、本願請求項2を満たすワイヤは、引張強度及び衝撃値が優れていると共に、ワイヤ送給性も良好であった。
【0046】
【発明の効果】
以上詳述したように、本発明に係るサブマージアーク溶接用ワイヤによれば、780N/mm2以上の張力を有する高張力鋼を溶接対象として、優れた強度及び低温靭性を有する溶接金属部を得ることができる。また、両面一層の高速溶接においても、優れた強度及び低温靭性を有する溶接金属部を得ることができる。
【図面の簡単な説明】
【図1】開先形状及び電極配置を示す模式図である。
【図2】試験片採取位置を示す模式図である。
【図3】送給性試験装置を示す模式図である。
【符号の説明】
1:リール
2:溶接ワイヤ
3:送給モータ
4:送給パイプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wire for submerged arc welding for high strength steel, and more particularly to a wire for submerged arc welding for high strength steel suitable for welding high strength steel having a tension of 780 N / mm 2 or more.
[0002]
[Prior art]
High-strength steel is widely used in pressure vessels and hydraulic iron pipes, etc. Recently, with the increase in size of these welded structures, it is possible to reduce the amount of steel used by reducing the plate thickness. Further enhancement of strength has been promoted. Further, steel pipes used in pipelines for transporting natural gas or oil have been increased in strength in order to increase operating pressure and improve transport efficiency. With the improvement of such a base material, it is necessary to increase the strength of the weld metal.
[0003]
As for conventional submerged arc welding wires for high-tensile steel, for example, Japanese Patent Laid-Open Nos. 9-308987 and 10-113791 propose welding wires excellent in low-temperature toughness. However, this known welding wire is not intended to increase the strength of the weld metal part.
[0004]
Japanese Patent Application Laid-Open No. 61-147990 describes that a weld metal part having excellent strength, low temperature toughness and crack resistance can be obtained by strictly defining the constituent elements and content of the wire. ing.
[0005]
[Patent Document 1]
JP-A-9-308987 [Patent Document 2]
JP 10-113791 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 61-147990
[Problems to be solved by the invention]
However, if this conventional welding wire is used to perform double-sided single-layer high-speed welding such as seam welding of steel pipes, the base material component will change the intended composition of the weld metal part due to the wire composition. Large, lack of strength became a problem.
[0007]
This is because, as a concept of the base material component system, a component system with a high carbon equivalent has been used in the past in order to achieve high strength, but there is a problem that the weldability and the toughness of the heat affected zone of the weld are inferior. there were. Therefore, recently, the carbon equivalent has been reduced, and by applying the accelerated cooling method by adding Mo, Nb and V, high strength is achieved while ensuring good weldability and toughness of the heat affected zone. .
[0008]
However, as described above, the weld metal part is greatly affected by the base metal dilution, and the composition of the weld metal part is diluted to the base metal component as the base metal is further strengthened and the carbon equivalent is reduced. Therefore, it is difficult to secure strength and toughness with conventional welding materials.
[0009]
The present invention has been made in view of such problems, and is excellent even in the case of double-sided and high-speed welding with a large base metal dilution, such as that performed in seam welding of low-carbon equivalent high-tensile steel or steel pipe. A weld metal part having excellent strength and low temperature toughness can be obtained by using a high strength steel having a tensile strength of 780 N / mm 2 or more that can be provided with strength and low temperature toughness, which was difficult with conventional wires. An object of the present invention is to provide a wire for submerged arc welding for high-strength steel that is excellent in high-speed weldability on both sides.
[0010]
[Means for Solving the Problems]
The double-sided single- layer submerged arc welding wire for high-strength steel according to the present invention has C: 0.10 to 0.20 mass%, Mn: 1.89 to 2.70 mass%, Ni: 2.00 to 4. 00% by mass, Cr: 0.30 to 1.20% by mass, Mo: 0.60 to 2.00% by mass, with the balance being Fe and inevitable impurities. Among the inevitable impurities, P, S , Si, Ti, V, Cu, B and N, P: 0.015 mass% or less, S: 0.015 mass% or less, Si: 0.25 mass% or less, Ti: 0.20 mass% or less, V: 0.20 mass% or less, Cu: 0.70 mass% or less, B: 0.020 mass% or less, N: 0.0080 mass% or less.
[0011]
In addition, it is preferable that the tensile strength of this welding wire is 1200 N / mm < 2 > or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. In order to ensure strength in the submerged arc welding wire for high-strength steel, it is effective to add C, Mn, Ni, Cr and Mo. However, even if the weld metal on the 1st side (surface side on which welding is performed first) in double-sided single-layer welding is affected by heat during welding on the 2nd side (the surface side on which welding is performed next), it is excellent. In order to obtain high toughness, the addition amount of C, Mn and Mo must be moderate. When C, Mn, and Mo are added excessively, the toughness of the weld metal part is deteriorated due to the thermal effect. If Ni is added excessively, hot cracking is likely to occur, so it must be limited to an appropriate amount. Therefore, the conventional welding wire has a limit in securing the strength.
[0013]
Therefore, as a result of repeating various experimental studies by the present inventors, Cr has an effect of increasing the strength, and even if the weld metal part on the 1st side (surface side on which welding is performed first) is affected by heat, It has been found that there is an action that does not significantly deteriorate the impact performance. For this reason, excellent strength and low temperature toughness can be obtained in double-sided single layer welding by adding an appropriate amount of Cr.
[0014]
Next, the reason for component addition and composition limitation in the present invention will be described.
[0015]
C: 0.07 to 0.20 mass%
C is a component necessary for obtaining the required strength and has a large influence. If the C content in the wire is less than 0.07% by mass, the strength is insufficient. On the other hand, if the amount is too large, the strength becomes too high and the toughness deteriorates.
[0016]
Mn: 1.70 to 2.70 mass%
Mn has a function of binding and removing oxygen in the molten metal, and is an essential component for obtaining excellent toughness and further ensuring strength. If the amount of Mn in the wire is less than 1.70% by mass, the toughness deteriorates and the strength becomes insufficient. On the other hand, when the amount of Mn in the wire exceeds 2.70% by mass, an excessively quenched structure is formed and the toughness is deteriorated.
[0017]
Ni: 2.00 to 4.00 mass%
Ni is well known to be effective in stabilizing low temperature toughness, but is an effective component for securing strength. If the amount of Ni in the wire is less than 2.00% by mass, the strength is insufficient. On the other hand, Ni is a component that forms a low melting point eutectic called NiS and easily causes high temperature cracking. Therefore, in order to prevent hot cracking, the amount of Ni in the wire is 4.00% by mass or less.
[0018]
Cr: 0.30 to 1.20 mass%
Cr is a component necessary for ensuring strength. Also, when the weld metal on the 1st side (the surface side on which welding is first performed) is affected by the heat of welding on the 2nd side (the surface side on which welding is performed next), such as double-sided single-layer welding, The affected part may precipitate and harden, and impact performance may deteriorate. As a result of various experiments by the present inventors, it has been found that Cr does not significantly deteriorate the impact performance even if the first side (the side on which the first welding is performed) is affected by heat. Therefore, the addition of Cr is effective for securing the required strength and stabilizing the impact performance. When the amount of Cr in the wire is less than 0.30% by mass, the above-described effects are insufficient and the strength is insufficient. On the other hand, if the Cr content exceeds 1.20% by mass, the strength becomes too high and the toughness deteriorates.
[0019]
Mo: 0.60 to 2.00%
Mo has the effects of securing strength, further improving hardenability and increasing toughness. If the amount of Mo in the wire is less than 0.6% by mass, those effects cannot be obtained. On the other hand, if the amount of Mo in the wire exceeds 2.0% by mass, carbides remarkably precipitate in the heat-affected zone on the 1st side (surface side on which welding is first performed), and the toughness deteriorates.
[0020]
In the welding wire of the present invention, the balance is Fe and inevitable impurities. Among these inevitable impurities, P, S, Si, Ti, V, Cu, B and N need to be regulated within the following ranges.
[0021]
P: 0.015% by mass or less, S: 0.015% by mass or less P and S adversely affect the quality of weld metal parts such as hot cracking, toughness and bending performance. There is a need to.
[0022]
Si: 0.25% by mass or less Si depends on the amount of Si contained in the wire and the steel plate, but in many cases, SiO 2 which is the main component of the flux is reduced and the weld metal part is retained. If Si is added from the wire to the weld metal part, the amount of Si in the weld metal is too high, and the toughness is deteriorated. Therefore, the amount of Si in the wire needs to be suppressed to 0.25% by mass or less.
[0023]
Cu: 0.70 mass% or less When Cu is added to the wire, the strength of the weld metal increases. However, Cu is a component that adversely affects hot cracking and is desirably kept low. If the Cu content in the wire exceeds 0.70% by mass, hot cracking is likely to occur, so the content is made 0.70% by mass or less. In addition, in this invention, it is necessary to restrain Cu amount to 0.70 mass% or less by the sum total of Cu contained in the wire substrate and Cu in Cu plating on the wire surface.
[0024]
Ti: 0.20% by mass or less When Ti is added, the strength increases, and the heat on the 1st side (the surface side on which welding is performed first) is caused by the thermal effect on the 2nd side (the surface side on which welding is performed next). The affected area is cured and the toughness is significantly degraded. Therefore, the amount of Ti in the wire needs to be regulated to 0.20% by mass or less.
[0025]
B: 0.020% by mass or less B increases the strength remarkably by adding a small amount, but due to the heat effect on the 2nd side (the side where the welding is performed next), the 1st side (the side where the welding is performed first) ) Is hardened and the toughness is significantly degraded. Therefore, the amount of B in the wire needs to be regulated to 0.020% by mass or less.
[0026]
N: 0.0080% by mass or less N is a component that adversely affects the toughness of the weld metal and must be regulated to 0.0080% by mass or less.
[0027]
V: 0.20 mass% or less Increasing the yield ratio of the weld metal part can increase the allowable stress of the structure, so that the plate thickness of the steel structure is reduced and the weight can be reduced. The addition of a small amount of V has the effect of improving the yield ratio. However, although the influence is smaller than that of Ti, V hardens the heat-affected zone on the 1st side (the surface side on which welding is performed first) due to the thermal effect on the 2nd side (the surface side on which welding is performed next), There is a tendency to deteriorate toughness. Therefore, if a high yield ratio is desired, although a slight addition of V is effective, it is desirable to keep the amount of V in the weld metal in the welding pass particularly affected by the thermal effect of the next pass low. When the V content in the wire exceeds 0.20 mass%, the toughness deteriorates. For this reason, V regulates to 0.20 mass% or less.
[0028]
The tensile strength of the wire is 1200 N / mm 2 or less. When performing high-speed welding, if the welding speed increases, the wire feeding speed also increases. Since the feeding performance becomes severe as the feeding speed increases, it is important to secure the feeding ability as the wire characteristic. As a result of various studies by the present inventors, it has been found that when the tensile strength of the wire exceeds 1200 N / mm 2 , defective feeding of the wire is likely to occur. For this reason, it is desirable to suppress the tensile strength of the wire to 1200 N / mm 2 or less.
[0029]
The flux used in combination with the welding wire of the present invention may be either a molten type or a fired type, but a highly basic flux that can reduce weld metal and obtain high toughness is optimal. Specifically, a flux having a basicity of 1.0 or more is optimal.
[0030]
【Example】
Hereinafter, the effects of the examples satisfying the claims of the present invention will be specifically described in comparison with comparative examples that are out of the scope of the present invention.
[0031]
The chemical composition of the test steel sheet is shown in Table 1 below. Table 2 below shows the chemical composition of the test flux, and Table 3 shows double-sided welding conditions. Further, Tables 4 and 5 below show wire compositions, and Tables 6 and 7 show test results. In Table 2, the basicity is represented basicity = as (CaF 2 + CaO + MgO + Na 2 O + K 2 O + MnO / 2 + FeO / 2) / (SiO 2 + Al 2 O 3/2 + ZrO 2/2 + TiO 2/2). The flux shown in Table 2 is a melt type flux.
[0032]
Double-sided single layer welding was performed using the flux shown in Table 2 below and wires having various compositions (mass%) shown in Table 4. FIG. 1 shows the groove shape and electrode arrangement. The electrode size (diameter mm), welding current (A), welding voltage (V), and welding speed (cpm: cm / min) of each electrode are shown in Table 3 as described above. After welding, a test piece was taken from the position shown in FIG. 2 and subjected to a tensile test and an impact test.
[0033]
In addition, as a judgment standard of a strength level, it was set as the pass when the tensile strength was 780 N / mm 2 or more equal to or higher than that of the base material. The impact value was evaluated at −20 ° C., and an average value of impact values of three test pieces was 50 J or more.
[0034]
[Table 1]
[0035]
[Table 2]
[0036]
[Table 3]
[0037]
[Table 4]
[0038]
[Table 5]
[0039]
[Table 6]
[0040]
[Table 7]
[0041]
In Tables 4 to 7, Examples 1, 3 to 6, and 8 to 23 satisfy Claim 1 of the present invention. Therefore, the tensile strength of the test piece taken from the weld metal part is 780 N / mm 2 or more, and the impact value. Was 50 J or more. On the other hand, in Comparative Example 24, the amount of C in the wire was less than 0.07% by mass, so that the tensile strength was insufficient. In Comparative Example 25, the C content in the wire exceeded 0.20% by mass, so the toughness deteriorated. In Comparative Example 26, the toughness deteriorated because the amount of Si in the wire exceeded 0.25% by mass. In Comparative Example 27, the amount of Mn in the wire was less than 1.70% by mass, so that the tensile strength was insufficient and the toughness was deteriorated. In Comparative Example 28, the toughness deteriorated because the amount of Mn in the wire exceeded 2.70 mass%. In Comparative Example 29, the amount of Cu in the wire exceeded 0.70% by mass, and thus hot cracking occurred. In Comparative Example 30, the tensile strength was insufficient because the amount of Ni in the wire was less than 2.00% by mass. In Comparative Example 31, since the amount of Ni in the wire exceeded 4.00% by mass, hot cracking occurred. In Comparative Example 32, the amount of Cr in the wire was less than 0.30% by mass, so the tensile strength was insufficient. In Comparative Example 33, the amount of Cr in the wire exceeded 1.20% by mass, so the toughness deteriorated. In Comparative Example 34, the amount of Mo in the wire was less than 0.60% by mass, so that the tensile strength was insufficient and the toughness was deteriorated. In Comparative Example 35, the toughness deteriorated because the amount of Mo in the wire exceeded 2.00% by mass. In Comparative Example 36, the toughness deteriorated because the Ti amount in the wire exceeded 0.20 mass%. In Comparative Example 37, the toughness deteriorated because the V amount in the wire exceeded 0.20 mass%. In Comparative Example 38, the toughness deteriorated because the N content in the wire exceeded 0.0080 mass%. In Comparative Example 39, the toughness deteriorated because the B content in the wire exceeded 0.020 mass%.
[0042]
Next, the feedability of the welding wires of the examples and comparative examples of the present invention was tested. FIG. 3 shows a wire feedability test apparatus. The welding wire 2 wound around the reel 1 was unwound, and the welding wire 1 was sent out by the feeding motor 3, and the welding wire 1 was passed through the
[0043]
The welding wires of Example 15 shown in Tables 4 and 6 were annealed, and various annealing conditions were changed to create wires A to E having various tensile strengths. Was tested with the test apparatus of FIG. Table 8 below shows the tensile strength of each of the wires A to E and the feedability obtained by the test. The annealing temperature was 600 to 750 ° C., the annealing time was 3 to 6 hours, and various tensile strengths were obtained by combining these annealing conditions.
[0044]
[Table 8]
[0045]
Since the wires A to D had a tensile strength of 1200 N / mm 2 or less, the feedability was good. Since the tensile strength of the wire D exceeded 1200 N / mm 2 , the feeding property was unstable. Therefore, the wire satisfying claim 2 of the present application was excellent in tensile strength and impact value, and also in good wire feedability.
[0046]
【The invention's effect】
As described above in detail, according to the wire for submerged arc welding according to the present invention, a weld metal part having excellent strength and low temperature toughness is obtained with a high strength steel having a tension of 780 N / mm 2 or more being welded. be able to. Moreover, the weld metal part which has the outstanding intensity | strength and low-temperature toughness can be obtained also in the high-speed welding of both surfaces one layer.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a groove shape and electrode arrangement.
FIG. 2 is a schematic diagram showing a specimen collection position.
FIG. 3 is a schematic diagram showing a feedability test apparatus.
[Explanation of symbols]
1: Reel 2: Welding wire 3: Feeding motor 4: Feeding pipe
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003133905A JP3871655B2 (en) | 2003-05-13 | 2003-05-13 | Double-sided single layer submerged arc welding wire for high strength steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003133905A JP3871655B2 (en) | 2003-05-13 | 2003-05-13 | Double-sided single layer submerged arc welding wire for high strength steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004337863A JP2004337863A (en) | 2004-12-02 |
JP3871655B2 true JP3871655B2 (en) | 2007-01-24 |
Family
ID=33524596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003133905A Expired - Lifetime JP3871655B2 (en) | 2003-05-13 | 2003-05-13 | Double-sided single layer submerged arc welding wire for high strength steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3871655B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103331529A (en) * | 2013-06-14 | 2013-10-02 | 武汉钢铁(集团)公司 | Mixed gas protection welding wire with tensile strength of no less than 1100 MPa and using method thereof |
CN108747084A (en) * | 2018-08-14 | 2018-11-06 | 四川西冶新材料股份有限公司 | A kind of welding wire for submerged-arc welding and preparation method thereof |
CN109454359A (en) * | 2018-09-17 | 2019-03-12 | 昆山中冶宝钢焊接材料有限公司 | A kind of tensile strength 1000MPa grades of welding wire for submerged-arc welding |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4562359B2 (en) * | 2003-07-04 | 2010-10-13 | Jfeスチール株式会社 | Submerged arc welding method |
KR100654156B1 (en) * | 2005-11-23 | 2006-12-06 | 고려용접봉 주식회사 | Solid wire for gas shielded arc welding having excellent welding property |
CN102009285A (en) * | 2010-11-18 | 2011-04-13 | 中国石油天然气集团公司 | Submerged arc welding wire used for X80 pipe fitting |
CN102000925B (en) * | 2010-12-17 | 2012-08-08 | 中国船舶重工集团公司第七二五研究所 | Low-alloy welding wire for high-titanium low-molybdenum high-strength and high-toughness twin-wire submerged arc welding |
RU2618036C2 (en) | 2013-01-11 | 2017-05-02 | Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) | Weld metal with increased resistance to hydrogen embrittlement and solid section wire for submerged arc welding |
CN103273213A (en) * | 2013-05-13 | 2013-09-04 | 天津大学 | High-strength high-toughness submerged arc welding wires |
JP6715622B2 (en) * | 2016-03-14 | 2020-07-01 | 株式会社神戸製鋼所 | Solid wire |
JP6928641B2 (en) * | 2016-03-14 | 2021-09-01 | 株式会社神戸製鋼所 | Solid wire |
CN112958945A (en) * | 2021-02-05 | 2021-06-15 | 天津市金桥焊材集团股份有限公司 | 800 MPa-grade high-toughness submerged-arc welding material with low nickel content |
WO2022230615A1 (en) | 2021-04-27 | 2022-11-03 | Jfeスチール株式会社 | Submerged arc welded joint |
EP4296397A4 (en) | 2021-04-27 | 2024-07-24 | Jfe Steel Corp | Submerged arc welded joint |
-
2003
- 2003-05-13 JP JP2003133905A patent/JP3871655B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103331529A (en) * | 2013-06-14 | 2013-10-02 | 武汉钢铁(集团)公司 | Mixed gas protection welding wire with tensile strength of no less than 1100 MPa and using method thereof |
CN103331529B (en) * | 2013-06-14 | 2016-01-20 | 武汉钢铁(集团)公司 | The gaseous mixture shield welding wire of a kind of tensile strength >=1100MPa and using method thereof |
CN108747084A (en) * | 2018-08-14 | 2018-11-06 | 四川西冶新材料股份有限公司 | A kind of welding wire for submerged-arc welding and preparation method thereof |
CN109454359A (en) * | 2018-09-17 | 2019-03-12 | 昆山中冶宝钢焊接材料有限公司 | A kind of tensile strength 1000MPa grades of welding wire for submerged-arc welding |
Also Published As
Publication number | Publication date |
---|---|
JP2004337863A (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4558780B2 (en) | Flux-cored wire for submerged arc welding of low-temperature steel | |
KR101535399B1 (en) | Flux-containing wire for welding ultrahigh-tensile steel | |
JP5387168B2 (en) | Welding wire for high strength steel with flux and manufacturing method thereof | |
JP3871655B2 (en) | Double-sided single layer submerged arc welding wire for high strength steel | |
WO2017154122A1 (en) | Flux-cored wire, weld joint manufacturing method and weld joint | |
KR20180108731A (en) | Flux cored wire, method of manufacturing weld joint, and weld joint | |
WO2012108517A1 (en) | Weld metal with excellent creep characteristics | |
JP5097499B2 (en) | Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel | |
JP2011020154A (en) | Flux-cored wire for gas shielded welding | |
JP6155810B2 (en) | High Ni flux cored wire for gas shielded arc welding | |
JP4427416B2 (en) | Large heat input submerged arc welding method with excellent weld metal toughness. | |
JP6235402B2 (en) | Weld metal with excellent strength, toughness and SR cracking resistance | |
JP5064928B2 (en) | Flux-cored wire for submerged arc welding for high-strength steel. | |
JP3894703B2 (en) | Gas shielded arc welding wire | |
JP4722811B2 (en) | Flux-cored wire for submerged arc welding for high-strength steel. | |
JP5340014B2 (en) | Submerged arc welding method for low temperature steel | |
JP7156585B1 (en) | submerged arc welded fittings | |
JP2007253163A (en) | Solid wire for gas shielded arc welding | |
WO2021153559A1 (en) | Welded steel pipe and method for manufacturing same | |
JP2024006295A (en) | welding wire | |
WO2022230615A1 (en) | Submerged arc welded joint | |
JP2018144060A (en) | Filler metal for tig welding | |
JP2011206828A (en) | Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding | |
JP2004091860A (en) | Weld metal for low-alloy heat-resisting steel | |
JP2008264812A (en) | Groove filler for submerged-arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3871655 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091027 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131027 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |