JP3862816B2 - Reverse osmosis membrane separation method - Google Patents
Reverse osmosis membrane separation method Download PDFInfo
- Publication number
- JP3862816B2 JP3862816B2 JP17888997A JP17888997A JP3862816B2 JP 3862816 B2 JP3862816 B2 JP 3862816B2 JP 17888997 A JP17888997 A JP 17888997A JP 17888997 A JP17888997 A JP 17888997A JP 3862816 B2 JP3862816 B2 JP 3862816B2
- Authority
- JP
- Japan
- Prior art keywords
- reverse osmosis
- osmosis membrane
- membrane module
- permeate
- stage reverse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は逆浸透膜分離方法に関し、特にホウ素を多量に含有する原液、例えば、海水から飲料水を生産する場合に有用な方法である。
【0002】
【従来の技術】
海水から飲料水を生産する方法として、海水を第1段目逆浸透膜モジュ−ルで処理し、その透過液をホウ素の除去に適したpH値に調整のうえ、更に第2段目逆浸透膜モジュ−ルで処理することが提案されている(特開平9−10766号、特開平8−206460号)。
【0003】
【発明が解決しようとする課題】
周知の通り、所謂、おいしい飲料水としては、カルシウム等の蒸発残留物を適量に含有し、pH値が中性近傍であることが条件とされる。
上記の逆浸透膜分離による飲料水の製造方法において、第1段目逆浸透膜モジュ−ルの蒸発残留物に対する阻止率をa、同じくホウ素に対する阻止率をb、第2段目逆浸透膜モジュ−ルの蒸発残留物に対する阻止率をa’、同じくホウ素に対する阻止率をb’とすれば、最終的に得る生産水の蒸発残留物含有率は(1−a)(1−a’)であり、同じくホウ素含有率は(1−b)(1−b’)であり、このホウ素含有率を0.2ppm以下に抑えている。
【0004】
しかしながら、蒸発残留物含有率が(1−a)(1−a’)で定まってしまい、a,a’がb,b’に従属的に変動するので、蒸発残留物含有率をホウ素含有率に独立的に所望値に設定し難く、ホウ素含有率0.2ppm以下にすると、蒸発残留物含有量がおいしい飲料水の条件から外れ、またpHもアルカリ側になってしまう。
従って、特開平8−206460号等に開示された2段逆浸透膜分離法では、おいしい飲料水を生産することが難しい。
【0005】
本発明の目的は、ホウ素を多量に含有する原液、例えば、海水から、2段逆浸透膜分離によりホウ素含有量を所望値に減量し、かつカルシウム等の蒸発残留物の含有量を所望値に減量し、しかもpHを中性側にした、所謂、おいしい飲料水を容易に生産できる逆浸透膜分離方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る海水の逆浸透膜分離方法は、海水を第1段目逆浸透膜モジュールによって処理し、更にその透過液の一部(1−x)を第2段目逆浸透膜モジュールによって処理し、この第2段目逆浸透膜モジュールの透過液と第1段目逆浸透膜モジュールの残部の透過液xとを混合して飲料水を得る方法であり、海水が流通される圧力ケース内の上流側に上流側逆浸透膜モジュールエレメントを、同圧力ケース内の下流側に下流側逆浸透膜モジュールエレメントをそれぞれ収容した逆浸透膜モジュールを第1段目逆浸透膜モジュールとして使用し、上流側逆浸透膜モジュールエレメントの透過液を前記残部の透過液xとし、下流側逆浸透膜モジュールエレメントの透過液を前記透過液の一部(1−x)とすることを特徴とする。
【0007】
請求項2に係る逆浸透膜分離方法は、原液を第1段目逆浸透膜モジュ−ルによって処理し、更にその透過液の一部を第2段目逆浸透膜モジュ−ルによつて処理し、この第2段目逆浸透膜モジュ−ルの透過液と第1段目逆浸透膜モジュ−ルの残部透過液とを混合して原液中の蒸発残留成分とホウ素成分とを減量調整した調整液を得る方法であり、第1段目逆浸透膜モジュ−ルの透過液の一部を当該逆浸透膜モジュ−ルの下流側透過液とし、同残部透過液を当該逆浸透膜モジュ−ルの上流側透過液とし、第1段目逆浸透膜モジュ−ルの供給側pH値を8以下とし、第2段目逆浸透膜モジュ−ルの供給側pH値を8以上とすることを特徴とし、特に、海水、ホウ素を多量に含有するかん水や排水から飲料水を生産する場合は、第1成分を蒸発残留物とし、第2成分をホウ素とし、第1段目逆浸透膜モジュ−ルの供給側pH値を8以下とし、第2段目逆浸透膜モジュ−ルの供給側pH値を8以上とし、また、第1段目逆浸透膜モジュ−ルにおける、供給液3.5%食塩水、操作圧力56kgf/cm2、温度25℃、pH6.5の条件で評価した食塩阻止率を99%以上、より好ましくは99.4%以上とし.同条件のもとでの透過流束を0.4m3/m2・日以上とし、第2段目逆浸透膜モジュ−ルにおける、供給液0.05%食塩水、操作圧力7.5kgf/cm2、温度25℃、pH6.5の条件で評価した食塩阻止率を98%以上、より好ましくは、99%以上とし、同条件のもとでの透過流束を0.6m3/m2・日以上とすることが好ましい。
【0008】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明に係る逆浸透膜分離方法の処理フロ−を示している。
図1において、41は第1段目逆浸透膜モジュ−ルを、42は第2段目逆浸透膜モジュ−ルをそれぞれ示している。40は第1成分Aと第2成分Bとを含有する原液を示し、この原液40を第1段目逆浸透膜モジュ−ル41で回収率y1で処理し、第1段目逆浸透膜モジュ−ル41の透過液をx量と(1−x)量とに分け、透過液量(1−x)を第2段目逆浸透膜モジュ−ル42に供給し、更に回収率y2で処理し、その透過液と第1段目逆浸透膜モジュ−ル41の残部透過液量xとを合流させて生産液を得る。
【0009】
上記、a、a’、b、b’はpH値や逆浸透膜モジュ−ルの膜材質等によって調整できる要素である。
而るに、本発明に係る逆浸透膜分離方法においては、これらの調整にとどまらず、第1段目逆浸透膜モジュ−ルの透過液の分流比x、回収率y1更には、第2段目逆浸透膜モジュ−ルでの回収率y2によっても、生産液の第1成分Aの含有率、第2成分Bの含有率XBを調整できる結果、生産液の第1成分含有量及び第2成分含有量を所望値に容易に設定できる。
すなわち、従来法での生産液の第1成分含有量XA’、第2成分含有量XB’は、 XA’=(1-a)(1-a')
XB’=(1-b)(1-b')
で与えられ、a、a’、b、b’で決まってしまうが、本発明に係る逆浸透膜分離方法においては、分流比x、回収率y1、y2によっても第1成分含有量XA’、第2成分含有量XB’を調整できるので、生産液の第1成分含有量及び第2成分含有量を多技的に調整でき、所望値にそれだけ容易に設定できるのである。
【0010】
上記の分流比xは、0.2〜0.8、好ましくは0.3〜0.7の範囲内で設定される。
上記第1段目逆浸透膜モジュ−ル内においては、原液濃度が下流側に至るほど高濃度となり、従って同逆浸透膜モジュ−ルの透過液側においても、第1成分及び第2成分の濃度が下流側に至るほど高濃度となる。
而るに、本発明においては第1段目逆浸透膜モジュ−ルの下流側の透過液を第2段目逆浸透膜モジュ−ルに供給しており、第2段目逆浸透膜モジュ−ルの塩除去性能を効率よく発揮させ得る。
【0011】
次に、ホウ素を多量に含有する原液、例えば海水(ホウ素含有量4.2ppm)から、所謂、おいしい飲料水を生産する場合の実施例について説明する。
この実施例において、第1成分はカルシウム等の蒸発残留物であり、第2成分はホウ素である。
【0012】
図2はこの実施例において使用する逆浸透膜分離装置を示している。
図2において、1はホウ素を多量に含有する原液のタンク(海水タンク)を、2は前処理槽を、31は第1段目送液ポンプを、41は第1段目逆浸透膜分離モジュ−ルを、411は第1段目逆浸透膜モジュ−ルの濃縮液を、412は第1段目逆浸透膜モジュ−ルの上流側透過液を、413は同じく下流側透過液をそれぞれ示している。
5は中間タンクを、32は第2段目送液ポンプを、42は第2段目逆浸透膜分離モジュ−ルを、421は第2段目逆浸透膜モジュ−ルの濃縮液を、424は第2段目逆浸透膜モジュ−ルの透過液をそれぞれ示している。この第2段目逆浸透膜モジュ−ルの濃縮液は、原液供給側に全量または一部をリタ−ンさせることができ(リタ−ン量を多くするほど、システム全体の回収率を向上でき、また、第1段目逆浸透膜モジュ−ルへの供給水自体の純度をアップでき、全体の水質を向上できる)、422はそのリタ−ン液を、423はその放流液をそれぞれ示している。
400は第1段目逆浸透膜モジュ−ルの上流側透過液412と第2段目逆浸透膜モジュ−ル42の透過液424とを混合させてなる生産液を示している。
また、カルシウムスケ−ルを防止するために、第1段目逆浸透膜モジュ−ル41の供給液に酸を添加してpH調整を行うこともでき、61は酸液タンクを、71は酸液送りポンプをそれぞれ示している。
また、第2段目逆浸透膜モジュ−ル42のホウ素の除去率を大きくするために、pHがアリカリ側にされ、62はアリカリ液タンクを、72はアルカリ液送ポンプを示している。
【0013】
上記装置を用いて本発明により飲料水を生産するには、海水タンク1内の海水を前処理槽2で前処理したうえで、第1段目送液ポンプ31により所定の圧力で第1段目逆浸透膜分離モジュ−ル41に供給し、濃縮された非透過液は第1段目逆浸透膜モジュ−ルの濃縮液411として系内から排出する。前処理槽2は、第1段目逆浸透膜分離モジュ−ル41の膜面を懸濁物質や有機物の付着、汚染から保護するために使用され、それらの懸濁物質や有機物等を除去するための手段、例えば、砂ろ過、精密ろ過、塩素や凝集剤の添加が施される。また、カルシウムスケ−ルを除去するために、第1段目逆浸透膜モジュ−ル41の供給液に酸を酸液タンク61からポンプ71により添加してpH調整を行うことができる。
第1段目逆浸透膜モジュ−ル41の透過液を上流側透過液412と下流側透過液413とに分流させるには、例えば、第1段目逆浸透膜モジュ−ルの構成を、ベッセル(圧力ケ−ス)の上流側と下流側にそれぞれ独立の逆浸透膜モジュ−ルエレメントを収容し、上流側モジュ−ルエレメントの集水管下流側端を上流側透過液412の出口とし、下流側モジュ−ルエレメントの集水管下流側端を下流側透過液413の出口とすることができる。
而して、第1段目逆浸透膜モジュ−ル41の下流側透過液413を一旦、中間タンク5に貯え、アルカリ液タンク62のアルカリ液をポンプ72により中間タンク5の貯液に添加し、更に、この貯液を第2段目送液ポンプ32により所定の圧力で第2段目逆浸透膜分離モジュ−ル42に供給し、濃縮された非透過液(第2段目逆浸透膜モジュ−ルの濃縮液421)の全量または一部をリタ−ン液422として第1段目送液ポンプ31の入口側に戻し、残りを放流液423として排出していく。また、第2段目逆浸透膜モジュ−ル42の透過液424と第1段目逆浸透膜モジュ−ルの上流側透過液412とを合流させて所定の生産液400を得る。
【0014】
上記において、第1段目液送ポンプ31の圧力を高くして、第1段目逆浸透膜分離モジュ−ル41の透過側に圧力を作用させ、その圧力で第2段目逆浸透膜分離モジュ−ル42を作動させることもでき、この場合、中間タンク5及び第2段目送液ポンプ32は省略できる。
上記において、第2段目逆浸透膜モジュ−ル42の供給側pH値は8以上、好ましくは8.5以上とされる。また、第1段目逆浸透膜モジュ−ル41の阻止性能は、供給液3.5%食塩水、操作圧力56kgf/cm2、温度25℃、pH6.5の条件で評価した食塩阻止率のもとで99%以上とされ、第2段目逆浸透膜モジュ−ルの阻止性能は、供給液0.05%食塩水、操作圧力7.5kgf/cm2、温度25℃、pH6.5の条件で評価した食塩阻止率のもとで98%以上とされる。
上記第1段目及び第2段目逆浸透膜モジュ−ルには、化学的に安定な架橋ポリアミド、より好ましくは、芳香族架橋ポリアミドをスキン層とする複合膜を用いた逆浸透膜モジュ−ルを使用することが好ましい。
更に、上記逆浸透膜モジュ−ル、特に、第2段目逆浸透膜モジュ−ル42においては、膜面積の割には透過流束を大きくするために、スキン層の比表面積を3以上とすることが好ましい。
上記第1段目及び第2段目の逆浸透膜分離モジュ−ルには、スパイラル型、中空糸型、チュ−ブラ−型等を使用できる。
上記第2段目逆浸透膜分離モジュ−ルの後段に逆浸透膜分離モジュ−ルを接続して2段以上の多段で実施したり、第1段目逆浸透膜モジュ−ルの濃縮液を更に逆浸透膜モジュ−ル処理してシステムの回収率を高めることもできる。
【0015】
【実施例】
〔実施例〕
図2に示す逆浸透膜分離装置を使用した。
第1段目逆浸透分離膜モジュ−ルには、3.5%食塩水を供給液としてのpH6.5、温度25℃、操作圧力56kgf/cm2での塩阻止率が99.6%であるスパイラル型逆浸透分離膜モジュ−ル〔日東電工(株)製NTR−70SWC〕を用い、第2段目逆浸透分離膜モジュ−ルには、0.05%食塩水を供給液としてのpH6.5、温度25℃、操作圧力7.5kgf/cm2での塩阻止率が99.5%のスパイラル型逆浸透分離膜モジュ−ル〔日東電工(株)製ES10〕を用いた。両逆浸透膜モジュ−ルとも、複合膜のスキン層に芳香族架橋ポリアミドを使用してある。
第1段目逆浸透分離膜モジュ−ルとしては、上記のNTR−70SWCを6本直列に接続したものを使用し、第2段目逆浸透分離膜モジュ−ルとしては、上記のES10を一本使用した。
原液には海水(ホウ素含有量4.2ppm)を使用した。
第1段目逆浸透分離膜モジュ−ルを操作圧力56kgf/cm2、回収率40%にて運転して脱塩を行った。第1段目逆浸透膜モジュ−ルの上流側透過液は、上流側二本から採り、その透過液量は第1段目逆浸透膜モジュ−ル透過液総量の46%、蒸発残留物含有量は120ppm、ホウ素含有量は0.6ppmであった。
一方、第1段目逆浸透膜モジュ−ルの下流側透過液の蒸発残留物含有量は270ppm、ホウ素含有量は0.8ppm、pH値は5であった。この第1段目逆浸透膜モジュ−ルの下流側透過液に水酸化ナトリウムを添加してpH値を9.5に調整し、この調整液を第2段目逆浸透膜モジュ−ルで操作圧力7.5kgf/cm2、回収率90%にて脱塩した。この第2段目逆浸透膜モジュ−ルの透過液の蒸発残留物含有量は10ppm、ホウ素含有量は0.2ppm、pH値は9であった(このままでは、蒸発残留物含有量が低すぎ、おいしい飲料水としての硬水の要件を欠如しており、pH値もアリカリ側であり、飲料水として不適格)。
第1段目逆浸透膜モジュ−ルの上流側透過液と第2段目逆浸透膜モジュ−ルの透過液との混合液である生産水の蒸発残留物含有量は60ppm、ホウ素含有量は0.4ppm、pH値は7であり、おいしい飲料水としての要件を充足していた。
【0016】
〔比較例〕
実施例に対し、第2段目逆浸透膜モジュ−ルの本数を実施例の2倍にし(2本にし)、第1段目逆浸透膜モジュ−ルの透過液の全量を第2段目逆浸透膜モジュ−ルに供給した以外、実施例に同じとした。
この比較例における、第1段目逆浸透膜モジュ−ルの透過液の蒸発残留物含有量は200ppm、ホウ素含有量は0.7ppm、pH値は5であり、第2段目逆浸透膜モジュ−ルの透過液(生産液)の蒸発残留物含有量は8ppm、ホウ素含有量は0.2ppm、pH値は9であった。
この生産水は、蒸発残留物含有量が低く、アルカリ性であり、飲料水としては不適格であった。
【0017】
【発明の効果】
本発明に係る逆浸透膜分離方法によれば、海水のようにホウ素を多量に含有する原液から、ホウ素を充分に除去して蒸発残留物が適量で、且つpH値がほぼ中性の水を効率よく生産でき、逆浸透膜モジュ−ルの特性やpH値の調整以外に第1段目逆浸透膜モジュ−ルの透過液の分流比や回収率及び第2段目逆浸透膜モジュ−ルの回収率の調整をも調整要素として所謂、おいしい水を容易に効率よく製造することができる。
更に、1段目逆浸透膜モジュ−ルの透過水量の一部を2段目逆浸透膜モジュ−ルに供給して処理しているので、1段目逆浸透膜モジュ−ルの透過水全量を2段目逆浸透膜モジュ−ルに供給し処理している従来法に較べ、2段目逆浸透膜モジュ−ルには小さい規模のものを使用すれば足り、設置する空間の省スペ−ス化や設備・運転コスト面での低減、省エネルギ化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る逆浸透膜分離方法の処理フロ−を示す図面である。
【図2】本発明の実施例において使用した逆浸透膜分離装置を示す図面である。
【符号の説明】
41 第1段目逆浸透膜モジュ−ル
412 第1段目逆浸透膜モジュ−ルの上流側透過液
413 第1段目逆浸透膜モジュ−ルの下流側透過液
42 第2段目逆浸透膜モジュ−ル
40 原液
400 生産液
62 アルカリ液タンク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reverse osmosis membrane separation method, and is particularly useful when producing drinking water from a stock solution containing a large amount of boron, for example, seawater.
[0002]
[Prior art]
As a method of producing drinking water from seawater, seawater is treated with a first-stage reverse osmosis membrane module, and the permeate is adjusted to a pH value suitable for removing boron, and further, the second-stage reverse osmosis is performed. It has been proposed to treat with a membrane module (Japanese Patent Laid-Open Nos. 9-10766 and 8-206460).
[0003]
[Problems to be solved by the invention]
As is well known, so-called delicious drinking water is required to contain an appropriate amount of evaporation residue such as calcium and have a pH value in the vicinity of neutrality.
In the above-described method for producing drinking water by reverse osmosis membrane separation, the first stage reverse osmosis membrane module has a blocking rate for evaporation residue of a, the boron blocking rate for b, and the second stage reverse osmosis membrane module. -If the rejection rate for evaporation residue of a is a 'and the rejection rate for boron is b', the evaporation residue content of the final product water is (1-a) (1-a ') Yes, the boron content is (1-b) (1-b ′), and the boron content is suppressed to 0.2 ppm or less.
[0004]
However, the evaporation residue content is determined by (1-a) (1-a ′), and a and a ′ vary depending on b and b ′. However, if the boron content is 0.2 ppm or less, the evaporation residue content deviates from the conditions of delicious drinking water, and the pH also becomes alkaline.
Therefore, it is difficult to produce delicious drinking water by the two-stage reverse osmosis membrane separation method disclosed in JP-A-8-206460.
[0005]
The object of the present invention is to reduce the boron content to a desired value from a stock solution containing a large amount of boron, such as seawater, by two-stage reverse osmosis membrane separation, and to reduce the content of evaporation residues such as calcium to the desired value. An object of the present invention is to provide a reverse osmosis membrane separation method capable of easily producing so-called delicious drinking water with a reduced weight and a neutral pH.
[0006]
[Means for Solving the Problems]
In the reverse osmosis membrane separation method of seawater according to claim 1, seawater is processed by the first-stage reverse osmosis membrane module, and a part (1-x) of the permeate is further processed by the second-stage reverse osmosis membrane module. A pressure case in which seawater is circulated by treating and mixing the permeate of the second-stage reverse osmosis membrane module with the remaining permeate x of the first-stage reverse osmosis membrane module to obtain drinking water. A reverse osmosis membrane module containing the upstream reverse osmosis membrane module element on the upstream side and the downstream reverse osmosis membrane module element on the downstream side of the pressure case, respectively, as the first-stage reverse osmosis membrane module, The permeate of the upstream reverse osmosis membrane module element is the remaining permeate x, and the permeate of the downstream reverse osmosis membrane module element is a part (1-x) of the permeate.
[0007]
In the reverse osmosis membrane separation method according to claim 2 , the stock solution is processed by the first-stage reverse osmosis membrane module, and a part of the permeate is processed by the second-stage reverse osmosis membrane module. The second stage reverse osmosis membrane module permeate and the first stage reverse osmosis membrane module permeate were mixed to reduce the evaporation residual component and boron component in the stock solution. In this method, a part of the permeate of the first-stage reverse osmosis membrane module is used as the downstream permeate of the reverse osmosis membrane module, and the remaining permeate is used as the reverse osmosis membrane module. The supply side pH value of the first stage reverse osmosis membrane module is 8 or less, and the supply side pH value of the second stage reverse osmosis membrane module is 8 or more. characterized, in particular, sea water, when producing drinking water from high content to irrigation and drainage boron, evaporation residue of the first component The second component is boron, the supply side pH value of the first stage reverse osmosis membrane module is 8 or less, the supply side pH value of the second stage reverse osmosis membrane module is 8 or more, and In the first stage reverse osmosis membrane module, the salt blocking rate evaluated under the conditions of 3.5% saline solution, operating pressure 56 kgf / cm 2 , temperature 25 ° C., pH 6.5 is 99% or more. Preferably it should be 99.4% or more. Under the same conditions, the permeation flux was 0.4 m3 / m 2 · day or more, and the feed solution 0.05% saline solution, operating pressure 7.5 kgf / cm in the second stage reverse osmosis membrane module 2. The salt rejection evaluated under the conditions of a temperature of 25 ° C. and a pH of 6.5 is 98% or more, more preferably 99% or more, and the permeation flux under the same conditions is 0.6 m 3 / m 2 · It is preferable to set it to more than a day.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a processing flow of a reverse osmosis membrane separation method according to the present invention.
In FIG. 1,
[0009]
The above a, a ′, b, and b ′ are elements that can be adjusted by the pH value, the membrane material of the reverse osmosis membrane module, and the like.
Thus, the reverse osmosis membrane separation method according to the present invention is not limited to these adjustments, and the permeate splitting ratio x, recovery rate y 1 of the first-stage reverse osmosis membrane module, The content rate of the first component A and the content rate XB of the second component B in the production liquid can also be adjusted by the recovery rate y 2 in the stage reverse osmosis membrane module. The second component content can be easily set to a desired value.
That is, the first component content XA ′ and the second component content XB ′ of the production liquid in the conventional method are: XA ′ = (1-a) (1-a ′)
XB '= (1-b) (1-b')
In the reverse osmosis membrane separation method according to the present invention, the first component content XA is also determined by the diversion ratio x and the recovery rates y 1 and y 2 . Since the second component content XB can be adjusted, the first component content and the second component content of the production liquid can be adjusted in a multi-technical manner and can be easily set to a desired value.
[0010]
The diversion ratio x is set within a range of 0.2 to 0.8, preferably 0.3 to 0.7.
In the first-stage reverse osmosis membrane module, the concentration of the stock solution increases toward the downstream side. Therefore, the first component and the second component of the reverse osmosis membrane module also on the permeate side. The higher the concentration is, the higher the concentration is.
Thus, in the present invention, the permeate downstream of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module, and the second-stage reverse osmosis membrane module is supplied. The salt removal performance of the water can be efficiently exhibited.
[0011]
Next, an example in which so-called delicious drinking water is produced from a stock solution containing a large amount of boron, for example, seawater (boron content: 4.2 ppm) will be described.
In this embodiment, the first component is an evaporation residue such as calcium, and the second component is boron.
[0012]
FIG. 2 shows a reverse osmosis membrane separation apparatus used in this embodiment.
In FIG. 2, 1 is a stock solution tank (seawater tank) containing a large amount of boron, 2 is a pretreatment tank, 31 is a first-stage liquid feed pump, and 41 is a first-stage reverse osmosis membrane separation module. 411 is the concentrated solution of the first-stage reverse osmosis membrane module, 412 is the upstream permeate of the first-stage reverse osmosis membrane module, and 413 is the downstream permeate. Yes.
5 is an intermediate tank, 32 is a second stage liquid feed pump, 42 is a second stage reverse osmosis membrane separation module, 421 is a concentrate of the second stage reverse osmosis membrane module, 424 is The permeated liquid of the second-stage reverse osmosis membrane module is shown. The concentrated solution of the second-stage reverse osmosis membrane module can be completely or partially returned to the stock solution supply side (the larger the return amount, the more the recovery rate of the entire system can be improved). In addition, the purity of the feed water itself to the first-stage reverse osmosis membrane module can be improved, and the overall water quality can be improved.) 422 indicates the return liquid, and 423 indicates the discharge liquid. Yes.
In order to prevent calcium scale, pH can be adjusted by adding acid to the supply liquid of the first-stage reverse
Further, in order to increase the boron removal rate of the second-stage reverse
[0013]
In order to produce drinking water according to the present invention using the above-described apparatus, the seawater in the seawater tank 1 is pretreated in the pretreatment tank 2, and then the first
In order to divert the permeate of the first-stage reverse
Thus, the
[0014]
In the above, the pressure of the first-stage reverse osmosis
In the above, the supply side pH value of the second stage reverse
The first-stage and second-stage reverse osmosis membrane modules include a reverse osmosis membrane module using a chemically stable crosslinked polyamide, more preferably a composite membrane having an aromatic crosslinked polyamide as a skin layer. It is preferable to use
Furthermore, in the reverse osmosis membrane module, particularly the second-stage reverse
As the first and second stage reverse osmosis membrane separation modules, spiral type, hollow fiber type, tuber type and the like can be used.
The reverse osmosis membrane separation module is connected to the subsequent stage of the second stage reverse osmosis membrane separation module, and the process is carried out in two or more stages, or the concentrated solution of the first stage reverse osmosis membrane module is used. Further, the recovery rate of the system can be increased by treating with a reverse osmosis membrane module.
[0015]
【Example】
〔Example〕
The reverse osmosis membrane separation apparatus shown in FIG. 2 was used.
The first-stage reverse osmosis separation membrane module has a salt rejection of 99.6% at pH 6.5 using a 3.5% saline solution as a feed solution, a temperature of 25 ° C., and an operating pressure of 56 kgf / cm 2. A spiral reverse osmosis separation membrane module [NTR-70SWC manufactured by Nitto Denko Corporation] was used, and the second-stage reverse osmosis separation membrane module had a pH of 6% as a feed solution with 0.05% saline. Spiral reverse osmosis separation membrane module [ES10 manufactured by Nitto Denko Corporation] having a salt rejection of 99.5% at a temperature of 25 ° C. and an operating pressure of 7.5 kgf / cm 2 was used. Both reverse osmosis membrane modules use aromatic crosslinked polyamide for the skin layer of the composite membrane.
As the first-stage reverse osmosis separation membrane module, six NTR-70SWCs connected in series are used, and as the second-stage reverse osmosis separation membrane module, the above ES10 is integrated. Used this book.
Seawater (boron content 4.2 ppm) was used as the stock solution.
Desalination was performed by operating the first-stage reverse osmosis separation membrane module at an operating pressure of 56 kgf / cm 2 and a recovery rate of 40%. The upstream permeate of the first-stage reverse osmosis membrane module is taken from two upstream sides, and the permeate amount is 46% of the total permeate of the first-stage reverse osmosis membrane module and contains evaporation residue. The amount was 120 ppm and the boron content was 0.6 ppm.
On the other hand, the evaporation residue content of the downstream permeate of the first-stage reverse osmosis membrane module was 270 ppm, the boron content was 0.8 ppm, and the pH value was 5. Sodium hydroxide was added to the downstream permeate of the first stage reverse osmosis membrane module to adjust the pH value to 9.5, and this adjustment liquid was operated with the second stage reverse osmosis membrane module. Desalination was performed at a pressure of 7.5 kgf / cm 2 and a recovery rate of 90%. The second stage reverse osmosis membrane module permeate had an evaporation residue content of 10 ppm, a boron content of 0.2 ppm, and a pH value of 9 (in this state, the evaporation residue content was too low. Lack of hard water requirements as delicious drinking water, pH value is also on the ants side, ineligible as drinking water).
The evaporation residue content of production water, which is a mixed solution of the upstream permeate of the first stage reverse osmosis membrane module and the permeate of the second stage reverse osmosis membrane module, is 60 ppm, and the boron content is 0.4 ppm and pH value were 7, which satisfied the requirements for delicious drinking water.
[0016]
[Comparative example]
The number of second-stage reverse osmosis membrane modules is doubled to that of the embodiment (doubled), and the total amount of permeate in the first-stage reverse osmosis membrane module is set to the second-stage reverse osmosis membrane module. The same as in the examples except that it was supplied to the reverse osmosis membrane module.
In this comparative example, the evaporation residue content of the permeate of the first stage reverse osmosis membrane module is 200 ppm, the boron content is 0.7 ppm, and the pH value is 5. The second stage reverse osmosis membrane module is The evaporation residue content of the permeated liquid (production liquid) was 8 ppm, the boron content was 0.2 ppm, and the pH value was 9.
This product water had a low evaporation residue content, was alkaline, and was not suitable for drinking water.
[0017]
【The invention's effect】
According to the reverse osmosis membrane separation method according to the present invention, from a stock solution containing a large amount of boron such as seawater, boron is sufficiently removed to obtain an appropriate amount of evaporation residue and neutral pH water. It is possible to produce efficiently, in addition to adjusting the characteristics and pH value of the reverse osmosis membrane module, the flow split ratio and recovery rate of the first stage reverse osmosis membrane module and the second stage reverse osmosis membrane module. The so-called delicious water can be easily and efficiently produced using the adjustment of the recovery rate as an adjustment factor.
Furthermore, since a part of the permeated water amount of the first-stage reverse osmosis membrane module is supplied to the second-stage reverse osmosis membrane module and processed, the total permeated water amount of the first-stage reverse osmosis membrane module Compared with the conventional method that supplies and processes the second-stage reverse osmosis membrane module, it is sufficient to use a small-scale second-stage reverse osmosis membrane module, which saves space for installation. Reduction in equipment, operating costs, and energy savings.
[Brief description of the drawings]
FIG. 1 is a drawing showing a processing flow of a reverse osmosis membrane separation method according to the present invention.
FIG. 2 is a drawing showing a reverse osmosis membrane separation apparatus used in an example of the present invention.
[Explanation of symbols]
41 First-stage reverse
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17888997A JP3862816B2 (en) | 1997-06-18 | 1997-06-18 | Reverse osmosis membrane separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17888997A JP3862816B2 (en) | 1997-06-18 | 1997-06-18 | Reverse osmosis membrane separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1110146A JPH1110146A (en) | 1999-01-19 |
JP3862816B2 true JP3862816B2 (en) | 2006-12-27 |
Family
ID=16056477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17888997A Expired - Lifetime JP3862816B2 (en) | 1997-06-18 | 1997-06-18 | Reverse osmosis membrane separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3862816B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60045277D1 (en) * | 1999-01-29 | 2011-01-05 | Pall Corp | |
US6805796B2 (en) * | 2001-02-13 | 2004-10-19 | Nitto Denko Corporation | Water treatment apparatus |
IL141642A (en) | 2001-02-26 | 2003-01-12 | Ide Technologies Ltd | Method of boron removal in presence of magnesium ions |
JP4172394B2 (en) * | 2002-01-22 | 2008-10-29 | 東レ株式会社 | Fresh water generation method and fresh water generation apparatus |
JP4332774B2 (en) * | 2002-09-06 | 2009-09-16 | 東洋紡績株式会社 | Method and apparatus for processing high concentration solution by reverse osmosis membrane |
US20060091077A1 (en) * | 2004-10-29 | 2006-05-04 | Ecolochem, Inc. | Concentrate recycle loop with filtration module |
WO2008020444A1 (en) * | 2006-08-15 | 2008-02-21 | Mekorot Israel National Water Company, Ltd. | Multiple stage reverse osmosis method for removing boron from a salinated fluid |
SG178303A1 (en) | 2009-08-21 | 2012-03-29 | Toray Industries | Fresh water generator |
US9259686B2 (en) | 2009-12-25 | 2016-02-16 | Toray Industries, Inc. | Water producing system and operation method therefor |
JP5349435B2 (en) * | 2010-09-16 | 2013-11-20 | 株式会社東芝 | Seawater desalination equipment and chemical injection equipment |
JP5591961B2 (en) * | 2013-01-11 | 2014-09-17 | 株式会社東芝 | Desalination apparatus and control method of desalination apparatus |
JP5700080B2 (en) * | 2013-07-02 | 2015-04-15 | 栗田工業株式会社 | Method and apparatus for treating waste water containing cationic surfactant |
JP6807219B2 (en) * | 2016-11-18 | 2021-01-06 | オルガノ株式会社 | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method |
CN117585738B (en) * | 2023-12-05 | 2024-06-11 | 江苏赛科化学有限公司 | Alkali recovery equipment is used in processing of fatty secondary alcohol polyoxyethylene ether |
-
1997
- 1997-06-18 JP JP17888997A patent/JP3862816B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1110146A (en) | 1999-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0709130B1 (en) | Apparatus and method for the desalination of sea water by multistage reverse osmosis | |
AU2003203265B2 (en) | Method of generating fresh water and fresh-water generator | |
JP3862816B2 (en) | Reverse osmosis membrane separation method | |
CN114096342B (en) | Desalted brine concentrating system and method | |
US20030141250A1 (en) | Desalination method and desalination apparatus | |
PL173335B1 (en) | Method of and apparatus for increasing concentration of solutions | |
JP2008100220A (en) | Method for producing freshwater | |
JP2003200160A (en) | Water making method and water making apparatus | |
JP2000093751A (en) | Reverse osmosis separation device and reverse osmosis separation method | |
JPH10263539A (en) | Member treating method of water to be treated and membrane treating device | |
JP4187316B2 (en) | Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method | |
EP0879634A2 (en) | Process of purification of leachate from dumps via ultrafiltration and reverse osmosis | |
JP4304573B2 (en) | Treatment method of high concentration solution by reverse osmosis membrane | |
JP2002085941A (en) | Fresh water making process and fresh water maker | |
JPH0461983A (en) | Method and apparatus for treating salt-containing water | |
JP3375070B2 (en) | Membrane processing device and fresh water method | |
JPH09276864A (en) | Seawater treatment apparatus | |
JP4332774B2 (en) | Method and apparatus for processing high concentration solution by reverse osmosis membrane | |
US6241892B1 (en) | Method of reducing the contamination level of a solvent purification system, and such solvent purification system | |
JPH10128325A (en) | Seawater desalination apparatus | |
JP2005254192A (en) | Membrane separator and membrane separation method | |
JP2001347142A (en) | Reverse osmosis separation method | |
JPH09276863A (en) | Reverse osmosis separation apparatus and method therefor | |
US7723516B2 (en) | Method for the treatment of triazine-containing water of a melamine plant | |
JP3351127B2 (en) | Reverse osmosis membrane separation device and fresh water producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060927 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121006 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151006 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |