Nothing Special   »   [go: up one dir, main page]

JP3718718B2 - Organic-inorganic hybrid and method for producing the same - Google Patents

Organic-inorganic hybrid and method for producing the same Download PDF

Info

Publication number
JP3718718B2
JP3718718B2 JP2003046341A JP2003046341A JP3718718B2 JP 3718718 B2 JP3718718 B2 JP 3718718B2 JP 2003046341 A JP2003046341 A JP 2003046341A JP 2003046341 A JP2003046341 A JP 2003046341A JP 3718718 B2 JP3718718 B2 JP 3718718B2
Authority
JP
Japan
Prior art keywords
silane coupling
coupling agent
inorganic hybrid
oil
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046341A
Other languages
Japanese (ja)
Other versions
JP2004256596A (en
Inventor
浩 宇山
四郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2003046341A priority Critical patent/JP3718718B2/en
Publication of JP2004256596A publication Critical patent/JP2004256596A/en
Application granted granted Critical
Publication of JP3718718B2 publication Critical patent/JP3718718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性を有する有機−無機ハイブリッド材料及びその製造方法に関する。さらに詳しくは塗料、インキ、包装材料、電子材料、成形物、農業用マルチなどに利用される生分解性ハイブリッド材料に関する。
【0002】
【従来の技術】
【特許文献1】
特開平7−145228号公報
【非特許文献1】
S. N. Khotら、J. Appl. Polym. Sci., 82, 703 (2001)
【非特許文献2】
G. I. Williamsら、Appl. Composite Mater., 7, 421 (2000)
【非特許文献3】
C. R. Woldら、Macromol. Chem. Phys., 201, 382 (2000)、D. Deffarら、Macromol. Mater. Eng., 286, 204 (2001)
【0003】
近年、持続的社会構築の社会的要請に基づき、安価な再生可能資源からの材料開発が活発に行われている。再生可能資源の代表例としてセルロース、アミロース、キチン、キトサンといった多糖類があげられる。これらは親水性が高いために、主に食品、香粧品、増粘剤といった分野で用いられており、多くのものが良好な生分解性や生体吸収性を示す。
一方、疎水性の安価な再生可能資源の代表例としてトリグリセリド油脂があげられ、古くからインキ、塗料成分として用いられてきた。油脂は粘性のある低分子化合物であるために、加熱や空気酸化によって架橋されて材料化が行われてきた。油脂類から得られる硬化ポリマーは環境調和型材料として有望であるが、油脂単独の硬化物は材料特性が低く、例えばインキとして使用した場合には乾きが遅く、べとつくといった問題点が指摘されている。また、油脂成分を含む硬化性ポリマーとしてアルキド樹脂が塗料、接着剤等に広く用いられているが、生分解性を示さない。
【0004】
そこで、油脂類からの硬化物の物性を改良する目的で、油脂類にメタクリル基等の不飽和基を導入し、スチレン等の汎用ビニルポリマーと共重合した材料が報告されている(非特許文献1)。この報告によると共重合モノマーの構造や組成を変えることにより幅広い性質のポリマーが得られている。また、天然繊維とのハイブリッド化が行われ、高性能な複合材料も報告されている(非特許文献2)。
また、油脂硬化物の物性を改良する異なる方法として、無機物とのコンポジット化研究が知られている(非特許文献3)。この場合の油脂としては、通常の油脂以外にブラウン油脂やエポキシ化油脂が用いられ、無機成分として酸化チタン、チタンイソプロポキシド、ジルコニウムプロポキシドが用いられている。無機成分存在下に油脂類を硬化させることにより、油脂単独硬化物よりフィルム物性や熱的性質の若干の向上が見られている。
【0005】
【発明が解決しようとする課題】
しかし、非特許文献1及び2で報告された技術では、生分解性を示す材料は得られていない。また、非特許文献3に記載の油脂−無機コンポジットは、無機成分と有機成分(油脂成分)が分子レベルで混合したものではないために、ナノレベルでその構造を制御することが困難である。そのため、物性制御が難しく、また、生分解性も示していない。
それ故、この発明の課題は、材料特性に優れ、しかも物性制御が容易で生分解性も示す有機−無機ハイブリッドを提供することにある。
【0006】
【課題を解決するための手段】
その課題を解決するために、この発明の有機−無機ハイブリッドは、
トリグリセリド油脂のエポキシ化物と環状エーテル基含有シランカップリング剤と共重合してなる有機ポリマー成分と、環状エーテル基含有シランカップリング剤同士が重合してなる無機ポリマー成分との共有結合体からなり、そのエポキシ化物とシランカップリング剤との混合重量比が1:99〜99:1であることを特徴とする。ここで、環状エーテル基含有シランカップリング剤とは、アルキルアルコキシシランであってケイ素に結合しているアルキル基が環状エーテル基を含むものをいう。
この発明の有機−無機ハイブリッドを製造する適切な方法は、
トリグリセリド油脂のエポキシ化物(以下、エポキシ化油脂という。)と環状エーテル基含有シランカップリング剤を、1:99〜99:1の重量比で酸触媒の存在下で混合することを特徴とする。
【0007】
この発明の製造方法によれば、図1に示すように、エポキシ化油脂のエポキシ基と環状エーテル基含有シランカップリング剤の環状エーテル基が酸触媒によりともに開環して共重合し、その部分で有機ポリマー成分が形成される。同時にシランカップリング剤同士が重合し、その部分で無機ポリマー成分(主にシリカ)が形成される。こうして有機ポリマー成分と無機ポリマー成分とが共有結合でつながり、分子レベルで有機成分と無機成分とが良好に分散した有機−無機ハイブリッドが得られる。そして、モノマーであるエポキシ化油脂とシランカップリング剤の混合比を変えることで、ハイブリッド中の有機成分と無機成分の比率が変わるので、物性を制御することができる。
尚、図1ではエポキシ化油脂としてエポキシ化大豆油、環状エーテル基含有シランカップリング剤として3−グリシドキシプロピルトリメトキシシランを示したが、上記の原理はエポキシ基及び環状エーテル基以外の置換基に影響されないから、他のモノマーの組み合わせでも同様に作用する。
前記酸触媒が熱潜在性を示すもの、即ち所定温度以下では触媒として機能せず、所定温度を超えると分解して酸を生じ触媒作用を発揮するものであると好ましい。熱潜在性触媒であれば、常温でモノマーを十分に混合した後に温度を上げて重合反応を起こさせて、均一な組成のハイブリッドを得ることができるからである。
【0008】
【発明の実施の形態】
本発明で使用されるエポキシ化油脂の原料である油脂としては通常、不飽和基を含むトリグリセリドであり、特に限定されないが、大豆油、亜麻仁油、魚油、ひまわり油、桐油、ひまし油、とうもろこし油、なたね油、ごま油、オリーブ油、パーム油、グレープシード油等があげられる。重合による硬化が効率的に進行するためには不飽和度が高くてエポキシ化油脂となったときにエポキシ基を多く含むものが望ましく、特に大豆油、亜麻仁油が望ましい。
本発明で使用されるシランカップリング剤としては、環状エーテル基を含み、その環状エーテル基が酸触媒によりエポキシ化油脂と反応するものであれば特に限定されない。望ましい環状エーテル基はオキサシクロプロパン基及びオキサシクロブタン基である。環状エーテル基含有シランカップリング剤の具体例としては3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルジメトキシメチルシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−エチル−3−(3−トリエトキシシリルプロポキシメチル)オキセタンが挙げられる。油脂のエポキシ基と効率よく反応し、また、エポキシ化油脂と容易に混合することから、特に3−グリシドキシプロピルトリメトキシシランが望ましい。
【0009】
エポキシ化油脂と環状エーテル基含有シランカップリング剤の混合重量比は1:99〜99:1、望ましくは30:70〜95:5である。エポキシ化油脂成分が多すぎると物性が向上せず、少なすぎる場合はハイブリッドが生分解性を示さないためである。
熱潜在性酸触媒としては従来公知の種々のものを用いることができる。分解により酸の生じる温度は50〜250℃が望ましく、80〜180℃が特に望ましい。分解温度が低過ぎると両モノマー成分の粘度が高くなって均一反応が起こりにくく、逆に高過ぎるとモノマーの揮発や分解が起こるためである。酸触媒の好ましい添加量は、エポキシ化油脂とシランカップリング剤との合計量に対して0.1〜20重量%、特に好ましくは0.3〜10重量%である。0.1重量%に満たないと反応を均一に完結させにくいし、20重量%を超えると膜物性が低下するためである。
この発明の有機−無機ハイブリッドは、透明もしくはほぼ透明であり、ディスプレイやフィルターなどの透明保護膜として好適である。
【0010】
【実施例】
ここで、本発明の実施例を説明するが、本発明は、下記の実施例に限定して解釈されるものではない。また、本発明の要旨を逸脱することなく、適宜変更することが可能である。
−実施例1〜9−
表1に示す配合組成に従って、エポキシ化油脂と環状エーテル基含有シランカップリング剤(合計1グラム)を室温でよく混合し、熱潜在性酸触媒(三新化学工業製、サンエイドSI−60L)(10μL)(約1重量%)を加え、さらによく混合する。この溶液を50μmのアプリケーターを用いてガラス板上に塗布し、40℃で15分、140℃で2時間反応させることにより硬化させ、有機−無機ハイブリッドからなる約40μm厚の塗膜を作製した。また、同じ組成の溶液を40ミリ×17ミリ×3ミリのフッ素樹脂型に流し込み、塗膜作製のときと同じ加熱条件で反応させることにより硬化させ、有機−無機ハイブリッドからなる試験片を作製した。
【0011】
反応の進行は上記硬化後の試験片に対してFT−IRを用いて確認した。その結果、800cm-1付近に見られるエポキシ基によるピークは硬化により消失し、3500cm-1付近に見られる水酸基のピークが大きく増加したことから、エポキシ基の開環により架橋反応が進行したことがわかった。
いずれの実施例でも透明な塗膜、試験片が得られ、試験片の形状はほぼ型通りであった。また、得られた有機−無機ハイブリッドは、トルエン、ベンゼン、クロロホルム、テトラヒドロフラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド、メタノール、エタノール、アセトンなどの汎用有機溶媒にも水にも全く溶解しなかった。
【0012】
−比較例1〜3−
表1の比較例1〜3に示すように、比較例1と2ではシランカップリング剤を添加しないでエポキシ化油脂単独で反応させ、比較例3では環状エーテル基を含まないシランカップリング剤であるテトラエトキシシランとエポキシ化大豆油とを反応させた。その他の点では比較例1は実施例1〜8と、比較例2は実施例9と、比較例3は実施例3及び実施例8と同じ条件で実施した。いずれも透明な塗膜が得られたが、比較例3では試験片が大きく反り、型通りの試験片が得られなかった。
【0013】
【表1】

Figure 0003718718
【0014】
[塗膜物性]
塗膜の物性は乾燥度、鉛筆硬度、ユニバーサル硬度、初期弾性率、We/Wtot(弾性変形性の尺度)について評価した。乾燥度は、指で触れてべたつくか否かをもって評価した。その結果、実施例1〜9の塗膜表面は十分に乾燥していたが、比較例1〜3の塗膜表面はべとついていた。また、鉛筆硬度については塗膜を2B〜5Hまでの種々の硬度の鉛筆で引っ掻き、傷がつき始めるときの硬度とした。ユニバーサル硬度、初期弾性率及びWe/Wtotについてはフィーシャースコープ社製H100VSユニバーサル硬度計を用いて40mN/20s (+40mNで5sクリープ+20sで除荷)の条件で測定した。乾燥度以外の評価結果については表1に示すように、実施例の塗膜は、エポキシ化大豆油のみの重合体からなる塗膜(比較例1)と比べ、膜硬度を示す鉛筆硬度、ユニバーサル硬度において格段に優れ、膜強度を示す初期弾性率も向上した。しかもシランカップリング剤を多く用いるほどこれらの値が大きくなった。環状エーテル基を含まないシランカップリング剤を用いた場合(比較例3)との比較では、同じ重量の環状エーテル基含有シランカップリング剤を用いたほうがユニバーサル硬度と初期弾性率の値が高かった。We/Wtotは比較例1の塗膜で優れた値を示したが、実施例の塗膜も多くが80%以上の値を示し、優れた弾性変形性を保持していることがわかった。また、実施例1〜9の塗膜の光沢性を評価したところ、角度60°での光沢値がいずれも約90を示し、本発明に属する塗膜の優れた光沢性が明らかとなった。
【0015】
[動的粘弾性]
ハイブリッドのガラス転移温度は上記試験片を用いて動的粘弾性を測定することにより求めた。動的粘弾性は、Rheometric Scientific社製の試験機ARESを用いて、周波数1Hz、温度-100〜200℃、3℃/minで昇温することにより測定した。その結果を表1に示す。実施例2と比較例1から明らかなように、エポキシ基含有シランカップリング剤(3−グリシドキシプロピルトリメトキシシラン)を加えることにより、ガラス転移温度が大幅に上昇し、更にその添加量が多いほどガラス転移温度が上昇した。また動的粘弾性測定結果によると、比較例1よりも実施例2及び3のほうが相転移に基づく貯蔵弾性率(G’)の変化が小さかった。このことからエポキシ基含有シランカップリング剤とのハイブリッド化により耐熱性が向上したことが明らかとなった。同様の挙動は他のエポキシ基含有シランカップリング剤でも見られたが、比較例3のようにエポキシ基を含まないシランカップリング剤(テトラエトキシシラン)を添加してもガラス転移温度は上昇しなかった。
【0016】
[力学物性]
力学物性は、RIENTEC社製の引っ張り試験機RTM-500を用いて、5mm/minで引っ張ることにより、測定した。図2に実施例3の試験片と比較例1の試験片の歪み−応力曲線を示す。これより3−グリシドキシプロピルトリメトキシシランを添加することにより引張弾性率が大きく向上することがわかった。表1に初期弾性率と破断応力を示す。これより環状エーテル基含有シランカップリング剤の添加によりこれらの値が上昇しており、力学物性が向上したことがわかった。また、添加量が多いほど物性値が大きくなることがわかった。一方、比較例3で示されるようにエポキシ基を含まないシランカップリング剤(テトラエトキシシラン)では、力学物性の顕著な向上が見られなかった。
【0017】
[生分解性]
生分解性は、京都市下水局鳥羽下水場から提供を受けた活性汚泥中に塗膜を漬けて20℃で放置し、BOD(Biochemical Oxygen Demand)法により評価した。図3に実施例3の塗膜の評価結果を示す。これより二ヵ月後には生分解率が50%に達しており、本発明の有機−無機ハイブリッドが良好な生分解性を示すことがわかった。
【0018】
【発明の効果】
本発明の有機−無機ハイブリッドは、環状エーテル基含有シランカップリング剤をエポキシ化油脂と共重合することにより、エポキシ化油脂の単独硬化物と比べて大幅に物性が向上する。また、油脂を基盤とするので生分解性を示す。従って、本発明の有機−無機ハイブリッドは、塗料、インキ、包装材料、電子材料、成形物、農業用マルチ等の環境調和型材料の用途に極めて有用である。
【図面の簡単な説明】
【図1】 この発明の製造方法の合成メカニズムを示す図である。
【図2】 実施例3と比較例1の歪み−応力曲線である。
【図3】 実施例3の生分解性を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biodegradable organic-inorganic hybrid material and a method for producing the same. More specifically, the present invention relates to a biodegradable hybrid material used for paints, inks, packaging materials, electronic materials, molded products, agricultural mulches, and the like.
[0002]
[Prior art]
[Patent Document 1]
JP-A-7-145228 [Non-Patent Document 1]
SN Khot et al., J. Appl. Polym. Sci., 82, 703 (2001)
[Non-Patent Document 2]
GI Williams et al., Appl. Composite Mater., 7, 421 (2000)
[Non-Patent Document 3]
CR Wold et al., Macromol. Chem. Phys., 201, 382 (2000), D. Deffar et al., Macromol. Mater. Eng., 286, 204 (2001)
[0003]
In recent years, material development from inexpensive renewable resources has been actively performed based on the social demand for sustainable society construction. Representative examples of renewable resources include polysaccharides such as cellulose, amylose, chitin, and chitosan. Since these are highly hydrophilic, they are mainly used in fields such as foods, cosmetics and thickeners, and many exhibit good biodegradability and bioabsorbability.
On the other hand, triglyceride fats and oils are typical examples of hydrophobic and inexpensive renewable resources, and they have been used as ink and paint components for a long time. Since fats and oils are viscous low-molecular compounds, they have been materialized by crosslinking by heating or air oxidation. Cured polymers obtained from fats and oils are promising as environmentally conscious materials, but hardened products of fats and oils alone have low material properties, for example, when used as inks, problems such as slow drying and stickiness have been pointed out. . Further, alkyd resins are widely used in paints, adhesives and the like as curable polymers containing oil and fat components, but they do not exhibit biodegradability.
[0004]
Therefore, for the purpose of improving the physical properties of cured products from fats and oils, materials in which unsaturated groups such as methacrylic groups are introduced into fats and oils and copolymerized with general-purpose vinyl polymers such as styrene have been reported (Non-Patent Documents). 1). According to this report, polymers having a wide range of properties have been obtained by changing the structure and composition of the comonomer. In addition, hybridization with natural fibers has been performed, and high-performance composite materials have also been reported (Non-Patent Document 2).
In addition, as a different method for improving the physical properties of the oil and fat cured product, a composite study with an inorganic material is known (Non-patent Document 3). As fats and oils in this case, brown fats and oils and epoxidized fats and oils are used in addition to ordinary fats and oils, and titanium oxide, titanium isopropoxide, and zirconium propoxide are used as inorganic components. By curing fats and oils in the presence of inorganic components, some improvements in film properties and thermal properties have been observed compared to cured oils and fats alone.
[0005]
[Problems to be solved by the invention]
However, in the techniques reported in Non-Patent Documents 1 and 2, no material exhibiting biodegradability has been obtained. Moreover, since the fat-and-oil composite described in Non-Patent Document 3 is not a mixture of an inorganic component and an organic component (oil-and-fat component) at the molecular level, it is difficult to control the structure at the nano-level. Therefore, physical property control is difficult, and biodegradability is not shown.
Therefore, an object of the present invention is to provide an organic-inorganic hybrid that is excellent in material properties, easy to control physical properties, and also exhibits biodegradability.
[0006]
[Means for Solving the Problems]
In order to solve the problem, the organic-inorganic hybrid of the present invention is
And an organic polymer component and epoxidized triglyceride oils and a cyclic ether group-containing silane coupling agent is obtained by copolymerizing consists covalent conjugates of an inorganic polymer component between a cyclic ether group-containing silane coupling agent is formed by polymerizing The mixing weight ratio of the epoxidized product and the silane coupling agent is 1:99 to 99: 1. Here, the cyclic ether group-containing silane coupling agent refers to an alkylalkoxysilane in which an alkyl group bonded to silicon contains a cyclic ether group.
Suitable methods for producing the organic-inorganic hybrid of this invention include:
An epoxidized product of triglyceride oil (hereinafter referred to as epoxidized oil) and a cyclic ether group-containing silane coupling agent are mixed in a weight ratio of 1:99 to 99: 1 in the presence of an acid catalyst.
[0007]
According to the production method of the present invention, as shown in FIG. 1, the epoxy group of the epoxidized oil and the fat and the cyclic ether group of the cyclic ether group-containing silane coupling agent are both ring-opened and copolymerized by an acid catalyst. Thus, an organic polymer component is formed. At the same time, the silane coupling agents are polymerized to form an inorganic polymer component (mainly silica) at that portion. Thus, an organic-inorganic hybrid in which the organic polymer component and the inorganic polymer component are connected by a covalent bond and the organic component and the inorganic component are well dispersed at the molecular level is obtained. And since the ratio of the organic component and inorganic component in a hybrid changes by changing the mixing ratio of the epoxidized oil and fat which is a monomer, and a silane coupling agent, a physical property can be controlled.
In FIG. 1, epoxidized soybean oil is used as the epoxidized fat and oil, and 3-glycidoxypropyltrimethoxysilane is used as the silane coupling agent containing a cyclic ether group. The above principle is based on substitutions other than epoxy groups and cyclic ether groups. Since it is not affected by the group, other monomer combinations work in the same way.
It is preferable that the acid catalyst exhibits thermal potential, that is, does not function as a catalyst at a predetermined temperature or lower, and decomposes to produce an acid when the predetermined temperature is exceeded, thereby exhibiting a catalytic action. This is because a heat-latent catalyst can sufficiently mix the monomers at room temperature and then raise the temperature to cause a polymerization reaction to obtain a hybrid having a uniform composition.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Fats and oils that are raw materials for epoxidized oils and fats used in the present invention are usually triglycerides containing unsaturated groups, but are not particularly limited, but soybean oil, linseed oil, fish oil, sunflower oil, tung oil, castor oil, corn oil, Rapeseed oil, sesame oil, olive oil, palm oil, grape seed oil and the like. In order for curing by polymerization to proceed efficiently, those having a high degree of unsaturation and containing a large amount of epoxy groups when converted to epoxidized oils and fats are desirable, and soybean oil and linseed oil are particularly desirable.
The silane coupling agent used in the present invention is not particularly limited as long as it contains a cyclic ether group, and the cyclic ether group reacts with the epoxidized oil and fat with an acid catalyst. Desirable cyclic ether groups are an oxacyclopropane group and an oxacyclobutane group. Specific examples of the cyclic ether group-containing silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 2- (3,4- (Epoxycyclohexyl) ethyltrimethoxysilane, 3-ethyl-3- (3-triethoxysilylpropoxymethyl) oxetane. In particular, 3-glycidoxypropyltrimethoxysilane is desirable because it reacts efficiently with the epoxy group of the fat and oil and easily mixes with the epoxidized fat and oil.
[0009]
The mixing weight ratio of the epoxidized oil and the cyclic ether group-containing silane coupling agent is 1:99 to 99: 1, desirably 30:70 to 95: 5. This is because if the epoxidized oil / fat component is too much, the physical properties are not improved, and if it is too little, the hybrid does not exhibit biodegradability.
Various conventionally known acid latent acid catalysts can be used. The temperature at which the acid is generated by decomposition is preferably 50 to 250 ° C, particularly preferably 80 to 180 ° C. This is because if the decomposition temperature is too low, the viscosity of both monomer components becomes high and a homogeneous reaction is unlikely to occur, and conversely if too high, monomer volatilization or decomposition occurs. A preferable addition amount of the acid catalyst is 0.1 to 20% by weight, particularly preferably 0.3 to 10% by weight, based on the total amount of the epoxidized oil and the silane coupling agent. This is because when the amount is less than 0.1% by weight, it is difficult to complete the reaction uniformly, and when it exceeds 20% by weight, film physical properties are deteriorated.
The organic-inorganic hybrid of the present invention is transparent or almost transparent, and is suitable as a transparent protective film for displays and filters.
[0010]
【Example】
Examples of the present invention will now be described, but the present invention is not construed as being limited to the following examples. The present invention can be changed as appropriate without departing from the gist of the present invention.
-Examples 1-9
In accordance with the composition shown in Table 1, the epoxidized oil and the cyclic ether group-containing silane coupling agent (1 gram in total) are mixed well at room temperature, and a heat latent acid catalyst (San-Aid SI-60L, manufactured by Sanshin Chemical Industry Co., Ltd.) ( 10 μL) (about 1% by weight) and mix well. This solution was applied on a glass plate using a 50 μm applicator and cured by reacting at 40 ° C. for 15 minutes and 140 ° C. for 2 hours to prepare a coating film having an organic-inorganic hybrid thickness of about 40 μm. Moreover, the solution of the same composition was poured into a fluororesin mold of 40 mm × 17 mm × 3 mm and cured by reacting under the same heating conditions as in the coating film preparation, and a test piece made of an organic-inorganic hybrid was prepared. .
[0011]
The progress of the reaction was confirmed using FT-IR on the test piece after curing. As a result, the peak due to epoxy groups found in the vicinity of 800 cm -1 disappeared upon curing, since the peak of the hydroxyl group observed around 3500 cm -1 is increased significantly, that the cross-linking reaction by ring opening of the epoxy groups has proceeded all right.
In any of the examples, a transparent coating film and a test piece were obtained, and the shape of the test piece was almost normal. Further, the obtained organic-inorganic hybrid did not dissolve at all in general-purpose organic solvents such as toluene, benzene, chloroform, tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, methanol, ethanol, acetone, or water.
[0012]
-Comparative Examples 1-3
As shown in Comparative Examples 1 to 3 in Table 1, in Comparative Examples 1 and 2, the epoxidized oil or fat is reacted alone without adding a silane coupling agent, and in Comparative Example 3, the silane coupling agent does not contain a cyclic ether group. Some tetraethoxysilane and epoxidized soybean oil were reacted. In other respects, Comparative Example 1 was carried out under the same conditions as in Examples 1 to 8, Comparative Example 2 was carried out in Example 9, and Comparative Example 3 was carried out under the same conditions as in Examples 3 and 8. In both cases, a transparent coating film was obtained. However, in Comparative Example 3, the test piece warped greatly, and a test piece as usual could not be obtained.
[0013]
[Table 1]
Figure 0003718718
[0014]
[Film properties]
The physical properties of the coating film were evaluated with respect to dryness, pencil hardness, universal hardness, initial elastic modulus, and We / Wtot (measure of elastic deformability). The dryness was evaluated based on whether or not it was sticky with a finger. As a result, the coating film surfaces of Examples 1 to 9 were sufficiently dried, but the coating film surfaces of Comparative Examples 1 to 3 were sticky. The pencil hardness was determined by scratching the coating film with pencils having various hardnesses from 2B to 5H, and starting from scratching. Universal hardness, initial elastic modulus and We / Wtot were measured under the conditions of 40 mN / 20 s (+40 mN, 5 s creep + 20 s unloaded) using a H100VS universal hardness meter manufactured by Fiescherscope. About the evaluation results other than the dryness, as shown in Table 1, the coating film of the example is compared with the coating film (Comparative Example 1) made of the polymer of only the epoxidized soybean oil. The hardness was markedly improved, and the initial elastic modulus indicating film strength was also improved. Moreover, these values increased as more silane coupling agent was used. In comparison with the case of using a silane coupling agent not containing a cyclic ether group (Comparative Example 3), the values of universal hardness and initial elastic modulus were higher when using the same weight of the cyclic ether group-containing silane coupling agent. . We / Wtot showed an excellent value in the coating film of Comparative Example 1, but many of the coating films in the examples also showed a value of 80% or more, and it was found that excellent elastic deformability was maintained. Moreover, when the glossiness of the coating film of Examples 1-9 was evaluated, the gloss value at an angle of 60 ° was about 90, and the excellent glossiness of the coating film belonging to the present invention was revealed.
[0015]
[Dynamic viscoelasticity]
The glass transition temperature of the hybrid was determined by measuring dynamic viscoelasticity using the above test piece. The dynamic viscoelasticity was measured by raising the temperature at a frequency of 1 Hz, a temperature of −100 to 200 ° C., and 3 ° C./min using a test machine ARES manufactured by Rheometric Scientific. The results are shown in Table 1. As is apparent from Example 2 and Comparative Example 1, the addition of an epoxy group-containing silane coupling agent (3-glycidoxypropyltrimethoxysilane) significantly increases the glass transition temperature, and the amount added is further increased. The glass transition temperature increased as the amount increased. Moreover, according to the dynamic viscoelasticity measurement result, the change in the storage elastic modulus (G ′) based on the phase transition was smaller in Examples 2 and 3 than in Comparative Example 1. From this, it became clear that the heat resistance was improved by hybridization with the epoxy group-containing silane coupling agent. Similar behavior was observed with other epoxy group-containing silane coupling agents, but the glass transition temperature increased even when a silane coupling agent (tetraethoxysilane) containing no epoxy group was added as in Comparative Example 3. There wasn't.
[0016]
[Mechanical properties]
Mechanical properties were measured by pulling at 5 mm / min using a tensile tester RTM-500 manufactured by RIENTEC. FIG. 2 shows strain-stress curves of the test piece of Example 3 and the test piece of Comparative Example 1. From this, it was found that the tensile modulus was greatly improved by adding 3-glycidoxypropyltrimethoxysilane. Table 1 shows the initial elastic modulus and breaking stress. From these results, it was found that the addition of the cyclic ether group-containing silane coupling agent increased these values and improved the mechanical properties. It was also found that the physical property value increases as the addition amount increases. On the other hand, as shown in Comparative Example 3, the silane coupling agent (tetraethoxysilane) containing no epoxy group did not significantly improve the mechanical properties.
[0017]
[Biodegradability]
The biodegradability was evaluated by the BOD (Biochemical Oxygen Demand) method after immersing the coating film in activated sludge provided by Toba Shimizu Station, Kyoto City Sewage Bureau, and leaving it at 20 ° C. The evaluation result of the coating film of Example 3 is shown in FIG. Two months later, the biodegradation rate reached 50%, and it was found that the organic-inorganic hybrid of the present invention showed good biodegradability.
[0018]
【The invention's effect】
The organic-inorganic hybrid of the present invention is greatly improved in physical properties as compared with a single cured product of epoxidized fat by copolymerizing a cyclic ether group-containing silane coupling agent with epoxidized fat. In addition, it is biodegradable because it is based on fats and oils. Therefore, the organic-inorganic hybrid of the present invention is extremely useful for the use of environmentally conscious materials such as paints, inks, packaging materials, electronic materials, molded articles, agricultural mulches and the like.
[Brief description of the drawings]
FIG. 1 is a view showing a synthesis mechanism of a production method of the present invention.
2 is a strain-stress curve of Example 3 and Comparative Example 1. FIG.
3 is a graph showing the biodegradability of Example 3. FIG.

Claims (8)

トリグリセリド油脂のエポキシ化物と環状エーテル基含有シランカップリング剤と共重合してなる有機ポリマー成分と、環状エーテル基含有シランカップリング剤同士が重合してなる無機ポリマー成分との共有結合体からなり、そのエポキシ化物とシランカップリング剤との混合重量比が1:99〜99:1であることを特徴とする生分解性有機−無機ハイブリッド。 And an organic polymer component and epoxidized triglyceride oils and a cyclic ether group-containing silane coupling agent is obtained by copolymerizing consists covalent conjugates of an inorganic polymer component between a cyclic ether group-containing silane coupling agent is formed by polymerizing A biodegradable organic-inorganic hybrid, wherein the mixing weight ratio of the epoxidized product and the silane coupling agent is 1:99 to 99: 1. 前記混合重量比が30:70〜95:5である請求項1記載の生分解性有機−無機ハイブリッド。The biodegradable organic-inorganic hybrid according to claim 1, wherein the mixing weight ratio is 30:70 to 95: 5. 前記トリグリセリド油脂が大豆油及び亜麻仁油のうちから選ばれる一種以上である請求項1記載の生分解性有機−無機ハイブリッド。The biodegradable organic-inorganic hybrid according to claim 1, wherein the triglyceride fat is one or more selected from soybean oil and linseed oil. 前記シランカップリング剤中の環状エーテル基がオキサシクロプロパン基及びオキサシクロブタン基のうちから選ばれる一種以上であることを請求項1記載の生分解性有機−無機ハイブリッド。The biodegradable organic-inorganic hybrid according to claim 1, wherein the cyclic ether group in the silane coupling agent is at least one selected from an oxacyclopropane group and an oxacyclobutane group. 請求項1〜4のいずれかに記載の生分解性有機−無機ハイブリッドからなる透明保護膜。The transparent protective film which consists of a biodegradable organic-inorganic hybrid in any one of Claims 1-4. トリグリセリド油脂のエポキシ化物と環状エーテル基含有シランカップリング剤を、1:99〜99:1の重量比で酸触媒の存在下で混合することを特徴とする生分解性有機−無機ハイブリッドの製造方法。A method for producing a biodegradable organic-inorganic hybrid , comprising mixing an epoxidized triglyceride oil and a silane coupling agent containing a cyclic ether group in a weight ratio of 1:99 to 99: 1 in the presence of an acid catalyst. . 前記酸触媒が熱潜在性を示すものであり、混合後に昇温する請求項6記載の製造方法。 All SANYO said acid catalyst shows the thermal latent, NoboriAtsushisu Ru claim 6 method according to after mixing. 前記酸触媒の量がエポキシ化物とシランカップリング剤との合計量に対して0.1〜20重量%である請求項7に記載の製造方法。  The production method according to claim 7, wherein the amount of the acid catalyst is 0.1 to 20% by weight based on the total amount of the epoxidized product and the silane coupling agent.
JP2003046341A 2003-02-24 2003-02-24 Organic-inorganic hybrid and method for producing the same Expired - Fee Related JP3718718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046341A JP3718718B2 (en) 2003-02-24 2003-02-24 Organic-inorganic hybrid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046341A JP3718718B2 (en) 2003-02-24 2003-02-24 Organic-inorganic hybrid and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004256596A JP2004256596A (en) 2004-09-16
JP3718718B2 true JP3718718B2 (en) 2005-11-24

Family

ID=33112913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046341A Expired - Fee Related JP3718718B2 (en) 2003-02-24 2003-02-24 Organic-inorganic hybrid and method for producing the same

Country Status (1)

Country Link
JP (1) JP3718718B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914336B2 (en) * 2007-12-19 2012-04-11 住友林業株式会社 Resin composition for wood treatment
JP5325742B2 (en) * 2009-10-29 2013-10-23 日本ペイント株式会社 Organic-inorganic composite coating composition made from natural fats and oils

Also Published As

Publication number Publication date
JP2004256596A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Behera et al. Self-healable and ultrahydrophobic polyurethane-POSS hybrids by Diels–Alder “click” reaction: a new class of coating material
Fei et al. Efficient toughening of epoxy–anhydride thermosets with a biobased tannic acid derivative
Li et al. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends
Qiu et al. Preparation, characterization and properties of UV-curable waterborne polyurethane acrylate/SiO 2 coating
Wang et al. Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly (l-lactide) and poly (ε-caprolactone)
Zhang et al. Water-dispersible cationic polyurethanes containing pendant trialkylphosphoniums
Li et al. Preparation and properties of castor oil-based dual cross-linked polymer networks with polyurethane and polyoxazolidinone structures
WO2017222816A1 (en) Curable resin composition
Parameswaranpillai et al. Miscibility, phase morphology, thermomechanical, viscoelastic and surface properties of poly (ε-caprolactone) modified epoxy systems: Effect of curing agents
Li et al. High toughness induced by wormlike-nanostructure in epoxy thermoset containing amphiphilic PDMS–PCL block copolymers
CN109880585A (en) A kind of liquid silastic and preparation method thereof of pair of selective bonding of plastic basis material
Tan et al. Preparation and performance of waterborne UV‐curable polyurethane containing long fluorinated side chains
Zhao et al. Curing kinetics of nanostructured epoxy blends toughened with epoxidized carboxyl-terminated liquid rubber
EP4093785A1 (en) Curable silicone-acrylate compositions, conductive materials prepared therewith, and related methods
Guo et al. A pinene-based silane crosslinker for improved mechanical strength/transparency of room-temperature vulcanizing silicone rubber
Ballard et al. Effects of an Acid Catalyst on the Inorganic Domain of Inorganic− Organic Hybrid Materials
Mirmohammadi et al. In situ photocrosslinkable nanohybrids based on poly (ε-caprolactone fumarate)/polyhedral oligomeric silsesquioxane: synthesis and characterization
CN107849259B (en) Silicone elastomers, their preparation and use
JP3718718B2 (en) Organic-inorganic hybrid and method for producing the same
CN108003337B (en) Hyperbranched star polymer of uV curable and its preparation method and application
JP7510619B2 (en) Modified copolyester resin and aqueous dispersion thereof
Tuo et al. A Novel Polyfunctional Polyurethane Acrylate Derived from Castor Oil-Based Polyols for Waterborne UV-Curable Coating Application
Tian et al. Renewable UV-curable polyester methacrylate/cellulose nanocrystals composite resin for wood waterproof coating
Zhang et al. Epoxidised soybean oil polymer composites reinforced with modified microcrystalline cellulose
CN112646545A (en) Self-adhesive liquid silicone rubber preparation capable of spraying and preparation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040803

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees