Nothing Special   »   [go: up one dir, main page]

JP3736618B2 - Treatment method of waste acid containing copper - Google Patents

Treatment method of waste acid containing copper Download PDF

Info

Publication number
JP3736618B2
JP3736618B2 JP2001049686A JP2001049686A JP3736618B2 JP 3736618 B2 JP3736618 B2 JP 3736618B2 JP 2001049686 A JP2001049686 A JP 2001049686A JP 2001049686 A JP2001049686 A JP 2001049686A JP 3736618 B2 JP3736618 B2 JP 3736618B2
Authority
JP
Japan
Prior art keywords
copper
sulfuric acid
hydrochloric acid
copper sulfate
containing waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001049686A
Other languages
Japanese (ja)
Other versions
JP2002248480A (en
Inventor
八州家 三上
賢太郎 石橋
大 内藤
Original Assignee
八州家 三上
日本ケミテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 八州家 三上, 日本ケミテック株式会社 filed Critical 八州家 三上
Priority to JP2001049686A priority Critical patent/JP3736618B2/en
Publication of JP2002248480A publication Critical patent/JP2002248480A/en
Application granted granted Critical
Publication of JP3736618B2 publication Critical patent/JP3736618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Removal Of Specific Substances (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板の製造工程等において塩化第2銅溶液を用いた銅エッチング法(以下、塩銅法と記す)による銅エッチング工程などから排出される含銅廃酸の処理方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
塩銅法による銅エッチング工程より排出される含銅廃塩酸は、銅及び塩酸を含有しており、これらを回収して再利用することが望まれていた。そこで、本発明者らは、特開平7−70784号公報及び特願2000−239348号において、含銅廃塩酸の処理方法を提案した。即ち、特開平7−70784号公報では、電解法により、塩銅法による銅エッチング工程から排出される含銅廃塩酸中の余剰銅を陰極で採取し、陽極から発生する塩素を吹き込んで銅エッチング液として再生するものである。しかしながら、電解液中に多量の塩素イオンを含むので、発生塩素ガスの拡散、各部の腐食、銅の電析効率の低下、及び銅の析出形態が針状又は樹枝状である等の問題点があり、それらを解決するため、電解槽は発生塩素ガスの回収装置、隔膜、及び析出銅の掻き取り機等を備えた複雑なものとなり、電極を始めとする各部の材質には耐塩素腐食性を有する高価なものを用いなければならないという欠点があった。また、銅の回収形態が銅粉であるため、塩素の混入によりその品位は下がり、それを改善するためには更なる工程を必要とした。
【0003】
特願2000−239348号は、これらの欠点を改善するために提案したもので、含銅廃塩酸に硫酸を添加し、減圧下で加熱して塩酸と硫酸銅溶液に複分解し、得られた硫酸銅溶液を電解して板状の金属銅を回収する方法である。しかしながら、電解液中に多量の遊離硫酸が存在してpHが低いため、得られる銅の表面が褐色となり、品位が低下し易い場合があった。
【0004】
本発明は、上記の問題点を改善するためになされたもので、含銅廃塩酸から再利用可能な塩酸及び板状で品位の高い銅を、簡易な装置で効率的に、かつ副生廃棄物を出さずに回収する処理方法を提供することを目的とする。
【0005】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、本発明に到達したもので、本発明は、以下の含銅廃酸の処理方法を提供する。
(1)塩化第2銅及び塩酸を含有する含銅廃塩酸に硫酸を添加し、200Torr以下の減圧下、60〜120℃で加熱して、この廃液中に含まれる塩化第2銅を硫酸銅と塩酸に分解すると共に前記塩酸を系内から除去・回収する第1工程と、第1工程で発生する塩化水素ガスを回収する第2工程と、第1工程で得られる硫酸銅を含む溶液を冷却して硫酸銅の結晶を晶析する第3工程と、この硫酸銅結晶を分離回収する第4工程と、得られた硫酸銅結晶を再溶解し、電解法により陰極で金属銅を回収する第5工程と、第4工程で得られた母液及び第5工程の銅回収後の残液を第1工程へ戻す第6工程とを含むことを特徴とする含銅廃酸の処理方法。
(2)上記第1工程における塩化第2銅の硫酸による分解を、分解反応時の硫酸濃度として40〜70重量%の条件下で行うようにし、且つ、上記第5工程における電解法による金属銅の回収を、電解液中の硫酸濃度550g/l以下の条件下で行うようにした(1)記載の処理方法。
(3)第1工程で硫酸の代わりに含銅廃硫酸を使用するようにした(1)又は(2)記載の処理方法。
【0006】
本発明によれば、含銅廃塩酸に硫酸を添加して塩化銅を硫酸銅と塩酸に複分解し、塩酸は塩化水素ガスとして取り出し、冷却して回収する一方、硫酸銅は結晶を晶析して分離した後、再溶解し、電解して板状の金属銅として回収することができ、しかも硫酸銅結晶分離後の母液及び電解後の残液はこれを第1工程において塩化銅を複分解する硫酸溶液として使用することができる。一方、回収塩酸は17〜26%の濃度でプリント基板の銅エッチングには十分使用できる。従って、含銅廃塩酸を有価物質に再生回収してリサイクルすることができるものである。
【0007】
本発明での硫酸銅溶液の電解は、塩化銅溶液の電解と異なり、塩素発生の問題がないので隔膜の必要がなく、構造が簡便な電解装置が使用できるし、得られる電析される金属銅も板状又は皮膜状であるので、回収し易いばかりでなく、塩素の混入がなく、高品位の99.90%以上のものである。それ故、本発明の方法は、工業的有利に含銅廃塩酸の処理を行うことができるものである。
【0008】
以下、本発明につき更に詳しく説明する。
本発明の含銅廃酸の処理方法において、この含銅廃酸は、例えばプリント配線基板の製造工程において銅張積層板等を塩化第2銅を用いた銅エッチング液でエッチングする際に排出される塩化銅及び塩酸を含有する含銅廃塩酸や硫酸と過酸化水素水でレジストを剥離する際に排出される含銅廃硫酸などを用いることができる。
【0009】
本発明においては、図1に示したように、第1工程としてこのような含銅廃塩酸溶液に硫酸を添加し、塩化銅を硫酸銅と塩酸とに複分解する。この場合、硫酸は、添加後の濃度が50〜70重量%になるように減圧蒸留することが好ましいので、添加する硫酸の濃度は自由であるが、30〜98重量%の濃度が好ましい。更に好ましくは50〜75重量%濃度である。また、硫酸の代わりに含銅廃硫酸を使用することもできる。硫酸又は含銅廃硫酸の添加量は、塩化銅が硫酸銅と塩酸とに複分解する反応時の硫酸濃度が40〜70重量%、特に50〜70重量%濃度になるようにすることがよく、特に得られる硫酸銅が1〜3水和物であることが好ましい。この硫酸添加による反応は減圧下300Torr以下、好ましくは50〜200Torrで60〜120℃で行うことが好ましく、この条件であると上記分解反応が効率よく行われると共に、塩化水素ガスを揮発除去し、第2工程でこれを冷却することによってコンデンサーで回収できる。
【0010】
ここで、連続運転を想定し、塩素イオンの殆どが混合後速やかに塩化水素ガスとして蒸発する条件を一例として図2に示す。図2において、曲線より上側が塩化水素ガスとして蒸発する条件(温度,圧力)である。
【0011】
反応容器としては、上記反応条件に対応し、かつ耐食性を持つもの、例えば、内側をFRP、又はテフロンでコーティングしたステンレス容器等が使用できる。硫酸は、第4工程で回収される母液及び第5工程で回収される電解後の残液を再利用して用いることができる。理論上は、系外への硫酸の流出はなく、補充する必要がないため、経済的に有利であり、環境面から考えても好ましい。最初に用いる硫酸としては、上述したように銅エッチング工程において、硫酸と過酸化水素水を用いてレジストを剥離する際に排出されるものを始めとする含銅廃硫酸も使用できる。
【0012】
なお、第2工程で回収される塩酸は、第1工程反応前の硫酸濃度を反応後の濃度に合わせれば、含銅廃塩酸中の塩素イオン濃度と同程度の濃度で得られる。塩銅法による銅エッチング工程から出る含銅廃塩酸の場合、塩素イオン濃度は20重量%前後であるので、調整してエッチング液の原料として有効的に再利用できる。
【0013】
次に、第3工程は、第1工程の反応溶液(硫酸銅を含む溶液)を冷却して硫酸銅の結晶を晶析する工程であり、第4工程はこの硫酸銅結晶を分離回収する工程である。
【0014】
この場合、冷却速度は、5〜20℃/hrであることが好ましい。この時、冷却は撹拌しながら行うのが好ましい。静置して行うと、冷却効率が悪い上、結晶成長により設備の閉塞や固液分離の効率悪化を招くおそれがある。冷却温度は、低い程より多くの結晶が晶析するが、下げ過ぎると母液を第1工程に戻すために加熱する際、より多くの熱量を必要とする。回収される硫酸銅結晶は、図2に示した条件で行った場合、従来あまり知られていない2水和物が主体となる。
【0015】
第5工程は、第4工程で回収した硫酸銅の結晶を硫酸水溶液に再溶解し、電解法により陰極に銅を回収する工程である。電解の際、電解液中の硫酸濃度が濃くなると陰極で水素が発生し、また、得られる銅は塩基性金属となってその価値が低下する。表1に常温における硫酸濃度と得られる銅表面の色の関係を示す。なお、電解時の温度を上げれば、更に濃い濃度下においても高純度の銅が回収できる。
【0016】
【表1】

Figure 0003736618
【0017】
本発明の第5工程の硫酸銅溶液の電解は公知の方法で行うことができる。この場合、陽極としては、カーボン、チタン、鉛、ステンレス、白金、チタン膜を表面にコーティングした白金などの不溶性の陽極が使用できる。また、陰極としては、ステンレス、銅板の表面にニカワ等を塗布したものなど、銅皮膜が容易に剥離し得るものが用いられる。電解に際し、陰極の電流密度は0.1〜20A/dm2の範囲とし得る。また、電解時の温度は特別に定めないが、50〜60℃位で処理するのが好ましい。
【0018】
第6工程は、上記第4工程で硫酸銅結晶を晶析、回収した後の母液、第5工程で硫酸銅溶液を電解し、銅を電析した後の電解液を第1工程の硫酸として使用するものである。従って、本発明の方法は、副生廃棄物を出さず、工業的に有利に含銅廃塩酸を有価物質に再生、回収できるものである。
【0019】
【発明の効果】
本発明によれば、塩銅法による銅エッチング工程より排出される含銅廃塩酸から使用可能な塩酸と板状の高品位銅を効率よく得るクロズドシステムでリサイクル性に優れた含銅廃塩酸の処理方法を提供することができる。
【0020】
【実施例】
以下、実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0021】
[実施例1]
Cu:110g/L、Cl:230g/Lの含銅廃塩酸840mLを、65重量%硫酸4Lに200Torr、95℃の条件下で添加したところ、Cl:200g/Lの塩酸865mL、Cu:310g/kg、SO4:480g/kg、Cl:12g/kgの硫酸銅結晶256g、及びCu:3g/L、SO4:980g/L、Cl:4g/Lの母液3890mLが回収できた。
【0022】
得られた硫酸銅結晶250gを240mLの水に順次溶解し、電流密度20A/dm2の条件で電解を行ったところ、73.5gの銅が回収でき、品位は99.98%であった。残液の各成分濃度はCu:15g/L、SO4:500g/L、Cl:12g/Lであった。
【0023】
硫酸の代わりに、得られた母液、及び電解後の残液の混合液を用いて行っても同様な結果が得られた。
【0024】
[実施例2]
塩銅法による銅エッチング工程より排出された含銅廃塩酸(塩化第1銅5g/L、塩化第二銅140g/L、塩酸(塩化水素)200g/L含有)1,000gに、98重量%濃度の硫酸溶液1,000gを添加し、100Torr、60℃において30分反応させた。これにより上記廃塩酸溶液中の塩酸は殆ど塩化水素ガスとして除去された。
【0025】
次に、得られた硫酸銅溶液を撹拌下に10℃/hrの冷却速度で20℃まで冷却し、硫酸銅結晶(2水塩)162.9gを回収した。これを硫酸溶解し、硫酸銅(2水塩)162.9g/Lと硫酸300g/Lの溶液を得た。この硫酸銅溶液を、陽極として鉛、陰極として銅板を用い、電流密度20A/dm2、50℃の条件で12時間電解を行った。その結果、上記硫酸銅溶液中の銅分は殆ど電析処理された。得られた銅の品位は99.98%であった。
【0026】
なお、上記硫酸銅結晶を回収した後の母液及び銅電析後の電解液は、いずれも含銅廃塩酸溶液の複分解用硫酸溶液として良好なものだった。
【図面の簡単な説明】
【図1】本発明法の一例を説明するフローシートである。
【図2】第1工程で塩化水素ガスが蒸発する条件の一例を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a copper-containing waste acid discharged from a copper etching process using a cupric chloride solution (hereinafter referred to as a salt copper method) in a manufacturing process of a printed circuit board.
[0002]
[Prior art and problems to be solved by the invention]
The copper-containing waste hydrochloric acid discharged from the copper etching process by the salt copper method contains copper and hydrochloric acid, and it has been desired to recover and reuse them. Accordingly, the present inventors have proposed a method for treating copper-containing waste hydrochloric acid in Japanese Patent Application Laid-Open No. 7-70784 and Japanese Patent Application No. 2000-239348. That is, in Japanese Patent Application Laid-Open No. 7-70784, surplus copper in copper-containing waste hydrochloric acid discharged from a copper etching process by the salt copper method is collected at the cathode by electrolytic method, and chlorine generated from the anode is blown to etch copper. It is regenerated as a liquid. However, since a large amount of chlorine ions are contained in the electrolytic solution, there are problems such as diffusion of generated chlorine gas, corrosion of each part, decrease in copper electrodeposition efficiency, and the form of copper deposition in the shape of needles or dendrites. In order to solve these problems, the electrolytic cell is complicated with a recovery device for generated chlorine gas, a diaphragm, a scraper for deposited copper, etc., and the material of each part including the electrode is resistant to chlorine corrosion. There is a disadvantage that an expensive one having a must be used. In addition, since the copper recovery form is copper powder, the quality is lowered by the mixing of chlorine, and further steps are required to improve it.
[0003]
Japanese Patent Application No. 2000-239348 has been proposed to remedy these disadvantages, and sulfuric acid is added to waste copper-containing hydrochloric acid, and heated under reduced pressure to double-decompose it into hydrochloric acid and a copper sulfate solution. This is a method for recovering plate-like metallic copper by electrolyzing a copper solution. However, since a large amount of free sulfuric acid is present in the electrolytic solution and the pH is low, the surface of the obtained copper may be brown and the quality may be easily lowered.
[0004]
The present invention has been made to improve the above-mentioned problems, and can recycle hydrochloric acid that can be reused from copper-containing waste hydrochloric acid and copper of high quality in a plate shape efficiently and by-product disposal with a simple device. It aims at providing the processing method which collect | recovers without taking out an object.
[0005]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventor has reached the present invention, and the present invention provides the following method for treating copper-containing waste acid.
(1) Add sulfuric acid to copper-containing waste hydrochloric acid containing cupric chloride and hydrochloric acid, and heat at 60 to 120 ° C. under reduced pressure of 200 Torr or less to convert cupric chloride contained in the waste liquid to copper sulfate. And a solution containing copper sulfate obtained in the first step, a first step of decomposing into hydrochloric acid and removing and recovering the hydrochloric acid from the system, a second step of recovering hydrogen chloride gas generated in the first step, and A third step of cooling to crystallize the copper sulfate crystal, a fourth step of separating and recovering the copper sulfate crystal, and redissolving the obtained copper sulfate crystal, and recovering metallic copper at the cathode by an electrolytic method A method for treating a copper-containing waste acid, comprising a fifth step and a sixth step of returning the mother liquor obtained in the fourth step and the remaining liquid after copper recovery in the fifth step to the first step.
(2) Decomposition of cupric chloride with sulfuric acid in the first step is carried out under the condition of 40 to 70% by weight as sulfuric acid concentration during the decomposition reaction, and metal copper by electrolytic method in the fifth step (1) The processing method according to (1), wherein the recovery was performed under the condition where the sulfuric acid concentration in the electrolytic solution was 550 g / l or less.
(3) The processing method according to (1) or (2), wherein copper-containing waste sulfuric acid is used instead of sulfuric acid in the first step.
[0006]
According to the present invention, sulfuric acid is added to copper-containing waste hydrochloric acid to double decompose copper chloride into copper sulfate and hydrochloric acid, and hydrochloric acid is taken out as hydrogen chloride gas and cooled and recovered, while copper sulfate crystallizes crystals. Then, it can be redissolved, electrolyzed and recovered as plate-like metallic copper, and the mother liquor after separation of copper sulfate crystals and the residual liquid after electrolysis can be decomposed into copper chloride in the first step. It can be used as a sulfuric acid solution. On the other hand, the recovered hydrochloric acid has a concentration of 17 to 26% and can be sufficiently used for copper etching of printed circuit boards. Therefore, it is possible to recycle and recover the copper-containing waste hydrochloric acid as a valuable material.
[0007]
The electrolysis of the copper sulfate solution in the present invention, unlike the electrolysis of the copper chloride solution, eliminates the problem of chlorine generation, so there is no need for a diaphragm, and an electrolyzer with a simple structure can be used, and the obtained metal to be electrodeposited Since copper is also in the form of a plate or a film, it is not only easy to recover, but also contains no chlorine and has a high quality of 99.90% or more. Therefore, the method of the present invention can industrially treat copper-containing waste hydrochloric acid.
[0008]
Hereinafter, the present invention will be described in more detail.
In the copper-containing waste acid treatment method of the present invention, the copper-containing waste acid is discharged when, for example, a copper-clad laminate is etched with a copper etchant using cupric chloride in the manufacturing process of a printed wiring board. Copper-containing waste hydrochloric acid containing copper chloride and hydrochloric acid, copper-containing waste sulfuric acid discharged when the resist is peeled off with sulfuric acid and hydrogen peroxide, and the like can be used.
[0009]
In the present invention, as shown in FIG. 1, as the first step, sulfuric acid is added to such a copper-containing waste hydrochloric acid solution, and the copper chloride is double-decomposed into copper sulfate and hydrochloric acid. In this case, since sulfuric acid is preferably distilled under reduced pressure so that the concentration after addition is 50 to 70% by weight, the concentration of sulfuric acid to be added is arbitrary, but a concentration of 30 to 98% by weight is preferable. More preferably, the concentration is 50 to 75% by weight. Moreover, copper-containing waste sulfuric acid can also be used instead of sulfuric acid. The amount of sulfuric acid or copper-containing waste sulfuric acid added should be such that the concentration of sulfuric acid during the reaction in which copper chloride metabolizes into copper sulfate and hydrochloric acid is 40 to 70% by weight, particularly 50 to 70% by weight, In particular, the obtained copper sulfate is preferably a trihydrate. This reaction by addition of sulfuric acid is preferably performed under reduced pressure at 300 Torr or less, preferably 50 to 200 Torr at 60 to 120 ° C. Under these conditions, the decomposition reaction is efficiently performed, and hydrogen chloride gas is volatilized and removed. In the second step, it can be recovered by a condenser by cooling it.
[0010]
Here, assuming continuous operation, FIG. 2 shows an example of conditions under which most of the chlorine ions quickly evaporate as hydrogen chloride gas after mixing. In FIG. 2, the upper side of the curve is the conditions (temperature, pressure) for evaporating as hydrogen chloride gas.
[0011]
As the reaction container, a container corresponding to the above reaction conditions and having corrosion resistance, for example, a stainless steel container coated with FRP or Teflon on the inside can be used. Sulfuric acid can be used by reusing the mother liquor recovered in the fourth step and the residual liquid after electrolysis recovered in the fifth step. Theoretically, there is no outflow of sulfuric acid to the outside of the system, and it is not necessary to replenish. Therefore, it is economically advantageous, and is preferable from the viewpoint of environment. As the sulfuric acid to be used first, copper-containing waste sulfuric acid including those discharged when the resist is stripped using sulfuric acid and hydrogen peroxide solution in the copper etching process as described above can be used.
[0012]
The hydrochloric acid recovered in the second step can be obtained at a concentration similar to the chlorine ion concentration in the copper-containing waste hydrochloric acid if the sulfuric acid concentration before the first step reaction is adjusted to the concentration after the reaction. In the case of copper-containing waste hydrochloric acid produced from the copper etching process by the salt copper method, the chlorine ion concentration is around 20% by weight, so that it can be adjusted and reused effectively as a raw material for the etching solution.
[0013]
Next, the third step is a step of cooling the reaction solution (solution containing copper sulfate) of the first step to crystallize copper sulfate crystals, and the fourth step is a step of separating and recovering the copper sulfate crystals. It is.
[0014]
In this case, the cooling rate is preferably 5 to 20 ° C./hr. At this time, the cooling is preferably performed with stirring. If left standing, the cooling efficiency is poor, and there is a possibility that the equipment will be clogged and the efficiency of solid-liquid separation will be deteriorated due to crystal growth. The lower the cooling temperature, the more crystals are crystallized. However, if the cooling temperature is too low, a larger amount of heat is required for heating the mother liquor to return to the first step. The recovered copper sulfate crystals are mainly dihydrates that are not well known in the past when performed under the conditions shown in FIG.
[0015]
The fifth step is a step in which the copper sulfate crystals recovered in the fourth step are redissolved in an aqueous sulfuric acid solution and copper is recovered at the cathode by an electrolytic method. During electrolysis, when the sulfuric acid concentration in the electrolytic solution is high, hydrogen is generated at the cathode, and the obtained copper becomes a basic metal and its value is lowered. Table 1 shows the relationship between the sulfuric acid concentration at room temperature and the color of the obtained copper surface. In addition, if the temperature at the time of electrolysis is raised, high purity copper can be recovered even at a higher concentration.
[0016]
[Table 1]
Figure 0003736618
[0017]
The electrolysis of the copper sulfate solution in the fifth step of the present invention can be performed by a known method. In this case, as the anode, an insoluble anode such as carbon, titanium, lead, stainless steel, platinum, or platinum coated with a titanium film on the surface can be used. Further, as the cathode, a material that can easily peel the copper film, such as stainless steel or a copper plate coated with glue or the like, is used. Upon electrolysis, the current density of the cathode may range from 0.1~20A / dm 2. Moreover, the temperature at the time of electrolysis is not specifically defined, but it is preferable to perform the treatment at about 50 to 60 ° C.
[0018]
The sixth step is the mother liquor after crystallization and recovery of the copper sulfate crystals in the fourth step, and the electrolytic solution after electrolyzing the copper sulfate solution and electrodepositing the copper as the sulfuric acid of the first step in the fifth step. It is what you use. Therefore, the method of the present invention can regenerate and recover copper-containing waste hydrochloric acid as a valuable material industrially advantageously without generating by-product waste.
[0019]
【The invention's effect】
According to the present invention, copper-containing waste hydrochloric acid excellent in recyclability with a closed system that efficiently obtains usable hydrochloric acid and plate-like high-grade copper from the copper-containing waste hydrochloric acid discharged from the copper etching process by the salt copper method. Can be provided.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[0021]
[Example 1]
When 840 mL of copper-containing waste hydrochloric acid of Cu: 110 g / L and Cl: 230 g / L was added to 4 L of 65 wt% sulfuric acid at 200 Torr and 95 ° C., Cl: 865 mL of 200 g / L hydrochloric acid, Cu: 310 g / L kg, SO 4 : 480 g / kg, Cl: 12 g / kg of copper sulfate crystals 256 g, and Cu: 3 g / L, SO 4 : 980 g / L, Cl: 4 g / L of mother liquid 3890 mL could be recovered.
[0022]
When 250 g of the obtained copper sulfate crystals were sequentially dissolved in 240 mL of water and electrolysis was performed under the condition of a current density of 20 A / dm 2 , 73.5 g of copper could be recovered and the quality was 99.98%. The concentration of each component of the remaining liquid was Cu: 15 g / L, SO 4 : 500 g / L, and Cl: 12 g / L.
[0023]
Similar results were obtained when the mixed solution of the obtained mother liquor and the residual liquid after electrolysis was used instead of sulfuric acid.
[0024]
[Example 2]
98% by weight to 1,000 g of copper-containing waste hydrochloric acid (containing cuprous chloride 5 g / L, cupric chloride 140 g / L, hydrochloric acid (hydrogen chloride) 200 g / L) discharged from the copper etching process by the salt copper method 1,000 g of sulfuric acid solution having a concentration was added and reacted at 100 Torr and 60 ° C. for 30 minutes. As a result, most of the hydrochloric acid in the waste hydrochloric acid solution was removed as hydrogen chloride gas.
[0025]
Next, the obtained copper sulfate solution was cooled to 20 ° C. with stirring at a cooling rate of 10 ° C./hr to recover 162.9 g of copper sulfate crystals (dihydrate). This was dissolved in sulfuric acid to obtain a solution of copper sulfate (dihydrate) 162.9 g / L and sulfuric acid 300 g / L. The copper sulfate solution was electrolyzed for 12 hours under the conditions of a current density of 20 A / dm 2 and 50 ° C. using lead as the anode and a copper plate as the cathode. As a result, the copper content in the copper sulfate solution was almost electrodeposited. The quality of the obtained copper was 99.98%.
[0026]
The mother liquor after recovering the copper sulfate crystals and the electrolytic solution after copper electrodeposition were both good as the sulfuric acid solution for metathesis of the copper-containing waste hydrochloric acid solution.
[Brief description of the drawings]
FIG. 1 is a flow sheet for explaining an example of the method of the present invention.
FIG. 2 is a graph showing an example of conditions under which hydrogen chloride gas evaporates in the first step.

Claims (3)

塩化第2銅及び塩酸を含有する含銅廃塩酸に硫酸を添加し、200Torr以下の減圧下、60〜120℃で加熱して、この廃液中に含まれる塩化第2銅を硫酸銅と塩酸に分解すると共に前記塩酸を系内から除去・回収する第1工程と、第1工程で発生する塩化水素ガスを回収する第2工程と、第1工程で得られる硫酸銅を含む溶液を冷却して硫酸銅の結晶を晶析する第3工程と、この硫酸銅結晶を分離回収する第4工程と、得られた硫酸銅結晶を再溶解し、電解法により陰極で金属銅を回収する第5工程と、第4工程で得られた母液及び第5工程の銅回収後の残液を第1工程へ戻す第6工程とを含むことを特徴とする含銅廃酸の処理方法。Sulfuric acid is added to copper-containing waste hydrochloric acid containing cupric chloride and hydrochloric acid, and heated at 60 to 120 ° C. under a reduced pressure of 200 Torr or less to convert the cupric chloride contained in this waste liquid to copper sulfate and hydrochloric acid. A first step of decomposing and removing and recovering the hydrochloric acid from the system; a second step of recovering hydrogen chloride gas generated in the first step; and cooling a solution containing copper sulfate obtained in the first step. A third step of crystallizing copper sulfate crystals, a fourth step of separating and recovering the copper sulfate crystals, and a fifth step of redissolving the obtained copper sulfate crystals and recovering metallic copper at the cathode by electrolysis And a sixth step of returning the mother liquor obtained in the fourth step and the residual liquid after the copper recovery in the fifth step to the first step. 上記第1工程における塩化第2銅の硫酸による分解を、分解反応時の硫酸濃度として40〜70重量%の条件下で行うようにし、且つ、上記第5工程における電解法による金属銅の回収を、電解液中の硫酸濃度550g/l以下の条件下で行うようにした請求項1記載の処理方法。Decomposition of cupric chloride in the first step with sulfuric acid is carried out under a condition of 40 to 70% by weight as sulfuric acid concentration during the decomposition reaction, and recovery of metallic copper by the electrolytic method in the fifth step is performed. The treatment method according to claim 1, wherein the treatment is performed under a condition where the sulfuric acid concentration in the electrolytic solution is 550 g / l or less. 第1工程で硫酸の代わりに含銅廃硫酸を使用するようにした請求項1又は2記載の処理方法。  The processing method according to claim 1 or 2, wherein copper-containing waste sulfuric acid is used instead of sulfuric acid in the first step.
JP2001049686A 2001-02-26 2001-02-26 Treatment method of waste acid containing copper Expired - Fee Related JP3736618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001049686A JP3736618B2 (en) 2001-02-26 2001-02-26 Treatment method of waste acid containing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001049686A JP3736618B2 (en) 2001-02-26 2001-02-26 Treatment method of waste acid containing copper

Publications (2)

Publication Number Publication Date
JP2002248480A JP2002248480A (en) 2002-09-03
JP3736618B2 true JP3736618B2 (en) 2006-01-18

Family

ID=18910753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001049686A Expired - Fee Related JP3736618B2 (en) 2001-02-26 2001-02-26 Treatment method of waste acid containing copper

Country Status (1)

Country Link
JP (1) JP3736618B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378014C (en) * 2005-02-03 2008-04-02 黄伟君 Sewage treating and resource recovering system
US7175819B2 (en) * 2005-03-04 2007-02-13 Phibro-Tech, Inc. Regeneration of cupric etchants and recovery of copper sulfate
CN102259994B (en) * 2008-04-28 2012-11-14 重庆华浩冶炼有限公司 Treatment method and application of electrolysis copper powder waste liquid
CN101774724B (en) * 2009-01-14 2011-09-21 上海博丹环境工程技术有限公司 Method for treating production wastewater of glucide
CN104313619B (en) * 2014-10-10 2016-06-29 南京舜业环保科技有限公司 The regeneration treating method of low-concentration sulfuric acid copper sulfuric acid solution and device
CN105603466B (en) * 2015-12-28 2018-03-30 中南大学 A kind of method for efficiently separating copper arsenic in recovery copper electrolyte
CN106350678B (en) * 2016-08-30 2018-08-17 盛隆资源再生(无锡)有限公司 A method of recycling corrosion inhibiter and copper from brown oxide waste liquid
CN106521553A (en) * 2016-11-04 2017-03-22 金少平 Process for extracting elemental copper by utilizing waste copper slag
CN107986576A (en) * 2017-12-27 2018-05-04 上海衡洁环保科技有限公司 A kind of processing system and processing method of saccharin production waste water
CN114561669B (en) * 2022-03-03 2023-06-27 无锡中天固废处置有限公司 Method for recycling acidic copper-containing ammonium-containing etching waste liquid

Also Published As

Publication number Publication date
JP2002248480A (en) 2002-09-03

Similar Documents

Publication Publication Date Title
KR100603130B1 (en) Method for producing high purity nickel, high purity nickel, sputtering target comprising the high purity nickel, and thin film formed by using said sputtering target
JP4551994B2 (en) Method for recovering tin, tin alloy or lead alloy from printed circuit board
JP3736618B2 (en) Treatment method of waste acid containing copper
CA2052933C (en) Process and apparatus for electrowinning of heavy metals from waste baths
CN1038950C (en) Method for treating etchant
JP2007297662A (en) Method for producing high purity electrolytic copper from ammonia-based copper etching waste liquid
CN101532136A (en) Electrolytic regeneration method of acidic etching waste solution
Keskitalo et al. Analysis of key patents of the regeneration of acidic cupric chloride etchant waste and tin stripping waste
JP2001233606A (en) Method for producing sodium persulfate
CN210683962U (en) Nitric acid deplating liquid recycling system
JPH04285182A (en) Improved reclaiming process of ammoniacal chloride etchant
JP2000219988A (en) Production of high purity nickel material and high purity nickel material for forming thin film
JP2777955B2 (en) Desilvering or silver recovery method
JP2927352B1 (en) Etching waste liquid recycling method and its apparatus
JPH06173065A (en) Method for refining ti
JPH0489315A (en) Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JP2006176353A (en) Method for recovering hydrochloric acid and copper from copper etching waste liquid
JP3736610B2 (en) Treatment method of waste copper containing hydrochloric acid
JP2698253B2 (en) Treatment method of ferric chloride etching solution containing copper
JP3088884B2 (en) Regeneration method of iron chloride waste liquid containing copper
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid
JP2965457B2 (en) Regeneration method of iron chloride waste liquid containing nickel
JPS6363637B2 (en)
RU2765894C1 (en) Method for processing the solution for etching printed circuit boards
JPH06173064A (en) Method for refining ti

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees