JP3841439B2 - ロボットのジョグ送り方法 - Google Patents
ロボットのジョグ送り方法 Download PDFInfo
- Publication number
- JP3841439B2 JP3841439B2 JP50681198A JP50681198A JP3841439B2 JP 3841439 B2 JP3841439 B2 JP 3841439B2 JP 50681198 A JP50681198 A JP 50681198A JP 50681198 A JP50681198 A JP 50681198A JP 3841439 B2 JP3841439 B2 JP 3841439B2
- Authority
- JP
- Japan
- Prior art keywords
- robot
- dimensional
- dimensional position
- graphic
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 84
- 238000009877 rendering Methods 0.000 claims 2
- 230000008569 process Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/06—Control stands, e.g. consoles, switchboards
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35462—Mouse
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36168—Touchscreen
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36401—Record play back, teach position and record it then play back
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39446—Display of manipulator and workpiece and jog directions
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Description
技術分野
本発明は、産業用ロボット((以下、単に「ロボット」と言う。)をジョグ送りする方法に関し、更に詳しく言えば、ロボットのグラッフィック表示とポインティングゲバイスを組み合わせて利用した新規なジョグ送り方法に関する。
背景技術
ロボットをマニュアル入力操作で移動させる方法として、ジョグ送りによる方法とリードスルーによる方法が良く知られている。前者のジョグ送りは、通常、教示操作盤上で、ジョグキーまたはジョイスティックなどロボットの移動方向指定部材を操作することで実行される。
ジョグ送りは、これら移動方向指定部材の操作続行、中断等によってロボットを任意の時間の間移動させることの出来る簡便な方法を提供する。しかし、移動方向の指定に関して次のような制約がある。即ち、従来のジョグ送りで指定可能なロボットの移動方向は、設定されている座標系(ワールド座標系、ユーザ座標系、ツール座標系等)の座標軸に沿った方向(+X,−X,+Y,−Y,+Z,−Z)あるいは座標軸の周りの回転を表わす方向(+W,−W,+P,−P,+R,−R)、並びに指定されたロボット軸についての各軸送り(+J1,−J1,+J2,−J2・・・)であった。
このよう制約の為に、希望する位置へ実際にロボットを移動させるに際しては、その目標位置が座標軸に沿った方向に無い限り、ジョグキーの選択押下を何度も繰り返して漸近的に目標位置へ到達させる煩雑な操作が必要であった。また、ロボットの移動方向の指定が間接的である為に、実際に実現する移動方向が直感的につかみ難く、簡便性に欠けている。
次に、リードスルーによる方法は、ロボットの手首先端部に取り付けられた力センサとリードスルースイッチを利用するものである。この方法では、オペレータがリードスルースイッチを押しながらロボット手先部を希望する方向に向かう外力を加えると、力センサが加えられた外力の方向を検知し、これをロボット制御装置に伝えてロボットを外力の方向へ向けて移動させる。この方法は、ロボットの移動方向の指定が直接的である為に、実際に実現する移動方向がオペレータにとって認識容易であるという長所がある。
しかし、この方法には、オペレータがロボットの手先部に物理的に接近しなければならないという大きな欠点がある。即ち、リードスルーの操作のを始めようとしてロボットに接近して以後、作業を終了してロボットから離れるまでの間になんらかの操作ミス、誤動作などがあった場合、ロボット手先部のすぐ近くにいるオペレータに大きな危険が及ぶ。
発明の開示
本発明の目的は、上記従来技術の問題点を解消し、オペレータの安全を確保しながら、簡便な操作でロボットを希望する方向へ移動させることが出来るジョグ送り方法を提供することにある。
本発明は、ロボット制御装置に接続されるとともにグラフィック表示機能とポインティングデバイスを備えたオペレータ支援手段を利用する新規なジョグ送り方法を採用することによって上記技術課題を解決したものである。
本発明によるジョグ送りは、ロボットの動作を制御するロボット制御装置と、ロボット制御装置に接続されるとともにロボットのグラフィック画像の表示を行なうグラフィック表示装置と、グラフィック表示装置の画面上で2次元位置入力を行う為のポインティングデバイスと、ポインティングデバイスによる2次元位置入力を平面位置データを用いて3次元位置出力に変換する手段を含むシステムを利用して行なわれる。
本発明によるジョグ送りは、次の諸段階を基本にして実行される。
(A)ロボットの移動開始前の姿勢を表わすグラフィック画像をグラフィック表示装置の画面上に描示する初期描示段階。
(B)ポインティングデバイスを用いたジョグ送りの為の2次元位置入力をグラフィック表示装置の画面上で開始する段階
(C)2次元位置入力を平面位置データに基づいて3次元位置出力に逐次的に変換する段階。
(D)3次元位置出力に基づいてロボットのグラフィック画像を逐次的に更新する段階。
(E)ロボット制御装置が前記3次元位置出力に基づいて前記ロボットを移動させる段階。
(F)ポインティングデバイスを用いたジョグ送りの為の2次元位置入力を終了する段階。
(C)の段階は、ロボット制御装置の外部、内部いずれで実行されても良いが、前者の場合は、3次元位置出力を表わす信号がロボット制御装置に伝えられ、(E)の段階で利用される。また、後者の場合は、3次元位置出力を表わす信号がグラフィック表示装置に伝えられ、(D)の段階で利用される。
ポインティングデバイスの具体的な形態としては、グラフィック表示装置の画面にタッチパネルが装備された形態や、マウスカーソル表示機能を備えたマウスが装備された形態がある。
前者の形態を採用した場合、2次元位置入力は画面へのマニュアルタッチによって行なわれる。そして、(B)の段階における2次元位置入力の開始は、グラフィック表示装置の画面に表示されているロボットのグラフィック画像の手先描示部へのマニュアルタッチの開始によってなされ、(F)の段階における2次元位置入力の終了は、画面上におけるマニュアルタッチの開始位置とは異なる位置で行なわれるマニュアルタッチの解除によってなされることになる。
また、後者の形態を採用した場合には、2次元位置入力はマウスによって行なわれる。そして、(B)の段階における2次元位置入力の開始はグラフィック表示装置の表示画面に表示されているロボットのグラフィック画像の手先描示部へマウスカーソルを合わせた状態で行なわれるマウスの第1のクリックによってなされ、(F)の段階における2次元位置入力の終了は画面上におけるマウスの第1のクリック位置とは異なる位置で行なわれるマウスの第2のクリックによってなされることになる。
(E)の段階のロボット移動のタイミングについては、種々の定め方が許容されるが、次の4方式が実際的である。
1.(E)の段階が(C)の段階に同期的に追随して実行される方式。
2.(E)の段階が(F)の段階の完了直後に開始される方式。
3.(E)の段階が(F)の段階の完了した時点を基準として、システムに設定された時間の経過後に開始される方式。
4.(E)の段階が(B)の段階の完了した時点を基準として、システムに設定された時間の経過後に開始される方式。
また、2次元位置入力を3次元位置データに変換する際に用いられる平面位置データの作成方法としては、次の2方式が実際的である。
1.ロボットのグラフィック画像表示の視線方向と、位置入力に対応した最新の3次元位置データとに基づいて平面位置データを作成する方式。
2.システムに予め教示された平面方向と、位置入力に対応した最新の3次元位置データとに基づいて平面位置データを作成する方式。
なお、グラフィック表示装置に3次元的な姿勢を検出出来るセンサを装備しておき、ロボットのグラフィック画像表示の視線方向を定めるに際して、該センサによって検出された姿勢に対応する方向に従ってロボットのグラフィック画像表示の視線方向を定めるようにすることも出来る。
【図面の簡単な説明】
図1は、本発明に係る方法を実施する為のシステムの1つの構成例を要部ブロック図で示したものである。
図2は、図1に示したシステムを用いた全体配置、並びに本発明に従ったジョグ送りの様子を説明する図である。
図3は、グラフィック表示操作部の一例をタッチパネル使用時の手の動きと共に示した図である。
図4は、実施形態における教示操作盤側の処理の概要を記したフローチャートである。
図5は、実施形態におけるロボット制御装置側の処理の概要を記したフローチャートである。
図6は、本発明に係る方法を実施する為のシステムの別の構成例を要部ブロック図で示したものである。
図7は、図6に示したシステムを用いた全体配置、並びに本発明に従ったジョグ送りの様子を説明する図である。
発明を実施する為の最良の形態
図1は、本発明に係る方法を実施する為のシステムの1つの構成例を要部ブロック図で示したものである。同図を参照すると、符号10はシステム全体の中心をなすロボット制御装置で、中央演算処理装置(以下、CPUという。)11を備えている。CPU11には、ROMからなるメモリ12、RAMからなるメモリ13、不揮発性メモリ14、教示操作盤以外の外部装置の為のインターフェイス機能を果たす入出力装置15、教示操作盤30の為の教示操作盤インターフェイス16並びにデジタルサーボ回路17が、各々バス19を介して接続されている。
ロボット機構部20の各軸の動作をサーボ回路18を介して制御するロボット軸制御部17が、各々バス19を介して接続されている。
ROM12には、ロボット制御装置10自身を含むシステム全体を制御するプログラムが格納される。RAM13はCPU11が行なう処理の為のデータの一時記憶に使用されるメモリである。不揮発性メモリ14には、ロボットの動作プログラムデータやシステム各部の動作に関連した諸設定値の他に、後述する本方法の実施に必要なプログラム並びに諸データが格納される。サーボ回路18は、CPU11からの移動指令を受けて、サーボアンプ18を介してロボット本体機構部20の各軸モータを動作をサーボ制御する。
一方、教示操作盤用インターフェイス16に接続される教示操作盤30は、ロボット20のグラフィック画像を表示するグラフィック表示装置を兼ねたものである。教示操作盤30は、ディスプレイ31、キーボード等からなる操作部32、CPU、メモリ、入出力装置等を備えた制御部33で構成され、マニュアル操作によってディスプレイ31上で特定の位置を指定出来るポインティングデバイスを装備したものが使用される。本実施形態では、ポインティングデバイスを構成する為にディスプレイ31にタッチパネルが採用され、操作部32にはグラフィック表示操作部(後述図3参照)が併設されている。なお、タッチパネルに代えて、あるいはタッチパネルとともにマウス34を使用しても良い。本実施形態では後者の場合(両者装備)を説明する。
制御部33のメモリには、予めロボットのグラフィック表示に必要な形状データとCG技術を用いた描示を例えばワイヤ指示方式で行なう為のプログラム(コンピュータグラフィックスのソフトウェア)が格納されている。教示操作盤30は、グラフィック表示開始時にロボット制御装置10からロボットの現在姿勢データをもらい、CGのソフトウェア処理によって、グラフィック操作部で指定された表示条件の下で、ロボットの現在姿勢をディスプレイ31上にグラフィック表示する。
また、グラフィック表示開始後は、タッチパネルあるいはマウスによって指定されたロボット手先位置の2次元データと平面を指定するデータ(詳細後述)に基づいて、ロボットのグラフィック画像を更新する。
ロボット制御装置10は、教示操作盤30で作成される3次元位置データを受信して、ロボットの移動制御を行なう。これら機能を支持する教示操作盤30及びロボット制御装置10内の処理については、後述する。
図2は、上記説明したシステムを用いた全体配置と本発明に従ったジョグ送りの様子を説明する図である。同図に示したように、ロボット(実機)20の近くにロボット制御装置10が配置され、ロボット制御装置10にケーブル40によって教示操作盤30がロボット20から離れた位置で操作される。また、教示操作盤30には、オプションでマウス34が接続される。
教示操作盤30の操作部32は、一般のマニュアル入力操作の為の一般操作部321とディスプレイ31のグラフィック表示に関連した操作を行なう為のグラフィック表示操作部322を備え、一般操作部321には文字表示で各種表示を行なう副ディスプレイ323が併設されている。また、ディスプレイ31は、周知のタッチパネルを装備した液晶ディスプレイからなるもので、カラー表示が行えることが好ましい。
図3は、グラフィック表示操作部321の一例をタッチパネル使用時の手の動き(図2中のディスプレイ31の画面を拡大描示)と共に示した図である。同図に示した通り、グラフィック表示操作部322は、操作ボタン51〜54を備えている。操作ボタン51〜53は、グラフィック表示の視線方向、縮尺及び視点の位置を調整するボタンである。視線方向と視点の位置は、ボタン51,53の4つに分かれた押下部位に応じて上下左右方向への調整が可能となっている。また、縮尺調整ボタン52は、2つに分かれた押下部位に応じて押下位置に応じて表示倍率を増大あるいは低下させる為に使用出来る。そして、ボタン54は、グラフィック表示オン/オフボタンである。
図2及び図3を参照して、本発明の方法によるジョグ送りの操作手順とそれに伴うシステム各部の動作の概要を述べれば次のようになる。
1.先ず、一般操作部321を操作し、ポインティングデバイスによるジョグ送りのモード(本発明の方法によるジョグ送り)を入力指定する。
2.この状態でグラフィック表示オン/オフボタン54を押下する。これにより、ディスプレイ31上には、ロボット画像20’がグラフィック表示(初期描示)される。なお、この時の表示条件は予め設定した基本表示条件または前回オフ時の表示条件による。また、初期描示に必要なロボットの姿勢データは、ロボット制御装置10からもらう。
3.更に、一般操作部321を操作し、ポインティングデバイスとしてタッチパネル/マウスのいずれを用いるかを入力指定する(タッチパネルモード/マウスモードの選択指定)。この種別指定により、ロボットの手先部を示す手先部マーク21’が画面上に強調表示される。手先部マーク21’の表示形態は、タッチパネルモード/マウスモードの指定に応じて異なることが好ましい。
4.ポインティングデバイスの出力から3次元位置を表わすデータを得る為に、一般操作部321を操作して、平面指定の為の操作を行なう。平面指定操作は次のいずれかのモードによる。
(a)自動指定モード;ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)を通り、グラフィック画面に平行な平面を自動指定するモード。グラフィック表示の視線方向を調整することで、面の方向を変えることが出来る(視線方向調整は後述)。
(b)特定平面指定モード;別途、陽に平面の方向を指定するパラメータを指定するモードである。具体的には、希望する準拠座標系(ワーク座標系など)のコード番号を指定し、更に、平面の方向を表わす法線ベクトルの成分値を入力する方法がある。例えば、法線ベクトル成分値として(1,0,0)を入力すれば、指定した座標系のYZ平面に平行で、且つ、ポインティングデバイスで指示されている最新のロボットの手先位置を通る平面が指定される。
5.ポインティングデバイスを用いて、希望するジョグ送りを下記(a)または(b)によりマニュアル入力する。
(a)タッチパネルのモード選択時(マウス不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’に手H1でタッチする(マニュアルタッチによる2次元位置入力開始)。教示操作盤30内部では、タッチ位置の2次元データと平面位置データに基づいて、ロボット手先位置(画像上のヴァーチャル位置)3次元位置の逐次計算と計算結果のロボット制御装置10への送信が開始される。
更に、画面上へのタッチを維持したまま、手(指先)を矢印Aで示したの如く符号H1からH2の位置まで移動させた後、手を画面から離す(2次元位置入力終了)。この間、指先タッチ点の画面上の軌跡H1〜H2を表わすデータ(2次元データ)は、平面位置データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
ここで、平面指定モードに従って平面位置を定め、平面位置を表わす平面位置データに基づいて3次元位置データを求める方法を簡単に説明しておく。
一般に、平面位置を定めるには、(1)平面の方向と(2)平面が通る1点を指定すれば良い。前述した自動指定モードでは、(1)平面の方向はグラフィック表示における視線方向によって特定され、(2)平面が通る1点は、ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)によって特定される。
視線方向のデータは教示操作盤30が持っており、ポインティングデバイスで指示されている最新のロボットの手先位置のデータも、教示操作盤30で前回計算されたデータが使える。但し、初期データは、ロボットの実機のデータをロボット制御装置10からもらう(後述する処理1,2における初期描示データの授受を参照)。
また、特定平面指定モードでは、(1)平面の方向は陽に指定されたパラメータ(法線ベクトルデータ)によって特定され、(2)平面が通る1点は、自動指定モードの場合と同じく、ポインティングデバイスで指示されている最新のロボットの手先位置によって特定される。
従って、いずれの平面指定モードにおいても、平面方向を記述するデータ(視線方向から算出あるいは陽に設定)と、前回計算された3次元位置に基づいて平面位置データを得ることが出来る。平面位置データが得られれば、それと今回のポインティングデバイス指示位置を通る視線に対応する直線の交点位置として、3次元位置が求められる。
さて、このようなジョグ送り操作によって、画面上のロボット20’の手先はA’のように移動して停止する一方、ロボット(実機)20の手先もA’のように追随移動して停止する。実機の停止位置は、オペレータがタッチパネルから手を離した画面上の位置に対応している。
(b)マウスのモード選択時(タッチパネル不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’にマウス34のカーソル(不図示)を合わせてクリックする(マウスクリックによる2次元位置入力開始)。これにより、タッチ位置の2次元データのロボット制御装置10への転送が開始される。
マウス34を矢印Aに相当する方向で示した方向へ移動させた後、再クリックする(2次元位置入力終了)。この間、マウスカーソルの画面上の軌跡を表わすデータ(2次元データ)は、平面指定データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
教示操作盤30側の3次元位置データの求め方は、タッチパネルのモード選択時と同様であるから繰り返し説明は省略する。ロボット(実機)20の停止位置は、マウス34によるジョグ終了クリック(例えば、第2回クリック)を行なった時点におけるマウスカーソルの画面上の位置に対応している。
以上の構成及び機能を前提に、ロボット制御装置10及び教示操作盤20内部で実行される処理処理の概要を図4及び図5に示したフローチャートを参照して説明する。
[教示操作盤側の処理(処理1;図4)]
(D1)ボタン54の押下(オン)によるグラフィック表示オン指令を待って、ステップD2へ進む。
(D2)ロボット制御装置10ヘグラフィック表示オン信号を送信する。
(D3)ロボット制御装置10から、ロボットの現在の姿勢をグラフィック表示する為の初期描示データが送られて来るのを待って、ステップD4へ進む。この初期描示データには、グラフィック表示に必要なロボットの構造パラメータと現在姿勢データが含まれる(例えばD−Hパラメータを使えば、両者をまとめて記述出来る)。
(D4)ロボット制御装置10から送信された初期描示データを使って、ロボット画像20’(初期画像)を手先部マーク21’とともにグラフィック表示する。
(D5)グラフィック表示部322の操作またはポインティングデバイス(タッチパネルまたはマウス)によるマニュアル入力を待つ。マニュアル入力は、次の3種に分けられる。マニュアル入力があったら、ステップD6へ進む。
(a)表示条件に関連する入力;ボタン51,52,53のいずれかの押下による。
(b)ジョグ終了を指示する入力;画面へのタッチ解除/ジョグ終了を指示するクリック(第2回クリック)/ボタン54の押下(オフ)のいずれかによる。(c)ポインティングデバイスによる入力;オペレータの手(指先)による手先部マーク21’へのタッチ(タッチパネルモードの場合)、あるいは、マウス34による手先部マーク21’のクリック(第1回クリック)。
(D6)マニュアル入力が、表示条件に関連するものであれば、ステップD7へ進む。そうでなければステップD8へ進む。
(D7)押下されたボタン51〜53に応じて、表示条件を更新する処理を行ない、グラフィック画像を再表示する。これによって調整される表示条件には、視線方向(ボタン51)、表示の縮尺倍率(ボタン52)及び視線位置(ボタン53)がある。これら表示条件の制御に関連するソフトウェアは、一般的なCGの技術として周知なので、詳細記述を省略する。
(D8)マニュアル入力が、ジョグ終了を指示する入力(タッチ解除/ジョグ終了指示クリック/グラフィック表示オフ)であれば、処理を終了する。そうでなければステップD9へ進む。
(D9)ポインティングデバイスによる入力に応じた処理を行なう。
(a)タッチパネルモードの場合;タッチ位置を表わす2次元データを、平面指定データと前回計算された3次元位置データを用いて、(新しい)3次元位置データに変換する。
(b)マウスモードの場合;マウスカーソル位置を表わす2次元データを、と前回計算された3次元位置データを用いて、(新しい)3次元位置データに変換する。
なお、(a),(b)いずれの場合も、平面位置の決め方は既に述べた通りであるから、ここでは繰り返さない。
(D10)ステップD9で求められた教示操作盤30側でロボット手先位置を表わす3次元位置データを用いて、ロボット画像20’(更新画像)を手先部マーク21’とともにグラフィック表示する。なお、新しくステップD9で計算されたロボット手先位置を表わす3次元位置データから、それに整合したロボット姿勢(グラフィック表示の更新の為に必要)を教示操作盤30側で計算するには、逆変換処理を教示操作盤30側で行なえば良い。
但し、新しくステップD9で計算されたロボット手先位置を表わす3次元位置データをロボット制御装置10へ伝えてから、逆変換処理をロボット制御装置10側で行ない、その結果を教示操作盤30に返信する方法もある。その場合、逆変換処理の結果は、ロボットの実機20の移動指令作成に使える。
(D11)ロボット制御装置に、ステップD9で求められたロボット手先位置を表わす3次元位置データを送信して、ステップD5へ戻る。
[ロボット制御装置側の処理(処理2;図5)]
(S1)教示操作盤30からのグラフィック表示オン信号を待って、ステップS2へ進む。
(S2)ロボットの現在の姿勢をグラフィック表示する為の初期描示データを、教示操作盤30へ送信する。
(S3)教示操作盤30からの信号送信を待って、ステップS4へ進む。
(S4)ジョグ終了を表わす信号を受信した場合には、ロボットを停止させ、あるいは停止させたまま、処理を終了する。ジョグ終了信号を受信するのは、教示操作盤30側で画面へのタッチ解除/ジョグ終了を指示するクリック(第2回クリック)/ボタン54の押下(オフ)のいずれかがあった場合である。
(S5)ここでは、教示操作盤30から送信される信号としてジョグ終了信号以外に想定しているのは、教示操作盤30側で計算される3次元位置データの形でタッチ位置/マウスカーソル位置を表わす信号である。そこで、この3次元位置データを使って、ロボット(手先部21)の移動目標位置を求め、移動指令を作成してサーボに渡す。ジョグ移動時の指令速度等の条件については、従来のジョグ送りの場合と同様、別途設定される条件に従うものとする。
以上説明した実施形態では、ロボットの実機の移動は、タッチパネルへのタッチ位置あるいはマウスカーソル位置の移動に同期的に追随して生じるようになっているが、これとは異なる下記(1)あるいは(2)の態様でロボットの実機を移動させても良い。
(1)位置入力終了後(即ち、タッチ解除後/ジョグ終了クリック後)直ちににロボット移動を開始させる態様。
例えば、タッチ解除後/ジョグ終了クリック後に、タッチ位置/マウスカーソル位置の軌跡データを3次元位置に変換したデータの全部または一部(但し、終点のデータは必須)をロボット制御装置に送信してロボットを移動させれば、この態様が実現出来る。また、データ送信は出来るだけ早く行い、同期ロボット制御装置側で移動タイミングを定めても良い。
(2)位置入力開始後あるいは終了後、陽に設定された時間(例えば1秒)経過した時点で、ロボット移動を開始させる態様。この態様を実現するには、例えば、3次元位置に変換したデータのロボット制御装置への送信を上記陽に設定された時間に見合った時間だけ遅延して送信すれば良い。この場合も、データ送信は出来るだけ早く行い、同期ロボット制御装置側で移動タイミングを定めても良い。
更に、2次元位置入力を3次元位置データに変換する処理を教示操作盤側でなくロボット制御装置側で行なうことも可能なことは言うまでもない。その場合、教示操作盤からロボット制御装置へ伝えられるデータは、2次元位置データとし、ロボット制御装置側で作成された3次元位置データを教示操作盤側に返送してグラフィック画像の更新を行なえば良い。
最後に、上記説明した実施形態の一つの変形例として、ロボットのグラフィック画像表示の視線方向を定めるに際して、3次元的な姿勢が検出出来るセンサを利用する例について説明する。本変形実施形態の特徴は、グラフィック表示装置を兼ねた教示操作盤にジャイロセンサ等のような3次元的な姿勢を検出する能力を有するセンサが装備され、該センサで検出された姿勢に基づいてグラフィック表示の視線方向を決定することが可能になっていることである。以下、前述の実施形態との相違点を中心に概略を説明する。
図6は、変形された実施形態で使用されるシステムの1つの構成例を要部ブロック図で示したものである。同図に示したように、本システムは、教示操作盤用インターフェイス16に接続される教示操作盤30に、ジャイロセンサのように3次元的な姿勢を検出する能力を有するセンサが装備されている点を除けば、図1に示したシステムと特に変わりはない。
即ち、教示操作盤30は、ディスプレイ31、キーボード等からなる操作部32、CPU、メモリ、入出力装置等を備えた制御部33、及びジャイロセンサのような3次元姿勢検出センサ35で構成され、マニュアル操作によってディスプレイ31上で特定の位置を指定出来るポインティングデバイスが装備されている。
前述の実施形態と同様、ポインティングデバイスを構成する為にディスプレイ31にタッチパネルが採用され、操作部32にはグラフィック表示操作部322が併設されている。なお、タッチパネルに代えて、あるいはタッチパネルとともにマウス34を使用しても良いことも前述の実施形態と同様である。
3次元姿勢検出センサ35は、教示操作盤30の3次元姿勢を検出し、その出力は制御部33に送られて、グラフィック表示の視線方向の決定に用いられる。典型的な態様においては、ディスプレイ31の表示面に垂直な方向が姿勢方向とされる。
制御部33のメモリには、予めロボットのグラフィック表示に必要な形状データとCG技術を用いた描示を例えばワイヤ描示方式で行なう為のプログラム(コンピュータグラフィックスのソフトウェア)が格納されている。教示操作盤30は、グラフィック表示開始時にロボット制御装置10からロボットの現在姿勢データをもらい、CGのソフトウェア処理によって、グラフィック操作部で指定された表示条件並びに3次元姿勢検出センサ35で検出された姿勢条件の下で、ロボットの現在姿勢をディスプレイ31上にグラフィック表示する。
また、グラフィック表示開始後は、タッチパネルあるいはマウスによって指定されたロボット手先位置の2次元データと平面を指定するデータに基づいて、ロボットのグラフィック画像を更新する。ここで、平面を指定するデータには、3次元姿勢検出センサ35で検出された姿勢のデータが含まれる。
図7は、図6に示したシステムを用いた全体配置と本発明に従ったジョグ送りの様子を説明する図である。本配置は、グラフィック表示装置を兼ねる教示操作盤30に、ジャイロセンサのように3次元的な姿勢を検出する能力を有するセンサが装備されている点を除けば、図2に示したシステムと特に変わりはない。
即ち、同図に示したように、ロボット(実機)20の近くにロボット制御装置10が配置され、ロボット制御装置10にケーブル40によって教示操作盤30がロボット20から離れた位置で操作される。また、教示操作盤30には、オプションでマウス34が接続される。
教示操作盤30の操作部32は、一般のマニュアル入力操作の為の一般操作部321とディスプレイ31のグラフィック表示に関連した操作を行なう為のグラフィック表示操作部322に加え、ジャイロセンサのような3次元姿勢検出センサ35が内蔵されている。一般操作部321には文字表示で各種表示を行なう副ディスプレイ323が併設されている。
また、ディスプレイ31は、周知のタッチパネルを装備した液晶ディスプレイからなるもので、カラー表示が行えることが好ましい。
グラフィック表示操作部322の構成と機能は、3次元姿勢検出センサ35の採用によってグラフィック表示の視線方向を調整するための操作ボタン51が省かれる(あるいは無効モードとされる)点を除けば、図3を参照して説明したものと同様であるから、繰り返し説明は省略する。
本実施形態におけるジョグ送りの操作手順とそれに伴うシステム各部の動作の概要を述べれば次の如くであり、視線方向の決定以外の事項は前述した実施形態の場合と同様である。
1.一般操作部321を操作し、ポインティングデバイスによるジョグ送りのモードを入力指定する。
2.この状態でグラフィック表示オン/オフボタン54を押下する。これにより、ディスプレイ31上には、ロボット画像20’がグラフィック表示(初期描示)される。なお、この時の表示条件は予め設定した基本表示条件または前回オフ時の表示条件による。また、初期描示に必要なロボットの姿勢データは、ロボット制御装置10からもらう。
3.更に、一般操作部321を操作し、ポインティングデバイスとしてタッチパネル/マウスのいずれを用いるかを入力指定する(タッチパネルモード/マウスモードの選択指定)。この種別指定により、ロボットの手先部を示す手先部マーク21’が画面上に強調表示される。手先部マーク21’の表示形態は、タッチパネルモード/マウスモードの指定に応じて異なることが好ましい。
4.ポインティングデバイスの出力から3次元位置を表わすデータを得る為に、一般操作部321を操作して、平面指定関連の操作を行なう。
本変形実施形態における平面指定は、次の2つのモード(a)、(b)のいずれでも実行出来る。
(a)ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)を通り、ディスプレイ表示面に平行な平面を自動指定するモード。ディスプレイ表示面に平行な平面は、3次元姿勢検出センサ35の出力から制御部33内で求められる。
従って、オペレータは教示操作盤30の把持姿勢を調整することで、面の方向を変えることが出来る(視線方向調整は後述)。
(b)特定平面指定モード;別途、陽に平面の方向を指定するパラメータを指定するモードである。具体的には、希望する準拠座標系(ワーク座標系など)のコード番号を指定し、更に、平面の方向を表わす法線ベクトルの成分値を入力する方法がある。例えば、法線ベクトル成分値として(1,0,0)を入力すれば、指定した座標系のYZ平面に平行で、且つ、ポインティングデバイスで指示されている最新のロボットの手先位置を通る平面が指定される。
5.ポインティングデバイスを用いて、希望するジョグ送りを下記(a)または(b)によりマニュアル入力する。
(a)タッチパネルのモード選択時(マウス不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’に手H1でタッチする(マニュアルタッチによる2次元位置入力開始)。教示操作盤30内部では、タッチ位置の2次元データと平面位置データに基づいて、ロボット手先位置(画像上のヴァーチャル位置)3次元位置の逐次計算と計算結果のロボット制御装置10への送信が開始される。
更に、画面上へのタッチを維持したまま、手(指先)を矢印Aで示したの如く符号H1からH2の位置まで移動させた後、手を画面から離す(2次元位置入力終了)。この間、指先タッチ点の画面上の軌跡H1〜H2を表わすデータ(2次元データ)は、平面位置データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
選択されている平面指定モードに従って平面位置を定め、平面位置を表わす平面位置データに基づいて3次元位置データを求める方法は、視線方向のデータが3次元姿勢センサ35の出力から得られる点を除けば、前述の実施形態とほぼ同じである。
即ち、平面位置を定めるには、(1)平面の方向と(2)平面が通る1点を指定すれば良い。前述した自動指定モードでは、(1〉平面の方向は、3次元姿勢センサ35の出力から得られるグラフィック表示の視線方向データによって特定され、(2)平面が通る1点は、ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)によって特定される。
視線方向のデータは教示操作盤30が持っており、ポインティングデバイスで指示されている最新のロボットの手先位置のデータも、教示操作盤30で前回計算されたデータが使える。但し、初期データは、ロボットの実機のデータをロボット制御装置10からもらう(前述実施形態における処理1,2における初期描示データの授受を参照)。
また、特定平面指定モードでは、(1)平面の方向は陽に指定されたパラメータ(法線ベクトルデータ)によって特定され、(2)平面が通る1点は、自動指定モードの場合と同じく、ポインティングデバイスで指示されている最新のロボットの手先位置によって特定される。
従って、いずれの平面指定モードにおいても、平面方向を記述するデータ(視線方向から算出あるいは陽に設定)と、前回計算された3次元位置に基づいて平面位置データを得ることが出来る。平面位置データが得られれば、それと今回のポインティングデバイス指示位置を通る視線に対応する直線の交点位置として、3次元位置が求められる。
さて、このようなジョグ送り操作によって、画面上のロボット20’の手先はA’のように移動して停止する一方、ロボット(実機)20の手先もA’のように追随移動して停止する。実機の停止位置は、オペレータがタッチパネルから手を離した画面上の位置に対応している。
(b)マウスのモード選択時(タッチパネル不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’にマウス34のカーソル(不図示)を合わせてクリックする(マウスクリックによる2次元位置入力開始)。これにより、タッチ位置の2次元データのロボット制御装置10への転送が開始される。
マウス34を矢印Aに相当する方向で示した方向へ移動させた後、再クリックする(2次元位置入力終了)。この間、マウスカーソルの画面上の軌跡を表わすデータ(2次元データ)は、平面指定データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
教示操作盤30側の3次元位置データの求め方は、タッチパネルのモード選択時と同様であるから繰り返し説明は省略する。ロボット(実機)20の停止位置は、マウス34によるジョグ終了クリック(例えば、第2回クリック)を行なった時点におけるマウスカーソルの画面上の位置に対応している。
本変形実施形態において、ロボット制御装置10及び教示操作盤20内部で実行される処理処理の概要は、図4及び図5に示したフローチャートを参照して行なった前出の説明(前述実施形態)と下記相違点を除いて同様であるから詳しい説明は省略する。
(前述実施形態との相違点)
1.教示操作盤側の処理(処理1;図4参照)中のステップD5における表示条件に関連する入力(マニュアル入力)は、ボタン52’53のいずれかの押下による。ボタン51は非装備または無効化とされ、これに代えて3次元姿勢センサ35の出力をチェックする。「ボタン52,53のいずれかの押下」、あるいは「3次元姿勢センサ35の出力が、前回チェック時と比較して予め設定された所定量以上の出力変化(教示操作盤30の姿勢変化)があった時(並びに初回チェック時)」にステップD6へ進む。
2.ステップD7では、押下されたボタン52,53及び3次元姿勢センサ35の出力に応じて表示条件を更新する処理を行ない、グラフィック画像を再表示する。3次元姿勢センサ35の出力に応じて調整される表示条件は、視線方向である。
以上2つの実施形態を例にとって詳しく説明したように、本発明によれば、ジョグ送りキーを何度も繰り返すような煩雑な操作や座標軸方向の認識に要する負担をなくした形で、ロボットを直感に即した方向へ的確にジョグ送りで移動させることが出来る。また、そのことを通して、ロボットの操作性が向上し、ティーチング・プレイバック方法による位置教示作業などの効率を高めることが出来る。
本発明は、産業用ロボット((以下、単に「ロボット」と言う。)をジョグ送りする方法に関し、更に詳しく言えば、ロボットのグラッフィック表示とポインティングゲバイスを組み合わせて利用した新規なジョグ送り方法に関する。
背景技術
ロボットをマニュアル入力操作で移動させる方法として、ジョグ送りによる方法とリードスルーによる方法が良く知られている。前者のジョグ送りは、通常、教示操作盤上で、ジョグキーまたはジョイスティックなどロボットの移動方向指定部材を操作することで実行される。
ジョグ送りは、これら移動方向指定部材の操作続行、中断等によってロボットを任意の時間の間移動させることの出来る簡便な方法を提供する。しかし、移動方向の指定に関して次のような制約がある。即ち、従来のジョグ送りで指定可能なロボットの移動方向は、設定されている座標系(ワールド座標系、ユーザ座標系、ツール座標系等)の座標軸に沿った方向(+X,−X,+Y,−Y,+Z,−Z)あるいは座標軸の周りの回転を表わす方向(+W,−W,+P,−P,+R,−R)、並びに指定されたロボット軸についての各軸送り(+J1,−J1,+J2,−J2・・・)であった。
このよう制約の為に、希望する位置へ実際にロボットを移動させるに際しては、その目標位置が座標軸に沿った方向に無い限り、ジョグキーの選択押下を何度も繰り返して漸近的に目標位置へ到達させる煩雑な操作が必要であった。また、ロボットの移動方向の指定が間接的である為に、実際に実現する移動方向が直感的につかみ難く、簡便性に欠けている。
次に、リードスルーによる方法は、ロボットの手首先端部に取り付けられた力センサとリードスルースイッチを利用するものである。この方法では、オペレータがリードスルースイッチを押しながらロボット手先部を希望する方向に向かう外力を加えると、力センサが加えられた外力の方向を検知し、これをロボット制御装置に伝えてロボットを外力の方向へ向けて移動させる。この方法は、ロボットの移動方向の指定が直接的である為に、実際に実現する移動方向がオペレータにとって認識容易であるという長所がある。
しかし、この方法には、オペレータがロボットの手先部に物理的に接近しなければならないという大きな欠点がある。即ち、リードスルーの操作のを始めようとしてロボットに接近して以後、作業を終了してロボットから離れるまでの間になんらかの操作ミス、誤動作などがあった場合、ロボット手先部のすぐ近くにいるオペレータに大きな危険が及ぶ。
発明の開示
本発明の目的は、上記従来技術の問題点を解消し、オペレータの安全を確保しながら、簡便な操作でロボットを希望する方向へ移動させることが出来るジョグ送り方法を提供することにある。
本発明は、ロボット制御装置に接続されるとともにグラフィック表示機能とポインティングデバイスを備えたオペレータ支援手段を利用する新規なジョグ送り方法を採用することによって上記技術課題を解決したものである。
本発明によるジョグ送りは、ロボットの動作を制御するロボット制御装置と、ロボット制御装置に接続されるとともにロボットのグラフィック画像の表示を行なうグラフィック表示装置と、グラフィック表示装置の画面上で2次元位置入力を行う為のポインティングデバイスと、ポインティングデバイスによる2次元位置入力を平面位置データを用いて3次元位置出力に変換する手段を含むシステムを利用して行なわれる。
本発明によるジョグ送りは、次の諸段階を基本にして実行される。
(A)ロボットの移動開始前の姿勢を表わすグラフィック画像をグラフィック表示装置の画面上に描示する初期描示段階。
(B)ポインティングデバイスを用いたジョグ送りの為の2次元位置入力をグラフィック表示装置の画面上で開始する段階
(C)2次元位置入力を平面位置データに基づいて3次元位置出力に逐次的に変換する段階。
(D)3次元位置出力に基づいてロボットのグラフィック画像を逐次的に更新する段階。
(E)ロボット制御装置が前記3次元位置出力に基づいて前記ロボットを移動させる段階。
(F)ポインティングデバイスを用いたジョグ送りの為の2次元位置入力を終了する段階。
(C)の段階は、ロボット制御装置の外部、内部いずれで実行されても良いが、前者の場合は、3次元位置出力を表わす信号がロボット制御装置に伝えられ、(E)の段階で利用される。また、後者の場合は、3次元位置出力を表わす信号がグラフィック表示装置に伝えられ、(D)の段階で利用される。
ポインティングデバイスの具体的な形態としては、グラフィック表示装置の画面にタッチパネルが装備された形態や、マウスカーソル表示機能を備えたマウスが装備された形態がある。
前者の形態を採用した場合、2次元位置入力は画面へのマニュアルタッチによって行なわれる。そして、(B)の段階における2次元位置入力の開始は、グラフィック表示装置の画面に表示されているロボットのグラフィック画像の手先描示部へのマニュアルタッチの開始によってなされ、(F)の段階における2次元位置入力の終了は、画面上におけるマニュアルタッチの開始位置とは異なる位置で行なわれるマニュアルタッチの解除によってなされることになる。
また、後者の形態を採用した場合には、2次元位置入力はマウスによって行なわれる。そして、(B)の段階における2次元位置入力の開始はグラフィック表示装置の表示画面に表示されているロボットのグラフィック画像の手先描示部へマウスカーソルを合わせた状態で行なわれるマウスの第1のクリックによってなされ、(F)の段階における2次元位置入力の終了は画面上におけるマウスの第1のクリック位置とは異なる位置で行なわれるマウスの第2のクリックによってなされることになる。
(E)の段階のロボット移動のタイミングについては、種々の定め方が許容されるが、次の4方式が実際的である。
1.(E)の段階が(C)の段階に同期的に追随して実行される方式。
2.(E)の段階が(F)の段階の完了直後に開始される方式。
3.(E)の段階が(F)の段階の完了した時点を基準として、システムに設定された時間の経過後に開始される方式。
4.(E)の段階が(B)の段階の完了した時点を基準として、システムに設定された時間の経過後に開始される方式。
また、2次元位置入力を3次元位置データに変換する際に用いられる平面位置データの作成方法としては、次の2方式が実際的である。
1.ロボットのグラフィック画像表示の視線方向と、位置入力に対応した最新の3次元位置データとに基づいて平面位置データを作成する方式。
2.システムに予め教示された平面方向と、位置入力に対応した最新の3次元位置データとに基づいて平面位置データを作成する方式。
なお、グラフィック表示装置に3次元的な姿勢を検出出来るセンサを装備しておき、ロボットのグラフィック画像表示の視線方向を定めるに際して、該センサによって検出された姿勢に対応する方向に従ってロボットのグラフィック画像表示の視線方向を定めるようにすることも出来る。
【図面の簡単な説明】
図1は、本発明に係る方法を実施する為のシステムの1つの構成例を要部ブロック図で示したものである。
図2は、図1に示したシステムを用いた全体配置、並びに本発明に従ったジョグ送りの様子を説明する図である。
図3は、グラフィック表示操作部の一例をタッチパネル使用時の手の動きと共に示した図である。
図4は、実施形態における教示操作盤側の処理の概要を記したフローチャートである。
図5は、実施形態におけるロボット制御装置側の処理の概要を記したフローチャートである。
図6は、本発明に係る方法を実施する為のシステムの別の構成例を要部ブロック図で示したものである。
図7は、図6に示したシステムを用いた全体配置、並びに本発明に従ったジョグ送りの様子を説明する図である。
発明を実施する為の最良の形態
図1は、本発明に係る方法を実施する為のシステムの1つの構成例を要部ブロック図で示したものである。同図を参照すると、符号10はシステム全体の中心をなすロボット制御装置で、中央演算処理装置(以下、CPUという。)11を備えている。CPU11には、ROMからなるメモリ12、RAMからなるメモリ13、不揮発性メモリ14、教示操作盤以外の外部装置の為のインターフェイス機能を果たす入出力装置15、教示操作盤30の為の教示操作盤インターフェイス16並びにデジタルサーボ回路17が、各々バス19を介して接続されている。
ロボット機構部20の各軸の動作をサーボ回路18を介して制御するロボット軸制御部17が、各々バス19を介して接続されている。
ROM12には、ロボット制御装置10自身を含むシステム全体を制御するプログラムが格納される。RAM13はCPU11が行なう処理の為のデータの一時記憶に使用されるメモリである。不揮発性メモリ14には、ロボットの動作プログラムデータやシステム各部の動作に関連した諸設定値の他に、後述する本方法の実施に必要なプログラム並びに諸データが格納される。サーボ回路18は、CPU11からの移動指令を受けて、サーボアンプ18を介してロボット本体機構部20の各軸モータを動作をサーボ制御する。
一方、教示操作盤用インターフェイス16に接続される教示操作盤30は、ロボット20のグラフィック画像を表示するグラフィック表示装置を兼ねたものである。教示操作盤30は、ディスプレイ31、キーボード等からなる操作部32、CPU、メモリ、入出力装置等を備えた制御部33で構成され、マニュアル操作によってディスプレイ31上で特定の位置を指定出来るポインティングデバイスを装備したものが使用される。本実施形態では、ポインティングデバイスを構成する為にディスプレイ31にタッチパネルが採用され、操作部32にはグラフィック表示操作部(後述図3参照)が併設されている。なお、タッチパネルに代えて、あるいはタッチパネルとともにマウス34を使用しても良い。本実施形態では後者の場合(両者装備)を説明する。
制御部33のメモリには、予めロボットのグラフィック表示に必要な形状データとCG技術を用いた描示を例えばワイヤ指示方式で行なう為のプログラム(コンピュータグラフィックスのソフトウェア)が格納されている。教示操作盤30は、グラフィック表示開始時にロボット制御装置10からロボットの現在姿勢データをもらい、CGのソフトウェア処理によって、グラフィック操作部で指定された表示条件の下で、ロボットの現在姿勢をディスプレイ31上にグラフィック表示する。
また、グラフィック表示開始後は、タッチパネルあるいはマウスによって指定されたロボット手先位置の2次元データと平面を指定するデータ(詳細後述)に基づいて、ロボットのグラフィック画像を更新する。
ロボット制御装置10は、教示操作盤30で作成される3次元位置データを受信して、ロボットの移動制御を行なう。これら機能を支持する教示操作盤30及びロボット制御装置10内の処理については、後述する。
図2は、上記説明したシステムを用いた全体配置と本発明に従ったジョグ送りの様子を説明する図である。同図に示したように、ロボット(実機)20の近くにロボット制御装置10が配置され、ロボット制御装置10にケーブル40によって教示操作盤30がロボット20から離れた位置で操作される。また、教示操作盤30には、オプションでマウス34が接続される。
教示操作盤30の操作部32は、一般のマニュアル入力操作の為の一般操作部321とディスプレイ31のグラフィック表示に関連した操作を行なう為のグラフィック表示操作部322を備え、一般操作部321には文字表示で各種表示を行なう副ディスプレイ323が併設されている。また、ディスプレイ31は、周知のタッチパネルを装備した液晶ディスプレイからなるもので、カラー表示が行えることが好ましい。
図3は、グラフィック表示操作部321の一例をタッチパネル使用時の手の動き(図2中のディスプレイ31の画面を拡大描示)と共に示した図である。同図に示した通り、グラフィック表示操作部322は、操作ボタン51〜54を備えている。操作ボタン51〜53は、グラフィック表示の視線方向、縮尺及び視点の位置を調整するボタンである。視線方向と視点の位置は、ボタン51,53の4つに分かれた押下部位に応じて上下左右方向への調整が可能となっている。また、縮尺調整ボタン52は、2つに分かれた押下部位に応じて押下位置に応じて表示倍率を増大あるいは低下させる為に使用出来る。そして、ボタン54は、グラフィック表示オン/オフボタンである。
図2及び図3を参照して、本発明の方法によるジョグ送りの操作手順とそれに伴うシステム各部の動作の概要を述べれば次のようになる。
1.先ず、一般操作部321を操作し、ポインティングデバイスによるジョグ送りのモード(本発明の方法によるジョグ送り)を入力指定する。
2.この状態でグラフィック表示オン/オフボタン54を押下する。これにより、ディスプレイ31上には、ロボット画像20’がグラフィック表示(初期描示)される。なお、この時の表示条件は予め設定した基本表示条件または前回オフ時の表示条件による。また、初期描示に必要なロボットの姿勢データは、ロボット制御装置10からもらう。
3.更に、一般操作部321を操作し、ポインティングデバイスとしてタッチパネル/マウスのいずれを用いるかを入力指定する(タッチパネルモード/マウスモードの選択指定)。この種別指定により、ロボットの手先部を示す手先部マーク21’が画面上に強調表示される。手先部マーク21’の表示形態は、タッチパネルモード/マウスモードの指定に応じて異なることが好ましい。
4.ポインティングデバイスの出力から3次元位置を表わすデータを得る為に、一般操作部321を操作して、平面指定の為の操作を行なう。平面指定操作は次のいずれかのモードによる。
(a)自動指定モード;ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)を通り、グラフィック画面に平行な平面を自動指定するモード。グラフィック表示の視線方向を調整することで、面の方向を変えることが出来る(視線方向調整は後述)。
(b)特定平面指定モード;別途、陽に平面の方向を指定するパラメータを指定するモードである。具体的には、希望する準拠座標系(ワーク座標系など)のコード番号を指定し、更に、平面の方向を表わす法線ベクトルの成分値を入力する方法がある。例えば、法線ベクトル成分値として(1,0,0)を入力すれば、指定した座標系のYZ平面に平行で、且つ、ポインティングデバイスで指示されている最新のロボットの手先位置を通る平面が指定される。
5.ポインティングデバイスを用いて、希望するジョグ送りを下記(a)または(b)によりマニュアル入力する。
(a)タッチパネルのモード選択時(マウス不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’に手H1でタッチする(マニュアルタッチによる2次元位置入力開始)。教示操作盤30内部では、タッチ位置の2次元データと平面位置データに基づいて、ロボット手先位置(画像上のヴァーチャル位置)3次元位置の逐次計算と計算結果のロボット制御装置10への送信が開始される。
更に、画面上へのタッチを維持したまま、手(指先)を矢印Aで示したの如く符号H1からH2の位置まで移動させた後、手を画面から離す(2次元位置入力終了)。この間、指先タッチ点の画面上の軌跡H1〜H2を表わすデータ(2次元データ)は、平面位置データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
ここで、平面指定モードに従って平面位置を定め、平面位置を表わす平面位置データに基づいて3次元位置データを求める方法を簡単に説明しておく。
一般に、平面位置を定めるには、(1)平面の方向と(2)平面が通る1点を指定すれば良い。前述した自動指定モードでは、(1)平面の方向はグラフィック表示における視線方向によって特定され、(2)平面が通る1点は、ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)によって特定される。
視線方向のデータは教示操作盤30が持っており、ポインティングデバイスで指示されている最新のロボットの手先位置のデータも、教示操作盤30で前回計算されたデータが使える。但し、初期データは、ロボットの実機のデータをロボット制御装置10からもらう(後述する処理1,2における初期描示データの授受を参照)。
また、特定平面指定モードでは、(1)平面の方向は陽に指定されたパラメータ(法線ベクトルデータ)によって特定され、(2)平面が通る1点は、自動指定モードの場合と同じく、ポインティングデバイスで指示されている最新のロボットの手先位置によって特定される。
従って、いずれの平面指定モードにおいても、平面方向を記述するデータ(視線方向から算出あるいは陽に設定)と、前回計算された3次元位置に基づいて平面位置データを得ることが出来る。平面位置データが得られれば、それと今回のポインティングデバイス指示位置を通る視線に対応する直線の交点位置として、3次元位置が求められる。
さて、このようなジョグ送り操作によって、画面上のロボット20’の手先はA’のように移動して停止する一方、ロボット(実機)20の手先もA’のように追随移動して停止する。実機の停止位置は、オペレータがタッチパネルから手を離した画面上の位置に対応している。
(b)マウスのモード選択時(タッチパネル不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’にマウス34のカーソル(不図示)を合わせてクリックする(マウスクリックによる2次元位置入力開始)。これにより、タッチ位置の2次元データのロボット制御装置10への転送が開始される。
マウス34を矢印Aに相当する方向で示した方向へ移動させた後、再クリックする(2次元位置入力終了)。この間、マウスカーソルの画面上の軌跡を表わすデータ(2次元データ)は、平面指定データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
教示操作盤30側の3次元位置データの求め方は、タッチパネルのモード選択時と同様であるから繰り返し説明は省略する。ロボット(実機)20の停止位置は、マウス34によるジョグ終了クリック(例えば、第2回クリック)を行なった時点におけるマウスカーソルの画面上の位置に対応している。
以上の構成及び機能を前提に、ロボット制御装置10及び教示操作盤20内部で実行される処理処理の概要を図4及び図5に示したフローチャートを参照して説明する。
[教示操作盤側の処理(処理1;図4)]
(D1)ボタン54の押下(オン)によるグラフィック表示オン指令を待って、ステップD2へ進む。
(D2)ロボット制御装置10ヘグラフィック表示オン信号を送信する。
(D3)ロボット制御装置10から、ロボットの現在の姿勢をグラフィック表示する為の初期描示データが送られて来るのを待って、ステップD4へ進む。この初期描示データには、グラフィック表示に必要なロボットの構造パラメータと現在姿勢データが含まれる(例えばD−Hパラメータを使えば、両者をまとめて記述出来る)。
(D4)ロボット制御装置10から送信された初期描示データを使って、ロボット画像20’(初期画像)を手先部マーク21’とともにグラフィック表示する。
(D5)グラフィック表示部322の操作またはポインティングデバイス(タッチパネルまたはマウス)によるマニュアル入力を待つ。マニュアル入力は、次の3種に分けられる。マニュアル入力があったら、ステップD6へ進む。
(a)表示条件に関連する入力;ボタン51,52,53のいずれかの押下による。
(b)ジョグ終了を指示する入力;画面へのタッチ解除/ジョグ終了を指示するクリック(第2回クリック)/ボタン54の押下(オフ)のいずれかによる。(c)ポインティングデバイスによる入力;オペレータの手(指先)による手先部マーク21’へのタッチ(タッチパネルモードの場合)、あるいは、マウス34による手先部マーク21’のクリック(第1回クリック)。
(D6)マニュアル入力が、表示条件に関連するものであれば、ステップD7へ進む。そうでなければステップD8へ進む。
(D7)押下されたボタン51〜53に応じて、表示条件を更新する処理を行ない、グラフィック画像を再表示する。これによって調整される表示条件には、視線方向(ボタン51)、表示の縮尺倍率(ボタン52)及び視線位置(ボタン53)がある。これら表示条件の制御に関連するソフトウェアは、一般的なCGの技術として周知なので、詳細記述を省略する。
(D8)マニュアル入力が、ジョグ終了を指示する入力(タッチ解除/ジョグ終了指示クリック/グラフィック表示オフ)であれば、処理を終了する。そうでなければステップD9へ進む。
(D9)ポインティングデバイスによる入力に応じた処理を行なう。
(a)タッチパネルモードの場合;タッチ位置を表わす2次元データを、平面指定データと前回計算された3次元位置データを用いて、(新しい)3次元位置データに変換する。
(b)マウスモードの場合;マウスカーソル位置を表わす2次元データを、と前回計算された3次元位置データを用いて、(新しい)3次元位置データに変換する。
なお、(a),(b)いずれの場合も、平面位置の決め方は既に述べた通りであるから、ここでは繰り返さない。
(D10)ステップD9で求められた教示操作盤30側でロボット手先位置を表わす3次元位置データを用いて、ロボット画像20’(更新画像)を手先部マーク21’とともにグラフィック表示する。なお、新しくステップD9で計算されたロボット手先位置を表わす3次元位置データから、それに整合したロボット姿勢(グラフィック表示の更新の為に必要)を教示操作盤30側で計算するには、逆変換処理を教示操作盤30側で行なえば良い。
但し、新しくステップD9で計算されたロボット手先位置を表わす3次元位置データをロボット制御装置10へ伝えてから、逆変換処理をロボット制御装置10側で行ない、その結果を教示操作盤30に返信する方法もある。その場合、逆変換処理の結果は、ロボットの実機20の移動指令作成に使える。
(D11)ロボット制御装置に、ステップD9で求められたロボット手先位置を表わす3次元位置データを送信して、ステップD5へ戻る。
[ロボット制御装置側の処理(処理2;図5)]
(S1)教示操作盤30からのグラフィック表示オン信号を待って、ステップS2へ進む。
(S2)ロボットの現在の姿勢をグラフィック表示する為の初期描示データを、教示操作盤30へ送信する。
(S3)教示操作盤30からの信号送信を待って、ステップS4へ進む。
(S4)ジョグ終了を表わす信号を受信した場合には、ロボットを停止させ、あるいは停止させたまま、処理を終了する。ジョグ終了信号を受信するのは、教示操作盤30側で画面へのタッチ解除/ジョグ終了を指示するクリック(第2回クリック)/ボタン54の押下(オフ)のいずれかがあった場合である。
(S5)ここでは、教示操作盤30から送信される信号としてジョグ終了信号以外に想定しているのは、教示操作盤30側で計算される3次元位置データの形でタッチ位置/マウスカーソル位置を表わす信号である。そこで、この3次元位置データを使って、ロボット(手先部21)の移動目標位置を求め、移動指令を作成してサーボに渡す。ジョグ移動時の指令速度等の条件については、従来のジョグ送りの場合と同様、別途設定される条件に従うものとする。
以上説明した実施形態では、ロボットの実機の移動は、タッチパネルへのタッチ位置あるいはマウスカーソル位置の移動に同期的に追随して生じるようになっているが、これとは異なる下記(1)あるいは(2)の態様でロボットの実機を移動させても良い。
(1)位置入力終了後(即ち、タッチ解除後/ジョグ終了クリック後)直ちににロボット移動を開始させる態様。
例えば、タッチ解除後/ジョグ終了クリック後に、タッチ位置/マウスカーソル位置の軌跡データを3次元位置に変換したデータの全部または一部(但し、終点のデータは必須)をロボット制御装置に送信してロボットを移動させれば、この態様が実現出来る。また、データ送信は出来るだけ早く行い、同期ロボット制御装置側で移動タイミングを定めても良い。
(2)位置入力開始後あるいは終了後、陽に設定された時間(例えば1秒)経過した時点で、ロボット移動を開始させる態様。この態様を実現するには、例えば、3次元位置に変換したデータのロボット制御装置への送信を上記陽に設定された時間に見合った時間だけ遅延して送信すれば良い。この場合も、データ送信は出来るだけ早く行い、同期ロボット制御装置側で移動タイミングを定めても良い。
更に、2次元位置入力を3次元位置データに変換する処理を教示操作盤側でなくロボット制御装置側で行なうことも可能なことは言うまでもない。その場合、教示操作盤からロボット制御装置へ伝えられるデータは、2次元位置データとし、ロボット制御装置側で作成された3次元位置データを教示操作盤側に返送してグラフィック画像の更新を行なえば良い。
最後に、上記説明した実施形態の一つの変形例として、ロボットのグラフィック画像表示の視線方向を定めるに際して、3次元的な姿勢が検出出来るセンサを利用する例について説明する。本変形実施形態の特徴は、グラフィック表示装置を兼ねた教示操作盤にジャイロセンサ等のような3次元的な姿勢を検出する能力を有するセンサが装備され、該センサで検出された姿勢に基づいてグラフィック表示の視線方向を決定することが可能になっていることである。以下、前述の実施形態との相違点を中心に概略を説明する。
図6は、変形された実施形態で使用されるシステムの1つの構成例を要部ブロック図で示したものである。同図に示したように、本システムは、教示操作盤用インターフェイス16に接続される教示操作盤30に、ジャイロセンサのように3次元的な姿勢を検出する能力を有するセンサが装備されている点を除けば、図1に示したシステムと特に変わりはない。
即ち、教示操作盤30は、ディスプレイ31、キーボード等からなる操作部32、CPU、メモリ、入出力装置等を備えた制御部33、及びジャイロセンサのような3次元姿勢検出センサ35で構成され、マニュアル操作によってディスプレイ31上で特定の位置を指定出来るポインティングデバイスが装備されている。
前述の実施形態と同様、ポインティングデバイスを構成する為にディスプレイ31にタッチパネルが採用され、操作部32にはグラフィック表示操作部322が併設されている。なお、タッチパネルに代えて、あるいはタッチパネルとともにマウス34を使用しても良いことも前述の実施形態と同様である。
3次元姿勢検出センサ35は、教示操作盤30の3次元姿勢を検出し、その出力は制御部33に送られて、グラフィック表示の視線方向の決定に用いられる。典型的な態様においては、ディスプレイ31の表示面に垂直な方向が姿勢方向とされる。
制御部33のメモリには、予めロボットのグラフィック表示に必要な形状データとCG技術を用いた描示を例えばワイヤ描示方式で行なう為のプログラム(コンピュータグラフィックスのソフトウェア)が格納されている。教示操作盤30は、グラフィック表示開始時にロボット制御装置10からロボットの現在姿勢データをもらい、CGのソフトウェア処理によって、グラフィック操作部で指定された表示条件並びに3次元姿勢検出センサ35で検出された姿勢条件の下で、ロボットの現在姿勢をディスプレイ31上にグラフィック表示する。
また、グラフィック表示開始後は、タッチパネルあるいはマウスによって指定されたロボット手先位置の2次元データと平面を指定するデータに基づいて、ロボットのグラフィック画像を更新する。ここで、平面を指定するデータには、3次元姿勢検出センサ35で検出された姿勢のデータが含まれる。
図7は、図6に示したシステムを用いた全体配置と本発明に従ったジョグ送りの様子を説明する図である。本配置は、グラフィック表示装置を兼ねる教示操作盤30に、ジャイロセンサのように3次元的な姿勢を検出する能力を有するセンサが装備されている点を除けば、図2に示したシステムと特に変わりはない。
即ち、同図に示したように、ロボット(実機)20の近くにロボット制御装置10が配置され、ロボット制御装置10にケーブル40によって教示操作盤30がロボット20から離れた位置で操作される。また、教示操作盤30には、オプションでマウス34が接続される。
教示操作盤30の操作部32は、一般のマニュアル入力操作の為の一般操作部321とディスプレイ31のグラフィック表示に関連した操作を行なう為のグラフィック表示操作部322に加え、ジャイロセンサのような3次元姿勢検出センサ35が内蔵されている。一般操作部321には文字表示で各種表示を行なう副ディスプレイ323が併設されている。
また、ディスプレイ31は、周知のタッチパネルを装備した液晶ディスプレイからなるもので、カラー表示が行えることが好ましい。
グラフィック表示操作部322の構成と機能は、3次元姿勢検出センサ35の採用によってグラフィック表示の視線方向を調整するための操作ボタン51が省かれる(あるいは無効モードとされる)点を除けば、図3を参照して説明したものと同様であるから、繰り返し説明は省略する。
本実施形態におけるジョグ送りの操作手順とそれに伴うシステム各部の動作の概要を述べれば次の如くであり、視線方向の決定以外の事項は前述した実施形態の場合と同様である。
1.一般操作部321を操作し、ポインティングデバイスによるジョグ送りのモードを入力指定する。
2.この状態でグラフィック表示オン/オフボタン54を押下する。これにより、ディスプレイ31上には、ロボット画像20’がグラフィック表示(初期描示)される。なお、この時の表示条件は予め設定した基本表示条件または前回オフ時の表示条件による。また、初期描示に必要なロボットの姿勢データは、ロボット制御装置10からもらう。
3.更に、一般操作部321を操作し、ポインティングデバイスとしてタッチパネル/マウスのいずれを用いるかを入力指定する(タッチパネルモード/マウスモードの選択指定)。この種別指定により、ロボットの手先部を示す手先部マーク21’が画面上に強調表示される。手先部マーク21’の表示形態は、タッチパネルモード/マウスモードの指定に応じて異なることが好ましい。
4.ポインティングデバイスの出力から3次元位置を表わすデータを得る為に、一般操作部321を操作して、平面指定関連の操作を行なう。
本変形実施形態における平面指定は、次の2つのモード(a)、(b)のいずれでも実行出来る。
(a)ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)を通り、ディスプレイ表示面に平行な平面を自動指定するモード。ディスプレイ表示面に平行な平面は、3次元姿勢検出センサ35の出力から制御部33内で求められる。
従って、オペレータは教示操作盤30の把持姿勢を調整することで、面の方向を変えることが出来る(視線方向調整は後述)。
(b)特定平面指定モード;別途、陽に平面の方向を指定するパラメータを指定するモードである。具体的には、希望する準拠座標系(ワーク座標系など)のコード番号を指定し、更に、平面の方向を表わす法線ベクトルの成分値を入力する方法がある。例えば、法線ベクトル成分値として(1,0,0)を入力すれば、指定した座標系のYZ平面に平行で、且つ、ポインティングデバイスで指示されている最新のロボットの手先位置を通る平面が指定される。
5.ポインティングデバイスを用いて、希望するジョグ送りを下記(a)または(b)によりマニュアル入力する。
(a)タッチパネルのモード選択時(マウス不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’に手H1でタッチする(マニュアルタッチによる2次元位置入力開始)。教示操作盤30内部では、タッチ位置の2次元データと平面位置データに基づいて、ロボット手先位置(画像上のヴァーチャル位置)3次元位置の逐次計算と計算結果のロボット制御装置10への送信が開始される。
更に、画面上へのタッチを維持したまま、手(指先)を矢印Aで示したの如く符号H1からH2の位置まで移動させた後、手を画面から離す(2次元位置入力終了)。この間、指先タッチ点の画面上の軌跡H1〜H2を表わすデータ(2次元データ)は、平面位置データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
選択されている平面指定モードに従って平面位置を定め、平面位置を表わす平面位置データに基づいて3次元位置データを求める方法は、視線方向のデータが3次元姿勢センサ35の出力から得られる点を除けば、前述の実施形態とほぼ同じである。
即ち、平面位置を定めるには、(1)平面の方向と(2)平面が通る1点を指定すれば良い。前述した自動指定モードでは、(1〉平面の方向は、3次元姿勢センサ35の出力から得られるグラフィック表示の視線方向データによって特定され、(2)平面が通る1点は、ポインティングデバイスで指示されている最新のロボットの手先位置(通常は、TCPの位置)によって特定される。
視線方向のデータは教示操作盤30が持っており、ポインティングデバイスで指示されている最新のロボットの手先位置のデータも、教示操作盤30で前回計算されたデータが使える。但し、初期データは、ロボットの実機のデータをロボット制御装置10からもらう(前述実施形態における処理1,2における初期描示データの授受を参照)。
また、特定平面指定モードでは、(1)平面の方向は陽に指定されたパラメータ(法線ベクトルデータ)によって特定され、(2)平面が通る1点は、自動指定モードの場合と同じく、ポインティングデバイスで指示されている最新のロボットの手先位置によって特定される。
従って、いずれの平面指定モードにおいても、平面方向を記述するデータ(視線方向から算出あるいは陽に設定)と、前回計算された3次元位置に基づいて平面位置データを得ることが出来る。平面位置データが得られれば、それと今回のポインティングデバイス指示位置を通る視線に対応する直線の交点位置として、3次元位置が求められる。
さて、このようなジョグ送り操作によって、画面上のロボット20’の手先はA’のように移動して停止する一方、ロボット(実機)20の手先もA’のように追随移動して停止する。実機の停止位置は、オペレータがタッチパネルから手を離した画面上の位置に対応している。
(b)マウスのモード選択時(タッチパネル不使用);ロボット20のグラフィック表示画像20’の手先部マーク21’にマウス34のカーソル(不図示)を合わせてクリックする(マウスクリックによる2次元位置入力開始)。これにより、タッチ位置の2次元データのロボット制御装置10への転送が開始される。
マウス34を矢印Aに相当する方向で示した方向へ移動させた後、再クリックする(2次元位置入力終了)。この間、マウスカーソルの画面上の軌跡を表わすデータ(2次元データ)は、平面指定データを使って3次元位置を表わすデータに逐次的に変換され、ロボット制御装置10に送信される。ロボット制御装置10はこのデータに基づいてロボットの移動目標位置を逐次決定し、移動指令を作成する。
教示操作盤30側の3次元位置データの求め方は、タッチパネルのモード選択時と同様であるから繰り返し説明は省略する。ロボット(実機)20の停止位置は、マウス34によるジョグ終了クリック(例えば、第2回クリック)を行なった時点におけるマウスカーソルの画面上の位置に対応している。
本変形実施形態において、ロボット制御装置10及び教示操作盤20内部で実行される処理処理の概要は、図4及び図5に示したフローチャートを参照して行なった前出の説明(前述実施形態)と下記相違点を除いて同様であるから詳しい説明は省略する。
(前述実施形態との相違点)
1.教示操作盤側の処理(処理1;図4参照)中のステップD5における表示条件に関連する入力(マニュアル入力)は、ボタン52’53のいずれかの押下による。ボタン51は非装備または無効化とされ、これに代えて3次元姿勢センサ35の出力をチェックする。「ボタン52,53のいずれかの押下」、あるいは「3次元姿勢センサ35の出力が、前回チェック時と比較して予め設定された所定量以上の出力変化(教示操作盤30の姿勢変化)があった時(並びに初回チェック時)」にステップD6へ進む。
2.ステップD7では、押下されたボタン52,53及び3次元姿勢センサ35の出力に応じて表示条件を更新する処理を行ない、グラフィック画像を再表示する。3次元姿勢センサ35の出力に応じて調整される表示条件は、視線方向である。
以上2つの実施形態を例にとって詳しく説明したように、本発明によれば、ジョグ送りキーを何度も繰り返すような煩雑な操作や座標軸方向の認識に要する負担をなくした形で、ロボットを直感に即した方向へ的確にジョグ送りで移動させることが出来る。また、そのことを通して、ロボットの操作性が向上し、ティーチング・プレイバック方法による位置教示作業などの効率を高めることが出来る。
Claims (21)
- ロボットの動作を制御するロボット制御装置と、該ロボット制御装置に接続されるとともに前記ロボットのグラフィック画像の表示を行なうグラフィック表示装置と、前記グラフィック表示装置の画面上で2次元位置入力を行う為のポインティングデバイスと、前記ポインティングデバイスによる2次元位置入力を平面位置データを用いて3次元位置出力に変換する手段を含むシステムを利用して、前記ロボットを移動させるようにした、ロボットのジョグ送り方法において、
(A)前記ロボットの移動開始前の姿勢を表わすグラフィック画像を前記グラフィック表示装置の画面上に描示する初期描示段階と、
(B)前記ポインティングデバイスを用いたジョグ送りの為の2次元位置入力を前記グラフィック表示装置の画面上で開始する段階と、
(C)前記2次元位置入力を平面位置データに基づいて3次元位置出力に逐次的に変換する段階と、
(D)前記3次元位置出力に基づいて前記ロボットのグラフィック画像を逐次的に更新する段階と、
(E)前記ロボット制御装置が前記3次元位置出力に基づいて前記ロボットを移動させる段階とを含む、
(F)前記ポインティングデバイスを用いたジョグ送りの為の2次元位置入力を終了する段階とを含む、
前記ロボットのジョグ送り方法。 - 前記(C)の段階が前記ロボット制御装置の外部で実行され、前記3次元位置出力を表わす信号が前記ロボット制御装置に伝えられる、
請求項1に記載されたロボットのジョグ送り方法。 - 前記(C)の段階が前記ロボット制御装置の内部で実行され、前記3次元位置出力を表わす信号が前記グラフィック表示装置に伝えられる、請求項1に記載されたロボットのジョグ送り方法。
- 前記グラフィック表示装置の画面にはタッチパネルが装備されており、
2次元位置入力が、前記画面へのマニュアルタッチによって行なわれ、
前記(B)の段階における前記2次元位置入力の開始が、前記グラフィック表示装置の画面に表示されているロボットのグラフィック画像の手先描示部へのマニュアルタッチの開始によってなされ、
前記(F)の段階における前記2次元位置入力の終了が、前記画面上における前記マニュアルタッチの開始位置とは異なる位置で行なわれるマニュアルタッチの解除によってなされる、請求項1〜請求項3のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記グラフィック表示装置にはマウスカーソル表示機能を備えたマウスが装備されており、
前記2次元位置入力が、前記マウスによって行なわれ、
前記(B)の段階における前記2次元位置入力の開始が、前記グラフィック表示装置の表示画面に表示されているロボットのグラフィック画像の手先描示部へ前記マウスカーソルを合わせた状態で行なわれる前記マウスの第1のクリックによってなされ、
前記(F)の段階における前記2次元位置入力の終了が、前記画面上における前記マウスの第1のクリック位置とは異なる位置で行なわれる前記マウスの第2のクリックによってなされる、請求項1〜請求項3のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記(E)の段階が、前記(C)の段階に同期的に追随して実行される、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記(E)の段階が、前記(F)の段階の完了直後に開始される、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記(E)の段階が、前記(F)の段階の完了した時点を基準として前記システムに設定された時間の経過後に開始される、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記(E)の段階が、前記(B)の段階の完了した時点を基準として前記システムに設定された時間の経過後に開始される、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記平面位置データが、前記ロボットのグラフィック画像表示の視線方向と、位置入力に対応した最新の3次元位置データとに基づいて作成される、請求項1〜請求項9のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記平面位置データが、前記システムに予め教示された平面方向と、位置入力に対応した最新の3次元位置データとに基づいて作成される、請求項1〜請求項9のいずれか1項に記載されたロボットのジョグ送り方法。
- 前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備しておき、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められるようにした、請求項2に記載されたロボットのジョグ送り方法。 - 前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備しておき、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められるようにした、請求項3に記載されたロボットのジョグ送り方法。 - 前記グラフィック表示装置の画面にはタッチパネルが装備されており、
2次元位置入力が、前記画面へのマニュアルタッチによって行なわれ、
前記(B)の段階における前記2次元位置入力の開始が、前記グラフィック表示装置の画面に表示されているロボットのグラフィック画像の手先描示部へのマニュアルタッチの開始によってなされ、
前記(F)の段階における前記2次元位置入力の終了が、前記画面上における前記マニュアルタッチの開始位置とは異なる位置で行なわれるマニュアルタッチの解除によってなされ、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項3のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記グラフィック表示装置にはマウスカーソル表示機能を備えたマウスが装備されており、
前記2次元位置入力が、前記マウスによって行なわれ、
前記(B)の段階における前記2次元位置入力の開始が、前記グラフィック表示装置の表示画面に表示されているロボットのグラフィック画像の手先描示部へ前記マウスカーソルを合わせた状態で行なわれる前記マウスの第1のクリックによってなされ、
前記(F)の段階における前記2次元位置入力の終了が、前記画面上における前記マウスの第1のクリック位置とは異なる位置で行なわれる前記マウスの第2のクリックによってなされ、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項3のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記(E)の段階が、前記(C)の段階に同期的に追随して実行され、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記(E)の段階が、前記(F)の段階の完了直後に開始されるようになっており、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記(E)の段階が、前記(F〉の段階の完了した時点を基準として前記システムに設定された時間の経過後に開始され、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記(E)の段階が、前記(B)の段階の完了した時点を基準として前記システムに設定された時間の経過後に開始され、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項5のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記平面位置データが、前記ロボットのグラフィック画像表示の視線方向と、位置入力に対応した最新の3次元位置データとに基づいて作成され、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項9のいずれか1項に記載されたロボットのジョグ送り方法。 - 前記平面位置データが、前記システムに予め教示された平面方向と、位置入力に対応した最新の3次元位置データとに基づいて作成され、
前記グラフィック表示装置に3次元的な姿勢が検出出来るセンサが装備されており、
前記センサによって検出された姿勢に対応する方向に従って前記ロボットのグラフィック画像表示の視線方向が定められる、請求項1〜請求項9のいずれか1項に記載されたロボットのジョグ送り方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21416396 | 1996-07-24 | ||
PCT/JP1997/002571 WO1998003314A1 (fr) | 1996-07-24 | 1997-07-24 | Procede de commande de deplacement graduel de robots |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3841439B2 true JP3841439B2 (ja) | 2006-11-01 |
Family
ID=16651285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50681198A Expired - Fee Related JP3841439B2 (ja) | 1996-07-24 | 1997-07-24 | ロボットのジョグ送り方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6088628A (ja) |
EP (1) | EP0864401B1 (ja) |
JP (1) | JP3841439B2 (ja) |
DE (1) | DE69735269T2 (ja) |
WO (1) | WO1998003314A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009282973A (ja) * | 2008-05-21 | 2009-12-03 | Siemens Ag | 工作機械を操作するための操作装置 |
WO2014013605A1 (ja) * | 2012-07-20 | 2014-01-23 | 株式会社安川電機 | ロボットシミュレータ、ロボット教示装置およびロボット教示方法 |
CN104238418A (zh) * | 2014-07-02 | 2014-12-24 | 北京理工大学 | 一种交互现实系统和方法 |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003246294B2 (en) * | 1995-04-25 | 2007-08-30 | Every Penny Counts, Inc. | System and its method of use for accepting financial overpayments |
US6529785B1 (en) * | 1999-09-27 | 2003-03-04 | Rockwell Automation Technologies, Inc. | Jog control for industrial control network |
JP2001236156A (ja) * | 2000-02-24 | 2001-08-31 | Nec Corp | 情報処理装置のユーザ命令応答方法、記録媒体及び情報処理装置 |
US6745232B1 (en) | 2000-08-23 | 2004-06-01 | Rockwell Automation Technologies, Inc. | Strobed synchronization providing diagnostics in a distributed system |
US6701214B1 (en) | 2000-04-27 | 2004-03-02 | Rockwell Automation Technologies, Inc. | Driver board control system for modular conveyer with address-based network for inter-conveyor communication |
US6591311B1 (en) | 2000-04-27 | 2003-07-08 | Rockwell Automation Technologies, Inc. | Method and system for selecting controller output value source |
US6701462B1 (en) | 2000-05-19 | 2004-03-02 | Rockwell Automation Technologies, Inc. | Situational aware output configuration and execution |
US6765558B1 (en) | 2000-09-29 | 2004-07-20 | Rockwell Automation Technologies, Inc. | Multiple touch plane compatible interface circuit and method |
US6753853B1 (en) * | 2000-09-29 | 2004-06-22 | Rockwell Automation Technologies, Inc. | Low power dissipation touch plane interface circuit |
US6980201B1 (en) | 2000-09-29 | 2005-12-27 | Rockwell Automation Technologies, Inc. | Minimum move touch plane scanning method and device |
US6611257B1 (en) | 2000-09-29 | 2003-08-26 | Rockwell Automation Technologies, Inc. | Automatic detection of touch plane type |
JP5039911B2 (ja) * | 2000-10-11 | 2012-10-03 | インターナショナル・ビジネス・マシーンズ・コーポレーション | データ処理装置、入出力装置、タッチパネルの制御方法、記憶媒体及びプログラム伝送装置 |
US6385508B1 (en) * | 2000-10-31 | 2002-05-07 | Fanuc Robotics North America, Inc. | Lead-through teach handle assembly and method of teaching a robot assembly |
JP3673725B2 (ja) * | 2001-04-05 | 2005-07-20 | ファナック株式会社 | ロボット用情報処理システム |
FR2839176A1 (fr) * | 2002-04-30 | 2003-10-31 | Koninkl Philips Electronics Nv | Systeme d'animation pour robot comprenant un ensemble de pieces mobiles |
FR2840420B1 (fr) * | 2002-05-31 | 2005-05-27 | Sepro Robotique | Dispositif et produit-programme de commande, notamment de manipulateurs ou de robots |
JP3708083B2 (ja) | 2003-02-28 | 2005-10-19 | ファナック株式会社 | ロボット教示装置 |
US20040173978A1 (en) * | 2003-03-06 | 2004-09-09 | Christopher Bowen | PTFE membranes and gaskets made therefrom |
JP3819883B2 (ja) * | 2003-08-27 | 2006-09-13 | ファナック株式会社 | ロボットプログラム位置修正装置 |
US7698148B2 (en) * | 2003-09-12 | 2010-04-13 | Raytheon Company | Web-based risk management tool and method |
JP2005288581A (ja) * | 2004-03-31 | 2005-10-20 | Fanuc Ltd | 可搬式教示操作盤 |
DE102004020099A1 (de) * | 2004-04-24 | 2005-11-17 | Kuka Roboter Gmbh | Verfahren und Vorrichtung zum Beeinflussen eines mehrachsigen Handhabungsgeräts |
JP2006331012A (ja) * | 2005-05-25 | 2006-12-07 | Jtekt Corp | 工作機械の操作支援システム |
JP2007015037A (ja) * | 2005-07-05 | 2007-01-25 | Sony Corp | ロボットのモーション編集装置及びモーション編集方法、コンピュータ・プログラム、並びにロボット装置 |
JP2007226406A (ja) * | 2006-02-22 | 2007-09-06 | Toshiba Corp | 監視制御システム |
PL3530420T3 (pl) * | 2006-03-03 | 2024-03-18 | Universal Robots A/S | Przegub dla robota |
JP2007286976A (ja) * | 2006-04-18 | 2007-11-01 | Fanuc Ltd | ロボットシミュレーション装置 |
EP2196881A1 (de) * | 2008-12-04 | 2010-06-16 | Siemens Aktiengesellschaft | Bedieneinrichtung zur Bedienung einer Maschine aus der Automatisierungstechnik |
DE102009012328A1 (de) * | 2009-03-09 | 2010-09-16 | Weber Maschinenbau Gmbh Breidenbach | Vorrichtung zum Betreiben eines Roboters |
JP5526881B2 (ja) * | 2010-03-12 | 2014-06-18 | 株式会社デンソーウェーブ | ロボットシステム |
SE1050763A1 (sv) * | 2010-07-08 | 2010-07-12 | Abb Research Ltd | En metod för att kalibrera en mobil robot |
WO2012062374A1 (en) * | 2010-11-12 | 2012-05-18 | Abb Technology Ag | A control system and an operating device for controlling an industrial robot comprising a touch -screen |
JP5246672B2 (ja) * | 2011-02-17 | 2013-07-24 | 独立行政法人科学技術振興機構 | ロボットシステム |
AT511488A3 (de) * | 2011-05-16 | 2014-12-15 | Keba Ag | Verfahren zur manuell gesteuerten beeinflussung von bewegungen einer maschine oder anlage sowie entsprechende maschinensteuerung |
JP6193554B2 (ja) | 2011-11-04 | 2017-09-06 | ファナック アメリカ コーポレイション | 3次元表示部を備えたロボット教示装置 |
DE102012103032B3 (de) * | 2012-04-05 | 2013-07-04 | Reis Group Holding Gmbh & Co. Kg | Verfahren zur Bedienung eines Industrieroboters |
DE102012103031A1 (de) * | 2012-04-05 | 2013-10-10 | Reis Group Holding Gmbh & Co. Kg | Verfahren zur Bedienung eines Industrieroboters |
JP5426719B2 (ja) | 2012-05-18 | 2014-02-26 | ファナック株式会社 | ロボットシステムの動作シミュレーション装置 |
US9199376B2 (en) * | 2013-03-14 | 2015-12-01 | GM Global Technology Operations LLC | Intuitive grasp control of a multi-axis robotic gripper |
JP6476662B2 (ja) * | 2013-09-20 | 2019-03-06 | 株式会社デンソーウェーブ | ロボット操作装置、ロボットシステム、及びロボット操作プログラム |
JP6379501B2 (ja) * | 2014-02-05 | 2018-08-29 | 株式会社デンソーウェーブ | ロボットの教示装置 |
JP6361153B2 (ja) * | 2014-02-05 | 2018-07-25 | 株式会社デンソーウェーブ | ロボットの教示装置 |
DE102014202145A1 (de) * | 2014-02-06 | 2015-08-06 | Kuka Roboter Gmbh | Verfahren zum Programmieren eines Industrieroboters und zugehörigerIndustrieroboter |
US9387589B2 (en) | 2014-02-25 | 2016-07-12 | GM Global Technology Operations LLC | Visual debugging of robotic tasks |
JP6361213B2 (ja) * | 2014-03-26 | 2018-07-25 | セイコーエプソン株式会社 | ロボット制御装置、ロボット、ロボットシステム、教示方法、及びプログラム |
WO2015149360A1 (en) * | 2014-04-04 | 2015-10-08 | Abb Technology Ltd | Portable apparatus for controlling robot and method thereof |
JP6522930B2 (ja) * | 2014-11-28 | 2019-05-29 | ファナック株式会社 | 可動部を直接手動で操作可能な数値制御工作機械 |
DE102014226933B3 (de) * | 2014-12-23 | 2016-03-24 | Kuka Roboter Gmbh | Vorrichtung und Verfahren zum Aufnehmen von Positionen |
JP6631279B2 (ja) * | 2015-03-19 | 2020-01-15 | 株式会社デンソーウェーブ | ロボット操作装置、ロボット操作プログラム |
US10048851B2 (en) * | 2015-03-19 | 2018-08-14 | Denso Wave Incorporated | Apparatus for operating robots |
JP6690265B2 (ja) * | 2015-03-19 | 2020-04-28 | 株式会社デンソーウェーブ | ロボット操作装置、ロボット操作方法 |
DK3277467T3 (da) * | 2015-03-31 | 2020-07-27 | Abb Schweiz Ag | Fremgangsmåde til at styre en industrirobot ved berøring |
JP6676286B2 (ja) | 2015-05-12 | 2020-04-08 | キヤノン株式会社 | 情報処理方法、および情報処理装置 |
JP6900533B2 (ja) * | 2015-05-12 | 2021-07-07 | キヤノン株式会社 | 情報処理方法、情報処理装置、ロボット装置、情報処理プログラム、およびコンピュータ読み取り可能な記録媒体 |
JP6710919B2 (ja) * | 2015-09-08 | 2020-06-17 | 株式会社デンソーウェーブ | ロボット操作装置 |
ES2929729T3 (es) * | 2015-11-13 | 2022-12-01 | Berkshire Grey Operating Company Inc | Sistemas de clasificación para proporcionar clasificación de una variedad de objetos |
DK179325B1 (en) * | 2016-03-17 | 2018-04-30 | Itu Business Dev A/S | A robot and a method of controlling a robot |
JP6733239B2 (ja) | 2016-03-18 | 2020-07-29 | セイコーエプソン株式会社 | 制御装置及びロボットシステム |
DE102016004630A1 (de) * | 2016-04-16 | 2017-10-19 | J.G. WEISSER SöHNE GMBH & CO. KG | Werkzeugmaschine sowie Verwendung eines berührempfindlichen Displays zur Ansteuerung eines Maschinenteils einer Werkzeugmaschine |
EP3478460B1 (en) | 2016-06-29 | 2020-11-04 | ABB Schweiz AG | An industrial robot system comprising a dual arm robot |
WO2018051435A1 (ja) * | 2016-09-14 | 2018-03-22 | 三菱電機株式会社 | 数値制御装置 |
JP6748019B2 (ja) | 2017-04-10 | 2020-08-26 | ファナック株式会社 | 外力表示機能を有するロボットシステム、処理装置及び教示操作盤 |
JP7091609B2 (ja) | 2017-04-14 | 2022-06-28 | セイコーエプソン株式会社 | シミュレーション装置、ロボット制御装置およびロボット |
JP6526098B2 (ja) * | 2017-04-26 | 2019-06-05 | ファナック株式会社 | ロボットを操作するための操作装置、ロボットシステム、および操作方法 |
CN107351087A (zh) * | 2017-08-29 | 2017-11-17 | 成都乐创自动化技术股份有限公司 | 一种点动响应控制方法及系统 |
JP6683671B2 (ja) | 2017-11-24 | 2020-04-22 | ファナック株式会社 | ジョグ座標系を設定するロボットの制御装置 |
JP6737824B2 (ja) * | 2018-03-13 | 2020-08-12 | ファナック株式会社 | 制御装置、制御方法及び制御プログラム |
DE202018105721U1 (de) * | 2018-10-05 | 2020-01-20 | Fruitcore Gmbh | Roboter mit Antriebselement auf der Hauptwelle und Bedienvorrichtung für einen Roboter |
JP6918847B2 (ja) * | 2019-01-11 | 2021-08-11 | ファナック株式会社 | 機械の教示に用いる機械教示端末、教示システム、プログラム及び安全確認方法 |
DE102019211270B3 (de) * | 2019-07-30 | 2020-11-26 | Kuka Deutschland Gmbh | Steuern eines Roboters |
CN116802020A (zh) * | 2020-12-21 | 2023-09-22 | 波士顿动力公司 | 用于监督式自主抓取的用户界面 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020881A (ja) * | 1983-07-15 | 1985-02-02 | 三菱電機株式会社 | ロボツト・コントロ−ラ− |
JPS6044282A (ja) * | 1983-08-17 | 1985-03-09 | 三菱電機株式会社 | 産業用ロボツトの制御装置 |
JPS62165213A (ja) * | 1986-01-17 | 1987-07-21 | Agency Of Ind Science & Technol | 作業環境教示装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57113111A (en) * | 1980-12-30 | 1982-07-14 | Fanuc Ltd | Robot control system |
FR2510778A1 (fr) * | 1981-08-03 | 1983-02-04 | Inro France Sarl | Systeme de commande pour robot sequentiel |
US5222156A (en) * | 1984-03-09 | 1993-06-22 | Canon Kabushiki Kaisha | Object information processing apparatus |
US4998050A (en) * | 1988-06-13 | 1991-03-05 | Nissan Motor Co., Ltd. | System and method for teaching robots |
US5086401A (en) * | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
JPH0628021A (ja) * | 1992-07-09 | 1994-02-04 | Fanuc Ltd | 対話形数値制御装置 |
US5524180A (en) * | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
GB9222206D0 (en) * | 1992-10-22 | 1992-12-02 | Ibm | A data processing system |
JP3274272B2 (ja) * | 1994-03-08 | 2002-04-15 | ファナック株式会社 | 座標系の手動送り方法並びにロボット制御装置 |
JPH07295625A (ja) * | 1994-04-28 | 1995-11-10 | Fanuc Ltd | ロボットのジョグ送り情報表示装置 |
JP3418456B2 (ja) * | 1994-06-23 | 2003-06-23 | ファナック株式会社 | ロボット位置教示具及びロボット位置教示方法 |
US5465215A (en) * | 1994-07-07 | 1995-11-07 | Cincinnati Milacron Inc. | Numerical control method and apparatus |
WO1997002114A1 (fr) * | 1995-07-05 | 1997-01-23 | Fanuc Ltd | Appareil et procede de commande du mouvement d'un robot |
-
1997
- 1997-07-24 JP JP50681198A patent/JP3841439B2/ja not_active Expired - Fee Related
- 1997-07-24 EP EP97933011A patent/EP0864401B1/en not_active Expired - Lifetime
- 1997-07-24 DE DE69735269T patent/DE69735269T2/de not_active Expired - Fee Related
- 1997-07-24 WO PCT/JP1997/002571 patent/WO1998003314A1/ja active IP Right Grant
- 1997-07-24 US US09/043,612 patent/US6088628A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020881A (ja) * | 1983-07-15 | 1985-02-02 | 三菱電機株式会社 | ロボツト・コントロ−ラ− |
JPS6044282A (ja) * | 1983-08-17 | 1985-03-09 | 三菱電機株式会社 | 産業用ロボツトの制御装置 |
JPS62165213A (ja) * | 1986-01-17 | 1987-07-21 | Agency Of Ind Science & Technol | 作業環境教示装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009282973A (ja) * | 2008-05-21 | 2009-12-03 | Siemens Ag | 工作機械を操作するための操作装置 |
WO2014013605A1 (ja) * | 2012-07-20 | 2014-01-23 | 株式会社安川電機 | ロボットシミュレータ、ロボット教示装置およびロボット教示方法 |
JPWO2014013605A1 (ja) * | 2012-07-20 | 2016-06-30 | 株式会社安川電機 | ロボットシミュレータ、ロボット教示装置およびロボット教示方法 |
CN104238418A (zh) * | 2014-07-02 | 2014-12-24 | 北京理工大学 | 一种交互现实系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
EP0864401A1 (en) | 1998-09-16 |
EP0864401B1 (en) | 2006-02-15 |
WO1998003314A1 (fr) | 1998-01-29 |
US6088628A (en) | 2000-07-11 |
DE69735269D1 (de) | 2006-04-20 |
DE69735269T2 (de) | 2006-07-27 |
EP0864401A4 (en) | 2004-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3841439B2 (ja) | ロボットのジョグ送り方法 | |
JP4014662B2 (ja) | ロボット教示操作盤 | |
CN110977931A (zh) | 使用了增强现实和混合现实的机器人控制装置及显示装置 | |
JP6683671B2 (ja) | ジョグ座標系を設定するロボットの制御装置 | |
EP1462896A2 (en) | Robot teaching device | |
WO2016103307A1 (ja) | ロボットの動作プログラム生成方法及びロボットの動作プログラム生成装置 | |
JP2018183845A (ja) | ロボットを操作するための操作装置、ロボットシステム、および操作方法 | |
JP2005111618A (ja) | ロボットの手動送り装置 | |
JPH11262883A (ja) | ロボットのマニュアル操作装置 | |
EP3626404A1 (en) | Robot system and method for controlling robot system | |
JP3744116B2 (ja) | 表示入力装置 | |
EP1548554B1 (en) | Synchronisation of the Force Feedback Behaviour of an Input Device with Image Switching | |
JP7564184B2 (ja) | 直接教示操作を受け付け可能な制御装置、教示装置、および制御装置のコンピュータプログラム | |
JPH09103978A (ja) | ロボットの制御装置 | |
CN114905487B (zh) | 示教装置、示教方法以及记录介质 | |
JPH1158276A (ja) | ロボットのオフラインシミュレーションシステム | |
JP2015231659A (ja) | ロボット装置 | |
JP7015416B1 (ja) | ロボット教示システム、プログラムおよびプログラム編集装置 | |
JP6601201B2 (ja) | ロボット操作装置、及びロボット操作プログラム | |
KR102403021B1 (ko) | 로봇 교시 장치 및 이를 이용한 로봇 교시 방법 | |
CN118742422A (zh) | 示教操作盘以及机器人控制系统 | |
JPS62150423A (ja) | 表示制御装置 | |
CN117648042B (zh) | 工业机器人拖拽示教移动控制方法及系统 | |
US12138786B2 (en) | Teaching device, teaching method, and recording medium | |
JP7068416B2 (ja) | 拡張現実と複合現実を用いたロボット制御装置、ロボットの位置姿勢規定用コンピュータプログラム及びロボットの位置姿勢規定方法、相対位置姿勢取得用コンピュータプログラム及び相対位置姿勢取得方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060725 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060808 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |