Nothing Special   »   [go: up one dir, main page]

JP3724987B2 - 3D seismic isolation device - Google Patents

3D seismic isolation device Download PDF

Info

Publication number
JP3724987B2
JP3724987B2 JP21566099A JP21566099A JP3724987B2 JP 3724987 B2 JP3724987 B2 JP 3724987B2 JP 21566099 A JP21566099 A JP 21566099A JP 21566099 A JP21566099 A JP 21566099A JP 3724987 B2 JP3724987 B2 JP 3724987B2
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
vertical
horizontal
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21566099A
Other languages
Japanese (ja)
Other versions
JP2001041283A (en
Inventor
明倫 宮本
哲人 仲戸川
孝裕 杣木
好久 及部
薫 玉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Daido Precision Industries Ltd
Original Assignee
Obayashi Corp
Daido Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Daido Precision Industries Ltd filed Critical Obayashi Corp
Priority to JP21566099A priority Critical patent/JP3724987B2/en
Publication of JP2001041283A publication Critical patent/JP2001041283A/en
Application granted granted Critical
Publication of JP3724987B2 publication Critical patent/JP3724987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水平方向および上下方向の免震機能を備えた三次元免震装置に関する。
【0002】
【従来の技術】
原子力発電所等の重要施設では地震等による影響を極力無くす建築物として構築されるが、その重要施設を立地条件にかかわらず構築できる立地拡大を目指したサイトフリーと、設備の標準化によるコスト低減を目指した標準化プラント構築とを可能とする免震構造の採用が望まれる。
【0003】
一般に、ビル等の建築物の免震は積層ゴム等を用いた水平免震構造が採用されるが、これに上下免震構造を併用することにより三次元免震を達成して地震から建築物を効率良く保護することができ、これを上記重要施設に適用することにより建築物の標準化が可能となる。
【0004】
この種の三次元免震装置としては、例えば特開平8−218678号公報に開示されるものが提案されている。この三次元免震装置は、積層ゴム等の水平免震装置の下部または上部に上下免震機構を付加して構成され、つまり、水平免震装置と上下免震機構とを上下方向に直列配置して構成されるようになっており、建築物の重量がこれら水平免震装置および上下免震機構に入力されるようになっている。
【0005】
【発明が解決しようとする課題】
しかしながら、かかる従来の三次元免震装置にあっては、建築物が地震入力時の上下振動に共振するのを避けるためには、該建築物側の上下方向の固有振動数を長周期化することが望ましい。つまり、地震により入力される上下振動の卓越周期は0.5秒以下の範囲に存在するため、上下免震機構で決定される建築物側の上下方向の振動周期は0.5秒以上に設定する必要がある。このように建築物を長周期化するためには、上下免震機構のばね剛性を小さく、つまり上下ばねを柔らかくする必要がある。
【0006】
ところが、このように上下免震機構のばねを柔らかくすると、建築物の荷重を確実に支持できなくなるとともに、建築物のロッキング振動が励起されることになる。このため、どうしても上下免震機構のばね剛性を大きくして固めに設定せざるを得ず、建築物の上下振動周期が免震領域から短周期方向にずれて効果的に上下免震できないおそれがある。そして、このように免震領域からずれると建築物の上下振動が大きくなり、延いては該建築物に引抜き力が大きく作用して、積層ゴム等で構成される水平免震装置が損傷されるおそれもある。
【0007】
また、建築物の荷重を支持するために上記上下免震機構のばね剛性を大きくした場合には、この上下免震機構の当該ばね剛性に起因する上下変動荷重が水平免震装置の性能に大きな影響を与える。例えば、上記特開平8−218678号公報に開示されるように水平免震装置の上に直列に該上下免震機構を設けて構成した場合に、水平力によって積層ゴムにせん断力が発生するが、このせん断抵抗は大きな上下変動荷重によって大きく変動する。すなわち、水平免震装置自身が備える水平ばね剛性で本来達成されるべき水平免震性能に対して、上記上下免震機構の大きなばね剛性に起因する上下変動荷重が影響し、水平免震装置単体を目的通りの性能で設計することが困難になる。
【0008】
以上の理由から従来の三次元免震装置では、水平および上下の三次元方向の免震機能を的確かつ十分に発揮できているとはいえず、従って、これを上記重要施設等に適用して建築物の標準化を達成することは、著しい困難を伴うという課題があった。
【0009】
そこで、本発明はかかる従来の課題に鑑みて成されたもので、専ら水平免震を行う水平免震装置と、専ら上下免震を行う上下免震装置とを並設することにより、それぞれの免震装置で負担する鉛直荷重を分担し、もって水平免震装置による水平免震機能を十分に確保しつつ、上下免震装置の上下免震機能をも十分に確保して、三次元方向に優れた免震機能を発揮させることができる三次元免震装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
かかる目的を達成するために本発明の三次元免震装置は、支持構造物と、これの上方に間隔を設けて配置される免震構造物との間に、これら両構造物間を水平免震する水平免震装置と、両構造物間を上下免震する上下免震装置とを並列配置するとともに、該水平免震装置と支持構造物又は免震構造物の少なくとも一方との間に、上記上下免震装置のばね剛性よりも小さいばね剛性の緩衝用弾性体を介在させたことを特徴とする。
【0011】
この構成によれば、水平免震装置と上下免震装置とを並列配置したことにより、これら両免震装置にかかる免震構造物の鉛直荷重をそれぞれで分担支持することができる。このときの荷重分担割合は、上下免震装置のばね剛性と、水平免震装置に直列配置される緩衝用弾性体のばね剛性とを異ならせることによって任意に設定することができる。従って、水平免震装置で負担する鉛直荷重を少なくして十分な水平免震機能を発揮することができる。
【0012】
また、地震時の上下変動荷重を主に上下免震装置で負担するため、当該上下免震装置のばね剛性を適宜設定することにより、上下免震装置に支持される免震構造物の上下方向の長周期化が可能となって、十分な上下免震機能を発揮させることができる。
【0013】
更に、上記緩衝用弾性体にかかる鉛直荷重が減少されることにより、該緩衝用弾性体のばね剛性を小さくできるため、水平免震装置に作用する上下振動の軸力変動をより小さくし、水平免震装置の安定した免震性能を確保することができる。
【0014】
更にまた、緩衝用弾性体を直列配置した水平免震装置に対して上下免震装置が並列配置されるため、該上下免震装置の剛性により免震構造物のロッキング振動を抑制することができる。
【0015】
従って、水平免震装置による水平免震機能を的確に十分に確保しつつ、上下免震装置による上下免震機能をも適切かつ十分に確保して三次元方向に優れた免震機能を発揮し、もって、これを建築物に適用することにより、建築物の標準化やサイトフリーを達成できる三次元免震装置を得ることができる。さらに、上下免震装置のばね剛性を緩衝用弾性体のばね剛性よりも大きく設定しているので、免震構造物の鉛直荷重の分担割合を上下免震装置で大きくすることができる。このため、緩衝用弾性体と直列に配置された水平免震装置に作用する鉛直荷重が低減され、水平免震装置によって的確かつ十分な水平免震機能を確保することができる。さらに、緩衝用弾性体のばね剛性を上下免震装置のばね剛性よりも小さく設定しているので、水平免震装置に入力される上下振動の軸力変動を小さなものとすることができて、水平免震装置による水平免震機能を安定に確保することができる。
【0016】
また、上記上下免震装置と、支持構造物または免震構造物の少なくとも一方との間に両者の相対移動を許容する滑動機構を介在することが望ましい。
【0017】
この構成によれば、支持構造物と免震構造物との間の水平振動が上下免震装置に入力されるのを滑動機構によって低減し、もって、該上下免震装置のばね剛性が水平免震装置の免震性能に影響するのを低減することができる。また、上記滑動機構が滑動するときの摩擦抵抗値を適宜設定しておくことにより、この摩擦抵抗を水平振動の減衰要素として機能させることができる。
【0018】
更に、上記滑動機構は、転がり支承もしくは滑り支承であることが望ましい。
【0019】
この構成によれば、転がり支承もしくは滑り支承により支持構造物と免震構造物との間の水平振動が上下免震装置に入力されるのを著しく低減し、該上下免震装置のばね剛性が水平免震装置に影響するのをほとんど無くすことができるため、該水平免震装置は予め設定した水平免震機能を発揮でき、該水平免震装置の設計が容易になる。
【0023】
更にまた、上記水平免震装置は、水平方向に等方性の復元性能を有する、例えば積層ゴムなどであることが望ましい。
【0024】
この構成によれば、水平面内でのいかなる方向に対しても適切な水平免震機能を発揮させることができる。
【0025】
また、上記上下免震装置は、皿ばねの積層体であることが望ましい。
【0026】
この構成によれば、上下振動の入力により皿ばねはその錐体部分が拡縮されることとなり、この拡縮変形により互いに積層された皿ばねどうしで擦り合うため、このときの摩擦効果により剛性および減衰効果を得ることができる。
【0027】
更に、上記上下免震装置に、エネルギー吸収装置を付加することができる。
【0028】
この構成によれば、上下振動の入力によりエネルギー吸収装置が作動して上下方向の振動エネルギーを吸収することができる。
【0029】
更にまた、上記緩衝用弾性体は、皿ばねの積層体であることが望ましい。
【0030】
この構成によれば、上下振動に伴う軸力変動を低減できることに加えて、皿ばねはその錐体部分が拡縮されることとなり、この拡縮変形により互いに積層された皿ばねどうしで擦り合うため、このときの摩擦効果により剛性および減衰効果を得ることができる。
【0031】
また、上記上下免震装置は、上記水平免震装置が荷重支持機能を喪失したことに応じて、上記免震構造物の荷重を支持するフェールセーフ機能を備える。
【0032】
このように構成すれば、過大な振動入力によって水平免震装置が破損などした場合に、上下免震装置により免震構造物の全荷重を支持でき、免震構造物が落下したり大きく傾いたりして倒壊するのを防止できる。
【0033】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。図1は本発明の三次元免震装置10の基本的な構造を示し、支持構造物12と、これの上方に所定間隔を設けて配置される免震構造物14との間に、これら両構造物12,14間を水平免震する水平免震装置16と、両構造物12,14間を上下免震する上下免震装置18とを並列配置するとともに、該水平免震装置16と支持構造物12または免震構造物14の少なくとも一方との間に緩衝用弾性体20を介在させることにより構成してある。
【0034】
そして図2〜図7には、本発明の三次元免震装置10の具体的な実施例が示されている。図2は三次元免震装置の正面図、図3は図2中A−A線断面図、図4は水平免震装置および緩衝用弾性体の一部を断面した正面図、図5は上下免震装置の一部を断面した正面図、図6は上下免震装置のばね特性図、図7は緩衝用弾性体のばね特性図である。
【0035】
即ち、本実施形態の三次元免震装置10は、支持構造物12と免震構造物14との間に介在され、該三次元免震装置10によって免震構造物14の鉛直荷重を支持するようになっている。該三次元免震装置10は、水平免震装置16と、これに並列配置される上下免震装置18と、水平免震装置16の上方に直列配置される緩衝用弾性体20とを備えて構成される。これら水平免震装置16,上下免震装置18および緩衝用弾性体20で同図に示す1つのユニットとなり、このユニットが免震構造物14の下面に複数個配置されて全体の三次元免震を行うようになっている。他方、並列配置であれば、必ずしもユニット化する必要はなく、個数も同数である必要はない。
【0036】
上記水平免震装置16は、図4にも示すようにゴム層と鋼板とが交互に積層される積層ゴム22で構成され、この積層ゴム22には下方フランジ22aと上方フランジ22bとが設けられる。該積層ゴム22の設置部位には支持構造物12から所定高さの鉄筋コンクリート造の設置台24が突設され、この設置台24上に下方フランジ22aを固定して積層ゴム22が設置される。
【0037】
一方、上記上下免震装置18は、図5にも示すように皿ばね26aを積層した皿ばね積層体26を用いて構成される。ここで、皿ばね26aの重ね方法に関し、同一向きに重ねたときは並列となり、反対向きに重ねたときは直列となる。該皿ばね積層体26は、複数枚の並列皿ばね26aが交互に逆向きに直列となるように積層され、本実施形態では一組もしくは図3に示すように複数組、例えば4組の皿ばね積層体26が配置される。そして、これら4組の皿ばね積層体26の下側は、支持構造物12に載置される滑動機構としての転がり支承28もしくは滑り支承上に搭載される。皿ばね積層体26の上側は、免震構造物14に固定される上方取付板30に取り付けられる。
【0038】
また、上記緩衝用弾性体20は、図4にも示すように上記上下免震装置18と同様な皿ばね積層体32を用いて構成され、該皿ばね積層体32は、複数枚の並列皿ばね32aが交互に逆向きに直列となるように積層される。また、該皿ばね積層体32は一組もしくは図3に示すように複数組、例えば4組が配置され、それぞれの下側は上記積層ゴム22の上方フランジ22bに載置されるとともに、上側は免震構造物14に固定される上方取付板34に取り付けられる。
【0039】
上記上下免震装置18の転がり支承28は、図5に示すように下面が平坦となった支持脚28aと、該支持脚28aの周縁部を適宜隙間を設けて覆う外殻28bと、これら支持脚28aと外殻28bとの間の空間部に収納される多数の小球28cとを備えて構成される。そして、上記支持脚28aは上記小球28cを介在させた状態で支持構造物12上面に敷設されるスライド基板36に載置され、介在された小球28cが転動することにより、該転がり支承28と支持構造物12とは極小さな滑動抵抗をもって滑動自在となっている。
【0040】
また、上記皿ばね積層体26を構成する皿ばね26aは一般に知られるように、中央部に開口部を形成したドーナツ状を成し、その周縁部は緩やかな錘体をなし、全体として中央が開口された笠状に形成されている。そして、各皿ばね積層体26を構成する皿ばね26aは、その中央開口が同図に示すように上方取付板30から垂設される筒状ポール38外周に嵌合される。また、該筒状ポール38の下端部は上記転がり支承体28の支持脚28a上面との間に所定の隙間δ1 が設けられるとともに、当該下端部の内周には摺動穴38aが若干拡径して形成される。
【0041】
一方、上記転がり支承体28の支持脚28a上面には、筒状ポール38に対向する位置にダボピン40が突設され、該ダボピン40が上記摺動穴38a内に摺動自在に嵌合される。これらダボピン40と摺動穴38aとの嵌合量および上記隙間δ1 は、入力される上下振動により予め想定される支持構造物12と免震構造物14との間の上下相対変位量に応じて決定される。また、ダボピン40が摺動する摺動穴38a部分には、図示しない空気抜き孔が形成されている。
【0042】
更に、上記緩衝用弾性体20の皿ばね積層体32は、図4に示すように上記上下免震装置18と同様、皿ばね32aの中央開口が上方取付板34から垂設される筒状ポール42外周に嵌合されるとともに、該筒状ポール42の下端部に形成した摺動穴42aに、積層ゴム22の上方フランジ22bから突設されるダボピン44が摺動自在に嵌合される。勿論、この場合にあってもダボピン44と摺動穴42aとの嵌合量および筒状ポール42と上方フランジ22bとの間の隙間δ2 は、予め想定される支持構造物12と免震構造物14との間の上下相対変位量に応じて決定される。
【0043】
ところで、上記上下免震装置18のばね剛性は、図6の荷重−変位曲線に示すように変位に対する荷重の立ち上がりを大きくする一方、上記緩衝用弾性体20のばね剛性は、図7の荷重−変位曲線に示すように変位に対する荷重の立ち上がりを小さくし、上下免震装置18に比較して緩衝用弾性体20のばね剛性を小さくしてある。
【0044】
以上の構成により本実施形態の三次元免震装置10では、支持構造物12と免震構造物14との間で水平免震装置16と上下免震装置18とが並列配置されることにより、地震による振動が入力されると水平免震装置16により水平振動エネルギーが吸収されて水平免震されるとともに、上下免震装置18により上下振動エネルギーが吸収されて上下免震され、これら水平免震と上下免震とをもって三次元免震される。また、水平免震装置16の上部に直列配置された緩衝用弾性体20は、該水平免震装置16に作用する上下振動に起因する軸力変動を緩和する機能を備える。
【0045】
ところで、上記水平免震装置16と上下免震装置18とが並列配置されたことにより、図1に示したようにこれら両免震装置16,18にかかる免震構造物14の鉛直荷重Wをそれぞれで分担支持することができる。このときの荷重分担割合、例えば、水平免震装置16で負担する鉛直荷重をβとした場合に、上下免震装置18で負担する鉛直荷重はW−βとなり、このβは上下免震装置18のばね剛性と上記緩衝用弾性体20のばね剛性とを異ならせることによって任意に設定することができる。従って、水平免震装置16で負担する鉛直荷重βは全荷重Wに対して少なくなるため、水平免震装置16を構成する積層ゴム22の負担荷重が低減する。このため、積層ゴム22のゴム層の面圧依存性を低下することができ、積層ゴム22は的確かつ十分な水平免震機能を発揮することができる。
【0046】
また、このように水平免震装置16の分担荷重が減少することにより、免震構造物14の下側に配置する該水平免震装置16の総個数を少なくすることができ、この個数削減によって水平免震に関して長周期化を確保し易くなり、かつコストの低減をも達成することができる。
【0047】
更に、上下免震装置18は水平免震装置16に対して荷重分担割合を多くした場合にも、鉛直荷重Wの一部が該水平免震装置16で負担されることにより、該上下免震装置18で負担する鉛直荷重が減少することになる。従って、地震時の上下変動荷重を主に上下免震装置18にて負担させることができ、そのばね剛性を任意に設定することにより、該上下免震装置18に支持される免震構造物14に対し上下方向の最適な長周期(例えば、0.5秒以上)へのチューニングを容易にすることができるとともに、支持荷重の調整範囲も広く確保することができる。
【0048】
更にまた、上記緩衝用弾性体20によって水平免震装置16に作用する上下方向の軸力変動を緩和できることを上述したが、該緩衝用弾性体20は水平免震装置16と直列配置されるため、該水平免震装置16と等しい鉛直荷重βがかかり、これによって緩衝用弾性体20のばね剛性を上下免震装置18に比較して小さくでき、それぞれのばね剛性は図6,図7に示したようになっている。従って、上記緩衝用弾性体20を柔らかく設定できるため、積層ゴム22の面圧依存性を更に低減し、水平免震時のゴムの性状の不安定性が解消して安定した性能を得ることができる。このため、地震の上下振動や水平振動による荷重変動の水平免震装置16への作用を押さえることができ、このような荷重変動によって水平免震装置16のばね特性に悪影響が生じることを防止できて、水平免震装置16の設計が容易になる。
【0049】
特に、本実施形態では上下免震装置18の下部に転がり支承28を設けて、水平方向の自由な滑動が可能となっているため、支持構造物12と免震構造物14との間の水平振動が上下免震装置18に入力されるのを該転がり支承28によって大幅に低減し、もって、該上下免震装置18のばね剛性が水平免震装置16に影響するのを極力低減することができる。この点からも該水平免震装置16は予め設定した水平免震機能を発揮でき、該水平免震装置16の設計が容易になるとともに、上記転がり支承28や滑り支承が滑動するときの摩擦抵抗を水平振動の減衰要素として機能させることもできる。
【0050】
また、本実施形態の三次元免震装置10は、水平免震装置16および緩衝用弾性体20に並列に上下免震装置18が配置されるため、該上下免震装置18によっても免震構造物14を支持していることによってロッキング振動を抑制することができる。
【0051】
更に、水平免震装置16と上下免震装置18とを並列配置したことにより、過大な振動入力により水平免震装置16に用いた積層ゴム22が破損した場合に、上下免震装置18によって免震構造物14の全荷重を支持できるため、該免震構造物14が落下したり大きく傾いたりして倒壊するのを防止できるフェールセーフ機能を享有することになる。
【0052】
更にまた、上下免震装置18および緩衝用弾性体20はそれぞれ皿ばね積層体26,32で構成されるが、該皿ばね積層体26,28を構成する皿ばね26a,32aの錘体部分は上下振動の入力により拡縮され、この拡縮変形により互いに積層された皿ばね26a,32aどうしで擦り合うため、このときの摩擦効果により上下振動に対する剛性および減衰効果を得ることができる。また、図2中仮想線で示したように上下免震装置18の上方取付板30と転がり支承28との間に油圧ダンパー50等のエネルギー吸収装置を別途設けることにより、上下振動の入力により該油圧ダンパー50が作動して振動エネルギーを吸収できるため、この構成によって必要な減衰を確保できるとともに、上下免震装置18としての減衰量の設定が容易になる。
【0053】
従って、本実施形態の三次元免震装置10では、水平免震装置16による水平免震機能を確保しつつ、上下免震装置18による上下免震機能をも十分に確保して、三次元方向に優れた免震機能を発揮することができる。このため、該三次元免震装置10を原子力発電所等の地震時の安全性が強く要求される重要施設の構造物等に適用することにより、該重要施設構造物の標準化、すなわち建物設備やプラント設備、例えば建物の骨組みや配管,サポート等を規格化を達成することができる。また、重要施設のサイトフリーを可能として立地条件の拡大を図ることができるとともに、他方、施設構造物の工費低減も達成することができる。
【0054】
上記実施形態にあっては、免震構造物14の荷重を水平免震装置16と上下免震装置18の両者で分担して支持する場合について説明したが、緩衝用弾性体20を自由長で組み込むようにして、水平免震装置16に荷重を作用させずに、上下免震装置18により免震構造物14の全荷重を負担させることも可能である。
【0055】
勿論、本実施形態では水平免震装置16を積層ゴム22で構成したが、これに限ることなく水平免震を効果的に達成できる弾性部材であれば良く、また、上下免震装置18および緩衝用弾性体20をそれぞれ皿ばね積層体26,32で構成したが、これらにあっても皿ばね積層体26,32に代えてそれぞれの機能に適した弾性部材を用いることができる。更に、滑動機構として転がり支承28を用いたが、勿論これに限ることはなく、滑らかな相対移動を許容する構造、例えば滑り支承やリニアレール等を用いることができる。
【0056】
【発明の効果】
以上説明したように本発明の請求項1に示す三次元免震装置にあっては、水平免震装置と上下免震装置とを並列配置して、それぞれにかかる免震構造物の鉛直荷重を分担支持することができる。また、上下免震装置は鉛直荷重に対してばね剛性を任意に設定できるので、上下免震装置に支持される免震構造物の上下方向の長周期化が可能となって、十分な上下免震機能を発揮することができる。
【0057】
更に、上記水平免震装置に直列配置した緩衝用弾性体のばね剛性を小さくできるため、水平免震装置に作用する上下方向振動に起因する軸力変動を小さくして、水平免震装置のより安定した免震性能を確保することができる。更にまた、緩衝用弾性体を直列配置した水平免震装置に対して上下免震装置が並列配置されるため、該上下免震装置の剛性により免震構造物のロッキング振動を抑制することができる。
【0058】
更に、水平免震装置の個数削減により、全体のばね剛性を低減して水平方向免震に係る長周期化の設定を容易化できるとともに、装置の配置レイアウトを容易にし、かつコスト低減をも達成できる。
【0059】
従って、水平免震装置による水平免震機能を適切かつ十分に確保しつつ、上下免震装置による上下免震機能をも的確かつ十分に確保して三次元方向に優れた三次元免震性能を発揮させることができ、もって、これを建築物に適用することにより建築物の標準化やサイトフリーを達成することができる。
さらに、緩衝用弾性体のばね剛性を上下免震装置のばね剛性よりも小さく(上下免震装置のばね剛性を緩衝用弾性体のばね剛性よりも大きく)設定しているので、免震構造物の鉛直荷重の分担割合を上下免震装置で大きくすることができる。このため、緩衝用弾性体と直列配置された水平免震装置に作用する鉛直荷重が低減され、水平免震装置によって的確かつ十分な水平免震機能を確保することができる。さらに、緩衝用弾性体のばね剛性が上下免震装置のばね剛性よりも小さいので、水平免震装置に入力される上下振動の軸力変動を小さなものとすることができて、水平免震装置による水平免震性能を安定して確保することができる。
【0060】
また、本発明の請求項2に示す三次元免震装置にあっては、上記上下免震装置と、支持構造物または免震構造物の少なくとも一方との間に相対移動を許容する滑動機構を介在したので、支持構造物と免震構造物との間の水平振動が上下免震装置に入力されるのを滑動機構によって低減し、もって、該上下免震装置の剛性が水平免震装置の免震性能に悪影響を与えることを防止することができる。また、上記滑動機構が滑動するときの摩擦抵抗値を適宜設定しておくことにより、この摩擦抵抗を水平振動の減衰要素として機能させることもできる。
【0061】
更に、本発明の請求項3に示す三次元免震装置にあっては、上記滑動機構を転がり支承や滑り支承で構成したので、支持構造物と免震構造物との間の水平振動が上下免震装置に入力されるのを著しく低減できるため、上下免震装置の設計が容易になる。
【0063】
更にまた、本発明の請求項4に示す三次元免震装置にあっては、上記水平免震装置を、水平方向に等方性の復元性能を有するものとしたので、水平面内でのいかなる方向に対しても適切な水平免震機能を発揮させることができる。
【0064】
また、本発明の請求項5に示す三次元免震装置にあっては、上記上下免震装置を皿ばねの積層体で構成したので、上下振動の入力により皿ばねはその錐体部分が拡縮されることとなり、この拡縮変形により互いに積層された皿ばねどうしで擦り合うため、このときの摩擦効果により剛性および減衰効果を得ることができる。
【0065】
更に、本発明の請求項6に示す三次元免震装置にあっては、上記上下免震装置にエネルギー吸収装置を付加したので、上下振動の入力によりエネルギー吸収装置が作動して上下方向の振動エネルギーを吸収することもできる。
【0066】
更にまた、本発明の請求項7に示す三次元免震装置にあっては、上記緩衝用弾性体を皿ばねの積層体で構成したので、上下振動に伴う軸力変動を低減できることに加えて、皿ばねはその錐体部分が拡縮されることとなり、この拡縮変形により互いに積層された皿ばねどうしで擦り合うため、このときの摩擦効果により剛性および減衰効果を得ることができる。
【0067】
また、本発明の請求項8に示す三次元免震装置にあっては、過大な振動入力によって水平免震装置が破損等した場合に、上下免震装置により免震構造物の全荷重を支持でき、免震構造物が落下したり大きく傾いたりして倒壊するのを防止できる。
【図面の簡単な説明】
【図1】本発明の三次元免震装置の基本的な構造を示す概略構成図である。
【図2】本発明の三次元免震装置の一実施形態を示す正面図である。
【図3】図2中のA−A線断面図である。
【図4】本発明の三次元免震装置の一実施形態を示す水平免震装置および緩衝用弾性体の一部を断面した正面図である。
【図5】本発明の三次元免震装置の一実施形態を示す上下免震装置の一部を断面した正面図である。
【図6】本発明の三次元免震装置の一実施形態を示す上下免震装置のばね特性図である。
【図7】本発明の三次元免震装置の一実施形態を示す緩衝用弾性体のばね特性図である。
【符号の説明】
10 三次元免震装置
12 支持構造物
14 免震構造物
16 水平免震装置
18 上下免震装置
20 緩衝用弾性体
22 積層ゴム
26 皿ばね積層体
28 転がり支承
32 皿ばね積層体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional seismic isolation device having a horizontal and vertical seismic isolation function.
[0002]
[Prior art]
Important facilities such as nuclear power plants are constructed as buildings that minimize the impact of earthquakes, etc., but the site can be built regardless of the location conditions, and site-free with the aim of expanding the location and reducing costs by standardizing equipment Adoption of a seismic isolation structure that enables the construction of a standardized plant aimed at is desired.
[0003]
Generally, horizontal seismic isolation structure using laminated rubber is adopted for the seismic isolation of buildings such as buildings, but by using this together with the vertical seismic isolation structure, 3D seismic isolation is achieved and the building from the earthquake Can be efficiently protected, and it is possible to standardize buildings by applying it to the important facilities.
[0004]
As this type of three-dimensional seismic isolation device, for example, a device disclosed in Japanese Patent Laid-Open No. 8-218678 has been proposed. This three-dimensional seismic isolation device is constructed by adding a vertical seismic isolation mechanism to the lower or upper part of a horizontal seismic isolation device such as laminated rubber, that is, the horizontal seismic isolation device and the vertical seismic isolation mechanism are arranged in series in the vertical direction. The weight of the building is input to the horizontal seismic isolation device and the vertical seismic isolation mechanism.
[0005]
[Problems to be solved by the invention]
However, in such a conventional three-dimensional seismic isolation device, in order to prevent the building from resonating with the vertical vibration at the time of earthquake input, the natural frequency in the vertical direction on the building side is lengthened. It is desirable. In other words, because the dominant period of vertical vibration input by an earthquake is in the range of 0.5 seconds or less, the vertical vibration period on the building side determined by the vertical seismic isolation mechanism is set to 0.5 seconds or more. There is a need to. In order to increase the period of the building in this way, it is necessary to reduce the spring rigidity of the vertical seismic isolation mechanism, that is, to soften the vertical spring.
[0006]
However, if the springs of the vertical seismic isolation mechanism are softened in this way, the load of the building cannot be reliably supported, and the rocking vibration of the building is excited. For this reason, the vertical rigidity of the vertical seismic isolation mechanism must be increased and set harder, and the vertical vibration period of the building may deviate from the seismic isolation region in the short-period direction, preventing effective vertical isolation. is there. And if it deviates from the seismic isolation region in this way, the vertical vibration of the building will increase, and the pulling force will act on the building so that the horizontal seismic isolation device composed of laminated rubber will be damaged. There is also a fear.
[0007]
In addition, when the spring stiffness of the vertical seismic isolation mechanism is increased to support the building load, the vertical fluctuation load due to the spring stiffness of the vertical seismic isolation mechanism is large in the performance of the horizontal seismic isolation device. Influence. For example, when the vertical seismic isolation mechanism is provided in series on a horizontal seismic isolation device as disclosed in the above-mentioned JP-A-8-218678, a shear force is generated in the laminated rubber by a horizontal force. This shear resistance varies greatly with a large up and down variable load. In other words, the horizontal seismic isolation device itself is affected by the vertical fluctuation load caused by the large spring stiffness of the vertical seismic isolation mechanism to the horizontal seismic isolation performance that should be originally achieved with the horizontal spring stiffness of the horizontal seismic isolation device itself. It becomes difficult to design with the performance as intended.
[0008]
For the above reasons, the conventional 3D seismic isolation devices cannot accurately and sufficiently demonstrate the horizontal and vertical 3D direction seismic isolation functions. Achieving standardization of buildings has the problem that it involves significant difficulties.
[0009]
Therefore, the present invention has been made in view of such conventional problems, and by arranging a horizontal seismic isolation device that exclusively performs horizontal seismic isolation and a vertical seismic isolation device that exclusively performs vertical seismic isolation, The vertical load that is borne by the seismic isolation device is shared, so that the horizontal seismic isolation function by the horizontal seismic isolation device is sufficiently secured, and the vertical seismic isolation function of the vertical seismic isolation device is sufficiently secured in a three-dimensional direction. The object is to provide a three-dimensional seismic isolation device that can exhibit an excellent seismic isolation function.
[0010]
[Means for Solving the Problems]
  In order to achieve this object, the three-dimensional seismic isolation device of the present invention provides a horizontal isolation between a support structure and a seismic isolation structure disposed above the support structure. A horizontal seismic isolation device that seizes and a vertical seismic isolation device that segregates vertically between both structures are arranged in parallel, and between the horizontal seismic isolation device and at least one of the support structure or the seismic isolation structure,Spring stiffness smaller than that of the above vertical seismic isolation deviceA buffering elastic body is interposed.
[0011]
According to this configuration, since the horizontal seismic isolation device and the vertical seismic isolation device are arranged in parallel, the vertical loads of the seismic isolation structures applied to both the seismic isolation devices can be respectively shared and supported. The load sharing ratio at this time can be arbitrarily set by making the spring stiffness of the vertical seismic isolation device different from the spring stiffness of the buffer elastic body arranged in series in the horizontal seismic isolation device. Therefore, the vertical load borne by the horizontal seismic isolation device can be reduced to exhibit a sufficient horizontal seismic isolation function.
[0012]
In addition, since the vertical seismic isolation device mainly bears the vertical fluctuation load at the time of an earthquake, the vertical direction of the base isolation structure supported by the vertical seismic isolation device is set by appropriately setting the spring rigidity of the vertical seismic isolation device. This makes it possible to extend the vertical period of time and to exhibit a sufficient vertical seismic isolation function.
[0013]
Furthermore, since the spring load of the elastic body for buffering can be reduced by reducing the vertical load applied to the buffering elastic body, the axial force fluctuation of the vertical vibration acting on the horizontal seismic isolation device is further reduced, A stable seismic isolation performance of the seismic isolation device can be secured.
[0014]
Furthermore, since the vertical seismic isolation device is arranged in parallel with the horizontal seismic isolation device in which the elastic bodies for buffering are arranged in series, the rocking vibration of the seismic isolation structure can be suppressed by the rigidity of the vertical seismic isolation device. .
[0015]
  Therefore, while ensuring the horizontal seismic isolation function with the horizontal seismic isolation device accurately and sufficiently, the vertical seismic isolation function with the vertical seismic isolation device is also adequately and sufficiently secured to demonstrate the superior seismic isolation function in the three-dimensional direction. Therefore, by applying this to a building, it is possible to obtain a three-dimensional seismic isolation device that can achieve building standardization and site-free.Furthermore, since the spring stiffness of the vertical seismic isolation device is set to be larger than the spring stiffness of the buffering elastic body, the vertical load sharing ratio of the base isolation structure can be increased by the vertical seismic isolation device. For this reason, the vertical load which acts on the horizontal seismic isolation device arrange | positioned in series with the elastic body for buffering is reduced, and an accurate and sufficient horizontal seismic isolation function can be ensured by the horizontal seismic isolation device. Furthermore, since the spring stiffness of the buffer elastic body is set smaller than the spring stiffness of the vertical seismic isolation device, the axial force fluctuation of the vertical vibration input to the horizontal seismic isolation device can be reduced, The horizontal seismic isolation function by the horizontal seismic isolation device can be secured stably.
[0016]
Further, it is desirable that a sliding mechanism that allows relative movement between the vertical seismic isolation device and at least one of the support structure or the seismic isolation structure is interposed.
[0017]
According to this configuration, the horizontal vibration between the support structure and the base isolation structure is reduced from being input to the vertical seismic isolation device by the sliding mechanism. The influence on the seismic isolation performance of the seismic device can be reduced. Further, by appropriately setting the frictional resistance value when the sliding mechanism slides, this frictional resistance can be made to function as a horizontal vibration damping element.
[0018]
Furthermore, the sliding mechanism is preferably a rolling bearing or a sliding bearing.
[0019]
According to this configuration, the horizontal vibration between the support structure and the seismic isolation structure due to the rolling bearing or the sliding bearing is remarkably reduced, and the spring rigidity of the vertical seismic isolation apparatus is reduced. Since the horizontal seismic isolation device can hardly be affected, the horizontal seismic isolation device can exhibit a preset horizontal seismic isolation function, and the design of the horizontal seismic isolation device becomes easy.
[0023]
Furthermore, it is desirable that the horizontal seismic isolation device is, for example, laminated rubber or the like having isotropic restoration performance in the horizontal direction.
[0024]
According to this configuration, an appropriate horizontal seismic isolation function can be exhibited in any direction within the horizontal plane.
[0025]
The vertical seismic isolation device is preferably a disc spring laminated body.
[0026]
According to this configuration, the conical portion of the disc spring is expanded and contracted by the input of the vertical vibration, and the disc springs laminated to each other are rubbed by this expansion and contraction deformation. An effect can be obtained.
[0027]
Furthermore, an energy absorption device can be added to the vertical seismic isolation device.
[0028]
According to this configuration, the energy absorbing device is activated by the input of the vertical vibration, and the vibration energy in the vertical direction can be absorbed.
[0029]
Furthermore, it is desirable that the cushioning elastic body is a laminated body of disc springs.
[0030]
According to this configuration, in addition to being able to reduce axial force fluctuations associated with vertical vibration, the conical portion of the disc spring is expanded and contracted, and because of this expansion and contraction deformation, the disc springs stacked on each other rub against each other. The rigidity and damping effect can be obtained by the friction effect at this time.
[0031]
Moreover, the said vertical seismic isolation apparatus is provided with the fail safe function which supports the load of the said seismic isolation structure according to the said horizontal seismic isolation apparatus having lost the load support function.
[0032]
With this configuration, if the horizontal seismic isolation device is damaged due to excessive vibration input, the vertical seismic isolation device can support the entire load of the seismic isolation structure, and the seismic isolation structure may drop or tilt significantly. And prevent it from collapsing.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows the basic structure of a three-dimensional seismic isolation device 10 according to the present invention. Both a support structure 12 and a seismic isolation structure 14 disposed above the support structure 12 with a predetermined interval therebetween. A horizontal seismic isolation device 16 for horizontal isolation between the structures 12 and 14 and a vertical seismic isolation device 18 for vertical isolation between both structures 12 and 14 are arranged in parallel, and the horizontal seismic isolation device 16 and the support are supported. A buffering elastic body 20 is interposed between at least one of the structure 12 and the seismic isolation structure 14.
[0034]
2 to 7 show specific examples of the three-dimensional seismic isolation device 10 of the present invention. 2 is a front view of the three-dimensional seismic isolation device, FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, FIG. 4 is a front view of the horizontal seismic isolation device and a part of the shock absorber, and FIG. FIG. 6 is a spring characteristic diagram of the vertical seismic isolation device, and FIG. 7 is a spring characteristic diagram of the shock absorbing elastic body.
[0035]
That is, the three-dimensional seismic isolation device 10 of this embodiment is interposed between the support structure 12 and the seismic isolation structure 14 and supports the vertical load of the seismic isolation structure 14 by the three-dimensional seismic isolation device 10. It is like that. The three-dimensional seismic isolation device 10 includes a horizontal seismic isolation device 16, a vertical seismic isolation device 18 arranged in parallel therewith, and a buffering elastic body 20 arranged in series above the horizontal seismic isolation device 16. Composed. These horizontal seismic isolation device 16, vertical seismic isolation device 18, and buffer elastic body 20 form one unit shown in the figure, and a plurality of these units are arranged on the lower surface of the seismic isolation structure 14 to form an overall three-dimensional seismic isolation. Is supposed to do. On the other hand, in the case of parallel arrangement, it is not always necessary to unitize and the number need not be the same.
[0036]
As shown in FIG. 4, the horizontal seismic isolation device 16 includes a laminated rubber 22 in which rubber layers and steel plates are alternately laminated. The laminated rubber 22 is provided with a lower flange 22a and an upper flange 22b. . A reinforced concrete installation table 24 having a predetermined height is projected from the support structure 12 at an installation site of the laminated rubber 22, and the lower rubber 22 a is fixed on the installation table 24 to install the laminated rubber 22.
[0037]
On the other hand, the vertical seismic isolation device 18 is configured using a disc spring laminated body 26 in which disc springs 26a are laminated as shown in FIG. Here, regarding the stacking method of the disc springs 26a, they are parallel when they are stacked in the same direction, and are serial when they are stacked in the opposite direction. The disc spring laminated body 26 is laminated so that a plurality of parallel disc springs 26a are alternately arranged in series in the opposite direction. In this embodiment, one set or a plurality of sets, for example, four sets of plates, as shown in FIG. A spring stack 26 is disposed. And the lower side of these four sets of disc spring laminated bodies 26 is mounted on a rolling bearing 28 or a sliding bearing as a sliding mechanism placed on the support structure 12. The upper side of the disc spring laminated body 26 is attached to an upper mounting plate 30 fixed to the seismic isolation structure 14.
[0038]
Further, as shown in FIG. 4, the cushioning elastic body 20 is configured by using a disc spring laminated body 32 similar to the upper and lower seismic isolation device 18, and the disc spring laminated body 32 includes a plurality of parallel dishes. The springs 32a are alternately stacked in series in opposite directions. Further, the disc spring laminated body 32 is arranged in one set or a plurality of sets, for example, four sets as shown in FIG. 3, and the lower side of each is placed on the upper flange 22b of the laminated rubber 22, and the upper side is It is attached to an upper mounting plate 34 fixed to the seismic isolation structure 14.
[0039]
As shown in FIG. 5, the rolling bearing 28 of the vertical seismic isolation device 18 includes a support leg 28a having a flat bottom surface, an outer shell 28b that covers the peripheral edge of the support leg 28a with an appropriate gap, and these supports. A large number of small spheres 28c are accommodated in the space between the leg 28a and the outer shell 28b. The support legs 28a are placed on the slide substrate 36 laid on the upper surface of the support structure 12 with the small balls 28c interposed therebetween, and the rolling support is supported by the rolling of the interposed small balls 28c. 28 and the support structure 12 are slidable with a very small sliding resistance.
[0040]
Further, as is generally known, the disc spring 26a that constitutes the disc spring laminated body 26 has a donut shape with an opening formed in the center, and its peripheral portion forms a loose weight, with the center as a whole. It is formed in an open shade shape. And the disc spring 26a which comprises each disc spring laminated body 26 is fitted by the outer periphery of the cylindrical pole 38 suspended from the upper attachment plate 30, as the center opening is shown to the same figure. A predetermined gap δ1 is provided between the lower end portion of the cylindrical pole 38 and the upper surface of the support leg 28a of the rolling bearing 28, and a sliding hole 38a is slightly enlarged on the inner periphery of the lower end portion. Formed.
[0041]
On the other hand, a dowel pin 40 protrudes from the upper surface of the support leg 28a of the rolling support 28 at a position facing the cylindrical pole 38, and the dowel pin 40 is slidably fitted into the slide hole 38a. . The fitting amount between the dowel pin 40 and the sliding hole 38a and the gap δ1 are determined in accordance with the vertical relative displacement amount between the support structure 12 and the seismic isolation structure 14 which is assumed in advance by the inputted vertical vibration. It is determined. In addition, an air vent hole (not shown) is formed in the sliding hole 38a portion where the dowel pin 40 slides.
[0042]
Further, the disc spring laminated body 32 of the cushioning elastic body 20 has a cylindrical pole in which the central opening of the disc spring 32a is suspended from the upper mounting plate 34 as in the case of the vertical seismic isolation device 18, as shown in FIG. The dowel pin 44 projecting from the upper flange 22b of the laminated rubber 22 is slidably fitted into the slide hole 42a formed at the lower end of the cylindrical pole 42. Of course, even in this case, the fitting amount between the dowel pin 44 and the sliding hole 42a and the gap δ2 between the cylindrical pole 42 and the upper flange 22b are preliminarily assumed. 14 is determined according to the amount of vertical relative displacement between the two.
[0043]
Meanwhile, the spring stiffness of the vertical seismic isolation device 18 increases the rise of the load with respect to the displacement as shown in the load-displacement curve of FIG. 6, while the spring stiffness of the buffering elastic body 20 is the load- As shown in the displacement curve, the rise of the load with respect to the displacement is made smaller, and the spring rigidity of the buffering elastic body 20 is made smaller than that of the vertical seismic isolation device 18.
[0044]
In the three-dimensional seismic isolation device 10 of the present embodiment with the above configuration, the horizontal seismic isolation device 16 and the vertical seismic isolation device 18 are arranged in parallel between the support structure 12 and the seismic isolation structure 14. When vibration due to an earthquake is input, the horizontal seismic isolation device 16 absorbs horizontal vibration energy and the horizontal seismic isolation is performed, and the vertical seismic isolation device 18 absorbs vertical vibration energy and the vertical seismic isolation is performed. And 3D seismic isolation. In addition, the shock-absorbing elastic body 20 arranged in series on the upper part of the horizontal seismic isolation device 16 has a function of reducing axial force fluctuations caused by vertical vibrations acting on the horizontal seismic isolation device 16.
[0045]
By the way, since the horizontal seismic isolation device 16 and the vertical seismic isolation device 18 are arranged in parallel, the vertical load W of the seismic isolation structure 14 applied to both the seismic isolation devices 16 and 18 as shown in FIG. Each can be shared and supported. When the load sharing ratio at this time, for example, the vertical load borne by the horizontal seismic isolation device 16 is β, the vertical load borne by the vertical seismic isolation device 18 is W−β, and β is the vertical seismic isolation device 18. Can be set arbitrarily by making the spring rigidity of the buffer elastic body 20 different. Accordingly, since the vertical load β borne by the horizontal seismic isolation device 16 is less than the total load W, the burden load on the laminated rubber 22 constituting the horizontal seismic isolation device 16 is reduced. For this reason, the surface pressure dependency of the rubber layer of the laminated rubber 22 can be reduced, and the laminated rubber 22 can exhibit an accurate and sufficient horizontal seismic isolation function.
[0046]
In addition, since the load sharing of the horizontal seismic isolation device 16 is reduced in this way, the total number of horizontal seismic isolation devices 16 disposed below the seismic isolation structure 14 can be reduced. It is easy to ensure a long period for horizontal seismic isolation, and cost reduction can also be achieved.
[0047]
Furthermore, even when the vertical seismic isolation device 18 increases the load sharing ratio with respect to the horizontal seismic isolation device 16, a part of the vertical load W is borne by the horizontal seismic isolation device 16. The vertical load borne by the device 18 is reduced. Therefore, the vertical fluctuation load at the time of an earthquake can be borne mainly by the vertical seismic isolation device 18, and the seismic isolation structure 14 supported by the vertical seismic isolation device 18 by arbitrarily setting the spring rigidity. On the other hand, tuning to an optimum long cycle in the vertical direction (for example, 0.5 seconds or more) can be facilitated, and a wide adjustment range of the support load can be secured.
[0048]
Furthermore, it has been described above that the vertical elastic force fluctuation acting on the horizontal seismic isolation device 16 can be mitigated by the buffer elastic body 20, but the buffer elastic body 20 is arranged in series with the horizontal seismic isolation device 16. A vertical load β equal to that of the horizontal seismic isolation device 16 is applied, so that the spring stiffness of the buffering elastic body 20 can be made smaller than that of the vertical seismic isolation device 18, and the respective spring stiffnesses are shown in FIGS. It is like that. Accordingly, since the cushioning elastic body 20 can be set softly, the surface pressure dependency of the laminated rubber 22 can be further reduced, and the instability of the rubber properties during horizontal seismic isolation can be eliminated to obtain stable performance. . For this reason, it is possible to suppress the load fluctuation caused by the vertical vibration or horizontal vibration of the earthquake from acting on the horizontal seismic isolation device 16 and to prevent the spring characteristics of the horizontal seismic isolation device 16 from being adversely affected by such load fluctuation. This facilitates the design of the horizontal seismic isolation device 16.
[0049]
In particular, in the present embodiment, a rolling support 28 is provided at the lower part of the vertical seismic isolation device 18 so that free sliding in the horizontal direction is possible, so that the horizontal between the support structure 12 and the seismic isolation structure 14 is possible. It is possible to greatly reduce the vibration input to the vertical seismic isolation device 18 by the rolling bearing 28, thereby reducing the influence of the spring rigidity of the vertical seismic isolation device 18 on the horizontal seismic isolation device 16 as much as possible. it can. Also in this respect, the horizontal seismic isolation device 16 can exhibit a preset horizontal seismic isolation function, the design of the horizontal seismic isolation device 16 is facilitated, and the friction resistance when the rolling bearing 28 and the sliding bearing slide. Can also function as a damping element for horizontal vibration.
[0050]
In the three-dimensional seismic isolation device 10 of this embodiment, since the vertical seismic isolation device 18 is disposed in parallel with the horizontal seismic isolation device 16 and the buffer elastic body 20, the vertical seismic isolation device 18 also uses the seismic isolation structure. Rocking vibration can be suppressed by supporting the object 14.
[0051]
Furthermore, by arranging the horizontal seismic isolation device 16 and the vertical seismic isolation device 18 in parallel, when the laminated rubber 22 used in the horizontal seismic isolation device 16 is damaged due to excessive vibration input, the vertical seismic isolation device 18 exempts it. Since the entire load of the seismic structure 14 can be supported, a fail-safe function that can prevent the seismic isolation structure 14 from falling or being largely tilted can be enjoyed.
[0052]
Furthermore, the vertical seismic isolation device 18 and the shock absorbing elastic body 20 are constituted by the disc spring laminated bodies 26 and 32, respectively. The weight portions of the disc springs 26a and 32a constituting the disc spring laminated bodies 26 and 28 are the same. Since the disc springs 26a and 32a are expanded and contracted by the input of the vertical vibration and are laminated by the expansion and contraction deformation, the rigidity and damping effect against the vertical vibration can be obtained by the friction effect at this time. Further, as shown by the phantom line in FIG. 2, by separately providing an energy absorbing device such as a hydraulic damper 50 between the upper mounting plate 30 of the vertical seismic isolation device 18 and the rolling bearing 28, Since the hydraulic damper 50 operates and can absorb vibration energy, this configuration can ensure the necessary attenuation and facilitate the setting of the attenuation as the vertical seismic isolation device 18.
[0053]
Therefore, in the three-dimensional seismic isolation device 10 of this embodiment, while ensuring the horizontal seismic isolation function by the horizontal seismic isolation device 16, the vertical seismic isolation function by the vertical seismic isolation device 18 is also sufficiently ensured in the three-dimensional direction. Excellent seismic isolation function. For this reason, by applying the three-dimensional seismic isolation device 10 to a structure of an important facility where safety at the time of an earthquake such as a nuclear power plant is strongly required, standardization of the important facility structure, that is, building equipment or Standardization of plant equipment, such as building frameworks, piping, supports, etc., can be achieved. In addition, the site conditions of the important facilities can be made free and the location conditions can be expanded. On the other hand, the construction cost of the facility structure can be reduced.
[0054]
In the said embodiment, although the case where the load of the seismic isolation structure 14 was shared and supported by both the horizontal seismic isolation device 16 and the vertical seismic isolation device 18 was demonstrated, the elastic body 20 for buffering is free length. It is possible to load the entire seismic isolation structure 14 with the vertical seismic isolation device 18 without applying a load to the horizontal seismic isolation device 16.
[0055]
Of course, in the present embodiment, the horizontal seismic isolation device 16 is composed of the laminated rubber 22, but the elastic member is not limited to this and may be any elastic member that can effectively achieve horizontal seismic isolation. Although the elastic body 20 is configured by the disc spring laminates 26 and 32, elastic members suitable for the respective functions can be used instead of the disc spring laminates 26 and 32. Furthermore, although the rolling bearing 28 is used as the sliding mechanism, it is of course not limited to this, and a structure that allows smooth relative movement, such as a sliding bearing or a linear rail, can be used.
[0056]
【The invention's effect】
As described above, in the three-dimensional seismic isolation device according to claim 1 of the present invention, the horizontal seismic isolation device and the vertical seismic isolation device are arranged in parallel, and the vertical load of the seismic isolation structure applied to each is determined. Can be shared and supported. In addition, since the vertical seismic isolation device can arbitrarily set the spring stiffness with respect to the vertical load, the vertical seismic isolation structure supported by the vertical seismic isolation device can be extended in the vertical direction, and sufficient vertical isolation can be achieved. The seismic function can be demonstrated.
[0057]
Furthermore, since the spring stiffness of the shock absorbing elastic body arranged in series with the horizontal seismic isolation device can be reduced, the axial force fluctuation caused by the vertical vibration acting on the horizontal seismic isolation device can be reduced, and the horizontal seismic isolation device Stable seismic isolation performance can be secured. Furthermore, since the vertical seismic isolation device is arranged in parallel with the horizontal seismic isolation device in which the elastic bodies for buffering are arranged in series, the rocking vibration of the seismic isolation structure can be suppressed by the rigidity of the vertical seismic isolation device. .
[0058]
Furthermore, by reducing the number of horizontal seismic isolation devices, it is possible to reduce the overall spring rigidity and make it easier to set up a longer period for horizontal seismic isolation, while facilitating device layout and achieving cost reductions. it can.
[0059]
  Therefore, while ensuring the horizontal seismic isolation function by the horizontal seismic isolation apparatus appropriately and sufficiently, the vertical seismic isolation function by the vertical seismic isolation apparatus is also accurately and sufficiently secured to provide excellent 3D seismic isolation performance in the 3D direction. Therefore, it is possible to achieve building standardization and site-free by applying this to buildings.
  Furthermore, the spring stiffness of the shock absorber is set to be smaller than that of the vertical seismic isolation device (the spring stiffness of the shock absorber is greater than the spring stiffness of the shock absorber). The vertical load sharing ratio can be increased with the vertical seismic isolation device. For this reason, the vertical load which acts on the horizontal seismic isolation device arranged in series with the buffering elastic body is reduced, and an accurate and sufficient horizontal seismic isolation function can be secured by the horizontal seismic isolation device. Further, since the spring stiffness of the shock absorbing elastic body is smaller than the spring stiffness of the vertical seismic isolation device, the fluctuation of axial force of vertical vibration input to the horizontal seismic isolation device can be reduced, and the horizontal seismic isolation device The horizontal seismic isolation performance by can be secured stably.
[0060]
Further, in the three-dimensional seismic isolation device according to claim 2 of the present invention, a sliding mechanism that allows relative movement between the vertical seismic isolation device and at least one of the support structure or the seismic isolation structure is provided. As a result, the horizontal vibration between the support structure and the seismic isolation structure is reduced by the sliding mechanism so that the horizontal vibration between the support structure and the seismic isolation structure is reduced. It can prevent adverse effects on seismic isolation performance. In addition, by appropriately setting the frictional resistance value when the sliding mechanism slides, this frictional resistance can also function as a horizontal vibration damping element.
[0061]
Further, in the three-dimensional seismic isolation device according to claim 3 of the present invention, since the sliding mechanism is constituted by a rolling bearing or a sliding bearing, the horizontal vibration between the support structure and the seismic isolation structure is increased and decreased. Since the input to the seismic isolation device can be significantly reduced, the design of the vertical seismic isolation device is facilitated.
[0063]
  Furthermore, according to the present inventionClaim 4In the three-dimensional seismic isolation device shown in Fig. 3, the horizontal seismic isolation device has an isotropic restoration performance in the horizontal direction, so that it is suitable for any direction in the horizontal plane. The function can be demonstrated.
[0064]
  In addition, the present inventionClaim 5In the three-dimensional seismic isolation device shown in Fig. 2, the above-mentioned vertical seismic isolation device is configured by a laminated body of disc springs. Thus, the disc springs stacked on each other rub against each other, so that the rigidity and damping effect can be obtained by the friction effect at this time.
[0065]
  Furthermore, the present inventionClaim 6In the three-dimensional seismic isolation device shown in FIG. 4, since the energy absorbing device is added to the vertical seismic isolation device, the energy absorbing device is activated by the input of the vertical vibration and can absorb the vibration energy in the vertical direction.
[0066]
  Furthermore, according to the present inventionClaim 7In the three-dimensional seismic isolation device shown in FIG. 2, since the cushioning elastic body is composed of a laminated body of disc springs, in addition to being able to reduce axial force fluctuations associated with vertical vibrations, the disc spring has a cone portion. Since expansion and contraction are caused and the disc springs laminated to each other are rubbed together by the expansion and contraction, rigidity and a damping effect can be obtained by the friction effect at this time.
[0067]
  In addition, the present inventionClaim 8In the three-dimensional seismic isolation device shown in Fig. 2, if the horizontal seismic isolation device is damaged due to excessive vibration input, the vertical seismic isolation device can support the full load of the seismic isolation structure, and the seismic isolation structure falls. And can be prevented from collapsing by tilting.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a basic structure of a three-dimensional seismic isolation device of the present invention.
FIG. 2 is a front view showing an embodiment of the three-dimensional seismic isolation device of the present invention.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a front view showing a cross section of a part of a horizontal seismic isolation device and a buffer elastic body showing an embodiment of the three-dimensional seismic isolation device of the present invention.
FIG. 5 is a front view of a part of the vertical seismic isolation device showing an embodiment of the three-dimensional seismic isolation device of the present invention.
FIG. 6 is a spring characteristic diagram of the vertical seismic isolation device showing an embodiment of the three-dimensional seismic isolation device of the present invention.
FIG. 7 is a spring characteristic diagram of a buffering elastic body showing an embodiment of the three-dimensional seismic isolation device of the present invention.
[Explanation of symbols]
10 Three-dimensional seismic isolation device
12 Support structure
14 Seismic isolation structure
16 Horizontal seismic isolation device
18 Vertical seismic isolation device
20 Elastic body for cushioning
22 Laminated rubber
26 Disc spring laminate
28 Rolling support
32 Disc spring laminate

Claims (8)

支持構造物と、これの上方に間隔を設けて配置される免震構造物との間に、これら両構造物間を水平免震する水平免震装置と、両構造物間を上下免震する上下免震装置とを並列配置するとともに、該水平免震装置と支持構造物又は免震構造物の少なくとも一方との間に、上記上下免震装置のばね剛性よりも小さいばね剛性の緩衝用弾性体を介在させたことを特徴とする三次元免震装置。A horizontal seismic isolation device that horizontally isolates the two structures between the support structure and a seismic isolation structure that is disposed above the support structure and a vertical isolation between the two structures. The upper and lower seismic isolation devices are arranged in parallel, and between the horizontal seismic isolation device and at least one of the support structure or the seismic isolation structure, a cushioning elasticity having a spring stiffness smaller than the spring stiffness of the vertical seismic isolation device. A three-dimensional seismic isolation device characterized by interposing a body. 上記上下免震装置と支持構造物又は免震構造物の少なくとも一方との間に、両者の相対移動を許容する滑動機構を介在したことを特徴とする請求項1に記載の三次元免震装置。  The three-dimensional seismic isolation device according to claim 1, wherein a sliding mechanism that allows relative movement between the vertical seismic isolation device and at least one of the support structure or the base isolation structure is interposed. . 上記滑動機構は、転がり支承又は滑り支承であることを特徴とする請求項2に記載の三次元免震装置。  The three-dimensional seismic isolation device according to claim 2, wherein the sliding mechanism is a rolling bearing or a sliding bearing. 上記水平免震装置は、水平方向に等方性の復元性能を有することを特徴とする請求項1〜3の何れかに記載の三次元免震装置。 The three-dimensional seismic isolation device according to any one of claims 1 to 3, wherein the horizontal seismic isolation device has isotropic restoration performance in a horizontal direction . 上記上下免震装置は、皿ばねの積層体であることを特徴とする請求項1〜4の何れかに記載の三次元免震装置。 The three-dimensional seismic isolation device according to any one of claims 1 to 4, wherein the vertical seismic isolation device is a laminated body of disc springs . 上記上下免震装置に、エネルギー吸収装置を付加したことを特徴とする請求項1〜5の何れかに記載の三次元免震装置。 The three-dimensional seismic isolation device according to any one of claims 1 to 5 , wherein an energy absorbing device is added to the vertical seismic isolation device. 上記緩衝用弾性体は、皿ばねの積層体であることを特徴とする請求項1〜6の何れかに記載の三次元免震装置。 The three-dimensional seismic isolation device according to any one of claims 1 to 6, wherein the buffering elastic body is a laminated body of disc springs . 上記上下免震装置は、上記水平免震装置が荷重支持機能を喪失したことに応じて、上記免震構造物の荷重を支持するフェールセーフ機能を有することを特徴とする請求項1〜7の何れかに記載の三次元免震装置。 8. The vertical seismic isolation device according to claim 1, wherein the horizontal seismic isolation device has a fail-safe function for supporting the load of the seismic isolation structure in response to the loss of the load support function . The three-dimensional seismic isolation device according to any one of the above.
JP21566099A 1999-07-29 1999-07-29 3D seismic isolation device Expired - Fee Related JP3724987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21566099A JP3724987B2 (en) 1999-07-29 1999-07-29 3D seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21566099A JP3724987B2 (en) 1999-07-29 1999-07-29 3D seismic isolation device

Publications (2)

Publication Number Publication Date
JP2001041283A JP2001041283A (en) 2001-02-13
JP3724987B2 true JP3724987B2 (en) 2005-12-07

Family

ID=16676078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21566099A Expired - Fee Related JP3724987B2 (en) 1999-07-29 1999-07-29 3D seismic isolation device

Country Status (1)

Country Link
JP (1) JP3724987B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277079B2 (en) * 2009-06-04 2013-08-28 株式会社大林組 Seismic isolation system and seismic isolation method
JP6651933B2 (en) * 2016-03-24 2020-02-19 株式会社大林組 Vibration isolation device and method for adjusting deformation of laminated rubber bearing
CN107084223B (en) * 2017-05-25 2022-11-22 天津大学 Variable-rigidity hydraulic three-dimensional shock isolation device and method
CN112538909B (en) * 2020-12-17 2024-07-09 广东城市资源开发利用有限公司 Self-balancing three-dimensional shock isolation system with negative rigidity
CN112854470B (en) * 2021-03-15 2024-05-24 西安建筑科技大学 Semi-active control three-dimensional shock insulation support based on friction swing and magnetorheological
KR102450379B1 (en) * 2021-08-24 2022-09-30 재단법인 서울특별시 서울기술연구원 Seismic isolation device with negative stiffness spring

Also Published As

Publication number Publication date
JP2001041283A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP5079766B2 (en) Isolation platform
US20210301900A1 (en) A three-dimensional isolator with adaptive stiffness property
JP5570605B2 (en) Method and structure for dampening motion in a building
JP7365708B2 (en) Seismic isolation isolators and damping devices
JP5872091B1 (en) Deformation limiting device for seismic isolation structures
US11447949B2 (en) Friction damper for a building structure
CN210316089U (en) Damping grounding type assembled steel plate combined frequency modulation damping wall
JP6991422B2 (en) Vibration damping device for structures
JP2005061211A (en) Seismic isolator
JP3724987B2 (en) 3D seismic isolation device
JP2002338018A (en) Automatic high-rise warehouse
JP2001082542A (en) Three-dimensional base isolation device
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JP6420012B1 (en) Passive vibration control device for buildings
JPH11200659A (en) Base isolation structure
CN212453163U (en) Damping device for building
KR100549373B1 (en) Bearing for diminishing a vibration of a perpendicular direction in a structure
JP3739725B2 (en) Seismic isolation structure in wooden buildings
JP4284743B2 (en) Seismic isolation display
JP6123014B1 (en) Energy absorption type bearing
JPH0941713A (en) Response control device
JP3183198B2 (en) Nuclear-related buildings and damping structures
JPH0439968Y2 (en)
JP3115586B2 (en) Three-dimensional seismic isolation device for structures using spherical rubber bearings
JPS63103127A (en) Earthquake isolator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees