Nothing Special   »   [go: up one dir, main page]

JP3845757B2 - Spindle device of machine tool and operation method thereof - Google Patents

Spindle device of machine tool and operation method thereof Download PDF

Info

Publication number
JP3845757B2
JP3845757B2 JP15572298A JP15572298A JP3845757B2 JP 3845757 B2 JP3845757 B2 JP 3845757B2 JP 15572298 A JP15572298 A JP 15572298A JP 15572298 A JP15572298 A JP 15572298A JP 3845757 B2 JP3845757 B2 JP 3845757B2
Authority
JP
Japan
Prior art keywords
housing
main shaft
fixed
temperature difference
cooling oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15572298A
Other languages
Japanese (ja)
Other versions
JPH11347886A (en
Inventor
太史 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP15572298A priority Critical patent/JP3845757B2/en
Publication of JPH11347886A publication Critical patent/JPH11347886A/en
Application granted granted Critical
Publication of JP3845757B2 publication Critical patent/JP3845757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工作機械の主軸装置に関する。
【0002】
この明細書において、主軸の先端側、すなわち図1、図3および図4の左側を前、これと反対側を後ということにする。
【0003】
【従来の技術】
工作機械とくに高速主軸を備えたマシニングセンタなどにおいては、低速から高速までの広い範囲で安定した加工が可能な主軸装置が望まれている。
【0004】
工作機械の主軸装置として、主軸の前部および後部が転がり軸受によりハウジングに対して回転支持されているものが知られている。このような主軸装置の軸受として、アンギュラ玉軸受などが使用され、軸受内輪は主軸側に、軸受外輪はハウジング側に固定される。そして、軸受の転動体のすべり防止や主軸の剛性増加のため、軸受に適切な予圧が付与されるように各軸受間の内輪の軸方向相対位置と外輪の軸方向相対位置との関係が決められている。
【0005】
ところで、主軸が回転すると、軸受が発熱し、主軸に温度上昇が生じる。また、近年、主軸駆動用の電動モータを内蔵した主軸装置が増加しているが、その場合、主軸側のモータのロータも発熱し、主軸の温度上昇はさらに大きくなる。主軸の温度上昇の度合は回転速度によって変化し、とくに高速回転時に、主軸の温度上昇が大きく、主軸とハウジングとの間に大きな温度差が生じ、ハウジングに対して主軸の軸方向の熱変形が大きくなる。その結果、主軸側に固定されている軸受内輪の軸受間の軸方向相対位置とハウジング側に固定されている軸受外輪の軸受間の軸方向相対位置との関係が変化し、予圧過小あるいは予圧過大になり、これが軸受損傷の原因となる。
【0006】
このような主軸の熱変形を吸収するため、主軸の前後複数箇所に固定ハウジングに対して主軸を回転支持するための転がり軸受の内輪が固定され、一部の転がり軸受の外輪が固定ハウジングの内周にボールブッシュを介して軸方向移動可能に取付けられた移動ハウジングに固定された主軸装置が知られている。
【0007】
この主軸装置の場合、主軸に熱変形が生じても、固定ハウジングに対して移動ハウジングが軸方向に移動することにより、軸受の予圧の変化が防止される。しかし、次のような問題がある。
【0008】
上記の主軸装置では、固定ハウジングの内周と移動ハウジングの外周との隙間の大きさをボールブッシュのボールの外径より若干小さくし、ボールに適切な締め代を与えて、主軸の支持剛性を高めるようにしている。ところで、主軸回転中に、軸受や主軸に発熱が生じると、これらに近い移動ハウジングの方が固定ハウジングに比べて温度上昇が大きく、両者の間に温度差およびそれによる径方向の熱変形の差が生じる。移動ハウジングと固定ハウジングの温度差は主軸の温度変化によって変化し、温度差が変化することにより、両者の隙間が変化して、上記締め代が変化する。このため、上記締め代を温度差が小さい状態において適切になるように設定すると、温度差が大きい状態では、締め代が大きくなって、ボールブッシュのボールに作用する圧縮力が大きくなり、これにより、ボールの転がり抵抗が大きくなって、移動ハウジングの動きが悪くなる。逆に、上記締め代を温度差が大きい状態において適切になるように設定すると、温度差が小さい状態において、締め代が小さくなり、主軸の支持剛性が不足して、加工精度などに悪影響を及ぼす。いずれにしても、主軸の温度変化にかかわらずに、常に移動ハウジングの動きを円滑にして、主軸の支持剛性を高くすることは不可能である。
【0009】
移動ハウジングと固定ハウジングとの温度差を小さくするために、移動ハウジングの内部に冷却油を循環させるようした主軸装置が提案されている。そのような主軸装置の1例が図3に示され、その後部が図4に拡大して示されている。
【0010】
図3において、中空状の主軸(10)の前部の2箇所と後部の2箇所が転がり軸受(11)(12)(13)(14)により円筒状の固定ハウジング(15)に対して回転支持されている。この例の場合、軸受(11)〜(14)は全てアンギュラ玉軸受である。固定ハウジング(15)は、前後方向に長い円筒状の外側ハウジング部材(15a)と、外側ハウジング部材(15a)の前部内側に同心状に固定された円筒状の前部ハウジング部材(15b)と、外側ハウジング部材(15a)の後部内側に同心状に固定された円筒状の後部ハウジング部材(15c)とから構成されており、外側ハウジング部材(15a)が主軸頭(16)などに固定されている。固定ハウジング(15)内の前後のハウジング部材(15b)(15c)の間の部分に、主軸(10)を駆動するための内蔵型電動モータ(17)が設けられている。モータ(17)は、主軸(10)の外周に設けられたロータ(17a)と、その周囲の外側ハウジング部材(15a)の内周に設けられたステータ(17b)とから構成されている。
【0011】
前側の2個の軸受(11)(12)は向きを揃えて配置され、これらの内輪は主軸(10)の外周に、外輪は前部ハウジング部材(15b)の内周にそれぞれ適切な間隔をおいて固定されている。
【0012】
図4に詳細に示すように、後側の2個の軸受(13)(14)は前側の軸受(11)(12)と逆向きに向きを揃えて配置され、これらの内輪(13a)(14a)が主軸(10)の外周に適切な間隔をおいて固定されている。後部ハウジング部材(15c)の内周にボールブッシュ(18)がはめられ、その内周に円筒状の移動ハウジング(19)がはめられている。ボールブッシュ(18)は薄肉円筒状の保持器に多数のボール(18a)が径方向の両側に突出するように保持されたものであり、移動ハウジング(19)は、ハウジング部材(15c)に対して回転はしないが、ボールブッシュ(18)のボール(18a)を介して軸方向に移動しうるようになっている。ハウジング部材(15c)より後方に出ている移動ハウジング(19)の後端部に蓋(20)が固定され、移動ハウジング(19)の内周に2個の軸受(13)(14)の外輪(13b)(14b)が適切な間隔をおいて固定されている。ハウジング部材(15c)の後端面に3つ以上のばね収容穴(21)が円周方向に等間隔をおいて形成され、これらの穴(21)に対応して、蓋(20)の後端部に外方突出部(20a)が形成されている。各穴(21)に、弾性部材である圧縮コイルばね(22)が収容されている。ばね(22)は、穴(21)の底と蓋(20)の突出部(20a)に圧接して、蓋(20)を後向きに付勢している。これにより、移動ハウジング(19)が後向きに付勢され、その結果、軸受(13)(14)の外輪(13b)(14b)が後向きに付勢されて、軸受(11)〜(14)に適切な予圧が付与されている。
【0013】
ボールブッシュ(18)の内側にある移動ハウジング(19)の外周面に、ブッシュ(23)が焼きばめにより固定されている。移動ハウジング(19)の後端部外周面およびブッシュ(23)の前端部内周面に、それぞれ突出高さの等しい環状凸部(19a)(23a)が全周にわたって一体に形成されている。移動ハウジング(19)の環状凸部(19a)の外周面とブッシュ(23)の内周面との間、およびブッシュ(23)の環状凸部(23a)の内周面と移動ハウジング(19)の外周面との間がそれぞれシール(24)(25)により密閉されており、これにより移動ハウジング(19)とブッシュ(23)との間に環状の冷却油循環用中空部(26)(冷却流体循環用中空部)が形成されている。冷却油循環用中空部(26)は、移動ハウジング(19)および蓋(20)に形成された連通路(27)を介して蓋(20)の突出部(20a)に固定された冷却油供給管接続用継手ブロック(28)に通じさせられている。継手ブロック(28)に、油タンク、ポンプ等を備えた冷却油供給装置(29)からの冷却油供給管(30)が接続されている。なお、図示は省略したが、冷却油循環用中空部(26)は、連通路(27)とは異なった位置において移動ハウジング(19)および蓋(20)に形成された連通路を介して蓋(20)に固定された冷却油排出管接続用継手ブロックに通じさせられており、この継手ブロックに、冷却油供給装置(29)に伸びる冷却油排出管(30)が接続されている。
【0014】
上記の主軸装置において、主軸(10)に熱変形が生じても、固定ハウジング(15)の後部ハウジング部材(15c)に対して移動ハウジング(19)が軸方向に移動することにより、軸受(11)〜(14)の予圧の変化が防止される。たとえば、主軸(10)の熱変形が大きくなってその後部が後側に移動すると、これに伴って後側の軸受(13)(14)の内輪(13a)(14a)も後側に移動し、軸受(11)〜(14)の予圧が減少する。すると、軸受(13)(14)の外輪(13b)(14b)に働いている予圧の分力とばね(22)の力とのつりあいがくずれ、移動ハウジング(19)および外輪(13b)(14b)がばね(22)に押されて後側に移動し、両方の力がつりあう位置で停止する。逆に、主軸(10)の熱変形が小さくなってその後部が前側に移動すると、これに伴って軸受(13)(14)の内輪(13a)(14a)も前側に移動し、軸受(11)〜(14)の予圧が増加する。すると、軸受(13)(14)の外輪(13b)(14b)に働いている予圧の分力とばね(22)の力とのつりあいがくずれ、移動ハウジング(19)および外輪(13b)(14b)がばね(22)を圧縮させて前側に移動し、両方の力がつりあう位置で停止する。
【0015】
また、主軸(10)の高速回転時には、軸受(11)〜(14)の発熱により移動ハウジング(19)の温度がハウジング部材(15c)の温度よりも高くなるが、冷却油が冷却油供給装置(29)から冷却油循環用中空部(26)に供給されてこの中空部(26)内を循環するので、移動ハウジング(19)とハウジング部材(15c)との温度差が緩和され、両者の隙間の大きさを調整して、ボールブッシュ(18)のボール(18a)の締め代を適切な範囲に保つことができる。したがって、主軸(10)の温度変化にかかわらず、常に、移動ハウジング(19)の動きを円滑にして、軸受(11)〜(14)の予圧を適切な値に保つとともに、主軸(10)の支持剛性を高く保つことができる。このため、低速回転から高速回転まで安定した運転が可能であり、加工精度などの性能も向上する。
【0016】
しかしながら、上記主軸装置では、次のような問題がある。すなわち、高速回転していた主軸(10)が急停止した場合、軸受(11)〜(14)の発熱により温度上昇していた移動ハウジング(19)およびハウジング部材(15c)への熱伝達がなくなり、冷却油循環用中空部(26)内に供給されている冷却油によって熱容量の小さい移動ハウジング(19)が、ハウジング部材(15c)に比べて急速に冷却される。このため、移動ハウジング(19)の収縮量がハウジング部材(15c)の収縮量に比べて大きくなり、ボールブッシュ(18)のボール(18a)の締め代が過小になる。したがって、主軸(10)の支持剛性が低下し、その後の主軸(10)の急加速時に主軸(10)に大きな振動が発生する。
【0017】
【発明が解決しようとする課題】
この発明の目的は、上記の問題を解決し、主軸の急停止時にも主軸の支持剛性の低下を防止することが可能であり、その後の主軸の急加速時に主軸に大きな振動が発生するのを防止することができる工作機械の主軸装置を提供することにある。
【0018】
【課題を解決するための手段および発明の効果】
この発明による装置は、主軸の前後複数箇所に固定ハウジングに対して主軸を回転支持するための転がり軸受の内輪が固定され、一部の転がり軸受の外輪が固定ハウジングの内周にボールブッシュを介して軸方向移動可能に取付けられた移動ハウジングに固定され、移動ハウジングの外周面にブッシュが固定され、移動ハウジングの外周面とブッシュの内周面との間に環状の冷却流体循環用中空部が形成されている工作機械の主軸装置において、移動ハウジングと固定ハウジングとの温度差を検出する手段と、この温度差に基いて冷却流体循環用中空部への冷却流体の供給を制御する手段とを備えていることを特徴とするものである。
【0019】
この発明の装置によれば、主軸の高速回転時には、軸受の発熱により移動ハウジングの温度が固定ハウジングの温度よりも高くなり、温度差検出手段により検出された移動ハウジングと固定ハウジングとの温度差が設定値を越えると、冷却流体供給制御手段は、冷却流体を冷却流体循環用中空部内に供給し、移動ハウジングを冷却する。したがって、両ハウジングの温度差が緩和され、両者の隙間の大きさを調整して、ボールブッシュのボールの締め代を適切な範囲に保つことができる。その結果、ボールブッシュのボールの締め代を常に適切な範囲に保つことができる。このため、主軸の温度変化にかかわらず、常に、移動ハウジングの動きを円滑にして、転がり軸受の予圧を適切な値に保つとともに、主軸の支持剛性を高く保つことができる。したがって、低速回転から高速回転まで安定した運転が可能であり、加工精度などの性能も向上する。
【0020】
高速回転していた主軸が急停止した場合、軸受の発熱により温度上昇していた移動ハウジングおよび固定ハウジングへの熱伝達がなくなり、冷却流体循環用中空部内に供給されていた冷却流体によって熱容量の小さい移動ハウジングが急速に冷却される。このとき、温度差検出手段により検出された移動ハウジングと固定ハウジングとの温度差が設定値以下になると、冷却流体供給制御手段は、冷却流体の冷却流体循環用中空部内への供給を停止し、移動ハウジングの過冷却が防止される。したがって、両ハウジングのボールブッシュのボールの締め代が過小になることを防止することができ、主軸の支持剛性の低下を防止することができる。その結果、その後の主軸急加速時に主軸に振動が発生することはない。
【0021】
この発明の装置において、移動ハウジングの外周面にブッシュが固定され、移動ハウジングの外周面とブッシュの内周面との間に環状の冷却流体循環用中空部が形成されている。
【0022】
このようにすれば、比較的簡単に移動ハウジングに冷却流体循環用中空部を形成することができる。
【0023】
【発明の実施の形態】
以下、この発明の実施の形態を、図面を参照して説明する。
【0024】
図1はこの発明の実施形態を示す図4に相当する主軸装置後部の縦断面図であり、図1において、図4のものに対応する部分には同一の符号を付している。
【0025】
この実施形態の場合、移動ハウジング(19)内および後部ハウジング部材(15c)内の適当箇所に、これらの間の温度差を検出する手段としての温度センサ(41)(42)が設けられている。また、冷却油供給装置(29)から冷却油循環用中空部(26)内に冷却油を供給する冷却油供給管(30)の途中に単一のソレノイドを用いたばねオフセット形のソレノイドバルブ(43)が設けられている。各温度センサ(41)(42)およびソレノイドバルブ(43)は、冷却油供給制御装置(44)(冷却流体供給制御手段)に接続されている。
【0026】
ここで、図2のフローチャートを参照して、冷却油供給制御装置(44)による制御動作について説明する。
【0027】
制御装置(44)は、移動ハウジング(19)の温度センサ(41)および後部ハウジング部材(15c)の温度センサ(42)の出力信号から両温度センサ(41)(42)により検出された温度T、Tの温度差T−Tを求め、この温度差T−Tと設定値THとを比較して温度差T−Tが設定値TH以上であれば(ステップ1)、ソレノイドバルブ(43)の励磁を停止してこれを開にし、冷却油供給装置(29)から冷却油循環用中空部(26)内に冷却油を供給する(ステップ2)。ステップ2の後ステップ1に戻る。ステップ1で上記温度差T−Tが設定値TH未満のであれば、上記温度差T−Tと設定値TLとを比較し、温度差T−Tが設定値TL以下であれば(ステップ3)、ソレノイドバルブ(43)を励磁してこれを閉にし、冷却油供給装置(29)から冷却油循環用中空部(26)内への冷却油の供給を停止する(ステップ4)。ステップ4の後にステップ1に戻る。ステップ3において、温度差T−Tが設定値TLよりも大きければ、ステップ1に戻る。ここで、設定値TLは設定値THよりも所定温度低い温度であり、ソレノイドバルブ(43)が頻繁に開閉しないようになっている。
【0028】
主軸装置の後部における他の部分の構成は、図4のものと同様である。また、主軸装置全体の構成は、たとえば図3のものと同様にすることができる。
【0029】
上記の主軸装置において、運転の初期段階においては、移動ハウジング(19) 、固定ハウジング(15)の後部ハウジング部材(15c)には温度差がほとんど存在しないので、ソレノイドバルブ(43)は励磁されて閉とされており、冷却油循環用中空部(26)内には冷却油は供給されていない。
【0030】
主軸(10)が回転することにより軸受(11)〜(14)が発熱し、主軸(10)の温度が上昇して主軸(10)に熱変形が生じても、固定ハウジング(15)の後部ハウジング部材(15c)に対して移動ハウジング(19)が軸方向に移動することにより、軸受(11)〜(14)の予圧の変化が防止される。たとえば、主軸(10)の熱変形が大きくなってその後部が後側に移動すると、これに伴って後側の軸受(13)(14)の内輪(13a)(14a)も後側に移動し、軸受(11)〜(14)の予圧が減少する。すると、軸受(13)(14)の外輪(13b)(14b)に働いている予圧の分力とばね(22)の力とのつりあいがくずれ、移動ハウジング(19)および外輪(13b)(14b)がばね(22)に押されて後側に移動し、両方の力がつりあう位置で停止する。逆に、主軸(10)の熱変形が小さくなってその後部が前側に移動すると、これに伴って軸受(13)(14)の内輪(13a)(14a)も前側に移動し、軸受(11)〜(14)の予圧が増加する。すると、軸受(13)(14)の外輪(13b)(14b)に働いている予圧の分力とばね(22)の力とのつりあいがくずれ、移動ハウジング(19)および外輪(13b)(14b)がばね(22)を圧縮させて前側に移動し、両方の力がつりあう位置で停止する。
【0031】
また、主軸(10)の高速回転時に、軸受(11)〜(14)の発熱により移動ハウジング(19)の温度が後部ハウジング部材(15c)の温度よりも高くなるが、その温度差が設定値TH以上になった場合、上記のように冷却油供給制御装置(44)により冷却油循環用中空部(26)内に冷却油が供給され、両者の温度差が緩和され、ボールブッシュ(18)のボール(18a)の締め代を適切な範囲に保つことができる。その結果、主軸(10)の温度変化にかかわらず、常に、移動ハウジング(19)の動きを円滑にして、軸受(11)〜(14)の予圧を適切な値に保つとともに、主軸(10)の支持剛性を高く保つことができる。このため、低速回転から高速回転まで安定した運転が可能であり、加工精度などの性能も向上する。
【0032】
さらに、高速回転していた主軸(10)が急停止した場合、冷却油循環用中空部(26)内を循環している冷却油により熱容量の小さい移動ハウジング(19)が急速に冷却されるが、移動ハウジング(19)と後部ハウジング部材(15c)の温度差が設定値TL以下になった場合、上記のように冷却油供給制御装置(44)により冷却油循環用中空部(26)内への冷却油の供給が停止され、移動ハウジング(19)の過冷却が防止される。したがって、両ハウジングのボールブッシュのボールの締め代が過小になることを防止することができ、主軸(10)の支持剛性の低下を防止することができる。その結果、その後の主軸(10)の急加速時に主軸(10)に振動が発生することはない
【図面の簡単な説明】
【図1】 この発明の実施形態を示す主軸装置後部の縦断面図である。
【図2】 冷却油供給制御装置による制御動作の1例を示すフローチャートである。
【図3】 従来例を示す主軸装置の縦断面図である。
【図4】 図3の後部を拡大して示す縦断面図である。
【符号の説明】
(10):主軸
(11)(12)(13)(14):玉軸受(転がり軸受)
(11a)(12a)(13a)(14a):内輪
(13b)(14b):外輪
(15):固定ハウジング
(15c):ハウジング部材
(18):ボールブッシュ
(18a):ボール
(19):移動ハウジング
(26):冷却油循環用中空部(冷却流体循環用中空部)
(41)(42):温度センサ(温度差検出手段)
(44):冷却油供給制御装置(冷却流体供給制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spindle device for a machine tool.
[0002]
In this specification, the front end side of the main shaft, that is, the left side of FIGS. 1, 3 and 4 is referred to as the front, and the opposite side is referred to as the rear.
[0003]
[Prior art]
In machine tools, particularly machining centers equipped with a high-speed spindle, a spindle apparatus capable of stable machining in a wide range from low speed to high speed is desired.
[0004]
As a main spindle device of a machine tool, one in which a front portion and a rear portion of a main shaft are rotatably supported with respect to a housing by a rolling bearing is known. An angular ball bearing or the like is used as a bearing of such a main shaft device, and the bearing inner ring is fixed to the main shaft side and the bearing outer ring is fixed to the housing side. In order to prevent the rolling elements of the bearings from slipping and increase the rigidity of the main shaft, the relationship between the axial relative position of the inner ring and the axial relative position of the outer ring is determined so that an appropriate preload is applied to the bearing. It has been.
[0005]
By the way, when the main shaft rotates, the bearing generates heat and a temperature rise occurs in the main shaft. Further, in recent years, the number of spindle apparatuses incorporating an electric motor for driving the spindle has increased, but in that case, the rotor of the motor on the spindle side also generates heat, and the temperature rise of the spindle further increases. The degree of temperature rise of the main shaft varies depending on the rotation speed, especially during high-speed rotation, the temperature rise of the main shaft is large, a large temperature difference occurs between the main shaft and the housing, and the main shaft undergoes thermal deformation in the axial direction of the main shaft. growing. As a result, the relationship between the axial relative position between the bearings of the bearing inner ring fixed on the main shaft side and the axial relative position between the bearings of the bearing outer ring fixed on the housing side changes, and the preload is too low or too high. This causes bearing damage.
[0006]
In order to absorb such thermal deformation of the main shaft, the inner ring of the rolling bearing for rotating and supporting the main shaft with respect to the fixed housing is fixed at a plurality of positions before and after the main shaft, and the outer ring of some of the rolling bearings is fixed inside the fixed housing. 2. Description of the Related Art A spindle device is known that is fixed to a moving housing that is attached to the periphery via a ball bush so as to be axially movable.
[0007]
In the case of this main shaft device, even if thermal deformation occurs in the main shaft, the moving housing moves in the axial direction with respect to the fixed housing, thereby preventing a change in the preload of the bearing. However, there are the following problems.
[0008]
In the above spindle device, the size of the gap between the inner periphery of the fixed housing and the outer periphery of the movable housing is made slightly smaller than the outer diameter of the ball bushing ball, and an appropriate tightening allowance is given to the ball to increase the support rigidity of the spindle. I try to increase it. By the way, if heat is generated in the bearing or the main shaft during rotation of the main shaft, the temperature of the moving housing close to these is larger than that of the fixed housing, and the temperature difference between them and the difference in the thermal deformation in the radial direction between them is large. Occurs. The temperature difference between the movable housing and the fixed housing changes due to the temperature change of the main shaft, and when the temperature difference changes, the gap between the two changes, and the above-mentioned tightening allowance changes. For this reason, if the tightening margin is set so as to be appropriate in a state where the temperature difference is small, the tightening margin is increased in a state where the temperature difference is large, and the compressive force acting on the balls of the ball bushing is increased. The rolling resistance of the ball is increased, and the movement of the moving housing is deteriorated. On the contrary, if the above tightening allowance is set to be appropriate in a state where the temperature difference is large, the tightening allowance becomes small in a state where the temperature difference is small, and the spindle support rigidity is insufficient, which adversely affects the machining accuracy. . In any case, it is impossible to always make the movement of the movable housing smooth and increase the support rigidity of the main shaft regardless of the temperature change of the main shaft.
[0009]
In order to reduce the temperature difference between the moving housing and the fixed housing, a spindle device has been proposed in which cooling oil is circulated inside the moving housing. An example of such a spindle device is shown in FIG. 3, and its rear part is shown enlarged in FIG.
[0010]
In FIG. 3, two places at the front and two places at the rear of the hollow main shaft (10) are rotated with respect to the cylindrical fixed housing (15) by the rolling bearings (11), (12), (13), and (14). It is supported. In this example, the bearings (11) to (14) are all angular ball bearings. The fixed housing (15) includes a cylindrical outer housing member (15a) that is long in the front-rear direction, and a cylindrical front housing member (15b) that is concentrically fixed inside the front portion of the outer housing member (15a). A cylindrical rear housing member (15c) concentrically fixed inside the rear portion of the outer housing member (15a), and the outer housing member (15a) is fixed to the spindle head (16) or the like. Yes. A built-in electric motor (17) for driving the main shaft (10) is provided in a portion between the front and rear housing members (15b) and (15c) in the fixed housing (15). The motor (17) includes a rotor (17a) provided on the outer periphery of the main shaft (10) and a stator (17b) provided on the inner periphery of the outer housing member (15a) around it.
[0011]
The two bearings (11) and (12) on the front side are arranged in the same direction, and these inner rings are spaced apart from the outer periphery of the main shaft (10), and the outer rings are spaced apart from the inner periphery of the front housing member (15b). Fixed.
[0012]
As shown in detail in FIG. 4, the two rear bearings (13) and (14) are arranged in the opposite direction to the front bearings (11) and (12), and these inner rings (13a) ( 14a) is fixed to the outer periphery of the main shaft (10) at an appropriate interval. A ball bush (18) is fitted on the inner periphery of the rear housing member (15c), and a cylindrical movable housing (19) is fitted on the inner periphery thereof. The ball bush (18) is a thin cylindrical retainer that holds a large number of balls (18a) so as to protrude on both sides in the radial direction, and the movable housing (19) is opposed to the housing member (15c). Although it does not rotate, it can move in the axial direction via the ball (18a) of the ball bush (18). A lid (20) is fixed to the rear end of the movable housing (19) protruding rearward from the housing member (15c), and the outer ring of the two bearings (13) and (14) is provided on the inner periphery of the movable housing (19). (13b) and (14b) are fixed at an appropriate interval. Three or more spring accommodating holes (21) are formed at equal intervals in the circumferential direction on the rear end surface of the housing member (15c), and the rear end of the lid (20) corresponding to these holes (21). An outward projecting portion (20a) is formed on the portion. Each hole (21) accommodates a compression coil spring (22) which is an elastic member. The spring (22) presses against the bottom of the hole (21) and the protrusion (20a) of the lid (20) to urge the lid (20) backward. As a result, the movable housing (19) is urged rearward, and as a result, the outer rings (13b) and (14b) of the bearings (13) and (14) are urged rearward to the bearings (11) to (14). Appropriate preload is applied.
[0013]
The bush (23) is fixed to the outer peripheral surface of the moving housing (19) inside the ball bush (18) by shrink fitting. On the outer peripheral surface of the rear end portion of the movable housing (19) and the inner peripheral surface of the front end portion of the bush (23), annular convex portions (19a) and (23a) having the same protruding height are integrally formed over the entire circumference. Between the outer peripheral surface of the annular protrusion (19a) of the moving housing (19) and the inner peripheral surface of the bush (23), and the inner peripheral surface of the annular protrusion (23a) of the bush (23) and the moving housing (19) Are sealed with seals (24) and (25), respectively, so that an annular cooling oil circulation hollow portion (26) (cooling) is provided between the movable housing (19) and the bush (23). A fluid circulation hollow portion) is formed. The cooling oil circulation hollow part (26) is supplied to the protruding part (20a) of the lid (20) via the communication passage (27) formed in the movable housing (19) and the lid (20). It is connected to the joint block (28) for pipe connection. Connected to the joint block (28) is a cooling oil supply pipe (30) from a cooling oil supply device (29) provided with an oil tank, a pump and the like. Although not shown in the drawings, the cooling oil circulation hollow portion (26) has a lid through a communication passage formed in the movable housing (19) and the lid (20) at a position different from the communication passage (27). The cooling oil discharge pipe connecting joint block fixed to (20) is connected to the cooling oil discharge pipe (30) extending to the cooling oil supply device (29).
[0014]
In the above spindle device, even if thermal deformation occurs in the spindle (10), the moving housing (19) moves in the axial direction with respect to the rear housing member (15c) of the fixed housing (15), so that the bearing (11 ) To (14) are prevented from changing in preload. For example, when the thermal deformation of the main shaft (10) increases and the rear part moves to the rear side, the inner rings (13a) and (14a) of the rear bearings (13) and (14) also move to the rear side. The preload of the bearings (11) to (14) is reduced. Then, the preload force acting on the outer ring (13b) (14b) of the bearing (13) (14) is not balanced with the force of the spring (22), and the movable housing (19) and the outer ring (13b) (14b) ) Is pushed to the rear by the spring (22) and stops at a position where both forces are balanced. Conversely, when the thermal deformation of the main shaft (10) is reduced and the rear part thereof moves to the front side, the inner rings (13a) and (14a) of the bearings (13) and (14) also move to the front side accordingly, and the bearing (11 ) To (14) preload increases. Then, the preload force acting on the outer ring (13b) (14b) of the bearing (13) (14) is not balanced with the force of the spring (22), and the movable housing (19) and the outer ring (13b) (14b) ) Compresses the spring (22) and moves forward, stopping at the position where both forces are balanced.
[0015]
Further, during the high speed rotation of the main shaft (10), the temperature of the moving housing (19) becomes higher than the temperature of the housing member (15c) due to the heat generation of the bearings (11) to (14). (29) is supplied to the cooling oil circulation hollow portion (26) and circulates in the hollow portion (26), so that the temperature difference between the movable housing (19) and the housing member (15c) is alleviated. By adjusting the size of the gap, it is possible to keep the tightening allowance of the ball (18a) of the ball bush (18) within an appropriate range. Therefore, regardless of the temperature change of the main shaft (10), the movement of the movable housing (19) is always smoothed, the preload of the bearings (11) to (14) is kept at an appropriate value, and the main shaft (10) Support rigidity can be kept high. Therefore, stable operation from low speed rotation to high speed rotation is possible, and performance such as machining accuracy is improved.
[0016]
However, the spindle device has the following problems. That is, when the spindle (10) that has been rotating at a high speed stops suddenly, there is no heat transfer to the moving housing (19) and the housing member (15c), which have risen in temperature due to heat generated by the bearings (11) to (14). The moving housing (19) having a small heat capacity is cooled more rapidly than the housing member (15c) by the cooling oil supplied into the cooling oil circulation hollow portion (26). For this reason, the contraction amount of the movable housing (19) becomes larger than the contraction amount of the housing member (15c), and the tightening allowance of the ball (18a) of the ball bush (18) becomes too small. Therefore, the support rigidity of the main shaft (10) is reduced, and a large vibration is generated in the main shaft (10) during the subsequent rapid acceleration of the main shaft (10).
[0017]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems and prevent a decrease in the support rigidity of the main shaft even when the main shaft suddenly stops, and a large vibration is generated in the main shaft during the subsequent sudden acceleration of the main shaft. It is an object of the present invention to provide a spindle device for a machine tool that can be prevented.
[0018]
[Means for Solving the Problems and Effects of the Invention]
In the apparatus according to the present invention, an inner ring of a rolling bearing for rotating and supporting the main shaft with respect to the fixed housing is fixed at a plurality of positions before and after the main shaft, and an outer ring of a part of the rolling bearing is inserted into the inner periphery of the fixed housing via a ball bush. The bush is fixed to the outer peripheral surface of the movable housing, and an annular cooling fluid circulation hollow is provided between the outer peripheral surface of the movable housing and the inner peripheral surface of the bush. In the formed spindle device of the machine tool, means for detecting a temperature difference between the movable housing and the fixed housing, and means for controlling the supply of the cooling fluid to the cooling fluid circulation hollow portion based on the temperature difference. It is characterized by having.
[0019]
According to the apparatus of the present invention, when the main shaft rotates at a high speed, the temperature of the moving housing becomes higher than the temperature of the fixed housing due to heat generation of the bearing, and the temperature difference between the moving housing and the fixed housing detected by the temperature difference detecting means is increased. When the set value is exceeded, the cooling fluid supply control means supplies the cooling fluid into the cooling fluid circulation hollow portion to cool the moving housing. Therefore, the temperature difference between the two housings is alleviated, and the size of the gap between the two housings can be adjusted to keep the ball bushing margin of the ball bushing within an appropriate range. As a result, the ball bushing margin of the ball bush can always be kept within an appropriate range. For this reason, regardless of the temperature change of the main shaft, the movement of the movable housing can always be made smooth, the preload of the rolling bearing can be kept at an appropriate value, and the support rigidity of the main shaft can be kept high. Therefore, stable operation from low speed rotation to high speed rotation is possible, and performance such as machining accuracy is improved.
[0020]
When the spindle that has been rotating at high speed stops suddenly, heat transfer to the moving housing and stationary housing, which has risen in temperature due to the heat generated by the bearings, is lost, and the heat capacity is reduced by the cooling fluid supplied into the cooling fluid circulation hollow. The moving housing is rapidly cooled. At this time, when the temperature difference between the movable housing and the fixed housing detected by the temperature difference detecting means becomes a set value or less, the cooling fluid supply control means stops supplying the cooling fluid into the cooling fluid circulation hollow portion, Overcooling of the moving housing is prevented. Therefore, it is possible to prevent the ball bushing of both the housings from being excessively tightened, and to prevent a decrease in the support rigidity of the main shaft. As a result, no vibration is generated in the main shaft during the subsequent rapid acceleration of the main shaft.
[0021]
Apparatus smell of the invention Te, bush is fixed to the outer peripheral surface of the moving housing, a hollow portion for cooling fluid circulation ring is formed between the outer surface and the inner peripheral surface of the bush of the movement housing.
[0022]
In this way, the cooling fluid circulation hollow portion can be formed in the moving housing relatively easily.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0024]
FIG. 1 is a longitudinal sectional view of a rear portion of a main spindle device corresponding to FIG. 4 showing an embodiment of the present invention. In FIG. 1, portions corresponding to those in FIG.
[0025]
In the case of this embodiment, temperature sensors (41) (42) as means for detecting a temperature difference between these are provided at appropriate locations in the movable housing (19) and the rear housing member (15c). . Also, a spring offset solenoid valve (43) using a single solenoid in the middle of the cooling oil supply pipe (30) for supplying the cooling oil from the cooling oil supply device (29) into the cooling oil circulation hollow portion (26). ) Is provided. Each temperature sensor (41) (42) and solenoid valve (43) are connected to a cooling oil supply control device (44) (cooling fluid supply control means).
[0026]
Here, the control operation by the cooling oil supply control device (44) will be described with reference to the flowchart of FIG.
[0027]
The control device (44) detects the temperature T detected by the temperature sensors (41) and (42) from the output signals of the temperature sensor (41) of the moving housing (19) and the temperature sensor (42) of the rear housing member (15c). i, obtains the temperature difference T i -T o of T o, if the temperature difference T i -T o with the set value TH is compared with the temperature difference T i -T o set value TH or more (step 1 ), The excitation of the solenoid valve (43) is stopped and opened, and the cooling oil is supplied from the cooling oil supply device (29) into the cooling oil circulation hollow portion (26) (step 2). After step 2, return to step 1. If the temperature difference T i -T o that less than the set value TH in step 1, is compared with the set value TL and the temperature difference T i -T o, the temperature difference T i -T o is less than or equal the set value TL If there is (step 3), the solenoid valve (43) is energized and closed, and the cooling oil supply from the cooling oil supply device (29) into the cooling oil circulation hollow portion (26) is stopped (step). 4). After step 4, return to step 1. In Step 3, if the temperature difference T i -T o is greater than the set value TL, the flow returns to step 1. Here, the set value TL is a temperature lower than the set value TH by a predetermined temperature, and the solenoid valve (43) is not frequently opened and closed.
[0028]
The structure of the other part in the rear part of the spindle device is the same as that of FIG. Moreover, the structure of the whole spindle apparatus can be made the same as that of FIG. 3, for example.
[0029]
In the above spindle device, in the initial stage of operation, there is almost no temperature difference between the rear housing member (15c) of the movable housing (19) and the fixed housing (15), so the solenoid valve (43) is excited. The cooling oil is not supplied into the cooling oil circulation hollow portion (26).
[0030]
Even if the bearings (11) to (14) generate heat due to the rotation of the main shaft (10) and the temperature of the main shaft (10) rises and the main shaft (10) is thermally deformed, the rear part of the fixed housing (15) When the movable housing (19) moves in the axial direction with respect to the housing member (15c), a change in the preload of the bearings (11) to (14) is prevented. For example, when the thermal deformation of the main shaft (10) increases and the rear part moves to the rear side, the inner rings (13a) and (14a) of the rear bearings (13) and (14) also move to the rear side. The preload of the bearings (11) to (14) is reduced. Then, the preload component force acting on the outer ring (13b) (14b) of the bearing (13) (14) is unbalanced with the force of the spring (22), and the movable housing (19) and the outer ring (13b) (14b) ) Is pushed to the rear by the spring (22) and stops at a position where both forces are balanced. Conversely, when the thermal deformation of the main shaft (10) is reduced and the rear part thereof moves to the front side, the inner rings (13a) and (14a) of the bearings (13) and (14) also move to the front side accordingly, and the bearing (11 ) To (14) preload increases. Then, the preload component force acting on the outer ring (13b) (14b) of the bearing (13) (14) is unbalanced with the force of the spring (22), and the movable housing (19) and the outer ring (13b) (14b) ) Compresses the spring (22) and moves forward, stopping at the position where both forces are balanced.
[0031]
In addition, when the main shaft (10) rotates at high speed, the temperature of the moving housing (19) becomes higher than the temperature of the rear housing member (15c) due to the heat generated by the bearings (11) to (14). When the temperature exceeds TH, the cooling oil is supplied into the cooling oil circulation hollow portion (26) by the cooling oil supply control device (44) as described above, the temperature difference between them is alleviated, and the ball bush (18) The allowance of the ball (18a) can be kept within an appropriate range. As a result, regardless of the temperature change of the main shaft (10), the movement of the movable housing (19) is always smoothed, the preload of the bearings (11) to (14) is kept at an appropriate value, and the main shaft (10) The support rigidity of the can be kept high. Therefore, stable operation from low speed rotation to high speed rotation is possible, and performance such as machining accuracy is improved.
[0032]
Furthermore, when the spindle (10) that has been rotating at a high speed suddenly stops, the moving housing (19) with a small heat capacity is rapidly cooled by the cooling oil circulating in the cooling oil circulation hollow portion (26). When the temperature difference between the movable housing (19) and the rear housing member (15c) becomes less than the set value TL, the cooling oil supply control device (44) enters the cooling oil circulation hollow portion (26) as described above. The cooling oil supply is stopped and overcooling of the movable housing (19) is prevented. Therefore, it is possible to prevent the ball bushing of both housings from being excessively tightened, and to prevent the support rigidity of the main shaft (10) from being lowered. As a result, vibrations during rapid acceleration to the main shaft (10) does not occur in the subsequent main axis (10).
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rear portion of a spindle device showing an embodiment of the present invention.
FIG. 2 is a flowchart showing an example of a control operation by a cooling oil supply control device.
FIG. 3 is a longitudinal sectional view of a spindle device showing a conventional example.
4 is an enlarged longitudinal sectional view showing a rear part of FIG. 3. FIG.
[Explanation of symbols]
(10): Spindle
(11) (12) (13) (14): Ball bearing (rolling bearing)
(11a) (12a) (13a) (14a): Inner ring
(13b) (14b): Outer ring
(15): Fixed housing
(15c): Housing member
(18): Ball bush
(18a): Ball
(19): Moving housing
(26): Cooling oil circulation hollow (cooling fluid circulation hollow)
(41) (42): Temperature sensor (temperature difference detection means)
(44): Cooling oil supply control device (cooling fluid supply control means)

Claims (1)

主軸の前後複数箇所に固定ハウジングに対して主軸を回転支持するための転がり軸受の内輪が固定され、一部の転がり軸受の外輪が固定ハウジングの内周にボールブッシュを介して軸方向移動可能に取付けられた移動ハウジングに固定され、移動ハウジングの外周面にブッシュが固定され、移動ハウジングの外周面とブッシュの内周面との間に環状の冷却流体循環用中空部が形成されている工作機械の主軸装置において、
移動ハウジングと固定ハウジングとの温度差を検出する手段と、この温度差に基いて冷却流体循環用中空部への冷却流体の供給を制御する手段とを備えていることを特徴とする工作機械の主軸装置。
The inner ring of a rolling bearing for rotating and supporting the main shaft with respect to the fixed housing is fixed at multiple locations on the front and rear of the main shaft, and the outer ring of some of the rolling bearings can move in the axial direction on the inner periphery of the fixed housing via a ball bush. A machine tool that is fixed to an attached moving housing, a bush is fixed to the outer peripheral surface of the moving housing, and an annular cooling fluid circulation hollow is formed between the outer peripheral surface of the moving housing and the inner peripheral surface of the bush In the spindle device of
A machine tool comprising: means for detecting a temperature difference between the movable housing and the fixed housing; and means for controlling the supply of the cooling fluid to the cooling fluid circulation hollow portion based on the temperature difference. Spindle device.
JP15572298A 1998-06-04 1998-06-04 Spindle device of machine tool and operation method thereof Expired - Fee Related JP3845757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15572298A JP3845757B2 (en) 1998-06-04 1998-06-04 Spindle device of machine tool and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15572298A JP3845757B2 (en) 1998-06-04 1998-06-04 Spindle device of machine tool and operation method thereof

Publications (2)

Publication Number Publication Date
JPH11347886A JPH11347886A (en) 1999-12-21
JP3845757B2 true JP3845757B2 (en) 2006-11-15

Family

ID=15612054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15572298A Expired - Fee Related JP3845757B2 (en) 1998-06-04 1998-06-04 Spindle device of machine tool and operation method thereof

Country Status (1)

Country Link
JP (1) JP3845757B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105728757A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Self-lubricated machine tool spindle
CN105728756A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Machine tool spindle
CN105728755A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Heat radiating machine tool spindle
CN106002340A (en) * 2015-03-27 2016-10-12 兄弟工业株式会社 Workpiece support device and machine tool
KR20180045057A (en) * 2014-02-28 2018-05-03 닛본 세이고 가부시끼가이샤 Main shaft device
US20200398396A1 (en) * 2019-06-18 2020-12-24 Disco Corporation Processing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859497B2 (en) * 2006-03-22 2012-01-25 大阪機工株式会社 Machine tool spindle cooling system
KR101059147B1 (en) 2009-09-24 2011-08-25 한국기계연구원 Spindle Support Bearing Preloading Device
KR101594627B1 (en) * 2009-12-17 2016-02-16 두산인프라코어 주식회사 Spindle support apparatus for a machine tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180045057A (en) * 2014-02-28 2018-05-03 닛본 세이고 가부시끼가이샤 Main shaft device
KR101973915B1 (en) * 2014-02-28 2019-04-29 닛본 세이고 가부시끼가이샤 Main shaft device
CN106002340A (en) * 2015-03-27 2016-10-12 兄弟工业株式会社 Workpiece support device and machine tool
CN106002340B (en) * 2015-03-27 2018-09-11 兄弟工业株式会社 Work-supporting means and lathe
CN105728757A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Self-lubricated machine tool spindle
CN105728756A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Machine tool spindle
CN105728755A (en) * 2016-03-31 2016-07-06 苏州亚思科精密数控有限公司 Heat radiating machine tool spindle
US20200398396A1 (en) * 2019-06-18 2020-12-24 Disco Corporation Processing apparatus
US11845154B2 (en) * 2019-06-18 2023-12-19 Disco Corporation Processing apparatus

Also Published As

Publication number Publication date
JPH11347886A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US5223758A (en) Spindle motor
EP0347877B1 (en) Bearing apparatus
JP3845757B2 (en) Spindle device of machine tool and operation method thereof
US6394658B1 (en) Bearing systems having reduced noise and axial preload
JP2000237902A (en) Main shaft device
US5820272A (en) Bearing structure for a rotating shaft
JPH10225802A (en) Main spindle device for machine tool
JPH10286701A (en) Main shaft device for machine tool
JPH0822481B2 (en) Preload switching type spindle unit
JP2008030132A (en) Spindle bearing structure of nc automatic lathe
JP2510758B2 (en) Cooling method for bearings for machine spindles
JP2630217B2 (en) Variable preload spindle unit
JPH0641796Y2 (en) Spindle unit
JP3500530B2 (en) Spindle device of machine tool and monitoring method thereof
JP2002346861A (en) Spindle device of machine tool
JP2000210826A (en) Spindle device of machine tool
KR20090030920A (en) Spindle Cooling System of Machine Tool
JP2001054803A (en) Preload control type spindle unit
JPH0751904A (en) Pre-load adjusting device for spindle bearing
JP2005226675A (en) Sealed roller bearing
JP3080253B2 (en) Spindle device of machine tool
JPH11188505A (en) Main spindle device of machine tool
WO1999011478A1 (en) Heat generator
JPH0755440B2 (en) Method for improving thermal displacement history of hydrostatic spindle for precision processing machines
JPH11129101A (en) Spindle device of for machine tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040715

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees