Nothing Special   »   [go: up one dir, main page]

JP3851048B2 - Phenolic resin molding material - Google Patents

Phenolic resin molding material Download PDF

Info

Publication number
JP3851048B2
JP3851048B2 JP2000014622A JP2000014622A JP3851048B2 JP 3851048 B2 JP3851048 B2 JP 3851048B2 JP 2000014622 A JP2000014622 A JP 2000014622A JP 2000014622 A JP2000014622 A JP 2000014622A JP 3851048 B2 JP3851048 B2 JP 3851048B2
Authority
JP
Japan
Prior art keywords
weight
molding material
parts
resin
phenol resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000014622A
Other languages
Japanese (ja)
Other versions
JP2001207016A (en
Inventor
智行 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000014622A priority Critical patent/JP3851048B2/en
Publication of JP2001207016A publication Critical patent/JP2001207016A/en
Application granted granted Critical
Publication of JP3851048B2 publication Critical patent/JP3851048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール樹脂成形材料の特長である耐熱性及び耐湿性を損なうことなく、硬化収縮の少ないフェノール樹脂成形材料を提供するものである。
【0002】
【従来の技術】
従来より、フェノール樹脂成形材料は耐熱性、寸法安定性、成形性等に優れ、自動車、電気、電子等の基幹産業分野において長期にわたり使用されてきた実績がある。特に最近では、金属部品を、ガラス繊維で強化した高強度のフェノール樹脂からなる成形品に置換することにより、大幅なコストダウン及び軽量化が可能となることから、積極的な代替の検討が行われている。ガラス繊維強化フェノール樹脂成形材料は、高強度である上、成形時の硬化収縮が比較的小さい材料である。しかしながら、部品としての必要性から、金属インサートと一体成形するものにおいては、このようなガラス繊維強化フェノール樹脂成形材料をもってしても、硬化収縮により金属と樹脂との間に隙間を生じてしまい、このことが原因で、部品での信頼性評価で満足する特性が得られない場合がある。
このような問題に対し、成形時の硬化収縮を低減する目的で、フェノール樹脂成形材料にアクリロニトリルブタジエンゴム(NBR)や酢酸ビニル樹脂を配合することが従来より知られている。NBRを配合して所望の特性を得ようとした場合、成形材料化の段階で流動性が低下するため、射出成形のような流動性を必要とする成形方法に適する材料を作りにくく、また酢酸ビニル樹脂を配合した場合では、耐湿性が低下するため、吸湿による寸法変化を嫌う部品には適さない場合がある。
【0003】
【発明が解決しようとする課題】
本発明者は、ガラス繊維強化フェノール樹脂成形材料において、成形材料化の段階で流動性の低下を出来るだけ抑え、耐熱性及び耐湿性を損なうことなく成形時の硬化収縮を低減させることを目的とし、種々検討した結果、フェノール樹脂にNBRとポリビニルブチラールをある比率で用いることにより、所期の目的が達成されることを見いだし、本発明を完成するに至った。
【0004】
【課題を解決するための手段】
本発明は、フェノール樹脂の少なくとも一部としてレゾール型フェノール樹脂を使用するフェノール樹脂成形材料において、NBR及びポリビニルブチラールを配合し、これらの合計量がフェノール樹脂100重量部に対し、10〜30重量部であることを特徴とするフェノール樹脂成形材料に関すものであり、好ましくは、NBRとポリビニルブチラールとの割合は、両者の合計100重量部に対してポリビニルブチラールが20〜80重量部、NBRが80〜20重量部である。さらには、成形材料全体に対し、フェノール樹脂が30〜50重量%、アクリロニトリルブタジエンゴム及びポリビニルブチラールが3〜15重量%、及び無機基材が40〜60重量%配合されている特徴とするフェノール樹脂成形材料に関するものである。
【0005】
本発明において、フェノール樹脂は、レゾール型フェノール樹脂(以下、レゾール樹脂という)を単独、又はノボラック型フェノール樹脂(以下、ノボラック樹脂という)とレゾール樹脂を併用する。ノボラック樹脂とレゾール樹脂を併用する場合、通常ノボラック樹脂の量の15〜20重量%のヘキサメチレンテトラミンを配合する。常温及び熱時ともに高い機械的強度を有するという観点から、ノボラック樹脂とレゾール樹脂を併用し、ヘキサメチレンテトラミンを配合することが好ましい。
【0006】
ノボラック樹脂とレゾール樹脂を併用する場合は、ノボラック樹脂は、重量平均分子量が2000〜8000で、フェノール核のOH基に対するオルソ結合対パラ結合の割合(O/P比)が1以下のものが、成形材料化段階での作業性、成形性(特に射出成形における)が良好であり、得られた成形物の特性が比較的良好であることから、好ましい。また、レゾール樹脂は、重量平均分子量が5000〜9000の固形のジメチレンエーテル型レゾール樹脂を用いることが常温及び熱時の機械強度をともに向上させるために好ましい。
レゾール樹脂の割合は、フェノール樹脂全体100重量部に対して20〜40重量部の割合で用いることが好ましい。この範囲内において常温及び熱時ともに高い機械的強度を有するのである。硬化剤として用いるヘキサメチレンテトラミンの量は、通常ノボラック樹脂に対し15〜20重量部である。
【0007】
本発明のフェノール樹脂成形材料は、その製造段階で流動性の低下を出来るだけ抑えるとともに、耐湿性を損なうことなく、硬化収縮を低減させることを目的とする。この目的のために、NBRとポリビニルブチラールを併用することが効果的であるが、製造時の流動性低下を抑えることができる理由は、未だ明確ではないが、ポリビニルブチラールはレゾール樹脂と反応することが知られており、加熱混練時、ポリビニルブチラールがレゾール樹脂の架橋構造内に組み込まれることで、レゾール樹脂の3次元架橋が抑制され、このことにより成形材料化の段階での流動性低下が抑制されると推測される。
【0008】
本発明で用いているNBRは特に限定されるものでなく、変性NBRや部分架橋NBRでもよい。またポリビニルブチラールも特に限定されるものではないが、好ましくは、重合度が250〜2500、ブチラール化度が60〜80モル%のものである。また、これらは100メッシュ以下の粒状のものが好ましい。
耐熱性を損なわずに硬化収縮の低減させるためには、フェノール樹脂の全体量100重量部に対して、NBR及びポリビニルブチラールを合計で10〜30重量部の割合で用いることが好ましい。10重量部未満では硬化収縮低減の効果が不十分であり、30重量部を越えると耐熱性、特に熱時強度の低下につながるからである。NBRとポリビニルブチラールの併用比率は、NBRとポリブチラールの合計量100重量部に対してポリビニルブチラールが20〜80重量部、NBRが80〜20重量部であることが好ましい。ポリビニルブチラールが20重量部未満では、成形材料化の段階での流動性低下を抑制する効果が不十分であり、80重量部を越えると強度低下につながるからである。
【0009】
補強基材としては、ガラス繊維、クレー、炭酸カルシウム、ワォラストナイト、タルク等の無機基材を使用する。ガラス繊維は、繊維径が10〜15μm、繊維長が1〜3mmのチョップドストランドタイプのものを使用することが成形材料化段階での作業性、得られた成形物の強度が比較的良好であるので好ましい。また寸法安定性をより向上させる場合にはクレーのような無機粉末を併用して用いることが好ましい。これらの無機基材の配合量については、成形材料全体に対し40〜60重量%が望ましい。40重量%未満では満足し得る強度が得られにくく、寸法変化が大きくなり、60重量%を越えると成形材料化段階での作業性が困難となり、強度低下につながることがある。以上のことから、各成分の配合割合は、好ましくは、成形材料全体に対し、フェノール樹脂が30〜50重量%、アクリロニトリルブタジエンゴム及びポリビニルブチラールが3〜15重量%、及び無機基材が40〜60重量%である。
【0010】
本発明のフェノール樹脂成形材料を得るには、上記各原料を均一に混合後、ロール、コニーダ、二軸押出し機等の混練機単独又はロールと他の混合機との組合せで加熱混練し、粉砕して得られる。本発明のフェノール樹脂成形材料は、フェノール樹脂成形材料の特長である耐熱性及び耐湿性を損なうことなく、成形時の硬化収縮が少ないという特長をもっており、自動車、電気、電子等の金属代替を大幅に促進するためには有効な手段となり得る。
【0011】
【実施例】
以下、実施例により本発明を説明する。実施例及び比較例の配合と特性を表1に示す。表1において、配合量は重量%である。
【0012】
【表1】

Figure 0003851048
【0013】
(表の注)
※1 ノボラック樹脂:重量平均分子量4000
※2 レゾール樹脂:ジメチレンエーテル型レゾール樹脂、重量平均分子量7000
※3 部分架橋NBR:JSR(株)製 PNC−38
※4 ポリビニルブチラール:積水化学工業(株)製 エスレックBL−1
※5 酢酸ビニル樹脂:電気化学工業(株)製 サクノールASR CH−09
※6 ガラス繊維:径10μm、長さ3mm
【0014】
(測定方法)
1.射出成形性:JIS曲げ試験片が2個成形できる金型を用い射出成形にて充填性を評価した。
(成形条件:金型温度180℃、シリンダーヘッド温度90℃、硬化時間30秒)○:良好、△:やや未充填あり、×:未充填あり
2.成形収縮率、シャルピー衝撃強さ、曲げ強さ、荷重たわみ温度:試験片はトランスファー成形(175℃、3分)により作製し、JIS K 6911に基づいて測定した。
4.加湿内径寸法変化率:圧縮成形(175℃、3分)にて図1に示す試験片を作製し、試験片を85℃/85RH%の条件で100時間加湿処理し、処理前後の内径寸法を測定し、その変化率を求めた。
【0015】
【発明の効果】
以上の説明から明らかなように、本発明のフェノール樹脂成形材料は、成形材料化の段階での流動性低下が少なく、ガラス繊維強化フェノール樹脂成形材料の耐熱性及び耐湿性を損なうことなく硬化収縮を低減させるものであり、自動車、電気、電子分野における金属代替を大幅に促進するものである。
【図面の簡単な説明】
【図1】 加湿内径寸法変化率測定用試験片の断面図[0001]
BACKGROUND OF THE INVENTION
The present invention provides a phenol resin molding material with less curing shrinkage without impairing the heat resistance and moisture resistance, which are the characteristics of the phenol resin molding material.
[0002]
[Prior art]
Conventionally, phenol resin molding materials are excellent in heat resistance, dimensional stability, moldability, etc., and have been used for a long time in key industries such as automobiles, electricity, and electronics. In recent years, replacement of metal parts with molded products made of high-strength phenolic resin reinforced with glass fibers has made it possible to significantly reduce costs and weight. It has been broken. The glass fiber reinforced phenolic resin molding material is a material that has high strength and relatively small curing shrinkage during molding. However, from the necessity as a part, in what is integrally molded with a metal insert, even with such a glass fiber reinforced phenol resin molding material, a gap is generated between the metal and the resin due to curing shrinkage, For this reason, satisfactory characteristics may not be obtained in the reliability evaluation of parts.
In order to reduce such curing shrinkage at the time of molding, it has heretofore been known that acrylonitrile butadiene rubber (NBR) or vinyl acetate resin is blended with a phenol resin molding material. When NBR is blended to obtain desired characteristics, the fluidity is reduced at the stage of forming a molding material, so that it is difficult to produce a material suitable for a molding method requiring fluidity such as injection molding. When a vinyl resin is blended, the moisture resistance is lowered, so that it may not be suitable for parts that dislike dimensional changes due to moisture absorption.
[0003]
[Problems to be solved by the invention]
The inventor of the present invention aims to reduce the shrinkage of curing during molding without impairing heat resistance and moisture resistance as much as possible in the glass fiber reinforced phenolic resin molding material at the stage of forming the molding material. As a result of various studies, it was found that the intended purpose was achieved by using NBR and polyvinyl butyral in a certain ratio in the phenol resin, and the present invention was completed.
[0004]
[Means for Solving the Problems]
The present invention relates to a phenol resin molding material that uses a resol type phenol resin as at least a part of a phenol resin, and blends NBR and polyvinyl butyral, and the total amount thereof is 10 to 30 parts by weight with respect to 100 parts by weight of the phenol resin. The ratio of NBR and polyvinyl butyral is preferably 20 to 80 parts by weight of polyvinyl butyral and 80 of NBR with respect to a total of 100 parts by weight of both. ~ 20 parts by weight. Furthermore, the phenol resin is characterized in that 30-50% by weight of phenol resin, 3-15% by weight of acrylonitrile butadiene rubber and polyvinyl butyral, and 40-60% by weight of an inorganic base material are blended with respect to the whole molding material. It relates to molding materials.
[0005]
In the present invention, as the phenol resin, a resol type phenol resin (hereinafter referred to as a resol resin) is used alone, or a novolac type phenol resin (hereinafter referred to as a novolac resin) and a resole resin are used in combination. When the novolac resin and the resole resin are used in combination, usually 15 to 20% by weight of hexamethylenetetramine is added to the amount of the novolak resin. From the viewpoint of having high mechanical strength both at normal temperature and when heated, it is preferable to use a novolac resin and a resol resin in combination and to mix hexamethylenetetramine.
[0006]
When the novolac resin and the resole resin are used in combination, the novolac resin has a weight average molecular weight of 2000 to 8000 and a ratio of ortho bond to para bond (O / P ratio) to OH group of the phenol nucleus is 1 or less. It is preferable because workability and moldability (particularly in injection molding) at the stage of forming a molding material are good, and the properties of the obtained molded product are relatively good. In addition, as the resol resin, it is preferable to use a solid dimethylene ether type resol resin having a weight average molecular weight of 5000 to 9000 in order to improve both the mechanical strength at room temperature and heat.
The ratio of the resole resin is preferably 20 to 40 parts by weight with respect to 100 parts by weight of the entire phenol resin. Within this range, it has high mechanical strength at both normal temperature and heat. The amount of hexamethylenetetramine used as the curing agent is usually 15 to 20 parts by weight with respect to the novolak resin.
[0007]
The phenolic resin molding material of the present invention aims to suppress the shrinkage of the fluidity as much as possible in the production stage and to reduce the curing shrinkage without impairing the moisture resistance. For this purpose, it is effective to use NBR and polyvinyl butyral together, but the reason why flowability during production can be suppressed is not clear yet, but polyvinyl butyral reacts with resole resin. Is known, and polyvinyl butyral is incorporated into the cross-linked structure of the resole resin during heating and kneading, thereby suppressing the three-dimensional cross-linking of the resol resin, thereby suppressing the decrease in fluidity at the stage of forming the molding material. Presumed to be.
[0008]
NBR used in the present invention is not particularly limited, and may be modified NBR or partially crosslinked NBR. Polyvinyl butyral is not particularly limited, but preferably has a polymerization degree of 250 to 2500 and a butyralization degree of 60 to 80 mol%. Further, these are preferably granular having a size of 100 mesh or less.
In order to reduce curing shrinkage without impairing heat resistance, it is preferable to use NBR and polyvinyl butyral in a ratio of 10 to 30 parts by weight in total with respect to 100 parts by weight of the total amount of phenol resin. If the amount is less than 10 parts by weight, the effect of reducing curing shrinkage is insufficient, and if it exceeds 30 parts by weight, the heat resistance, particularly the strength during heating, is reduced. The combined ratio of NBR and polyvinyl butyral is preferably 20 to 80 parts by weight of polyvinyl butyral and 80 to 20 parts by weight of NBR with respect to 100 parts by weight of the total amount of NBR and polybutyral. This is because if the polyvinyl butyral is less than 20 parts by weight, the effect of suppressing fluidity deterioration at the stage of forming a molding material is insufficient, and if it exceeds 80 parts by weight, the strength is reduced.
[0009]
As the reinforcing substrate, an inorganic substrate such as glass fiber, clay, calcium carbonate, wollastonite, or talc is used. The glass fiber is of a chopped strand type having a fiber diameter of 10 to 15 μm and a fiber length of 1 to 3 mm. The workability at the stage of forming the molding material and the strength of the obtained molded product are relatively good. Therefore, it is preferable. In order to further improve the dimensional stability, it is preferable to use an inorganic powder such as clay in combination. About the compounding quantity of these inorganic base materials, 40 to 60 weight% is desirable with respect to the whole molding material. If it is less than 40% by weight, it is difficult to obtain satisfactory strength and the dimensional change becomes large. If it exceeds 60% by weight, workability at the stage of forming a molding material becomes difficult, and strength may be reduced. From the above, the blending ratio of each component is preferably 30 to 50% by weight of phenol resin, 3 to 15% by weight of acrylonitrile butadiene rubber and polyvinyl butyral, and 40 to 40% of inorganic base material with respect to the entire molding material. 60% by weight.
[0010]
In order to obtain the phenol resin molding material of the present invention, the above-mentioned raw materials are uniformly mixed, and then kneaded with a kneader such as a roll, a kneader or a twin screw extruder alone or in combination with a roll and another mixer, and pulverized. Is obtained. The phenolic resin molding material of the present invention has the advantage of low curing shrinkage at the time of molding without impairing the heat resistance and moisture resistance that are the characteristics of the phenolic resin molding material, greatly replacing metals such as automobiles, electricity, and electronics. It can be an effective means to promote this.
[0011]
【Example】
Hereinafter, the present invention will be described by way of examples. Table 1 shows the composition and characteristics of Examples and Comparative Examples. In Table 1, the compounding amount is% by weight.
[0012]
[Table 1]
Figure 0003851048
[0013]
(Note to table)
* 1 Novolac resin: weight average molecular weight 4000
* 2 Resole resin: dimethylene ether type resole resin, weight average molecular weight 7000
* 3 Partially cross-linked NBR: PNC-38 manufactured by JSR Corporation
* 4 Polyvinyl butyral: Slek BL-1 manufactured by Sekisui Chemical Co., Ltd.
* 5 Vinyl acetate resin: Sakunor ASR CH-09 manufactured by Denki Kagaku Kogyo Co., Ltd.
* 6 Glass fiber: Diameter 10μm, length 3mm
[0014]
(Measuring method)
1. Injection moldability: Fillability was evaluated by injection molding using a mold capable of molding two JIS bending test pieces.
(Molding conditions: mold temperature 180 ° C., cylinder head temperature 90 ° C., curing time 30 seconds) ○: Good, Δ: Slightly unfilled, ×: Unfilled Mold shrinkage, Charpy impact strength, flexural strength, deflection temperature under load: A test piece was prepared by transfer molding (175 ° C., 3 minutes) and measured based on JIS K 6911.
4). Humidity inside diameter dimensional change rate: The test piece shown in FIG. 1 is produced by compression molding (175 ° C., 3 minutes), and the test piece is humidified for 100 hours under the condition of 85 ° C./85 RH%. Measurements were made to determine the rate of change.
[0015]
【The invention's effect】
As is clear from the above description, the phenolic resin molding material of the present invention has a small decrease in fluidity at the stage of forming the molding material, and shrinkage cure without impairing the heat resistance and moisture resistance of the glass fiber reinforced phenolic resin molding material. And greatly promotes metal replacement in the automotive, electrical and electronic fields.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a test piece for measuring a dimensional change rate of a humidified inner diameter.

Claims (3)

フェノール樹脂の少なくとも一部としてレゾール型フェノール樹脂を使用するフェノール樹脂成形材料において、アクリロニトリルブタジエンゴム及びポリビニルブチラールを配合し、これらの合計量がフェノール樹脂100重量部に対し、10〜30重量部であり、前記レゾール型フェノール樹脂の割合は、フェノール樹脂全体100重量部に対し、20〜40重量部であることを特徴とするフェノール樹脂成形材料。In a phenol resin molding material using a resol type phenol resin as at least a part of the phenol resin, acrylonitrile butadiene rubber and polyvinyl butyral are blended, and the total amount thereof is 10 to 30 parts by weight with respect to 100 parts by weight of the phenol resin . The ratio of the resol type phenolic resin is 20 to 40 parts by weight with respect to 100 parts by weight of the whole phenolic resin. アクリロニトリルブタジエンゴムとポリビニルブチラールとの割合が、両者の合計100重量部に対してポリビニルブチラールが20〜80重量部、アクリロニトリルブタジエンゴムが80〜20重量部である請求項1記載のフェノール樹脂成形材料。The phenol resin molding material according to claim 1, wherein the ratio of acrylonitrile butadiene rubber and polyvinyl butyral is 20 to 80 parts by weight of polyvinyl butyral and 80 to 20 parts by weight of acrylonitrile butadiene rubber with respect to 100 parts by weight in total of both. 成形材料全体に対し、フェノール樹脂が30〜50重量%、アクリロニトリルブタジエンゴム及びポリビニルブチラールが3〜15重量%、及び無機基材が40〜60重量%配合されている請求項1または2記載のフェノール樹脂成形材料。The phenol according to claim 1 or 2, wherein 30 to 50% by weight of phenol resin, 3 to 15% by weight of acrylonitrile butadiene rubber and polyvinyl butyral, and 40 to 60% by weight of an inorganic base material are blended with respect to the whole molding material. Resin molding material.
JP2000014622A 2000-01-24 2000-01-24 Phenolic resin molding material Expired - Fee Related JP3851048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000014622A JP3851048B2 (en) 2000-01-24 2000-01-24 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000014622A JP3851048B2 (en) 2000-01-24 2000-01-24 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JP2001207016A JP2001207016A (en) 2001-07-31
JP3851048B2 true JP3851048B2 (en) 2006-11-29

Family

ID=18542062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000014622A Expired - Fee Related JP3851048B2 (en) 2000-01-24 2000-01-24 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JP3851048B2 (en)

Also Published As

Publication number Publication date
JP2001207016A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP2005532417A (en) Polyamide resin composition having electromagnetic wave shielding characteristics and article formed therefrom
KR101075342B1 (en) Molding phenolic resin material for pulley, resinous pulley, and method of using molding resin material
EP0590233B1 (en) Phenolic resin molding materials
JP5504786B2 (en) Phenolic resin molding material
US4725650A (en) Heat stable phenolic composition containing aramid fibers
JP3851048B2 (en) Phenolic resin molding material
JP4355979B2 (en) Phenolic resin molding composition
JP3034886B2 (en) Phenolic resin composition with excellent impact strength
JP2005048009A (en) Phenolic resin molding compound
JP2653574B2 (en) Phenolic resin composition with excellent impact strength
US4659758A (en) Heat stable phenolic composition
JP3568818B2 (en) Phenolic resin molding material
JP2000044771A (en) Phenol resin molding material excellent in dimensional stability under heat
JP2002220507A (en) Phenol resin molding material
JPH1149930A (en) Thermal-shock-resistant phenolic resin molding material composition
JP2004282923A (en) Phenolic resin molding compound for commutator
JP2878044B2 (en) Phenolic resin composition
JP2004269762A (en) Phenolic resin molding material
JP2002212388A (en) Phenolic resin molding material
JP2004277599A (en) Phenolic resin molding material
GB2147904A (en) Heat stable phenolic composition
JP3555836B2 (en) Phenolic resin molding material
JP2003026899A (en) Phenolic resin molding material for commutator
JPH06107902A (en) Phenol resin composition
JP2002241577A (en) Glass-fiber reinforced phenolic resin molding material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20051219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees