JP3724932B2 - Fluid catalytic cracking method of oil - Google Patents
Fluid catalytic cracking method of oil Download PDFInfo
- Publication number
- JP3724932B2 JP3724932B2 JP27797797A JP27797797A JP3724932B2 JP 3724932 B2 JP3724932 B2 JP 3724932B2 JP 27797797 A JP27797797 A JP 27797797A JP 27797797 A JP27797797 A JP 27797797A JP 3724932 B2 JP3724932 B2 JP 3724932B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- zone
- oil
- temperature
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004231 fluid catalytic cracking Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 16
- 239000003054 catalyst Substances 0.000 claims description 108
- 238000006243 chemical reaction Methods 0.000 claims description 79
- 230000008929 regeneration Effects 0.000 claims description 41
- 238000011069 regeneration method Methods 0.000 claims description 41
- 238000000926 separation method Methods 0.000 claims description 26
- 150000001336 alkenes Chemical class 0.000 claims description 20
- 238000004523 catalytic cracking Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 13
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 9
- 239000003921 oil Substances 0.000 description 44
- 239000007789 gas Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 23
- 238000000354 decomposition reaction Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 18
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000010457 zeolite Substances 0.000 description 13
- 229910021536 Zeolite Inorganic materials 0.000 description 12
- 239000000295 fuel oil Substances 0.000 description 12
- 239000000571 coke Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000003502 gasoline Substances 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 238000004525 petroleum distillation Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- -1 ethylene, propylene, butene Chemical class 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000006276 transfer reaction Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、油の接触分解法に関し、詳しくは重質油からエチレン、プロピレン、ブテン、ペンテン等の軽質オレフィンを高収率で得るための流動接触分解(FCC)方法に関する。
【0002】
【従来の技術】
通常の接触分解は、石油系炭化水素を触媒と接触させて分解し、主生成物としてのガソリンと少量のLPGと分解軽油等を得、さらに触媒上に堆積した炭素質(コ−ク)を空気で燃焼除去して触媒を循環再使用するものである。
【0003】
しかしながら最近では、流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン製造装置として利用していこうという動きがある。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた製油所において特に経済的なメリットがある。また一方、環境問題への関心の高まりから、自動車ガソリン中のオレフィン、芳香族含有量の規制あるいは含酸素基材(MTBE等)添加の義務づけ等が施行され始めている。これによりFCCガソリン、接触改質ガソリンに替わる高オクタン価ガソリン基材としてアルキレート、MTBEの需要が増大することが予想される。従ってそれら基材の原料であるプロピレン、ブテンの増産が必要となる。
【0004】
重質油の流動接触分解により軽質オレフィンを製造する方法としては、例えば触媒と原料油の接触時間を短くする方法(米国特許4,419,221 号、米国特許3,074,878 号、 米国特許 5,462,652号、ヨーロッパ特許315,179A号)、高温で反応を行う方法(米国特許4,980,053 号)、ペンタシル型ゼオライトを用いる方法(米国特許5,326,465 号、特表平7-506389号公報)等が挙げられる。
【0005】
しかし、これらの方法においてもまだ軽質オレフィン選択性を十分高めることはできない。例えば高温反応においては熱分解を併発し、ドライガス収率が増大する。また接触時間を短くする方法では水素移行反応を抑制し、軽質オレフィンが軽質パラフィンへ転化する割合を低減することはできるが、重質油が軽質分に転化する割合を増加させることはできない。さらに、ペンタシル型ゼオライトを用いる方法では、生成したガソリン留分を過分解して軽質オレフィン収率を高めているだけである。
【0006】
【発明が解決しようとする課題】
本発明の目的は、油の重質成分の分解率を上げ、軽質分の過分解による水素ガス、メタンガス、エタンガス等のドライガスの発生を抑制し、さらにエチレン、プロピレン、ブテン、ペンテン等の軽質オレフィンを高収率で得ることができる油の流動接触分解方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、鋭意研究を行った結果、特定の温度、触媒/油比、反応形式および接触時間を採用し、かつ再生触媒を反応帯域に導入する前に再生触媒を特定の温度に制御することにより、前記の目的を達成することができることを見出し、本発明を完成するに至った。
【0008】
すなわち本発明である油の流動接触分解方法は、再生帯域、ダウンフロー形式反応帯域、分離帯域およびストリッピング帯域を有する流動接触分解反応装置を用いて、
1)反応帯域における反応帯域出口温度が580〜630℃、触媒/油比が15〜50wt/wt、接触時間が0.1〜3.0秒、
2)再生帯域における再生帯域触媒濃厚相温度が670〜800℃および、
3)反応帯域に導入する再生触媒の温度が610〜665℃、
という条件下で、油を触媒粒子と接触させることにより、軽質オレフィンを製造することを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明で用いる原料油は主として重質油である。重質油としては、例えば直留軽油(LGO)、減圧軽油(VGO)、常圧残油、減圧残油、熱分解軽油、およびこれらを水素化精製した重質油等が例示できる。これらの重質油を単独で用いてもよいし、これら重質油の混合物あるいはこれら重質油に一部軽質油を混合したものも用いることができる。
【0010】
本発明で使用する流動接触分解反応装置は、再生帯域(再生塔)、ダウンフロー形式反応帯域(反応器)、分離帯域(分離器)およびストリッピング帯域を有する装置である。
【0011】
本発明でいう流動接触分解とは、前記した原料油としての重質油を、流動状態に保持されている触媒と特定運転条件下で連続的に接触させ、重質油を軽質オレフィンを主体とした軽質な炭化水素に分解することである。通常の流動接触分解では反応帯域として、触媒粒子と原料油が共に管中を上昇するいわゆるライザ−反応帯域が採用される。本発明においては触媒/油比が通常の流動接触分解方法に比べて極端に大きいため、触媒粒子と原料油が共に管中を降下するダウンフロー形式反応帯域を採用して逆混合を避けるということも特徴の一つである。
ダウンフロー形式反応帯域において、重質油と流動状態に保持されている触媒との接触分解によって得られた生成物、未反応物および触媒の混合物は、次に分離帯域に送られる。
【0012】
反応帯域出口温度が580〜630℃と非常に高い場合、生成物、未反応物および触媒の混合物が反応帯域を出てからも分解反応が継続し、好ましい生成物である軽質オレフィンがさらに分解を受けドライガスが増加する過分解と呼ばれる現象がおこる。そこで本発明では接触分解を受けた生成物、未反応物および触媒の混合物をサイクロン分離帯域によって精密に分離する前に、該混合物を高速分離帯域に導入することが望ましい。本発明でいう高速分離帯域とは分離効率が低いかわりにガスの滞留時間が短く、滞留時間分布も狭いものを指す。サイクロン分離帯域においてはガスの一部がサイクロン内に長く滞留し、ガスの滞留時間の分布が0.1〜1.0秒と広いのに対し、前記高速分離帯域ではガスの滞留時間分布は0.1〜0.3秒、好ましくは0.1〜0.2秒であり、滞留時間分布が非常に狭いという特徴を持つ。本発明においては前記高速分離帯域により前記混合物中の触媒の90%以上、好ましくは95%以上が生成物、未反応物および触媒の混合物から除去される。高速分離帯域としてはボックス型、Uベント型などが例として挙げられる。
【0013】
本発明ではさらに過分解を抑制する方法として、高速分離帯域の上流または下流で生成物、未反応物および触媒の混合物にクエンチオイルまたはクエンチガスを混合し、生成物、未反応物および触媒の混合物を急冷することが望ましい。生成物、未反応物および触媒の混合物は最終的に1段以上のサイクロン分離帯域に導かれ、高速分離帯域で除去しきれなかった触媒が取り除かれる。サイクロン分離帯域から取り出された生成物は回収される。未反応物は再び反応帯域に送られることもある。
【0014】
一方、サイクロン分離帯域あるいは高速分離帯域およびサイクロン分離帯域において、前記混合物から分離された触媒は、触媒ストリッピング帯域に送られ、触媒粒子から生成物、未反応物等の炭化水素類の大部分が除去される。炭素質および一部重質の炭化水素類が付着した触媒は、上記ストリッピング帯域からさらに再生帯域に送られる。再生帯域においては、該炭素質が付着した触媒の酸化処理が施される。酸化処理としては、燃焼等の処理が挙げられる。この酸化処理を受けた触媒が再生触媒であり、触媒上に沈着した炭素質および炭化水素類がほとんど除去されたものである。この再生触媒は冷却された後、前記反応帯域に連続的に循環される。
【0015】
本発明でいう反応帯域出口温度とは、ダウンフロー形式流動床型反応器(ダウンフロー形式反応帯域)の出口温度のことであり、分解生成物が急冷あるいは触媒と分離される前の温度である。
【0016】
本発明において反応帯域出口温度は580〜630℃であり、好ましくは600〜620℃である。580℃より低い温度では高い収率で軽質オレフィンを得ることができず、630℃より高い温度では熱分解が顕著になりドライガス発生量が多くなるため好ましくない。
【0017】
本発明でいう触媒/油比とは、触媒循環量(ton/h)と原料油供給速度(ton/h)の比であり、本発明において触媒/油比は15〜50wt/wtであり、好ましくは20〜40wt/wtである。本発明では短い接触時間で接触分解反応を行うため、触媒/油比が15より小さい場合、接触分解反応が十分起こらず好ましくない。また触媒/油比が50より大きい場合、触媒循環量が大きく、再生帯域の温度が低くなり炭素質の燃焼が十分に起こらないか、または触媒再生に必要な触媒滞留時間が長くなりすぎ好ましくない。
【0018】
本発明でいう反応帯域における接触時間とは、触媒と原料油が接触してから分離帯域において触媒と分解生成物が分離されるまでの時間あるいは分離帯域の手前で急冷される場合は急冷されるまでの時間を示す。本発明において接触時間は0.1〜3.0秒、好ましくは0.1〜2.0秒、より好ましくは0.1〜1.5秒、さらにより好ましくは0.1〜1.0秒の範囲が選択される。接触時間が0.1秒未満の場合は反応が十分進行する前に原料が反応帯域を出てしまうため好ましくない。接触時間が3.0秒を超えるときは、分解反応に引き続いて起きる水素移行反応により、軽質オレフィンが軽質パラフィンに転化する割合が増加するので好ましくない。
【0019】
本発明でいう再生帯域触媒濃厚相の温度(以下、再生帯域温度と称する)とは、再生帯域において濃厚状態で流動している触媒粒子が再生帯域を出る直前の部分の温度を指す。本発明において再生帯域温度は670〜800℃であり、好ましくは700〜740℃である。670℃より低い温度では触媒上に堆積した炭素質の燃焼が遅くなり、炭素質が十分に取り除かれず触媒活性を維持できないか、もしくは炭素質を十分に除去するためには再生帯域内の触媒の滞留時間を非常に大きくする必要があり、再生帯域が大きくなりすぎ経済的に好ましくない。一方、800℃より高い温度では触媒が再生帯域から反応帯域に持ち込む熱量が大きくなりすぎ、反応帯域の温度を好ましい温度に保てないか、もしくは反応帯域温度を好ましい温度に保つためには、再生触媒粒子を所定の温度に冷却するための後記の触媒クーラーの容量が大きくなりすぎ経済的に好ましくない。
【0020】
本発明では、再生帯域で再生された触媒粒子を、反応帯域の熱バランスを保つために反応帯域に導入する前に、触媒の温度が610〜665℃、好ましくは620〜640℃になるまで冷却する。665℃よりも高い温度もしくは610℃よりも低い温度では反応帯域温度を所定の温度に維持することができないため好ましくない。冷却方法は特に限定されない。例えば熱交換媒体として空気、スチーム等を用いる熱交換器(触媒クーラー)が用いられる。
【0021】
前記のクエンチオイルとしては、通常、例えば灯油、直留軽油、減圧軽油等の常圧あるいは減圧石油蒸留留出油、常圧あるいは減圧石油蒸留残査物、石油蒸留留出油や石油蒸留残査物などの水素化処理油、石油蒸留留出油や石油蒸留残査物などの熱分解油、石油蒸留留出油や石油蒸留残査物などの接触分解油、またはこれらの混合物等が用いられる。注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられる。
【0022】
前記のクエンチガスとしては、スチームあるいは、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる物質が好ましく用いられる。
【0023】
前述のように本発明において分解生成物は、高速分離帯域の前段もしくは後段において前記のクエンチオイルまたはクエンチガスにより450〜550℃まで好ましくは470〜510℃まで急冷される。450℃より低い温度では使用するクエンチオイルまたはクエンチガスの量が多くなりすぎ、また分解生成物を蒸留するときに再加熱しなくてはならなくなるので経済的に好ましくない。550℃より高い温度では過分解反応、水素移行反応を抑制できず好ましくない。
【0024】
本発明で用いる流動接触分解反応装置の操作条件のうち、上記以外については特に限定されないが、反応圧力1〜3kg/cm2Gで好ましく運転される。
本発明で使用する触媒は特に限定されないが、通常、石油類の流動接触分解反応に用いられる触媒粒子が使用できる。特に活性成分としての超安定Y型ゼオライトとその支持母体であるマトリックスを含む触媒が好ましく用いられる。マトリックスとしては、カオリン、モンモリロナイト、ハロイサイト、ベントナイト等の粘土類、アルミナ、シリカ、ボリア、クロミア、マグネシア、ジルコニア、チタニア、シリカ・アルミナ等の無機多孔性酸化物、およびこれらの混合物が挙げられる。触媒中の超安定Y型ゼオライト含有量は2〜60重量%、好ましくは15〜45重量%である。
【0025】
前記超安定Y型ゼオライトに加えて、Y型ゼオライトよりも細孔径の小さい結晶性アルミノシリケートゼオライトあるいはシリコアルミノフォスフェート(SAPO)を含む触媒も好ましく用いることができる。このようなゼオライトあるいはSAPOとして、ZSM−5、SAPO−5、SAPO−11、SAPO−34等が例示できる。これらのゼオライトあるいはSAPOは、超安定Y型ゼオライトを含む触媒粒子中に含まれていてもよいし、別粒子に含まれていてもよい。
触媒粒子のかさ密度は0.5〜1.0g/ml、平均粒径は50〜90μm、表面積は50〜350m2/g、細孔容積は0.05〜0.5ml/gの範囲であるのが好ましい。
【0026】
本発明で使用する触媒は、通常の方法により製造できる。例えば、硫酸中へ水硝子の希釈溶液(SiO2 濃度=8〜13%)を滴下し、pH2.0〜4.0のシリカゾルを得る。このシリカゾル全量中へ超安定Y型ゼオライトとカオリンを加え混練し、200〜300℃の熱風で噴霧乾燥する。こうして得られた噴霧乾燥品を50℃、0.2%硫酸アンモニウムで洗浄した後、80〜150℃のオーブン中で乾燥し、さらに400〜700℃で焼成して触媒を得る。
【0027】
【実施例】
次に本発明の実施例等について説明するが、本発明はこれらに限定されるものではない。
【0028】
実施例1
流動接触分解反応装置として、断熱型のダウンフロー形式反応帯域を有するFCCパイロット装置(Xytel社製)を用い、中東系の脱硫VGOの接触分解を行った。
【0029】
40%の硫酸3370g中へJIS3号水硝子の希釈溶液(SiO2 濃度=11.6%)21550gを滴下し、pH3.0のシリカゾルを得た。このシリカゾル全量中へ超安定Y型ゼオライト(東ソー(株)製:HSZ−370HUA)3000gとカオリン4000gを加え混練し、250℃の熱風で噴霧乾燥した。こうして得られた噴霧乾燥品を50℃、0.2%硫酸アンモニウムで洗浄した後、110℃のオーブン中で乾燥し、さらに600℃で焼成して触媒を得た。この触媒中の超安定Y型ゼオライト含有量は30重量%であった。こうして得られた触媒を上記装置に供給する前に、800℃で6時間、100%スチーミング処理により疑似平衡化させた。
【0030】
このとき装置規模は、インベントリー(触媒量)2kg、フィード量1kg/h、反応圧力2kg/cm2Gであり、運転条件は触媒/油比40、反応帯域出口温度600℃、接触時間0.5秒とした。反応帯域を出た触媒と反応生成物、未反応物の混合物からサイクロン分離帯域により触媒が分離された。再生帯域で触媒を燃焼(酸化処理)し、このとき再生帯域温度は680℃となり、反応帯域出口温度を600℃に維持するため、再生帯域から抜き出した再生触媒を空冷により655℃まで冷却してから反応帯域に循環した。再生触媒上のコークは十分除去されていた。このときの分解物収率を表1に示す。
【0031】
実施例2
流動接触分解反応装置として、断熱型のダウンフロー形式反応帯域を有するFCCパイロット装置(Xytel社製)を用い、中東系の脱硫VGOの接触分解を行った。触媒は実施例1と同一の触媒を用いた。
このとき装置規模は、インベントリー(触媒量)2kg、フィード量1kg/h、反応圧力2kg/cm2Gであり、運転条件は触媒/油比40、反応帯域出口温度600℃、接触時間1.5秒とした。反応帯域を出た触媒と反応生成物、未反応物の混合物から高速分離帯域およびサイクロン分離帯域により触媒が分離された。再生帯域で触媒を燃焼(酸化処理)し、このとき再生帯域温度は680℃となり、反応帯域出口温度を600℃に維持するため、再生帯域から抜き出した再生触媒を空冷により655℃まで冷却してから反応帯域に循環した。再生触媒上のコークは十分除去されていた。このときの分解物収率を表1に示す。
【0032】
比較例1
実施例1と同じ装置規模、触媒、原料油を用い、触媒/油比を10、接触時間0.5秒にして分解を行った。触媒/油比が小さいため反応帯域出口温度と再生帯域温度の差は大きくなり、反応帯域出口温度を600℃にしたとき、触媒を燃焼処理した再生帯域の温度は765℃になった。そして再生帯域から抜き出した再生触媒を冷却せずに反応帯域に循環した。触媒/油比が小さいため、触媒を冷却しなくても反応帯域出口温度は600℃に保たれた。このときの分解物収率を表1に示す。
【0033】
比較例2
実施例1と同じ装置規模、触媒、原料油を用い、触媒/油比40、接触時間0.5秒の反応条件で分解を行った。再生帯域温度はコーク燃焼に十分な680℃とした。再生触媒を冷却せずに反応帯域に循環して熱バランスをとったところ反応帯域出口温度は635℃となった。このときの分解物収率を表1に示す。
【0034】
比較例3
接触時間を4.0秒に設定した以外は実施例1と同様に接触分解を行った結果、分解反応に引き続いて起きる過分解反応と水素移行反応により軽質パラフィン、ドライガスとコークが増加し、軽質オレフィンを高収率で得ることができなかった。
【0035】
比較例4
実施例1と同じ装置規模、触媒、原料油を用い、触媒/油比40、接触時間0.5秒の反応条件で分解を行った。反応帯域出口温度を600℃とし、再生触媒を冷却せずに反応帯域に循環して熱バランスをとったところ再生帯域温度は641℃となった。この条件で運転を継続したところ急激に分解活性が減少したため装置を停止した。再生触媒上のコーク堆積量を調べたところ、再生触媒量の0.2重量%となっており、再生帯域でのコーク燃焼が十分に行われていないことがわかった。
【0036】
比較例5
反応帯域をライザータイプにしたものを用いた以外は、実施例1と同じ条件で分解を行おうとしたが、ライザー形式反応帯域の前後段で圧力変動が激しくなり安定的に運転ができなかった。
【0037】
【表1】
上記表中、C1 はメタンガス、C2 はエタンガスを示し、転化率は原料油から分解生成物への転化率を示す。
【0038】
このように、触媒/油比や接触時間が本発明の設定範囲外である場合、触媒活性が十分でなく、高温反応であるため接触分解反応と競争的に起こる熱分解反応の寄与が相対的に大きくなり、ドライガス収率が増加し、軽質オレフィン収率が低下したり、過分解反応、水素移行反応により、軽質オレフィン収率が低下する(比較例1および3)。また触媒クーラーを用いない場合、再生帯域温度をコーク燃焼に十分な温度にすると反応帯域出口温度が高くなりすぎ、逆に反応帯域出口温度を本発明の設定範囲に合わせると再生帯域温度がコーク燃焼に十分な温度とならず、その結果コーク、ドライガス収率が増加し軽質オレフィン収率が低下するか、触媒再生が十分行われず、安定に運転できない(比較例2および4)。さらに、触媒/油比、反応帯域出口温度、再生帯域温度、接触時間および再生触媒温度が本発明の設定範囲内であっても、反応帯域がダウンフロー形式でなければ、流動接触分解反応装置を安定に運転することができない(比較例5)。
【0039】
【発明の効果】
以上説明したように、本発明で設定した範囲内の触媒/油比、反応帯域出口温度、再生帯域温度、接触時間および再生触媒温度とダウンフローリアクターの組み合わせで、原料油の重質成分の分解率を上げ、軽質分の過分解によるドライガスの発生を抑制し、さらにエチレン、プロピレン、ブテン、ペンテン等の軽質オレフィンを高収率で得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for catalytic cracking of oil, and more particularly to a fluid catalytic cracking (FCC) method for obtaining light olefins such as ethylene, propylene, butene and pentene in high yield from heavy oil.
[0002]
[Prior art]
Ordinary catalytic cracking involves cracking petroleum hydrocarbons in contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked light oil, etc., and further deposit carbonaceous matter (cook) deposited on the catalyst. The catalyst is circulated and reused by burning and removing with air.
[0003]
Recently, however, there is a movement to use the fluid catalytic cracking apparatus not as a gasoline production apparatus but as a light olefin production apparatus as a petrochemical raw material. Such a method of using a fluid catalytic cracker has an economic advantage particularly in a refinery where oil refining and a petrochemical factory are highly coupled. On the other hand, due to increasing interest in environmental problems, regulations on olefins and aromatics in automobile gasoline, or obligation to add oxygen-containing base materials (MTBE, etc.) have begun to be implemented. As a result, it is expected that demand for alkylate and MTBE will increase as a base material for high-octane gasoline replacing FCC gasoline and catalytic reformed gasoline. Therefore, it is necessary to increase production of propylene and butene which are raw materials for these base materials.
[0004]
As a method for producing light olefins by fluid catalytic cracking of heavy oil, for example, a method of shortening the contact time between the catalyst and the feedstock (US Pat. No. 4,419,221, US Pat. No. 3,074,878, US Pat. No. 5,462,652, European Patent 315,179A) ), A method of reacting at high temperature (US Pat. No. 4,980,053), a method using pentasil-type zeolite (US Pat. No. 5,326,465, JP 7-506389 A) and the like.
[0005]
However, even in these methods, the selectivity for light olefins cannot be sufficiently increased. For example, in a high temperature reaction, thermal decomposition is accompanied and dry gas yield is increased. In addition, the method of shortening the contact time can suppress the hydrogen transfer reaction and reduce the rate at which light olefins are converted to light paraffin, but cannot increase the rate at which heavy oil is converted to light components. Furthermore, in the method using a pentasil-type zeolite, the yield of light olefins is only increased by over-decomposing the produced gasoline fraction.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is to increase the decomposition rate of heavy components of oil, suppress the generation of dry gas such as hydrogen gas, methane gas, ethane gas, etc. due to overdecomposition of light components, and lighter such as ethylene, propylene, butene, pentene, etc. It is an object of the present invention to provide a fluid catalytic cracking method of oil capable of obtaining an olefin in a high yield.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have adopted a specific temperature, catalyst / oil ratio, reaction mode and contact time, and controlled the regenerated catalyst to a specific temperature before introducing the regenerated catalyst into the reaction zone. As a result, the inventors have found that the above object can be achieved, and have completed the present invention.
[0008]
That is, the fluidized catalytic cracking method for oil according to the present invention uses a fluid catalytic cracking reaction apparatus having a regeneration zone, a downflow type reaction zone, a separation zone, and a stripping zone.
1) Reaction zone outlet temperature in the reaction zone is 580 to 630 ° C., catalyst / oil ratio is 15 to 50 wt / wt, contact time is 0.1 to 3.0 seconds,
2) The regeneration zone catalyst rich phase temperature in the regeneration zone is 670 to 800 ° C, and
3) The temperature of the regenerated catalyst introduced into the reaction zone is 610 to 665 ° C.,
It is characterized in that light olefins are produced by bringing oil into contact with catalyst particles under such conditions.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The feedstock used in the present invention is mainly heavy oil. Examples of heavy oils include straight-run gas oil (LGO), vacuum gas oil (VGO), atmospheric residue, vacuum residue, pyrolysis gas oil, and heavy oil obtained by hydrorefining these. These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils with a part of light oil may be used.
[0010]
The fluid catalytic cracking reaction apparatus used in the present invention is an apparatus having a regeneration zone (regeneration tower), a downflow type reaction zone (reactor), a separation zone (separator), and a stripping zone.
[0011]
The fluid catalytic cracking referred to in the present invention means that the above-mentioned heavy oil as the raw material oil is continuously brought into contact with the catalyst held in a fluid state under specific operating conditions, and the heavy oil is mainly composed of light olefins. It is decomposed into light hydrocarbons. In normal fluid catalytic cracking, a so-called riser reaction zone in which both catalyst particles and raw material oil rise in the pipe is employed as a reaction zone. In the present invention, the catalyst / oil ratio is extremely large as compared with a normal fluid catalytic cracking method, and therefore, a downflow type reaction zone in which both catalyst particles and feedstock descend in the pipe is adopted to avoid backmixing. Is also one of the features.
In the downflow type reaction zone, the product, unreacted and catalyst mixture obtained by catalytic cracking of the heavy oil and the catalyst held in a fluid state are then sent to the separation zone.
[0012]
When the reaction zone outlet temperature is as high as 580 to 630 ° C., the decomposition reaction continues even after the mixture of the product, unreacted material and catalyst exits the reaction zone, and the preferred product light olefin is further decomposed. A phenomenon called over-decomposition in which dry gas is increased occurs. Therefore, in the present invention, it is desirable to introduce the mixture into the high-speed separation zone before precisely separating the mixture of the product subjected to catalytic cracking, the unreacted material and the catalyst in the cyclone separation zone. The high-speed separation zone as used in the present invention refers to a gas having a short residence time and a narrow residence time distribution instead of low separation efficiency. In the cyclone separation zone, part of the gas stays long in the cyclone, and the distribution of gas residence time is as wide as 0.1 to 1.0 seconds, whereas in the high-speed separation zone, the gas residence time distribution is 0. .1 to 0.3 seconds, preferably 0.1 to 0.2 seconds, and has a feature that the residence time distribution is very narrow. In the present invention, 90% or more, preferably 95% or more of the catalyst in the mixture is removed from the mixture of product, unreacted material and catalyst by the high-speed separation zone. Examples of the high-speed separation band include a box type and a U vent type.
[0013]
In the present invention, as a method of further suppressing overdecomposition, a mixture of product, unreacted material and catalyst is mixed with a mixture of product, unreacted material and catalyst upstream or downstream of the high-speed separation zone, and a mixture of product, unreacted material and catalyst is mixed. It is desirable to rapidly cool. The mixture of product, unreacted material and catalyst is finally led to one or more cyclone separation zones, and the catalyst that could not be removed in the high-speed separation zone is removed. The product removed from the cyclone separation zone is recovered. Unreacted material may be sent to the reaction zone again.
[0014]
On the other hand, in the cyclone separation zone or the high-speed separation zone and the cyclone separation zone, the catalyst separated from the mixture is sent to the catalyst stripping zone, and most of hydrocarbons such as products and unreacted substances from catalyst particles. Removed. The catalyst to which carbonaceous and partially heavy hydrocarbons are attached is further sent from the stripping zone to the regeneration zone. In the regeneration zone, an oxidation treatment of the catalyst to which the carbonaceous matter is attached is performed. Examples of the oxidation treatment include a treatment such as combustion. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, and the carbonaceous substances and hydrocarbons deposited on the catalyst are almost removed. The regenerated catalyst is cooled and then continuously circulated through the reaction zone.
[0015]
The reaction zone outlet temperature in the present invention is the outlet temperature of the downflow type fluidized bed reactor (downflow type reaction zone), and is the temperature before the decomposition product is rapidly cooled or separated from the catalyst. .
[0016]
In this invention, reaction zone exit | outlet temperature is 580-630 degreeC, Preferably it is 600-620 degreeC. If the temperature is lower than 580 ° C., a light olefin cannot be obtained in a high yield, and if it is higher than 630 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable.
[0017]
The catalyst / oil ratio referred to in the present invention is a ratio of the catalyst circulation rate (ton / h) and the feed oil supply speed (ton / h). In the present invention, the catalyst / oil ratio is 15 to 50 wt / wt. Preferably it is 20-40 wt / wt. In the present invention, since the catalytic cracking reaction is carried out in a short contact time, when the catalyst / oil ratio is less than 15, the catalytic cracking reaction does not occur sufficiently, which is not preferable. On the other hand, when the catalyst / oil ratio is larger than 50, the amount of catalyst circulation is large, the temperature in the regeneration zone is lowered, and carbonaceous combustion does not occur sufficiently, or the catalyst residence time required for catalyst regeneration becomes too long, which is not preferable. .
[0018]
The contact time in the reaction zone referred to in the present invention is the time from the contact of the catalyst and the raw material oil to the separation of the catalyst and the decomposition product in the separation zone, or the rapid cooling in the case of quenching before the separation zone. Indicates the time until. In the present invention, the contact time is 0.1 to 3.0 seconds, preferably 0.1 to 2.0 seconds, more preferably 0.1 to 1.5 seconds, and even more preferably 0.1 to 1.0 seconds. Range is selected. A contact time of less than 0.1 seconds is not preferable because the raw material exits the reaction zone before the reaction proceeds sufficiently. When the contact time exceeds 3.0 seconds, the rate of conversion of light olefin to light paraffin increases due to the hydrogen transfer reaction that occurs following the decomposition reaction, which is not preferable.
[0019]
The temperature of the regeneration zone catalyst rich phase referred to in the present invention (hereinafter referred to as regeneration zone temperature) refers to the temperature immediately before the catalyst particles flowing in a concentrated state in the regeneration zone exit the regeneration zone. In the present invention, the regeneration zone temperature is 670 to 800 ° C, preferably 700 to 740 ° C. When the temperature is lower than 670 ° C., the combustion of the carbonaceous material deposited on the catalyst is slow, and the carbonaceous matter is not sufficiently removed and the catalytic activity cannot be maintained, or in order to sufficiently remove the carbonaceous matter, It is necessary to make the residence time very large, and the regeneration zone becomes too large, which is not economically preferable. On the other hand, if the temperature is higher than 800 ° C., the amount of heat that the catalyst brings from the regeneration zone to the reaction zone becomes too large, so that the temperature of the reaction zone cannot be maintained at a preferable temperature, or in order to keep the reaction zone temperature at a preferable temperature, The capacity of the later-described catalyst cooler for cooling the catalyst particles to a predetermined temperature becomes too large, which is economically undesirable.
[0020]
In the present invention, the catalyst particles regenerated in the regeneration zone are cooled to a catalyst temperature of 610 to 665 ° C., preferably 620 to 640 ° C., before being introduced into the reaction zone in order to maintain the heat balance of the reaction zone. To do. A temperature higher than 665 ° C. or a temperature lower than 610 ° C. is not preferable because the reaction zone temperature cannot be maintained at a predetermined temperature. The cooling method is not particularly limited. For example, a heat exchanger (catalyst cooler) using air, steam or the like as a heat exchange medium is used.
[0021]
As the quench oil, usually, for example, kerosene, straight-run gas oil, vacuum gas oil or the like normal pressure or vacuum petroleum distillation distillate, normal pressure or vacuum petroleum distillation residue, petroleum distillation distillate or petroleum distillation residue Hydrocracked oil such as petroleum products, pyrolysis oil such as petroleum distillate and petroleum distillation residue, catalytic cracking oil such as petroleum distillation distillate and petroleum distillation residue, or a mixture thereof. . A hydrocarbon that can exist as a liquid at the temperature and pressure of injection is preferably used.
[0022]
As said quench gas, it can exist as a gas at the injection | pouring temperature and pressure, such as steam or C1-C6 paraffin hydrocarbons, such as methane, ethane, propane, butane, pentane, hexane, etc., and mixtures thereof, for example. Substances are preferably used.
[0023]
As described above, in the present invention, the decomposition product is rapidly cooled to 450 to 550 ° C., preferably to 470 to 510 ° C., with the quench oil or quench gas before or after the high-speed separation zone. A temperature lower than 450 ° C. is not economically preferable because too much quench oil or quench gas is used, and the decomposition product must be reheated when it is distilled. A temperature higher than 550 ° C. is not preferable because the overdecomposition reaction and hydrogen transfer reaction cannot be suppressed.
[0024]
Of the operating conditions of the fluid catalytic cracking reactor used in the present invention, those other than those described above are not particularly limited, but are preferably operated at a reaction pressure of 1 to 3 kg / cm 2 G.
Although the catalyst used by this invention is not specifically limited, Usually, the catalyst particle used for the fluid catalytic cracking reaction of petroleum can be used. In particular, a catalyst containing an ultrastable Y-type zeolite as an active ingredient and a matrix which is a supporting matrix thereof is preferably used. Examples of the matrix include clays such as kaolin, montmorillonite, halloysite, bentonite, inorganic porous oxides such as alumina, silica, boria, chromia, magnesia, zirconia, titania, silica / alumina, and mixtures thereof. The ultrastable Y-type zeolite content in the catalyst is 2 to 60% by weight, preferably 15 to 45% by weight.
[0025]
In addition to the ultrastable Y-type zeolite, a catalyst containing crystalline aluminosilicate zeolite or silicoaluminophosphate (SAPO) having a pore size smaller than that of the Y-type zeolite can also be preferably used. Examples of such zeolite or SAPO include ZSM-5, SAPO-5, SAPO-11, and SAPO-34. These zeolites or SAPOs may be contained in catalyst particles containing ultrastable Y-type zeolite, or may be contained in separate particles.
The bulk density of the catalyst particles is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 μm, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. Is preferred.
[0026]
The catalyst used in the present invention can be produced by a usual method. For example, a diluted solution of water glass (SiO 2 concentration = 8 to 13%) is dropped into sulfuric acid to obtain a silica sol having a pH of 2.0 to 4.0. Ultrastable Y-type zeolite and kaolin are added to the total amount of the silica sol, kneaded, and spray-dried with hot air at 200 to 300 ° C. The spray-dried product thus obtained is washed with 50 ° C. and 0.2% ammonium sulfate, dried in an oven at 80 to 150 ° C., and calcined at 400 to 700 ° C. to obtain a catalyst.
[0027]
【Example】
Next, examples of the present invention will be described, but the present invention is not limited thereto.
[0028]
Example 1
As a fluid catalytic cracking reaction apparatus, an FCC pilot apparatus (manufactured by Xytel) having an adiabatic downflow type reaction zone was used, and catalytic cracking of Middle Eastern desulfurized VGO was performed.
[0029]
21550 g of a diluted solution of JIS No. 3 water glass (SiO 2 concentration = 11.6%) was dropped into 3370 g of 40% sulfuric acid to obtain a silica sol having a pH of 3.0. To this total amount of silica sol, 3000 g of ultrastable Y-type zeolite (manufactured by Tosoh Corporation: HSZ-370HUA) and 4000 g of kaolin were added and kneaded and spray-dried with hot air at 250 ° C. The spray-dried product thus obtained was washed with 50%, 0.2% ammonium sulfate, dried in an oven at 110 ° C., and calcined at 600 ° C. to obtain a catalyst. The ultrastable Y-type zeolite content in the catalyst was 30% by weight. The catalyst thus obtained was quasi-equilibrated by 100% steaming treatment at 800 ° C. for 6 hours before being supplied to the apparatus.
[0030]
At this time, the equipment scale is inventory (catalyst amount) 2 kg, feed amount 1 kg / h, reaction pressure 2 kg / cm 2 G, operating conditions are catalyst / oil ratio 40, reaction zone outlet temperature 600 ° C., contact time 0.5 Seconds. The catalyst was separated from the mixture of the catalyst leaving the reaction zone, the reaction product, and the unreacted material by the cyclone separation zone. The catalyst is burned (oxidation treatment) in the regeneration zone. At this time, the regeneration zone temperature becomes 680 ° C., and the reaction zone outlet temperature is maintained at 600 ° C. Therefore, the regeneration catalyst extracted from the regeneration zone is cooled to 655 ° C. by air cooling. To the reaction zone. The coke on the regenerated catalyst was sufficiently removed. The decomposition product yield at this time is shown in Table 1.
[0031]
Example 2
As a fluid catalytic cracking reaction apparatus, an FCC pilot apparatus (manufactured by Xytel) having an adiabatic downflow type reaction zone was used, and catalytic cracking of Middle Eastern desulfurized VGO was performed. The same catalyst as used in Example 1 was used.
At this time, the equipment scale is inventory (catalyst amount) 2 kg, feed amount 1 kg / h, reaction pressure 2 kg / cm 2 G, operating conditions are catalyst / oil ratio 40, reaction zone outlet temperature 600 ° C., contact time 1.5 Seconds. The catalyst was separated from the mixture of the catalyst leaving the reaction zone, the reaction product, and the unreacted material by a high-speed separation zone and a cyclone separation zone. The catalyst is burned (oxidation treatment) in the regeneration zone. At this time, the regeneration zone temperature becomes 680 ° C., and the reaction zone outlet temperature is maintained at 600 ° C. Therefore, the regeneration catalyst extracted from the regeneration zone is cooled to 655 ° C. by air cooling. To the reaction zone. The coke on the regenerated catalyst was sufficiently removed. The decomposition product yield at this time is shown in Table 1.
[0032]
Comparative Example 1
The decomposition was carried out using the same equipment scale, catalyst and raw material oil as in Example 1, using a catalyst / oil ratio of 10 and a contact time of 0.5 seconds. Since the catalyst / oil ratio was small, the difference between the reaction zone outlet temperature and the regeneration zone temperature was large. When the reaction zone outlet temperature was 600 ° C., the temperature of the regeneration zone where the catalyst was burned was 765 ° C. The regenerated catalyst extracted from the regeneration zone was circulated to the reaction zone without cooling. Because of the small catalyst / oil ratio, the reaction zone outlet temperature was maintained at 600 ° C. without cooling the catalyst. The decomposition product yield at this time is shown in Table 1.
[0033]
Comparative Example 2
Using the same equipment scale, catalyst, and raw material oil as in Example 1, decomposition was performed under the reaction conditions of a catalyst / oil ratio of 40 and a contact time of 0.5 seconds. The regeneration zone temperature was 680 ° C. sufficient for coke combustion. When the regenerated catalyst was circulated through the reaction zone without cooling to achieve heat balance, the reaction zone outlet temperature was 635 ° C. The decomposition product yield at this time is shown in Table 1.
[0034]
Comparative Example 3
As a result of performing catalytic cracking in the same manner as in Example 1 except that the contact time was set to 4.0 seconds, light paraffin, dry gas, and coke increased due to the overcracking reaction and hydrogen transfer reaction that occurred following the cracking reaction, Light olefins could not be obtained in high yield.
[0035]
Comparative Example 4
Using the same equipment scale, catalyst, and raw material oil as in Example 1, decomposition was performed under the reaction conditions of a catalyst / oil ratio of 40 and a contact time of 0.5 seconds. When the reaction zone outlet temperature was 600 ° C. and the regenerated catalyst was circulated through the reaction zone without cooling to achieve heat balance, the regeneration zone temperature was 641 ° C. When the operation was continued under this condition, the apparatus was stopped because the decomposition activity decreased rapidly. When the amount of coke deposited on the regenerated catalyst was examined, it was 0.2% by weight of the amount of regenerated catalyst, and it was found that coke combustion was not sufficiently performed in the regeneration zone.
[0036]
Comparative Example 5
The decomposition was attempted under the same conditions as in Example 1 except that a reaction zone with a riser type was used. However, the pressure fluctuation became severe before and after the riser type reaction zone, and stable operation was not possible.
[0037]
[Table 1]
In the above table, C 1 is methane, C 2 represents ethane gas, conversion indicates the conversion to cracked products from feedstock.
[0038]
Thus, when the catalyst / oil ratio and the contact time are outside the set range of the present invention, the catalytic activity is not sufficient and the contribution of the thermal cracking reaction that occurs competitively with the catalytic cracking reaction is relatively high because of the high temperature reaction. As a result, the dry gas yield increases, the light olefin yield decreases, and the light olefin yield decreases due to the overdecomposition reaction and the hydrogen transfer reaction (Comparative Examples 1 and 3). In addition, when the catalyst cooler is not used, the reaction zone outlet temperature becomes too high when the regeneration zone temperature is set to a temperature sufficient for coke combustion. Conversely, when the reaction zone outlet temperature is adjusted to the set range of the present invention, the regeneration zone temperature becomes coke combustion. As a result, the coke and dry gas yields are increased and the light olefin yields are decreased, or the catalyst regeneration is not sufficiently performed and the operation is not stable (Comparative Examples 2 and 4). Furthermore, even if the catalyst / oil ratio, the reaction zone outlet temperature, the regeneration zone temperature, the contact time and the regeneration catalyst temperature are within the set ranges of the present invention, the fluid catalytic cracking reactor is not used unless the reaction zone is a downflow type. It cannot be stably operated (Comparative Example 5).
[0039]
【The invention's effect】
As described above, the decomposition of the heavy components of the feedstock oil is achieved by combining the catalyst / oil ratio, reaction zone outlet temperature, regeneration zone temperature, contact time, and regeneration catalyst temperature within the ranges set in the present invention and the downflow reactor. The rate is increased, the generation of dry gas due to excessive decomposition of light components is suppressed, and light olefins such as ethylene, propylene, butene and pentene can be obtained in high yield.
Claims (1)
1)反応帯域における反応帯域出口温度が580〜630℃、触媒/油比が15〜50wt/wt、接触時間が0.1〜3.0秒、
2)再生帯域における再生帯域触媒濃厚相温度が670〜800℃および、
3)反応帯域に導入する再生触媒の温度が610〜665℃、
という条件下で、油を触媒粒子と接触させることにより、軽質オレフィンを製造することを特徴とする油の流動接触分解方法。Using a fluid catalytic cracking reactor having a regeneration zone, a downflow type reaction zone, a separation zone and a stripping zone,
1) Reaction zone outlet temperature in the reaction zone is 580 to 630 ° C., catalyst / oil ratio is 15 to 50 wt / wt, contact time is 0.1 to 3.0 seconds,
2) The regeneration zone catalyst rich phase temperature in the regeneration zone is 670 to 800 ° C, and
3) The temperature of the regenerated catalyst introduced into the reaction zone is 610 to 665 ° C.,
A light olefin catalytic cracking method comprising producing light olefins by contacting oil with catalyst particles under the conditions of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27797797A JP3724932B2 (en) | 1996-10-07 | 1997-09-26 | Fluid catalytic cracking method of oil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28292796 | 1996-10-07 | ||
JP8-282927 | 1996-10-07 | ||
JP27797797A JP3724932B2 (en) | 1996-10-07 | 1997-09-26 | Fluid catalytic cracking method of oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10168463A JPH10168463A (en) | 1998-06-23 |
JP3724932B2 true JP3724932B2 (en) | 2005-12-07 |
Family
ID=26552660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27797797A Expired - Lifetime JP3724932B2 (en) | 1996-10-07 | 1997-09-26 | Fluid catalytic cracking method of oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3724932B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4452021B2 (en) * | 2003-01-24 | 2010-04-21 | 出光興産株式会社 | Hydrocarbon catalytic cracking process |
KR100651418B1 (en) * | 2006-03-17 | 2006-11-30 | 에스케이 주식회사 | Catalytic cracking process using fast fluidization for the production of light olefins from hydrocarbon feedstock |
JP5046596B2 (en) * | 2006-09-15 | 2012-10-10 | Jx日鉱日石エネルギー株式会社 | Method for producing gasoline composition |
WO2024049983A1 (en) * | 2022-08-31 | 2024-03-07 | T.En Process Technology Inc. | Systems and processes for temperature control in fluidized catalytic cracking |
-
1997
- 1997-09-26 JP JP27797797A patent/JP3724932B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10168463A (en) | 1998-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3580518B2 (en) | Fluid catalytic cracking of heavy oil | |
KR100225222B1 (en) | Process for fluid catalytic cracking of oils | |
US6656346B2 (en) | Fluid catalytic cracking process for heavy oil | |
US20020195373A1 (en) | Heavy oil fluid catalytic cracking process | |
EP1146107B1 (en) | Process for fluid catalytic cracking of heavy fraction oils | |
EP0426400B1 (en) | Upgrading light olefin fuel gas in a fluidized bed catalyst reactor and regeneration of the catalyst | |
JPH01279993A (en) | Modification of hydrocarbon | |
US5049360A (en) | Multi-stage conversion of alkanes to gasoline | |
US5009851A (en) | Integrated catalytic reactor system with light olefin upgrading | |
JP2021531378A (en) | Hydrocarbon oil catalytic cracking methods, reactors and systems | |
JP4711951B2 (en) | C6 recycling for propylene production in fluid catalytic cracker | |
US5215650A (en) | Cooling exothermic regenerator with endothermic reactions | |
JP3724932B2 (en) | Fluid catalytic cracking method of oil | |
JP2002241764A (en) | Fluidized catalytic cracking process for heavy oil | |
JP3950437B2 (en) | Fluid catalytic cracking of heavy oil | |
US20040140246A1 (en) | Process for upgrading fcc product with additional reactor | |
JP3724934B2 (en) | Fluid catalytic cracking method of oil | |
JP5390857B2 (en) | Fluid catalytic cracking method | |
RU2812317C1 (en) | Method for converting hydrocarbon feeds into lighter olefins | |
US11891356B2 (en) | Production of high yields of light olefins from heavy hydrocarbons | |
JP3574555B2 (en) | Fluid catalytic cracking of heavy oil | |
WO2008026681A1 (en) | Fluid catalytic cracking method | |
JPH1046160A (en) | Method for fluidized bed catalytic cracking of heavy oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050920 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090930 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100930 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120930 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130930 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |