JP3718185B2 - Eyeglass lenses - Google Patents
Eyeglass lenses Download PDFInfo
- Publication number
- JP3718185B2 JP3718185B2 JP2002192406A JP2002192406A JP3718185B2 JP 3718185 B2 JP3718185 B2 JP 3718185B2 JP 2002192406 A JP2002192406 A JP 2002192406A JP 2002192406 A JP2002192406 A JP 2002192406A JP 3718185 B2 JP3718185 B2 JP 3718185B2
- Authority
- JP
- Japan
- Prior art keywords
- transmittance
- lens
- synthetic resin
- wavelength range
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Filters (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Eyeglasses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、視野の明るさを維持しつつ太陽光線の眩しさを緩和する眼鏡用レンズに関する。
【0002】
【従来の技術】
太陽光線は、眼に有害な光線を含有し、かつ、眼に眩しさを感じさせる。サングラスは、太陽光線の透過を調整するために使用されており、眩しさを抑えるために標準比視感度曲線(図2)の中心波長近傍の透過率を抑えることを目的として作られている。しかしながら、一般のサングラスでは、図3のように他の波長部分の透過率も抑えられている。このため、薄暮等の光線量が少ない環境下でサングラスを使用したとき、視野が全般に暗くなり、外界の物体を視認するのに支障を来す場合がある。すなわち、眩しさを抑えようとした結果、全体の透過光線量が減り過ぎ、対象物を十分視認できない状態となる場合がある。
【0003】
全般的な明るさを維持しながらも標準比視感度曲線の中心波長近傍の透過率を抑えて防眩効果を発揮するサングラスとしては、ガラスにネオジムやジジムを含有させて590nm付近の光線を吸収させるサングラスが知られている。しかしながら、眼の保護という観点からすれば、眼鏡の素材としては、ガラスよりはプラスチック等の合成樹脂、特に、耐衝撃性の高いポリカーボネートが望ましい。しかるに、プラスチック、特に、ポリカーボネート製でかかる要望を満たすものは存在しなかった。視感度のよい550〜600nmの光を幅広く吸収する眼鏡用レンズが特公昭53−39910に開示されているが、該眼鏡用レンズではジエチレングリコールビスアリルカーボネート(CR−39)を素材として使用しており、これをポリカーボネートにすると染色困難とされている。また、該眼鏡用レンズは550〜650nm付近(黄色〜橙色)で緩やかに透過率が低くなるものであり、防眩効果を高める目的で黄色光の透過率を低くすると、これに伴って橙色光の透過率も低下する。従って、このようなレンズを使用した眼鏡についてその適正な使用法を誤った場合、例えば、トンネル内の橙色のナトリウムランプの照明(中心波長が589nm)がレンズを透過しにくくなり、視野が暗くなるおそれがある。
【0004】
【発明が解決しようとする課題】
本発明の目的は、視野の明るさを保ちつつ眩しさを抑えた眼鏡用レンズを提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、太陽光線の一定の波長域について光線透過率等を抑制することにより前記の課題を解決できることを見い出し、本発明を完成するに至った。
【0006】
本発明は、標準比視感度曲線の中心波長近傍に極大吸収値を有する有機色素と共に紫外線吸収剤および青色光吸収剤を含有し、550〜585nmの波長範囲に透過率曲線の極小値を有し、該極小値での透過率が25%以下、590〜660nmの波長範囲における平均透過率が15%以上、かつ、470〜550nmの波長範囲における平均透過率が10%以上である合成樹脂基材からなり、ここに、標準比視感度曲線の中心波長近傍に極大吸収値を有する該有機色素が式(I):
【化2】
(式中、mおよびnは、同一または異なって1〜4の整数を表す)で表されるスクアリリウム化合物であることを特徴とする眼鏡用レンズを提供する。該眼鏡用レンズにおける該合成樹脂基材は、赤外線吸収もしくは反射剤を含有していてもよい。
【0007】
【発明の実施の形態】
本明細書中において、標準比視感度曲線の中心波長とは、およそ555nmを指し、標準比視感度曲線の中心波長近傍とは、概ね530〜585nmの波長域を指す。また、標準比視感度曲線の中心波長近傍に極大吸収値を有する有機色素としては、式(I):
【化3】
(式中、mおよびnは、同一または異なって1〜4の整数を表す)で表されるスクアリリウム化合物[以下、式(I)で表される化合物を化合物(I)という。他の式番号の化合物についても同様である]が好適である。
【0008】
光線吸収用の色素として従来ガラスに使用されたことのあるネオジムやジジムは、無機材料であるため、高温で熔融して作るガラスレンズにおいては金属イオンの形で含有させることができるが、合成樹脂に練り込んだ場合、樹脂に熔融しないため十分に分散させることができず、合成樹脂には使用できなかった。本発明では、前記スクアリリウム化合物が合成樹脂に熔融し、かつ、これを光線吸収剤として使用することにより太陽光線の眩しさを抑えることができるようになったのである。眩しさを抑える目的のためには、理想的には555nmに最大吸収値を有するものがよいが、必ずしもそうである必要はなく、吸収ピークが555nm近傍であれば吸収ピークが幅を持つため標準比視感度曲線の中心波長近傍をかなりよく吸収し、実用上は問題なく眩しさを抑えることができる。
【0009】
上記のスクアリリウム化合物自体は公知であり、例えばAngew. Chem. Internat. Edit., 7, 530-535(1968) 、Liebigs Ann. Chem., 712, 123(1968)等に記載の方法あるいはそれらに準じて製造することができる。
【0010】
紫外線吸収剤としては、城北化学(株)製のJF−86、シブロ化成(株)のシーソーブ705等を使用できる。
【0011】
青色光吸収剤としては、日本化薬(株)製のカヤセットイエローA−G、三井東圧染料(株)製のPSオレンジGG等を使用できる。
【0012】
赤外線吸収もしくは反射剤としては、日本化薬(株)製のIR750、大日本インキ化学工業(株)製のIRアディティブ200等を使用できる。
【0013】
合成樹脂基材としては、その卓越した耐衝撃性からしてポリカーボネートが最適であり、その他、ポリメチルメタクリレート(PMMA)、CR−39(米国PPGインダストリーズ社)またはセルロースアセテート、セルロースプロピオネート等の繊維素系プラスチック等を使用することもできる。
【0014】
550〜585nmの波長範囲に透過率曲線の極小値を有し、該極小値での透過率を25%以下とするのは、太陽光線のうち最も眩しさを感じさせる波長域の光線透過率を抑えることを目的としており、好ましいのは、極小値での透過率を20%以下とすることであり、さらに好ましいのは、極小値での透過率を15%以下とすることである。
【0015】
590〜660nmの波長範囲における平均透過率を15%以上とするのは、橙色光の透過率を維持するためであり、好ましくは、20%以上とする。さらに、590〜660nmの波長範囲に透過率曲線の極大値を有し、該極大値での透過率を30%以上とするのが好ましく、なかでも特に好ましいのは、極大値での透過率を35%以上とすることである。この目的は、合成樹脂基材に標準比視感度曲線の中心波長近傍に極大吸収値を有する有機色素、紫外線吸収剤および青色光吸収剤に加えて赤外線吸収もしくは反射剤を含有させることにより効果的に達成することができる。これにより、橙色光の透過率を高い水準に維持する一方、赤色光が過剰に透過することを防止し、全透過光の色バランスを適切なものとすることができる。
【0016】
470〜550nmの波長範囲における平均透過率を10%以上とするのは、透過光の色バランスと視野の明るさを確保するためである。とりわけ、470〜550nmの波長範囲のいずれの波長においても透過率を15%以上とすることが好ましく、特に好ましいのは、20%以上とすることである。
【0017】
なお、400〜450nmの波長範囲での光線透過率は、青色光吸収剤によって実質的に0となるのが好ましい。
【0018】
次に、本発明の眼鏡用レンズの一例について説明する。
【0019】
前記した標準比視感度曲線の中心波長近傍に極大吸収値を有する有機色素、紫外線吸収剤、青色光吸収剤および赤外線吸収剤もしくは反射剤をレンズ基材である合成樹脂原料に添加、混合した後、レンズ全体に均一に含有されるよう射出成形法で成形することにより眼鏡用レンズを得ることができる。また、吸収剤等の一部、例えば、赤外線反射剤をレンズ表面に真空蒸着法等によってコーティングすることも可能である。
【0020】
有機色素の含量としては、合成樹脂基材に対して0.0001〜0.01重量%が好ましく、0.0005〜0.005重量%が特に好ましい。紫外線吸収剤の含量としては、合成樹脂基材に対して0.1〜1.0重量%が好ましく、0.3〜0.8重量%が特に好ましい。青色光吸収剤の含量としては、合成樹脂基材に対して0.001〜0.02重量%が好ましく、0.002〜0.01重量%が特に好ましい。赤外線吸収もしくは反射剤の含量としては、合成樹脂基材に対して0.001〜0.05重量%が好ましく、0.001〜0.02重量%が特に好ましい。
【0021】
また、本発明の実施に際しては、偏光フィルム等の偏光素子を合成樹脂基材と組み合わせて眼鏡用レンズとすることも可能である。その場合、合成樹脂基材と偏光素子とをインサート成形法等によって一体として作製することもできる。インサート成形法による場合は、偏光フィルムの片面または両面にプラスチックシートを積層し一体化してなる偏光素子を予め金型内に挿入した上で射出成形を行い、偏光素子と樹脂とを一体化させる。偏光素子と合成樹脂基材を組み合わせることによる眼鏡用レンズとしての透過率減少に関しては、含有させる色素量を変化させる等により眼鏡用レンズとして本発明における透過率および透過率曲線の範囲に入るように調整する。
【0022】
【実施例】
実施例1.
【化4】
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で外形75mm、中心厚2mmのレンズに成形した。得られたレンズの分光透過率を図1に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0023】
実施例2.
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で外形75mm、中心厚2mmのレンズに成形した。得られたレンズの分光透過率を図4に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0024】
実施例3.
【化5】
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で外形75mm、中心厚2mmのレンズに成形した。得られたレンズの分光透過率を図5に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0025】
実施例4.
偏光フィルムの両面にポリカーボネートのシートを積層した偏光シート[三菱ガス化学(株)製”ユーピロンポーラ”、0.8mm厚]を眼鏡レンズの輪郭に一致する形状に打ち抜いた偏光素子を予め準備し、これを金型面に安定するように配置した。
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で射出形成し、偏光素子と射出樹脂が一体化した外形75mm、中心厚2mmのレンズを得た。得られたレンズの分光透過率を図6に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、反射光のギラツキを防ぎ、また、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0026】
実施例5.
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で外形75mm、中心厚2mmのレンズに成形した。得られたレンズの分光透過率を図7に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0027】
実施例6.
偏光フィルムの両面にポリカーボネートのシートを積層した偏光シート[三菱ガス化学(株)製”ユーピロンポーラ”、0.8mm厚]を眼鏡レンズの輪郭に一致する形状に打ち抜いた偏光素子を予め準備し、これを金型面に安定するように配置した。
上記の混合物を250〜300℃に温度調節された射出成形機[日精樹脂工業(株)製]で射出成形し、偏光素子と射出樹脂が一体化した外形75mm、中心厚2mmのレンズを得た。得られたレンズの分光透過率を図8に示す。このレンズは、強い太陽光線の下でも眩しさを全く感じさせず、反射光のギラツキを防ぎ、また、トンネル内の走行時にも視野内の物体認識に何らの支障も来さなかった。
【0028】
【発明の効果】
本発明により、太陽光線の眩しさを軽減し、橙色光に対する高い透過率によりトンネル内でのナトリウムランプの照明(中心波長589nm)にも順応でき、一方、有害な紫外線、青色光、必要により赤外線を阻止することができる、広範な用途に耐える実用的な眼鏡用レンズを提供することができる。
【図面の簡単な説明】
【図1】 実施例1で得られたレンズの分光透過率を示すグラフである。
【図2】 標準比視感度曲線を示すグラフである。
【図3】 従来の最も一般的なサングラスの透過率の傾向を示すグラフである。
【図4】 実施例2で得られたレンズの分光透過率を示すグラフである。
【図5】 実施例3で得られたレンズの分光透過率を示すグラフである。
【図6】 実施例4で得られたレンズの分光透過率を示すグラフである。
【図7】 実施例5で得られたレンズの分光透過率を示すグラフである。
【図8】 実施例6で得られたレンズの分光透過率を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spectacle lens that reduces the glare of sunlight while maintaining the brightness of the visual field.
[0002]
[Prior art]
Sun rays contain rays that are harmful to the eyes and make the eyes feel dazzling. Sunglasses are used to adjust the transmission of sunlight, and are made for the purpose of suppressing the transmittance near the center wavelength of the standard relative luminous sensitivity curve (FIG. 2) in order to suppress glare. However, in general sunglasses, the transmittance of other wavelength portions is suppressed as shown in FIG. For this reason, when sunglasses are used in an environment where the amount of light such as twilight is small, the field of view becomes generally dark, which may hinder the visual recognition of objects in the outside world. That is, as a result of trying to suppress glare, the total amount of transmitted light may be excessively reduced, and the object may not be sufficiently visible.
[0003]
Sunglasses containing neodymium or didymium in the glass absorb neodymium or didymium in the vicinity of the center wavelength of the standard relative luminous sensitivity curve while maintaining general brightness. Sunglasses are known. However, from the viewpoint of eye protection, it is preferable to use synthetic resin such as plastic, particularly polycarbonate with high impact resistance, as the material of the glasses rather than glass. However, none of the plastics, particularly polycarbonate, satisfies this demand. Japanese Patent Publication No. 53-39910 discloses a spectacle lens that absorbs a wide range of light having a good visibility of 550 to 600 nm. However, this spectacle lens uses diethylene glycol bisallyl carbonate (CR-39) as a material. It is difficult to dye when polycarbonate is used. Further, the spectacle lens has a light transmittance that gradually decreases in the vicinity of 550 to 650 nm (yellow to orange). When the transmittance of yellow light is lowered for the purpose of enhancing the antiglare effect, The transmittance is also reduced. Therefore, if the proper usage of the glasses using such a lens is mistaken, for example, the illumination of the orange sodium lamp in the tunnel (center wavelength is 589 nm) is difficult to transmit through the lens, and the field of view is darkened. There is a fear.
[0004]
[Problems to be solved by the invention]
The objective of this invention is providing the lens for spectacles which suppressed glare while maintaining the brightness of a visual field.
[0005]
[Means for Solving the Problems]
The present inventors have found that the above-mentioned problems can be solved by suppressing the light transmittance and the like in a certain wavelength range of sunlight, and have completed the present invention.
[0006]
The present invention contains a UV absorber and a blue light absorber together with an organic dye having a maximum absorption value in the vicinity of the center wavelength of the standard relative luminous sensitivity curve, and has a minimum value of the transmittance curve in a wavelength range of 550 to 585 nm. And a synthetic resin substrate having a transmittance of 25% or less at the minimum value, an average transmittance of 15% or more in the wavelength range of 590 to 660 nm, and an average transmittance of 10% or more in the wavelength range of 470 to 550 nm. Wherein the organic dye having a maximum absorption value in the vicinity of the central wavelength of the standard relative luminous sensitivity curve is represented by the formula (I):
[Chemical formula 2]
(Wherein, m and n are the same or different and each represents an integer of 1 to 4). The synthetic resin substrate in the eyeglass lens may contain an infrared absorbing or reflecting agent.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In this specification, the center wavelength of the standard relative luminous efficiency curve indicates approximately 555 nm, and the vicinity of the central wavelength of the standard relative luminous sensitivity curve indicates a wavelength region of approximately 530 to 585 nm. Moreover, as an organic pigment | dye which has the maximum absorption value near the center wavelength of a standard specific luminous efficiency curve, Formula (I)
[Chemical 3]
(Wherein m and n are the same or different and each represents an integer of 1 to 4) represented by a squarylium compound [hereinafter, a compound represented by formula (I) is referred to as compound (I). The same applies to the compounds of other formula numbers].
[0008]
Since neodymium and didymium, which have been used in conventional glasses as light-absorbing dyes, are inorganic materials, they can be contained in the form of metal ions in glass lenses made by melting at high temperatures. When kneaded into the resin, it could not be sufficiently dispersed because it did not melt into the resin, and could not be used as a synthetic resin. In the present invention, the squarylium compound is melted in a synthetic resin, and by using this as a light absorber, the dazzling of sunlight can be suppressed. For the purpose of suppressing glare, ideally, a film having a maximum absorption value at 555 nm is preferable, but this is not necessarily so. If the absorption peak is in the vicinity of 555 nm, the absorption peak has a width. It absorbs the vicinity of the center wavelength of the specific visibility curve fairly well and can suppress glare without problems in practice.
[0009]
The above squarylium compounds are known per se, for example, the methods described in Angew. Chem. Internat. Edit., 7 , 530-535 (1968), Liebigs Ann. Chem., 712 , 123 (1968), or the like Can be manufactured.
[0010]
As the ultraviolet absorber, JF-86 manufactured by Johoku Chemical Co., Ltd., Seasorb 705 manufactured by Sibro Kasei Co., Ltd., and the like can be used.
[0011]
As the blue light absorber, Kayaset Yellow AG manufactured by Nippon Kayaku Co., Ltd., PS Orange GG manufactured by Mitsui Toatsu Dye Co., Ltd., or the like can be used.
[0012]
As the infrared absorbing or reflecting agent, IR750 manufactured by Nippon Kayaku Co., Ltd., IR Additive 200 manufactured by Dainippon Ink & Chemicals, Inc. can be used.
[0013]
As the synthetic resin base material, polycarbonate is most suitable because of its excellent impact resistance. In addition, polymethyl methacrylate (PMMA), CR-39 (US PPG Industries, Inc.) or cellulose acetate, cellulose propionate, etc. Fibrous plastics can also be used.
[0014]
Having the minimum value of the transmittance curve in the wavelength range of 550 to 585 nm, and setting the transmittance at the minimum value to 25% or less, the light transmittance in the wavelength range where the most dazzling feeling is felt among the sun rays. For the purpose of suppressing, it is preferable to set the transmittance at the minimum value to 20% or less, and more preferable to set the transmittance at the minimum value to 15% or less.
[0015]
The reason why the average transmittance in the wavelength range of 590 to 660 nm is 15% or more is to maintain the transmittance of orange light, and is preferably 20% or more. Furthermore, it has a maximum value of the transmittance curve in the wavelength range of 590 to 660 nm, and the transmittance at the maximum value is preferably 30% or more, and the transmittance at the maximum value is particularly preferable. 35% or more. The purpose of this is to make the synthetic resin base material contain an infrared absorbing or reflecting agent in addition to an organic dye, an ultraviolet absorbing agent and a blue light absorbing agent having a maximum absorption value in the vicinity of the central wavelength of the standard relative luminous sensitivity curve. Can be achieved. Thereby, while maintaining the transmittance of orange light at a high level, it is possible to prevent red light from being excessively transmitted and to make the color balance of all transmitted light appropriate.
[0016]
The reason why the average transmittance in the wavelength range of 470 to 550 nm is 10% or more is to ensure the color balance of transmitted light and the brightness of the field of view. In particular, the transmittance is preferably 15% or more at any wavelength in the wavelength range of 470 to 550 nm, and particularly preferably 20% or more.
[0017]
In addition, it is preferable that the light transmittance in the wavelength range of 400-450 nm becomes substantially 0 with a blue light absorber.
[0018]
Next, an example of the spectacle lens of the present invention will be described.
[0019]
After adding and mixing the organic dye, the ultraviolet absorber, the blue light absorber and the infrared absorber or reflector having the maximum absorption value near the center wavelength of the standard relative luminous sensitivity curve described above to the synthetic resin raw material as the lens substrate A spectacle lens can be obtained by molding by an injection molding method so as to be uniformly contained in the entire lens. It is also possible to coat a part of the absorber, for example, an infrared reflecting agent on the lens surface by a vacuum deposition method or the like.
[0020]
The content of the organic dye is preferably 0.0001 to 0.01% by weight, particularly preferably 0.0005 to 0.005% by weight, based on the synthetic resin substrate. The content of the ultraviolet absorber is preferably from 0.1 to 1.0% by weight, particularly preferably from 0.3 to 0.8% by weight, based on the synthetic resin substrate. The content of the blue light absorber is preferably 0.001 to 0.02% by weight, particularly preferably 0.002 to 0.01% by weight, based on the synthetic resin substrate. The content of the infrared absorbing or reflecting agent is preferably 0.001 to 0.05% by weight, particularly preferably 0.001 to 0.02% by weight, based on the synthetic resin substrate.
[0021]
In carrying out the present invention, a polarizing lens such as a polarizing film can be combined with a synthetic resin base material to form a spectacle lens. In that case, the synthetic resin base material and the polarizing element can be integrally manufactured by an insert molding method or the like. In the case of the insert molding method, a polarizing element formed by laminating and integrating a plastic sheet on one side or both sides of a polarizing film is inserted into a mold in advance, and injection molding is performed to integrate the polarizing element and the resin. Regarding the reduction in transmittance as a spectacle lens by combining a polarizing element and a synthetic resin base material, the spectacle lens is changed within the transmittance and transmittance curves in the present invention by changing the amount of the pigment to be contained. adjust.
[0022]
【Example】
Example 1.
[Formula 4]
The above mixture was molded into a lens having an outer diameter of 75 mm and a center thickness of 2 mm using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, and it did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0023]
Example 2
The above mixture was molded into a lens having an outer diameter of 75 mm and a center thickness of 2 mm using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, and it did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0024]
Example 3 FIG.
[Chemical formula 5]
The above mixture was molded into a lens having an outer diameter of 75 mm and a center thickness of 2 mm using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, and it did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0025]
Example 4
A polarizing element in which a polycarbonate sheet laminated on both sides of a polarizing film [Mitsubishi Gas Chemical Co., Ltd. “Iupilon Polar”, 0.8 mm thickness] is punched into a shape that matches the contour of the spectacle lens is prepared in advance. This was arrange | positioned so that it might stabilize on the metal mold | die surface.
The above mixture was injection-molded with an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. to obtain a lens having an outer diameter of 75 mm and a center thickness of 2 mm, in which the polarizing element and the injection resin were integrated. . The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, prevented glare from reflected light, and did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0026]
Example 5 FIG.
The above mixture was molded into a lens having an outer diameter of 75 mm and a center thickness of 2 mm using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, and it did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0027]
Example 6
A polarizing element in which a polycarbonate sheet laminated on both sides of a polarizing film [Mitsubishi Gas Chemical Co., Ltd. “Iupilon Polar”, 0.8 mm thickness] is punched into a shape that matches the contour of the spectacle lens is prepared in advance. This was arrange | positioned so that it might stabilize on the metal mold | die surface.
The above mixture was injection molded with an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) whose temperature was adjusted to 250 to 300 ° C. to obtain a lens having an outer diameter of 75 mm and a center thickness of 2 mm, in which the polarizing element and the injection resin were integrated. . The spectral transmittance of the obtained lens is shown in FIG. This lens did not feel any glare even under strong sunlight, prevented glare from reflected light, and did not interfere with object recognition in the field of view even when traveling in a tunnel.
[0028]
【The invention's effect】
The present invention reduces the glare of sunlight and adapts to the illumination of the sodium lamp in the tunnel (center wavelength 589 nm) due to the high transmittance of orange light, while harmful ultraviolet rays, blue light, infrared rays if necessary Therefore, it is possible to provide a practical spectacle lens that can withstand a wide range of applications.
[Brief description of the drawings]
1 is a graph showing the spectral transmittance of a lens obtained in Example 1. FIG.
FIG. 2 is a graph showing a standard relative luminous sensitivity curve.
FIG. 3 is a graph showing the transmittance trend of the most common conventional sunglasses.
4 is a graph showing the spectral transmittance of the lens obtained in Example 2. FIG.
5 is a graph showing the spectral transmittance of the lens obtained in Example 3. FIG.
6 is a graph showing the spectral transmittance of the lens obtained in Example 4. FIG.
7 is a graph showing the spectral transmittance of the lens obtained in Example 5. FIG.
8 is a graph showing the spectral transmittance of the lens obtained in Example 6. FIG.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002192406A JP3718185B2 (en) | 2002-07-01 | 2002-07-01 | Eyeglass lenses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002192406A JP3718185B2 (en) | 2002-07-01 | 2002-07-01 | Eyeglass lenses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7192988A Division JPH0943550A (en) | 1995-07-28 | 1995-07-28 | Lens for spectacles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003107412A JP2003107412A (en) | 2003-04-09 |
JP3718185B2 true JP3718185B2 (en) | 2005-11-16 |
Family
ID=19195531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002192406A Expired - Lifetime JP3718185B2 (en) | 2002-07-01 | 2002-07-01 | Eyeglass lenses |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3718185B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7506977B1 (en) | 2008-04-18 | 2009-03-24 | Hopnic Laboratory Co., Ltd. | Plastic spectacles lens |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5011004B2 (en) * | 2007-04-13 | 2012-08-29 | タレックス光学工業株式会社 | Infrared absorptive lens and method for manufacturing the same |
WO2009122751A1 (en) * | 2008-04-04 | 2009-10-08 | ダイセル化学工業株式会社 | Polyol compound for photoresist |
JP5166482B2 (en) * | 2010-05-11 | 2013-03-21 | 東利眼鏡実業株式会社 | Method for producing translucent resin substrate and translucent resin substrate |
JP5650963B2 (en) * | 2010-09-13 | 2015-01-07 | タレックス光学工業株式会社 | Shading lens for protective glasses |
US8474973B2 (en) | 2011-03-08 | 2013-07-02 | Talex Optical Co., Ltd. | Infrared absorbing polarized eyeglass lens |
JP6168514B2 (en) * | 2013-05-21 | 2017-07-26 | 東海光学株式会社 | Refractive power measurement method in the dark |
EP3318920B1 (en) * | 2016-11-04 | 2022-07-06 | Essilor International | Near infrared light-cutting optical articles with low residual color |
-
2002
- 2002-07-01 JP JP2002192406A patent/JP3718185B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7506977B1 (en) | 2008-04-18 | 2009-03-24 | Hopnic Laboratory Co., Ltd. | Plastic spectacles lens |
Also Published As
Publication number | Publication date |
---|---|
JP2003107412A (en) | 2003-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0943550A (en) | Lens for spectacles | |
JP5749683B2 (en) | Anti-glare optical element | |
KR101612940B1 (en) | Functional glasses lens having Fuction of Blocking UV Light And Blue Light | |
KR100472916B1 (en) | Molded synthetic resin | |
CN113504662B (en) | Transparent optical article with colorless appearance | |
US7901074B2 (en) | Lens for safety glasses | |
US5922246A (en) | Eyeglass lens and molded material of synthetic resin having transmittance minimum no greater than 25% at 550-585 nm | |
KR101926218B1 (en) | Synthetic resin lens | |
JP2006031030A (en) | Synthetic resin molding | |
CN109791311B (en) | Spectacle lens, in particular for sunglasses | |
JP5166482B2 (en) | Method for producing translucent resin substrate and translucent resin substrate | |
CN112236718B (en) | Color balancing lenses exhibiting reduced blue light transmission | |
JP3718185B2 (en) | Eyeglass lenses | |
JP2003149605A (en) | Glare-proof optical article | |
JP2011237625A5 (en) | ||
CN206906724U (en) | Change colour polarisation night-vision spectacle lens | |
KR20210019002A (en) | Color enhanced lenses | |
WO2021085357A1 (en) | Optical sheet and optical component | |
US20230204982A1 (en) | Eyewear with chroma enhancement | |
WO2023163221A1 (en) | Plastic base material and plastic eyeglass lens | |
CN111875945A (en) | Method for preparing light-transmitting resin base material and light-transmitting resin base material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130909 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |