Nothing Special   »   [go: up one dir, main page]

JP3717868B2 - Photocatalytic coating agent, photocatalytic composite material and production method thereof - Google Patents

Photocatalytic coating agent, photocatalytic composite material and production method thereof Download PDF

Info

Publication number
JP3717868B2
JP3717868B2 JP2002158949A JP2002158949A JP3717868B2 JP 3717868 B2 JP3717868 B2 JP 3717868B2 JP 2002158949 A JP2002158949 A JP 2002158949A JP 2002158949 A JP2002158949 A JP 2002158949A JP 3717868 B2 JP3717868 B2 JP 3717868B2
Authority
JP
Japan
Prior art keywords
weight
photocatalytic
parts
coating
trade name
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002158949A
Other languages
Japanese (ja)
Other versions
JP2004051644A (en
JP2004051644A5 (en
Inventor
一雄 高橋
曜 島井
光秀 下吹越
和正 沖田
典雄 仙洞田
辰彦 久我
康次 大久保
Original Assignee
東陶機器株式会社
ジャパンハイドロテクトコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社, ジャパンハイドロテクトコーティングス株式会社 filed Critical 東陶機器株式会社
Priority to JP2002158949A priority Critical patent/JP3717868B2/en
Publication of JP2004051644A publication Critical patent/JP2004051644A/en
Publication of JP2004051644A5 publication Critical patent/JP2004051644A5/ja
Application granted granted Critical
Publication of JP3717868B2 publication Critical patent/JP3717868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光触媒性コーティング剤、及び光触媒性複合材並びにその製造方法に関する。
【0002】
【従来の技術】
近年、光触媒材料が、建物外装に被覆することで、太陽光の照射により親水化して降雨によるセルフクリーニング機能を有する材料として注目されている。また、NOx等の有害ガスを分解する環境上好ましい材料としても注目されている。
例えば、特開平10−195333号には、水溶性珪酸塩、硬化剤及び光触媒粉末(二酸化チタンまたは酸化亜鉛)を含む塗料を、トンネルやガードレールに塗布し、加熱処理することで、NOxを分解することができる塗膜が形成されることが開示されている。
また、特開平10−237354号公報には、珪酸リチウムと二酸化チタンを含有する塗料を塗布し、加熱処理することで、自浄効果に優れた建材が得られることが開示されている。
【0003】
作業環境、周辺への影響、臭いなどの観点から、最近では溶剤系塗料よりも水系塗料(水性塗料)を用いる傾向が高まりつつある。そのため、上記建物外装等の塗布するための光触媒の水性コート剤も提案されている。
特開平10−195369号には光触媒とパーフルオロコポリマーをエマルジョンの状態で配合する塗料組成物が開示されている。
また、特開平10−279886号には光触媒とフルオロ基が含有されているシリコーンエマルジョンのコーティング組成物が提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平10−195333号や特開平10−237354号の水性塗料は、プラスチックや塗装鋼板などの疎水性物質を表面に有する基材に対する濡れ性が悪いため、使用の対象がガラス、木材、金属などに限定されてしまう。
また、特開平10−195369号や特開平10−279886号の水性塗料は、プラスチックや塗装鋼板などの疎水性物質を表面に有する基材に対する濡れ性は改善されるものの屋外での使用を想定した場合、塗装直後の水との接触角が大きく、降雨によるセルフクリーニング機能を使用直後から享受することができなかった。
【0005】
本発明は、上記事情に鑑みてなされたもので、その目的は、作業環境、周辺への影響、臭いなどの観点から問題がなく、プラスチックや塗装鋼板などの疎水性物質を表面に有する基材に塗布可能であり、疎水性物質を表面に有する基材に被膜を形成した場合に、基材と被膜との密着性が強固であり、かつ被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持される光触媒性コーティング剤、及びそれを疎水性物質を表面に有する基材に被覆した光触媒性複合材並びにその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明では、上記課題を解決すべく、(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルジョンと、(c)水とを少なくとも含んだ光触媒性コーティング剤であって、前記光触媒性酸化物粒子の平均粒径は、前記疎水性樹脂エマルジョン中に分散した粒子の平均粒径よりも小さいことを特徴とする光触媒性コーティング剤を提供する。
このような構成にすることで、作業環境、周辺への影響、臭いなどの観点での問題がなく、疎水性物質を表面に有する基材に被膜を形成した場合に、基材と被膜との密着性が強固であり、かつ被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持される光触媒性コーティング剤が提供可能となる。
【0007】
上記光触媒性コーティング剤を、疎水性物質を表面に有する基材に塗布すると、粒径の小さな光触媒性酸化物粒子が上方に移動する。それによって、被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになる。また、同時に、粒径の大きな疎水性樹脂エマルジョン中に分散した粒子が下方に移動し、疎水性物質を表面に有する基材との密着性が増すのである。
【0008】
本発明の好ましい態様においては、(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルジョンと、(c)水と、(d)シリカ粒子と、を少なくとも含んだ光触媒性コーティング剤であって、前記光触媒性酸化物粒子及びシリカ粒子の平均粒径は、前記疎水性樹脂エマルジョン中に分散した粒子の平均粒径よりも小さいようにする。
シリカ粒子が加わることで、被膜表面の塗装直後における水との接触角がより小さくなり、降雨によるセルフクリーニング機能をより使用直後から享受しやすくなる。
【0009】
上記光触媒性コーティング剤を、疎水性物質を表面に有する基材に塗布すると、粒径の小さな光触媒性酸化物粒子及びシリカ粒子が上方に移動する。それによって、被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになる。また、同時に、粒径の大きな疎水性樹脂エマルジョン中に分散した粒子が下方に移動し、疎水性物質を表面に有する基材との密着性が増すのである。
【0010】
本発明の好ましい態様においては、光触媒性酸化物粒子の平均粒径は5〜50nmであり、前記疎水性樹脂エマルジョン中に分散した粒子の平均粒径は80〜300nmであるようにする。
前記光触媒性酸化物粒子の平均粒径が5nm以上であれば、太陽光の照射による光触媒反応が充分に発揮されるようになり、長期に亘り親水性が維持されやすくなる。また、水との接触角が10°以下の高度の親水状態が維持されやすくなる。
一方、前記光触媒性酸化物粒子の平均粒径が50nm未満であり、かつ疎水性樹脂エマルジョン中に分散した粒子の平均粒径が80nm以上であると、光触媒性酸化物粒子と疎水性樹脂エマルジョン中に分散した粒子との粒子径の大きさの差が充分に大きくなるために、粒径の小さな光触媒性酸化物粒子の上方への移動及び粒径の大きな疎水性樹脂エマルジョン中に分散した粒子の下方への移動が生じ易くなり、それによって、被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになると同時に、疎水性物質を表面に有する基材との密着性が増す。
また、疎水性樹脂エマルジョン中に分散した粒子の平均粒径が300nm以上であると、エマルジョンとしての安定性が低下し、高粘度になるため塗料組成物として使用することが不可能となる。
【0011】
本発明の好ましい態様においては、前記光触媒性酸化物粒子の平均粒径は5〜50nmであり、前記シリカ粒子の平均粒径は5〜100nm、より好ましくは5〜50nmであり、前記疎水性樹脂エマルジョン中に分散した粒子の平均粒径は80〜300nm、より好ましくは100〜300nmであるようにする。
シリカ粒子の平均粒径が5nmより小さい場合はシリカ同士の結合強度が大きくなるため、凝集しやすくなる。
光触媒性酸化物粒子の平均粒径は50nm未満、前記シリカ粒子の平均粒径は100nm未満、より好ましくは50nm未満であり、かつ疎水性樹脂エマルジョン中に分散した粒子の平均粒径が80nm以上、より好ましくは100nm以上であると、光触媒性酸化物粒子及びシリカ粒子と疎水性樹脂エマルジョン中に分散した粒子との粒子径の大きさの差のために、粒径の小さな光触媒性酸化物粒子及びシリカ粒子の上方への移動及び粒径の大きな疎水性樹脂エマルジョン中に分散した粒子の下方への移動が生じ易くなり、それによって、被膜表面は塗装直後から水との接触角が非常に小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになると同時に、疎水性物質を表面に有する基材との密着性が増す。
【0012】
本発明の好ましい態様においては、固形分中の配合割合が、前記光触媒性酸化物粒子が1〜20重量%、より好ましくは1〜5重量%、前記疎水性樹脂エマルジョンが5〜99重量%、より好ましくは10〜99重量%であり、前記水の配合割合が固形分100重量部に対して10〜500重量部、より好ましくは10〜109重量部であるようにする。
前記水の配合割合が10〜500重量部、より好ましくは10〜109重量部であることで、膜厚1μm〜1mmの塗料として適当な膜厚で塗膜が形成可能となる。
また、光触媒性酸化物粒子の配合割合が1重量%以上であることで、被膜表面は塗装直後から水との接触角が小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになる。
また、光触媒性酸化物粒子の配合割合が固形分中20重量%未満、より好ましくは5重量%未満であることで、光触媒性酸化物の酸化還元力に基づく分解力による、疎水性樹脂エマルジョンの硬化により得られるバインダーへの影響がなく、屋外の使用において長期に亘り、セルフクリーニング機能が維持される。
また、疎水性樹脂エマルジョンの配合割合が5重量%以上、より好ましくは10重量%以上であることで、疎水性物質を表面に有する基材との密着性が増す。
【0013】
本発明の好ましい態様においては、固形分中の配合割合が、前記光触媒性酸化物粒子が1〜20重量%、より好ましくは全固形分に対して1〜5重量%、前記シリカ粒子の配合割合が1〜90重量%、前記疎水性樹脂エマルジョンの配合割合が5〜98重量%、より好ましくは10〜98重量%、前記水の配合割合が固形分100重量部に対して10〜500重量部、より好ましくは10〜108重量部であるようにする。
シリカ粒子の配合割合が1重量%以上であることで、被膜表面は塗装直後から水との接触角がより小さく、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持されるようになる。
【0014】
本発明の好ましい態様においては、(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルジョンと、(c)水と、を少なくとも含んだ光触媒性コーティング剤であって、前記光触媒性酸化物粒子は、全固形分に対して1〜5重量%であるようにする。
光触媒性酸化物粒子の配合割合が全固形分に対して5重量%未満であることで、光触媒性酸化物の酸化還元力に基づく分解力による、疎水性樹脂エマルジョンの硬化により得られるバインダーと光触媒性酸化物粒子のお互いの結合力及び基材との結合力への影響がなく、屋外の使用において長期に亘り、被膜の強度及び基材との密着性が維持される。
【0015】
本発明の好ましい態様においては、(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルジョンと、(c)水と、(d)シリカ粒子と、を少なくとも含んだ光触媒性コーティング剤であって、前記光触媒性酸化物粒子は、全固形分に対して1〜5重量%であるようにする。
光触媒性酸化物粒子の配合割合が全固形分に対して5重量部未満であることで、光触媒性酸化物の酸化還元力に基づく分解力による、疎水性樹脂エマルジョンの硬化により得られるバインダーと光触媒性酸化物粒子及びシリカ粒子のお互いの結合力及び基材との結合力への影響がなく、屋外の使用において長期に亘り、被膜の強度及び基材との密着性が維持される。
【0016】
本発明の好ましい態様においては、前記疎水性樹脂エマルジョンは、フッ素樹脂エマルジョン、シリコーンエマルジョンのうちの1種以上であるようにする。フッ素樹脂エマルジョン及び/又はシリコーンエマルジョンであることで、耐候性が良好になる。
【0017】
【発明の実施の形態】
以下に本発明の好ましい形態を説明する。
まず、以下に本発明で用いる語について説明する。
本発明において、「光触媒性酸化物粒子」には、例えば、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化タングステン、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化ロジウム、酸化ニッケル、酸化レニウム、チタン酸ストロンチウム等の粒子が利用できる。
なお、酸化チタンを光触媒として用いる場合は、結晶型がアナターゼ型、またはブルッカイト型のものを用いることが、光触媒活性がもっとも強く、しかも長期間発現するので好ましい。
【0018】
「疎水性樹脂エマルジョン」としては、例えば、フッ素樹脂、シリコーン、アクリルシリコーン、酢酸ビニル、酢酸ビニルアクリル、アクリルウレタン、アクリル、エポキシ、塩化ビニル酢酸ビニル、塩化ビニリデン、SBRラテックス等のエマルジョンが利用できる。
フッ素樹脂エマルジョンとしては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー、エチレン−テトラフルオロエチレンコポリマー、エチレン−クロロトリフルオロエチレンコポリマー、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー、パーフルオロシクロポリマー、ビニルエーテル−フルオロオレフィンコポリマー、ビニルエステル−フルオロオレフィンコポリマー、テトラフルオロエチレン−ビニルエーテルコポリマー、クロロトリフルオロエチレン−ビニルエーテルコポリマー、テトラフルオロエチレンウレタン架橋体、テトラフルオロエチレンエポキシ架橋体、テトラフルオロエチレンアクリル架橋体、テトラフルオロエチレンメラミン架橋体等フルオロ基を含有するポリマーのエマルジョンが好適に利用できる。
また、シリコーンのエマルジョンとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロシラン、メチルトリブロムシラン、メチルトリイソプロポキシシラン、メチルトリt−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリクロルシラン、エチルトリブロムシラン、エチルトリイソプロポキシシラン、エチルトリt−ブトキシシラン、nープロピルトリメトキシシラン、nープロピルトリエトキシシラン、nープロピルトリクロシラン、nープロピルトリブロムシラン、nープロピルトリイソプロポキシシラン、nープロピルトリt−ブトキシシラン、nーヘキシルトリメトキシシラン、nーヘキシルトリエトキシシラン、nーヘキシルトリクロシラン、nーヘキシルトリブロムシラン、nーヘキシルトリイソプロポキシシラン、nーヘキシルトリt−ブトキシシラン、nーデシルトリメトキシシラン、nーデシルトリエトキシシラン、nーデシルトリクロシラン、nーデシルトリブロムシラン、nーデシルトリイソプロポキシシラン、nーデシルトリt−ブトキシシラン、nーオクタトリメトキシシラン、nーオクタトリエトキシシラン、nーオクタトリクロシラン、nーオクタトリブロムシラン、nーオクタトリイソプロポキシシラン、nーオクタトリt−ブトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロシラン、フェニルトリブロムシラン、フェニルトリイソプロポキシシラン、フェニルトリt−ブトキシシラン、ジメチルジクロルシラン、ジメチルジブロムシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジクロルシラン、ジフェニルジブロムシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジクロルシラン、フェニルメチルジブロムシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、ビニルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリt−ブトキシシラン、トリフルオロプロピルトリクロルシラン、トリフルオロプロピルトリジブロムシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、ビニルトリクロルシラン、トリフルオロプロピルトリイソプロポキシシラン、トリフルオロプロピルトリt−ブトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリイソプロポキシシラン、γ−グリシドキシプロピルトリt−ブトキシシラン、γ−メタアクリロキシプロピルメチルジメトキシシラン、γ−メタアクリロキシプロピルメチルジエトキシシラン、γ−メタアクリロキシプロピルトリメトキシシラン、γ−メタアクリロキシプロピルトリエトキシシラン、γ−メタアクリロキシプロピルトリイソプロポキシシラン、γ−メタアクリロキシプロピルトリt−ブトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリイソプロポキシシラン、γ−アミノメタアクリロキシプロピルトリt−ブトキシシラン、γ−メチルカプトプロピルメチルジメトキシシラン、γ−メチルカプトプロピルメチルジエトキシシラン、γ−メチルカプトプロピルトリメトキシシラン、γ−メチルカプトプロピルトリエトキシシラン、γ−メチルカプトプロピルトリイソプロポキシシラン、γ−メチルカプトプロピルトリt−ブトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシランの加水分解、脱水縮重合物などのエマルジョンが好適に利用できる。
【0019】
「シリカ粒子」の好ましい具体例としては、無定型シリカ粒子が好ましい。無定型シリカでは、コロイダルシリカの形態が挙げられる。コロイダルシリカには、水に分散させたもの、あるいは、アルコールなどの非水系の有機溶媒に分散したものがあり、両方とも使用可能ではあるが、本発明では構成要素のエマルジョンの安定性を若干低下させるので、水に分散させたものを使用することが好ましい。また、有機溶剤に分散したコロイダルシリカは、前記水分散コロイダルシリカ中の水溶媒を有機溶媒に置換することで容易に調整することが可能である。
【0020】
光触媒性酸化物粒子及びシリカ粒子並びに疎水性樹脂エマルジョン中に分散した粒子の平均粒径は、レーザーを光源とした動的光散乱測定により測定した。測定装置は大塚電子株式会社製DLS−600を使用した。
【0021】
本発明のコーティング剤は、例えば、水分散性の光触媒性酸化物粒子のゾルに、必要に応じてコロイダルシリカを添加した後に、疎水性樹脂エマルジョンをさらに添加し、必要に応じて水で希釈することにより得ることが可能である。
【0022】
また、本発明のコーティング剤は、疎水性物質を表面に有する基材表面に被覆し、硬化せしめることで、降雨によるセルフクリーニング機能を使用直後から享受することが可能であり、かつその状態が太陽光の照射により長期に亘って維持される光触媒性複合材に改質できる。ここで、硬化は常温で行うのが、現場施工等には有利である。
【0023】
「疎水性物質を表面に有する基材」は、例えば、プラスチック、有機物の繊維、有機物の布帛、塗装鋼板等の塗装体等が好適に利用できる。
【0024】
本発明のコーティング剤には、さらに、Ag、Cu、Znのような金属を添加することが好ましい。このような金属が添加された表面層は、表面に付着した細菌や黴や藻を暗所でも死滅させることができ、よって防汚性をより向上させることができる。
【0025】
本発明のコーティング剤には、さらに、Pt、Pd、Ru、Rh、Ir、Osのような白金族金属を添加することができる。このような金属が添加された表面層は、光触媒の酸化還元活性を増強でき、有機物汚れの分解性、有害気体や悪臭の分解性を向上させることができる。
【0026】
本発明のコーティング剤には、さらに、疎水性樹脂エマルジョンの基材への造膜性を向上させるために造膜助剤を使用することが可能である。造膜助剤は、大部分の水分が気化した後も塗膜中に残存し、エマルション粒子どうしの融合を促進させる機能をもつものである。具体的には、沸点が100℃以上の有機化合物が挙げられる。以下に具体例を示す。
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、等のエチレン系グリコールエーテル類。
プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、
ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノブチルエーテル、ポリプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジアセテート、プロピレングリコールフェニルエーテル、等のプロピレン系グリコールエーテル類。
2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、n−ペンシルプロピオネ−ト(n-PENTYL PROPIONATE)、フタル酸ジブチル等のエステル類などが挙げられる。
そのうち、エステル類の一種である2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレートは、フッ素樹脂エマルジョンへの浸透能力が高いこと、最低造膜温度(MFT)の低下効果が高いことから、その使用は好ましい。逆にエチレン系グリコールエーテル類は人体への毒性が強いので、その使用は好ましくない。
【0027】
本発明のコーティング剤には、さらに、着色料を添加することができる。着色料としては無機顔料、有機顔料、染料などから少なくとも1つを選ぶ。
無機顔料としては、酸化チタン、亜鉛華、ベンガラ、酸化クロム、コバルトブルー、鉄黒などの金属酸化物系、アルミナホワイト、黄色酸化鉄などの金属水酸化物系、紺青などのフェロシアン化合物系、黄鉛、ジンクロメート、モリブデンレッドなどのクロム酸鉛系、硫化亜鉛、朱、カドミウムイエロー、カドミウムレッドなどの硫化物、セレン化合物、バライト、沈降性硫酸バリウムなどの硫酸塩系、重質炭酸カルシウム、沈降性炭酸カルシウムなどの炭酸塩系、含水珪酸塩、クレイ、群青などの珪酸塩系、カーボンブラックなどの炭素系、アルミニウム粉、ブロンズ粉、亜鉛粉などの金属粉系、雲母・酸化チタン系などのパール顔料系などが挙げられる。
有機顔料としては、ナフトールグリーンBなどのニトロソ系顔料、ナフトールSなどのニトロ顔料系、リソールレッド、レーキレッドC、ファストエロー、ナフロールレッドなどのアゾ顔料系、アルカリブルーレッド、ローダミンキレート、キナクリドンレッド、ジオキサジンバイオレッド、イソインドリノンエローなどの縮合多環顔料系などが挙げられる。
染料としては、分散染料、塩基性染料、直接染料、酸性染料が挙げられる。
【0028】
【実施例】
(塗料組成物の調製)
尚、本実施例、比較例の作成に用いた材料の固形分濃度、平均粒子径は表1の通り。
【0029】
【表1】
【0030】
実施例1
光触媒酸化物ゾル(日本パーカライジング株式会社製、商品名パルチタン5610)10.2重量部、コロイダルシリカ(日本化学株式会社製、商品名シリカドール30B)79.6重量部、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE3000)10.2重量部(以上固形分で表示)、造膜助剤(イーストマン・コダック社製、商品名テキサノール)2.1重量部を混合し、水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して433重量部であった。
【0031】
実施例2
光触媒酸化物ゾル(テイカ株式会社製、商品名TKS−203)20.1重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50)10.2重量部、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)69.7重量部(以上固形分で表示)、造膜助剤(イーストマン・コダック社製、商品名テキサノール)15.7重量部である水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して159重量部であった。
【0032】
実施例3
光触媒酸化物ゾル(日本パーカライジング株式会社製、商品名パルチタン5610)3.2重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50)25.9重量部、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)3.2重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)38.9重量部、体質顔料(大塚化学株式会社製、商品名ティスモ−N)28.8重量部(以上固形分で表示)、造膜助剤(チッソ株式会社製、商品名CS−12)0.7重量部である水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して132重量部であった。
【0033】
実施例4
光触媒酸化物ゾル(石原産業株式会社製、商品名STS−21)1.0重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL)38.8重量部、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)23.1重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)20.4重量部、体質顔料A(大塚化学株式会社製、商品名HT−300)4.7重量部、体質顔料B(日本タルク(株)製、ミクロエースP3)12.0重量部(以上固形分で表示)、造膜助剤(チッソ株式会社製、商品名CS−12)7.8重量部である水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して152重量部であった。
【0034】
実施例5
光触媒酸化物ゾル(石原産業株式会社製、商品名STS−21)1.4重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックスZL)50.8重量部、フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)15.0重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)26.7重量部、体質顔料(大塚化学株式会社製、商品名HT−300)6.1重量部(以上固形分で表示)、造膜助剤(チッソ株式会社製、商品名CS−12)3.3重量部の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して175重量部であった。
【0035】
実施例6
光触媒酸化物ゾル(石原産業株式会社製、商品名STS−21)18.3重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50)44.3重量部、シリコーンエマルジョン(大日本インキ化学工業(株)製、商品名ボンコートSA−5080)9.9重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)15.2重量部、体質顔料(大塚化学株式会社製、商品名HT−300)12.3重量部(以上固形分で表示)、造膜助剤(チッソ株式会社製、商品名CS−12)2.4重量部の塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して294重量部であった。
【0036】
比較例1
フッ素樹脂エマルジョン(旭硝子株式会社製、商品名ルミフロンFE4300)67.8重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)26.7重量部、体質顔料(大塚化学株式会社製、商品名ティスモ−N)5.5重量部(以上固形分で表示)、造膜助剤(チッソ株式会社製、商品名CS−12)14.7重量部である水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して85重量部であった。
【0037】
比較例2
光触媒酸化物ゾル(日本パーカライジング株式会社製、商品名パルチタン5610)10重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50)23.9重量部、着色顔料(大日精化工業株式会社製、商品名MFカラーMF5160)11.4重量部、体質顔料(大塚化学株式会社製、商品名ティスモ−N)54.7重量部(以上固形分で表示)である水性塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して269重量部であった。
【0038】
比較例3
光触媒酸化物(日本パーカライジング株式会社製、商品名パルチタン5610)9.8重量部、コロイダルシリカ(日産化学株式会社製、商品名スノーテックス50)79.3重量部、フッ素樹脂(旭硝子株式会社製、商品名ルミフロンLF100)10.9重量部(以上固形分で表示)である塗料組成物を調整した。このときの水分量は固形分の合計100重量部に対して325重量部であった。塗布直前に硬化剤(日本ポリウレタン株式会社製、商品名コロネートHX)を塗料組成物100重量部に対して、0.4重量部添加した。
【0039】
(基材への塗布方法)
150mm×65mmに裁断した石綿セメント珪酸カルシウム板(JIS A5418に準拠したもの)にエポキシ樹脂系プライマー(エスケー化研、商品名SKサーフエポ)をスプレー塗装し、室温で24時間乾燥させた。続いて、アクリルウレタン塗料(イサム塗料 商品名 ハイアート1000)を、上記したプライマー塗装を行った石綿セメント珪酸カルシウム板上にスプレー塗装し、室温で24時間乾燥させた。さらに続いて、前記で調製した実施例1、2、3及び比較例1、2、3の塗料組成物をプライマー塗装、アクリルウレタン塗装を行った石綿セメント珪酸カルシウム板上に刷毛塗りし、コーティング物を得た。
また、プライマー塗装を行った石綿セメント珪酸カルシウム板上にスズカファイン(株)製下地調整塗材(商品名「リメークプラ」)を刷毛塗し、室温で24時間乾燥させたたものに、実施例4、5、6の塗料組成物の塗装を行ない、コーティング物を得た。
コーティングは試験片を垂直に立てた状態で行った。刷毛塗りした上記塗料組成物の重量は15g/m2であった。最後に、上記コーティング物を室温で24時間乾燥させて試験片1〜9を得た。
試験片1:実施例1の塗料を塗布
試験片2:実施例2の塗料を塗布
試験片3:実施例3の塗料を塗布
試験片4:実施例4の塗料を塗布
試験片5:実施例5の塗料を塗布
試験片6:実施例6の塗料を塗布
試験片7:比較例1の塗料を塗布
試験片8:比較例2の塗料を塗布
試験片9:比較例3の塗料を塗布
【0040】
エリクセン評価、一酸化窒素分解性能評価用試験片の作成
150mm×65mmに裁断した亜鉛メッキ鋼板(JIS A5400に準拠したもの)にエポキシ樹脂系プライマー(エスケー化研、商品名 SKサーフエポ)をスプレー塗装し、室温で24時間乾燥させた。続いて、前記で調製した実施例1、2、3、4、5、6及び比較例1、2、3の塗料組成物を、プライマー塗装を行った亜鉛メッキ鋼板上に刷毛塗りし、コーティング物を得た。
コーティングは試験片を垂直に立てた状態で行った。刷毛塗りした上記塗料組成物の重量は15g/m2であった。最後に、上記コーティング物を室温で24時間乾燥させて試験片10〜18を得た。
試験片10:実施例1の塗料を塗布
試験片11:実施例2の塗料を塗布
試験片12:実施例3の塗料を塗布
試験片13:実施例4の塗料を塗布
試験片14:実施例5の塗料を塗布
試験片15:実施例6の塗料を塗布
試験片16:比較例1の塗料を塗布
試験片17:比較例2の塗料を塗布
試験片18:比較例3の塗料を塗布
【0041】
次に、上記各試験片について、膜厚、クラックの有無、密着性、エリクセン評価、光沢、耐アルカリ性、耐沸騰水性、熱冷サイクル試験、親水性(初期接触角と紫外線照射時の接触角を測定)を評価し、その結果を(表2)に示す。また、自己洗浄性評価についてはその結果を(表3)に示す。一酸化窒素分解性能についてはその結果を(図1〜5)に示す。
【0042】
【表2】
【0043】
【表3】
【0044】
評価方法は以下の通りである。
膜厚:走査型電子顕微鏡(日立製作所製S-4100)により試験片を断面方向から観察し、膜厚を測定した。
クラックの有無:光学顕微鏡(キーエンス製VF-7500)を用いて試験片表面を観察してクラックの有無を確認した。
密着性:JIS K5400 碁盤目試験法により行った。即ち、作製した試験片の塗膜の上からカッターで2mm幅の碁盤目の切込みを入れる。大きさは1cm角にし、碁盤目の数を25個とする。その後その碁盤目を完全に覆うようにセロハンテープを貼り付ける。その後、すばやく引き剥がして付着して残っている碁盤目の数を数える。
エリクセン評価:JIS B7729に準拠したエリクセン試験機を用いて、金属板に塗布した試験片により裏面より鋼球を押し出し、試験片を変形させる。塗膜にクラック、割れ、剥がれ、を生じるまでの押し出し距離を調べる。
光沢:作製した試験片の光沢度を日本電色工業製VGS-1Dを用いて測定した。
耐アルカリ性:水酸化カルシウム飽和水溶液に室温で7日間浸漬し、取り出した後蒸留水にて洗浄し、十分乾燥させた後、目視外観にて評価を行なう。
耐沸騰水性:95℃以上の沸騰水中に2時間浸漬し、取り出した後蒸留水にて洗浄し、十分乾燥させた後、目視外観にて評価を行なう。
熱冷サイクル試験:50℃の恒温槽に3時間、次いで、−20℃の恒温槽に3時間、次いで25℃の恒温水槽に18時間を1サイクルとして10サイクル繰り返す。取り出した後蒸留水にて洗浄し、十分乾燥させた後、目視外観にて評価を行なう。
親水性(初期接触角):試験片表面の水との接触角を、協和界面科学製CX-150を用いて測定した。
親水性(紫外線照射時):作製した試験片にBLBランプから発生した0.5mW/cm2の紫外線を7日間または殺菌灯ランプから発生した3.0mW/cm2の紫外線を3日間照射し、その後水との接触角を、協和界面科学製CX-150を用いて測定した。
自己洗浄性(屋外暴露):作製した試験片を南側に向け、鉛直に対して45°傾斜させたものを屋外に設置する。暴露する前、暴露1ヶ月後、暴露2ヶ月後の目視による外観評価及び接触角を測定した。
一酸化窒素分解性能評価:評価装置の模式図を図6に示す。入口側の一酸化窒素の濃度を空気と調整して0.25ppmとする。流量を毎分1リットルに調整する。試験片を設置してから、30分間流量が安定するまで気体を流す。その後紫外線をBLB灯にて0.5mW/cm2の強度にて照射する。一酸化窒素と二酸化窒素の濃度を記録する。
【0045】
【発明の効果】
以上に説明したように本発明によれば、光触媒を添加したことによる防汚、親水効果が発揮される。また、プラスチックなどの有機系基材表面に形成する塗膜の厚みを厚くしても、クラックが発生せず、しかも剥離強度に優れた塗膜となる水性塗料組成物が得られる。
【図面の簡単な説明】
【図1】 本発明の一実施例の一酸化窒素分解性能を示す図。
【図2】 本発明の他の実施例の一酸化窒素分解性能を示す図。
【図3】 本発明の他の実施例の一酸化窒素分解性能を示す図。
【図4】 比較例の一酸化窒素分解性能を示す図。
【図5】 比較例の一酸化窒素分解性能を示す図。
【図6】 一酸化窒素分解性能の評価装置の模式図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalytic coating agent, a photocatalytic composite material, and a method for producing the same.
[0002]
[Prior art]
In recent years, a photocatalyst material has attracted attention as a material having a self-cleaning function due to rainfall by being made hydrophilic by being irradiated with sunlight by covering the exterior of a building. Moreover, it attracts attention as an environmentally preferable material that decomposes harmful gases such as NOx.
For example, Japanese Patent Laid-Open No. 10-195333 discloses that NOx is decomposed by applying a paint containing a water-soluble silicate, a curing agent, and a photocatalyst powder (titanium dioxide or zinc oxide) to a tunnel or a guardrail and heat-treating it. It is disclosed that a coating can be formed.
Japanese Patent Application Laid-Open No. 10-237354 discloses that a building material having an excellent self-cleaning effect can be obtained by applying a paint containing lithium silicate and titanium dioxide and performing heat treatment.
[0003]
From the viewpoints of working environment, influence on surroundings, odor and the like, recently, the tendency to use water-based paint (water-based paint) rather than solvent-based paint is increasing. Therefore, an aqueous photocatalyst coating agent for applying the exterior of the building or the like has also been proposed.
Japanese Patent Application Laid-Open No. 10-195369 discloses a coating composition containing a photocatalyst and a perfluoro copolymer in an emulsion state.
JP-A-10-279886 proposes a coating composition of a silicone emulsion containing a photocatalyst and a fluoro group.
[0004]
[Problems to be solved by the invention]
However, since the water-based paints of JP-A-10-195333 and JP-A-10-237354 have poor wettability with respect to a substrate having a hydrophobic substance such as plastic or coated steel plate on the surface, the object of use is glass, wood, It is limited to metal.
In addition, the water-based paints of JP-A-10-195369 and JP-A-10-279886 are intended for outdoor use, although the wettability with respect to a substrate having a hydrophobic substance on the surface, such as plastic or coated steel plate, is improved. In this case, the contact angle with water immediately after painting was large and the self-cleaning function due to rain could not be enjoyed immediately after use.
[0005]
The present invention has been made in view of the above circumstances, and its purpose is no problem from the viewpoint of work environment, influence on the surroundings, odor, etc., and a substrate having a hydrophobic material such as plastic or painted steel sheet on the surface. When a coating is formed on a substrate having a hydrophobic substance on the surface, the adhesion between the substrate and the coating is strong, and the coating surface has a small contact angle with water immediately after coating. A photocatalytic coating agent that can enjoy a self-cleaning function due to rain immediately after use, and whose state is maintained for a long time by irradiation with sunlight, and a substrate having a hydrophobic substance on the surface thereof An object of the present invention is to provide a photocatalytic composite material coated on a material and a method for producing the same.
[0006]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a photocatalytic coating agent comprising at least (a) photocatalytic oxide particles, (b) a hydrophobic resin emulsion, and (c) water, Provided is a photocatalytic coating agent characterized in that an average particle size of oxide particles is smaller than an average particle size of particles dispersed in the hydrophobic resin emulsion.
With such a configuration, there is no problem in terms of work environment, influence on the surroundings, smell, etc., and when a coating is formed on a substrate having a hydrophobic substance on the surface, The adhesion is strong, and the coating surface has a small contact angle with water immediately after painting, and it is possible to enjoy the self-cleaning function due to rain immediately after use, and the state can be maintained for a long time by irradiation with sunlight. It is possible to provide a photocatalytic coating agent that is maintained throughout.
[0007]
When the photocatalytic coating agent is applied to a substrate having a hydrophobic substance on the surface, photocatalytic oxide particles having a small particle size move upward. As a result, the coating surface has a small contact angle with water immediately after painting, it is possible to enjoy the self-cleaning function due to rain immediately after use, and the state is maintained for a long time by irradiation with sunlight. It becomes like this. At the same time, the particles dispersed in the hydrophobic resin emulsion having a large particle size move downward, and the adhesion to the substrate having the hydrophobic substance on the surface increases.
[0008]
In a preferred embodiment of the present invention, there is provided a photocatalytic coating agent comprising at least (a) photocatalytic oxide particles, (b) a hydrophobic resin emulsion, (c) water, and (d) silica particles. The average particle size of the photocatalytic oxide particles and silica particles is made smaller than the average particle size of the particles dispersed in the hydrophobic resin emulsion.
By adding silica particles, the contact angle with water immediately after coating of the coating surface becomes smaller, and it becomes easier to enjoy the self-cleaning function due to rain immediately after use.
[0009]
When the photocatalytic coating agent is applied to a substrate having a hydrophobic substance on the surface, the photocatalytic oxide particles and silica particles having a small particle size move upward. As a result, the coating surface has a small contact angle with water immediately after painting, it is possible to enjoy the self-cleaning function due to rain immediately after use, and the state is maintained for a long time by irradiation with sunlight. It becomes like this. At the same time, the particles dispersed in the hydrophobic resin emulsion having a large particle size move downward, and the adhesion to the substrate having the hydrophobic substance on the surface increases.
[0010]
In a preferred embodiment of the present invention, the average particle size of the photocatalytic oxide particles is 5 to 50 nm, and the average particle size of the particles dispersed in the hydrophobic resin emulsion is 80 to 300 nm.
When the average particle diameter of the photocatalytic oxide particles is 5 nm or more, the photocatalytic reaction due to irradiation with sunlight is sufficiently exhibited, and the hydrophilicity is easily maintained over a long period of time. Moreover, it becomes easy to maintain a highly hydrophilic state with a contact angle with water of 10 ° or less.
On the other hand, when the average particle diameter of the photocatalytic oxide particles is less than 50 nm and the average particle diameter of the particles dispersed in the hydrophobic resin emulsion is 80 nm or more, the photocatalytic oxide particles and the hydrophobic resin emulsion The difference in particle size from the dispersed particles is sufficiently large, so that the photocatalytic oxide particles having a small particle size are moved upward and the particles dispersed in the hydrophobic resin emulsion having a large particle size are dispersed. As a result, the surface of the coating has a small contact angle with water immediately after painting, and it is possible to enjoy the self-cleaning function due to rainfall immediately after use, and the state of the coating surface is sunlight. At the same time as being maintained for a long period of time by irradiation, adhesion with a substrate having a hydrophobic substance on the surface is increased.
Further, when the average particle size of the particles dispersed in the hydrophobic resin emulsion is 300 nm or more, the stability as an emulsion is lowered and the viscosity becomes high, so that it cannot be used as a coating composition.
[0011]
In a preferred embodiment of the present invention, the photocatalytic oxide particles have an average particle size of 5 to 50 nm, the silica particles have an average particle size of 5 to 100 nm, more preferably 5 to 50 nm, and the hydrophobic resin. The average particle size of the particles dispersed in the emulsion is 80 to 300 nm, more preferably 100 to 300 nm.
When the average particle diameter of the silica particles is smaller than 5 nm, the bonding strength between the silicas increases, so that the particles easily aggregate.
The average particle size of the photocatalytic oxide particles is less than 50 nm, the average particle size of the silica particles is less than 100 nm, more preferably less than 50 nm, and the average particle size of the particles dispersed in the hydrophobic resin emulsion is 80 nm or more, More preferably, when the particle diameter is 100 nm or more, the photocatalytic oxide particles having a small particle size and the photocatalytic oxide particles and silica particles and the particles dispersed in the hydrophobic resin emulsion have a small particle size. The upward movement of the silica particles and the downward movement of the particles dispersed in the hydrophobic resin emulsion having a large particle size are likely to occur, whereby the coating surface has a very small contact angle with water immediately after coating, It is possible to enjoy the self-cleaning function due to rain immediately after use, and the state will be maintained for a long time by the irradiation of sunlight. Made at the same time, it increases the adhesion to a substrate having a hydrophobic substance on the surface.
[0012]
In a preferred embodiment of the present invention, the blending ratio in the solid content is 1 to 20% by weight of the photocatalytic oxide particles, more preferably 1 to 5% by weight, and 5 to 99% by weight of the hydrophobic resin emulsion. More preferably, it is 10 to 99% by weight, and the mixing ratio of the water is 10 to 500 parts by weight, more preferably 10 to 109 parts by weight with respect to 100 parts by weight of the solid content.
When the mixing ratio of the water is 10 to 500 parts by weight, more preferably 10 to 109 parts by weight, a coating film can be formed with an appropriate film thickness as a paint having a film thickness of 1 μm to 1 mm.
Moreover, since the blending ratio of the photocatalytic oxide particles is 1% by weight or more, the coating surface has a small contact angle with water immediately after painting, and it is possible to enjoy a self-cleaning function due to rain immediately after use. And the state will be maintained over a long period of time by irradiation of sunlight.
Moreover, the blending ratio of the photocatalytic oxide particles is less than 20% by weight in the solid content, more preferably less than 5% by weight, so that the hydrophobic resin emulsion can be produced by the decomposition force based on the redox power of the photocatalytic oxide. There is no influence on the binder obtained by curing, and the self-cleaning function is maintained for a long time in outdoor use.
Moreover, adhesiveness with the base material which has a hydrophobic substance on the surface increases because the mixture ratio of hydrophobic resin emulsion is 5 weight% or more, More preferably, it is 10 weight% or more.
[0013]
In a preferred embodiment of the present invention, the blending ratio in the solid content is 1 to 20 wt% of the photocatalytic oxide particles, more preferably 1 to 5 wt% based on the total solid content, and the blending ratio of the silica particles. Is 1 to 90% by weight, the blending ratio of the hydrophobic resin emulsion is 5 to 98% by weight, more preferably 10 to 98% by weight, and the blending ratio of water is 10 to 500 parts by weight with respect to 100 parts by weight of the solid content. More preferably, the amount is 10 to 108 parts by weight.
When the blending ratio of silica particles is 1% by weight or more, the coating surface has a smaller contact angle with water immediately after painting, and it is possible to enjoy a self-cleaning function due to rain immediately after use, and in this state Is maintained over a long period of time by the irradiation of sunlight.
[0014]
In a preferred embodiment of the present invention, a photocatalytic coating agent comprising at least (a) photocatalytic oxide particles, (b) a hydrophobic resin emulsion, and (c) water, wherein the photocatalytic oxide The particles should be 1-5% by weight relative to the total solids.
The binder and photocatalyst obtained by curing the hydrophobic resin emulsion by the decomposition force based on the oxidation-reduction power of the photocatalytic oxide because the blending ratio of the photocatalytic oxide particles is less than 5% by weight with respect to the total solid content. The bonding strength of the conductive oxide particles and the bonding strength with the substrate are not affected, and the strength of the coating and the adhesion with the substrate are maintained over a long period of outdoor use.
[0015]
In a preferred embodiment of the present invention, there is provided a photocatalytic coating agent comprising at least (a) photocatalytic oxide particles, (b) a hydrophobic resin emulsion, (c) water, and (d) silica particles. The photocatalytic oxide particles should be 1 to 5% by weight based on the total solid content.
The binder and photocatalyst obtained by curing the hydrophobic resin emulsion by the decomposition force based on the oxidation-reduction power of the photocatalytic oxide because the blending ratio of the photocatalytic oxide particles is less than 5 parts by weight with respect to the total solid content. There is no influence on the bonding force between the conductive oxide particles and the silica particles and the bonding force with the base material, and the strength of the coating and the adhesion with the base material are maintained for a long time in outdoor use.
[0016]
In a preferred embodiment of the present invention, the hydrophobic resin emulsion is one or more of a fluororesin emulsion and a silicone emulsion. A weather resistance becomes favorable because it is a fluororesin emulsion and / or a silicone emulsion.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
First, terms used in the present invention will be described below.
In the present invention, “photocatalytic oxide particles” include, for example, titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, tungsten oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, and oxidation. Particles such as cadmium, copper oxide, vanadium oxide, niobium oxide, tantalum oxide, manganese oxide, rhodium oxide, nickel oxide, rhenium oxide, and strontium titanate can be used.
When titanium oxide is used as a photocatalyst, it is preferable to use an anatase type or brookite type crystal because it has the strongest photocatalytic activity and develops over a long period of time.
[0018]
As the “hydrophobic resin emulsion”, for example, emulsions of fluororesin, silicone, acrylic silicone, vinyl acetate, vinyl acetate acrylic, acrylic urethane, acrylic, epoxy, vinyl vinyl acetate, vinylidene chloride, SBR latex and the like can be used.
Examples of the fluororesin emulsion include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, perfluorocyclopolymer, vinyl ether-fluoroolefin copolymer, vinyl ester-fluoroolefin copolymer, tetrafluoroethylene-vinyl ether copolymer, chlorotrifluoroethylene-vinyl ether copolymer, cross-linked tetrafluoroethylene urethane, Tetrafluoroethylene epoxy crosslinked product, tetra Le Oro ethylene acrylic crosslinked emulsion polymers containing tetrafluoroethylene melamine crosslinked body and the like fluoro group can be suitably used.
Silicone emulsions include methyltrimethoxysilane, methyltriethoxysilane, methyltrichlorosilane, methyltribromosilane, methyltriisopropoxysilane, methyltrit-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyl Trichlorosilane, ethyltribromosilane, ethyltriisopropoxysilane, ethyltri-t-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltrichlorosilane, n-propyltribromosilane, n-propyl Triisopropoxysilane, n-propyltri-t-butoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-hexyltrichlorosilane, n-hexyltri Romsilane, n-hexyltriisopropoxysilane, n-hexyltri-t-butoxysilane, n-decyltrimethoxysilane, n-decyltriethoxysilane, n-decyltrichlorosilane, n-decyltribromosilane, n-decyltriisopropoxy Silane, n-decyltri-t-butoxysilane, n-octatrimethoxysilane, n-octatriethoxysilane, n-octatrichlorosilane, n-octatribromosilane, n-octatriisopropoxysilane, n-octatrit-butoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltrichlorosilane, phenyltribromosilane, phenyltriisopropoxysilane, phenyltri-t-butoxysilane, dimethyldichlorosilane, dimethyldibromide Silane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldichlorosilane, diphenyldibromosilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenylmethyldichlorosilane, phenylmethyldibromosilane, phenylmethyldimethoxysilane, phenylmethyldi Ethoxysilane, vinyltrichlorosilane, vinyltribromosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane, vinyltrit-butoxysilane, trifluoropropyltrichlorosilane, trifluoropropyltridibromosilane, trifluoropropyl Trimethoxysilane, trifluoropropyltriethoxysilane, vinyltrichlorosilane, trifluoropropyltriisopropyl Lopoxysilane, trifluoropropyltri-t-butoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxy Silane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyltri-t-butoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacrylic Roxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropyltriisopropoxysilane, γ-methacryloxypropyltri-t-butoxysilane, γ-aminopropylmethyldi Toxisilane, γ-aminopropylmethyldiethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminomethacryloxypropyltri-t-butoxysilane, γ -Methylcaptopropylmethyldimethoxysilane, γ-methylcaptopropylmethyldiethoxysilane, γ-methylcaptopropyltrimethoxysilane, γ-methylcaptopropyltriethoxysilane, γ-methylcaptopropyltriisopropoxysilane, γ-methylcapto Hydrolysis of propyltri-t-butoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, dehydration condensation polymer, etc. Rujon can be suitably used.
[0019]
As a preferred specific example of “silica particles”, amorphous silica particles are preferred. Amorphous silica includes colloidal silica. There are colloidal silica dispersed in water or dispersed in a non-aqueous organic solvent such as alcohol. Both can be used, but in the present invention, the stability of the constituent emulsion is slightly reduced. Therefore, it is preferable to use one dispersed in water. The colloidal silica dispersed in the organic solvent can be easily adjusted by replacing the aqueous solvent in the water-dispersed colloidal silica with an organic solvent.
[0020]
The average particle size of the photocatalytic oxide particles, silica particles, and particles dispersed in the hydrophobic resin emulsion was measured by dynamic light scattering measurement using a laser as a light source. As a measuring device, DLS-600 manufactured by Otsuka Electronics Co., Ltd. was used.
[0021]
In the coating agent of the present invention, for example, a colloidal silica is added to a sol of water-dispersible photocatalytic oxide particles as necessary, and then a hydrophobic resin emulsion is further added, and diluted with water as necessary. Can be obtained.
[0022]
In addition, the coating agent of the present invention can enjoy a self-cleaning function due to rainfall immediately after use by coating the base material surface having a hydrophobic substance on the surface and allowing it to harden. It can be modified to a photocatalytic composite material that is maintained over a long period of time by light irradiation. Here, curing at room temperature is advantageous for on-site construction.
[0023]
As the “base material having a hydrophobic substance on the surface”, for example, a plastic, an organic fiber, an organic fabric, a coated body such as a coated steel plate, or the like can be suitably used.
[0024]
It is preferable to add a metal such as Ag, Cu, or Zn to the coating agent of the present invention. The surface layer to which such a metal is added can kill bacteria, moths and algae attached to the surface even in the dark, and thus can further improve the antifouling property.
[0025]
Furthermore, platinum group metals such as Pt, Pd, Ru, Rh, Ir, and Os can be added to the coating agent of the present invention. The surface layer to which such a metal is added can enhance the redox activity of the photocatalyst, and can improve the degradability of organic contaminants and the decomposability of harmful gases and odors.
[0026]
In the coating agent of the present invention, a film-forming auxiliary can be used to improve the film-forming property of the hydrophobic resin emulsion on the substrate. The film-forming aid remains in the coating film even after most of the water has evaporated, and has a function of promoting the fusion of the emulsion particles. Specifically, an organic compound having a boiling point of 100 ° C. or higher can be given. Specific examples are shown below.
Ethylene glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, ethylene glycol ethyl ether acetate, and diethylene glycol monobutyl ether acetate.
Propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether,
Propylene glycol ethers such as dipropylene glycol dimethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monobutyl ether, polypropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol diacetate, propylene glycol phenyl ether, etc. Kind.
Examples include esters such as 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, n-PENTYL PROPIONATE, and dibutyl phthalate.
Among them, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, which is a kind of ester, has a high ability to penetrate into the fluororesin emulsion and has a lowering effect on the minimum film-forming temperature (MFT). Its use is preferred because it is expensive. Conversely, ethylene glycol ethers are highly toxic to the human body and are not preferred for use.
[0027]
A colorant can be further added to the coating agent of the present invention. As the colorant, at least one is selected from inorganic pigments, organic pigments, dyes and the like.
Inorganic pigments include metal oxides such as titanium oxide, zinc white, bengara, chromium oxide, cobalt blue and iron black, metal hydroxides such as alumina white and yellow iron oxide, ferrocyan compounds such as bitumen, Lead chromate such as chrome lead, zinc chromate, molybdenum red, sulfides such as zinc sulfide, vermilion, cadmium yellow, cadmium red, sulfates such as selenium compounds, barite, precipitated barium sulfate, heavy calcium carbonate, Carbonates such as precipitated calcium carbonate, silicates such as hydrous silicate, clay and ultramarine, carbons such as carbon black, metal powders such as aluminum powder, bronze powder and zinc powder, mica and titanium oxide systems Pearl pigment system.
Organic pigments include nitroso pigments such as naphthol green B, nitro pigments such as naphthol S, azo pigments such as risol red, lake red C, fast yellow and naflor red, alkali blue red, rhodamine chelate, quinacridone red And condensed polycyclic pigments such as dioxazine bio red and isoindolinone yellow.
Examples of the dye include disperse dyes, basic dyes, direct dyes, and acid dyes.
[0028]
【Example】
(Preparation of coating composition)
In addition, the solid content concentration and the average particle diameter of the materials used in the preparation of the present examples and comparative examples are as shown in Table 1.
[0029]
[Table 1]
[0030]
Example 1
10.2 parts by weight of photocatalytic oxide sol (Nippon Parkerizing Co., Ltd., trade name Pal Titanium 5610), colloidal silica (Nihon Chemical Co., Ltd., trade name Silica Doll 30B), 79.6 parts by weight, fluororesin emulsion (Asahi Glass Co., Ltd.) Manufactured by trade name, Lumiflon FE3000, 10.2 parts by weight (shown as solid content above) and 2.1 parts by weight of a film-forming aid (trade name Texanol, manufactured by Eastman Kodak Co., Ltd.) It was adjusted. The water content at this time was 433 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0031]
Example 2
20.1 parts by weight of photocatalytic oxide sol (trade name, TKS-203, manufactured by Teika Co., Ltd.), 10.2 parts by weight of colloidal silica (trade name, Snowtex 50, manufactured by Nissan Chemical Co., Ltd.), fluororesin emulsion (Asahi Glass Co., Ltd.) A water-based coating composition comprising 69.7 parts by weight (made by trade name Lumiflon FE4300) (shown as solid content above) and 15.7 parts by weight of a film-forming aid (trade name Texanol, manufactured by Eastman Kodak Company) was prepared. . The water content at this time was 159 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0032]
Example 3
Photocatalyst oxide sol (Nippon Parkerizing Co., Ltd., trade name Pal Titanium 5610) 3.2 parts by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50) 25.9 parts by weight, fluororesin emulsion (Asahi Glass Co., Ltd.) Manufactured, trade name Lumiflon FE4300) 3.2 parts by weight, coloring pigment (manufactured by Dainichi Seika Kogyo Co., Ltd., trade name MF Color MF5160) 38.9 parts by weight, extender pigment (made by Otsuka Chemical Co., Ltd., trade name Tismo-N) ) 28.8 parts by weight (shown as solid content above) and 0.7 parts by weight of a film-forming aid (manufactured by Chisso Corporation, trade name CS-12) were prepared. The water content at this time was 132 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0033]
Example 4
Photocatalyst oxide sol (Ishihara Sangyo Co., Ltd., trade name STS-21) 1.0 part by weight, colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex ZL) 38.8 parts by weight, fluororesin emulsion (Asahi Glass Co., Ltd.) Company-made, trade name Lumiflon FE4300) 23.1 parts by weight, color pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF Color MF5160) 20.4 parts by weight, extender pigment A (manufactured by Otsuka Chemical Co., Ltd., trade name HT) -300) 4.7 parts by weight, extender pigment B (manufactured by Nippon Talc Co., Ltd., Microace P3) 12.0 parts by weight (shown as solid content above), film-forming aid (manufactured by Chisso Corporation, trade name CS -12) A water-based coating composition that was 7.8 parts by weight was prepared. The water content at this time was 152 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0034]
Example 5
1.4 parts by weight of photocatalytic oxide sol (trade name STS-21, manufactured by Ishihara Sangyo Co., Ltd.), 50.8 parts by weight of colloidal silica (trade name Snowtex ZL, manufactured by Nissan Chemical Co., Ltd.), fluororesin emulsion (Asahi Glass Co., Ltd.) 15.0 parts by weight made by company, trade name Lumiflon FE4300), 26.7 parts by weight pigment (made by Dainichi Seika Kogyo Co., Ltd., trade name MF Color MF5160), extender pigment (trade name HT- by Otsuka Chemical Co., Ltd.) 300) 6.1 parts by weight (displayed as solid content above) and 3.3 parts by weight of a film-forming aid (trade name CS-12, manufactured by Chisso Corporation) were prepared. The water content at this time was 175 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0035]
Example 6
18.3 parts by weight of photocatalytic oxide sol (Ishihara Sangyo Co., Ltd., trade name STS-21), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50), 44.3 parts by weight, silicone emulsion (Dainippon Ink) 9.9 parts by weight of Chemical Industry Co., Ltd., trade name Boncoat SA-5080), 15.2 parts by weight of colored pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF Color MF5160), extender pigment (Otsuka Chemical Co., Ltd.) A coating composition of 12.3 parts by weight (manufactured by trade name HT-300) (shown as solid content above) and 2.4 parts by weight of a film-forming aid (trade name CS-12, manufactured by Chisso Corporation) was prepared. The water content at this time was 294 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0036]
Comparative Example 1
Fluorine resin emulsion (Asahi Glass Co., Ltd., trade name Lumiflon FE4300) 67.8 parts by weight Color pigment (Daiichi Seika Kogyo Co., Ltd., trade name MF Color MF5160) 26.7 parts by weight, extender (Otsuka Chemical Co., Ltd.) The water-based coating composition is 5.5 parts by weight (made by trade name Tismo-N) (indicated by solid content) and 14.7 parts by weight of a film-forming aid (trade name CS-12, manufactured by Chisso Corporation). did. The water content at this time was 85 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0037]
Comparative Example 2
10 parts by weight of photocatalytic oxide sol (Nippon Parkerizing Co., Ltd., trade name Pal Titanium 5610), 23.9 parts by weight of colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50), Coloring pigment (Daiichi Seika Kogyo Co., Ltd.) The water-based paint composition was 11.4 parts by weight manufactured by trade name MF color MF5160) and 54.7 parts by weight (made by Otsuka Chemical Co., Ltd., trade name Tismo-N) (shown as solid content above). . The water content at this time was 269 parts by weight with respect to a total of 100 parts by weight of the solid content.
[0038]
Comparative Example 3
9.8 parts by weight of a photocatalytic oxide (Nippon Parkerizing Co., Ltd., trade name Pal Titanium 5610), colloidal silica (Nissan Chemical Co., Ltd., trade name Snowtex 50), 79.3 parts by weight, fluororesin (Asahi Glass Co., Ltd., A coating composition having a trade name of Lumiflon LF100) of 10.9 parts by weight (shown as solid content above) was prepared. The water content at this time was 325 parts by weight with respect to a total of 100 parts by weight of the solid content. Immediately before coating, 0.4 part by weight of a curing agent (trade name Coronate HX, manufactured by Nippon Polyurethane Co., Ltd.) was added to 100 parts by weight of the coating composition.
[0039]
(Applying method to substrate)
An asbestos-cement calcium silicate board cut according to 150 mm × 65 mm (in accordance with JIS A5418) was spray-coated with an epoxy resin primer (SK Kaken, trade name: SK Surf Epo) and dried at room temperature for 24 hours. Subsequently, acrylic urethane paint (Isamu paint, trade name: High Art 1000) was spray-coated on the asbestos-cement calcium silicate plate subjected to the primer coating described above, and dried at room temperature for 24 hours. Subsequently, the coating compositions of Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 prepared above were brush-coated on asbestos cement calcium silicate plates subjected to primer coating and acrylic urethane coating, and then coated. Got.
In addition, Example 4 was obtained by brush-coating a primer preparation coating material (trade name “Remake Plastic”) manufactured by Suzuka Fine Co., Ltd. on a primer coated asbestos cement calcium silicate plate and drying at room temperature for 24 hours. The coating compositions 5 and 6 were applied to obtain a coating.
The coating was performed with the test piece upright. The weight of the paint composition brushed on was 15 g / m @ 2. Finally, the coating was dried at room temperature for 24 hours to obtain test pieces 1-9.
Test piece 1: Application of the paint of Example 1
Test piece 2: Application of paint of Example 2
Specimen 3: Applying paint of Example 3
Test piece 4: Application of the paint of Example 4
Test piece 5: Application of the paint of Example 5
Test piece 6: Applying the paint of Example 6
Test piece 7: Application of the paint of Comparative Example 1
Test piece 8: Application of the paint of Comparative Example 2
Test piece 9: coated with the paint of Comparative Example 3
[0040]
Preparation of test pieces for Erichsen evaluation and nitric oxide decomposition performance evaluation
An epoxy resin-based primer (SK Kaken, trade name: SK Surf Epoxy) was spray-coated on a galvanized steel sheet (compliant with JIS A5400) cut to 150 mm × 65 mm, and dried at room temperature for 24 hours. Subsequently, the coating compositions of Examples 1, 2, 3, 4, 5, 6 and Comparative Examples 1, 2, and 3 prepared above were brush-coated onto the primer-coated galvanized steel sheet and coated Got.
The coating was performed with the test piece upright. The weight of the paint composition brushed on was 15 g / m @ 2. Finally, the coating material was dried at room temperature for 24 hours to obtain test pieces 10 to 18.
Test piece 10: Application of the paint of Example 1
Test piece 11: Application of the paint of Example 2
Test piece 12: Application of the paint of Example 3
Test piece 13: Application of the paint of Example 4
Test piece 14: Application of the paint of Example 5
Test piece 15: Application of the paint of Example 6
Test piece 16: Application of the paint of Comparative Example 1
Test piece 17: Application of the paint of Comparative Example 2
Test piece 18: Application of the paint of Comparative Example 3
[0041]
Next, for each of the above test pieces, the film thickness, presence or absence of cracks, adhesion, Erichsen evaluation, gloss, alkali resistance, boiling water resistance, thermal cooling cycle test, hydrophilicity (the initial contact angle and the contact angle at the time of ultraviolet irradiation) Measurement) was evaluated, and the results are shown in Table 2. The results of self-cleaning evaluation are shown in Table 3. The results of the nitric oxide decomposition performance are shown in FIGS.
[0042]
[Table 2]
[0043]
[Table 3]
[0044]
The evaluation method is as follows.
Film thickness: The specimen was observed from the cross-sectional direction with a scanning electron microscope (S-4100, manufactured by Hitachi, Ltd.), and the film thickness was measured.
Presence or absence of cracks: The presence or absence of cracks was confirmed by observing the surface of the test piece using an optical microscope (VF-7500 made by Keyence).
Adhesiveness: JIS K5400 A cross-cut test method was used. That is, a 2-mm wide grid cut is made with a cutter from the top of the coating film of the prepared test piece. The size is 1 cm square and the number of grids is 25. Then, apply cellophane tape so that the grid is completely covered. After that, quickly peel off and count the number of grids that remain attached.
Erichsen evaluation: Using an Erichsen tester in accordance with JIS B7729, a steel ball is extruded from the back surface by a test piece applied to a metal plate, and the test piece is deformed. Extrude distance until cracks, cracks, and peeling occur in the coating is examined.
Gloss: The glossiness of the prepared test piece was measured using VGS-1D manufactured by Nippon Denshoku Industries Co., Ltd.
Alkali resistance: Soaked in a saturated aqueous solution of calcium hydroxide at room temperature for 7 days, taken out, washed with distilled water, sufficiently dried, and then evaluated by visual appearance.
Boiling water resistance: immersed in boiling water of 95 ° C. or higher for 2 hours, taken out, washed with distilled water, sufficiently dried, and then evaluated by visual appearance.
Thermal cooling cycle test: 10 cycles of 3 hours in a constant temperature bath at 50 ° C., 3 hours in a constant temperature bath at −20 ° C., then 18 hours in a constant temperature water bath at 25 ° C. After taking out, it wash | cleans with distilled water, and after making it fully dry, it evaluates by visual appearance.
Hydrophilicity (initial contact angle): The contact angle of the test piece surface with water was measured using CX-150 manufactured by Kyowa Interface Science.
Hydrophilicity (at the time of UV irradiation): The prepared test piece was irradiated with 0.5 mW / cm2 UV light generated from a BLB lamp for 7 days or 3.0 mW / cm2 UV light generated from a germicidal lamp lamp for 3 days, and then with water. The contact angle was measured using CX-150 manufactured by Kyowa Interface Science.
Self-cleaning property (exposure outdoors): The prepared test piece is directed to the south side, and is inclined outdoors by 45 ° with respect to the vertical. Visual appearance evaluation and contact angle were measured before exposure, 1 month after exposure, and 2 months after exposure.
Nitric oxide decomposition performance evaluation: A schematic diagram of the evaluation apparatus is shown in FIG. The concentration of nitric oxide on the inlet side is adjusted to 0.25 ppm with air. Adjust the flow rate to 1 liter per minute. After installing the test piece, let the gas flow until the flow rate is stable for 30 minutes. Then UV light is 0.5mW / cm with BLB lamp. 2 Irradiate with the intensity of. Record the concentration of nitric oxide and nitrogen dioxide.
[0045]
【The invention's effect】
As described above, according to the present invention, the antifouling and hydrophilic effects due to the addition of the photocatalyst are exhibited. Moreover, even if the thickness of the coating film formed on the surface of an organic base material such as plastic is increased, a water-based coating composition that does not generate cracks and becomes a coating film having excellent peel strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the nitric oxide decomposition performance of an example of the present invention.
FIG. 2 is a graph showing the nitric oxide decomposition performance in another example of the present invention.
FIG. 3 is a graph showing the nitric oxide decomposition performance in another example of the present invention.
FIG. 4 is a graph showing the nitric oxide decomposition performance of a comparative example.
FIG. 5 is a graph showing the nitric oxide decomposition performance of a comparative example.
FIG. 6 is a schematic diagram of an apparatus for evaluating nitric oxide decomposition performance.

Claims (6)

(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルジョンと、(c)水と、(d)シリカ粒子と、 e )着色顔料とを少なくとも含んだ光触媒性コーティング剤であって、
前記(a)成分及び(d)成分の平均粒径は、前記(b)成分中に分散した粒子の平均粒径よりも小さく、
前記( a )成分の全固形分中の割合が1〜5重量%で且つ前記(d)成分の配合割合が10〜90重量%であり、
基材に塗布すると、光触媒性酸化物粒子及びシリカ粒子が上方に移動し、膜厚1μm〜1mmの塗膜が形成されることを特徴とする光触媒性コーティング剤。
A photocatalytic coating agent comprising at least (a) photocatalytic oxide particles, (b) a hydrophobic resin emulsion, (c) water, (d) silica particles, and ( e ) a color pigment ,
The average particle size of the component (a) and the component (d) is smaller than the average particle size of the particles dispersed in the component (b),
The proportion of the component ( a ) in the total solid content is 1 to 5% by weight, and the proportion of the component (d) is 10 to 90% by weight,
When applied to a substrate, the photocatalytic oxide particles and silica particles move upward to form a coating film having a thickness of 1 μm to 1 mm.
前記(a)成分の平均粒径は5〜50nm、前記(d)成分の平均粒径は5〜100nmであり、前記(b)成分に分散した粒子の平均粒径は80〜300nmであることを特徴とする請求項1に記載の光触媒性コーティング剤。  The average particle size of the component (a) is 5 to 50 nm, the average particle size of the component (d) is 5 to 100 nm, and the average particle size of the particles dispersed in the component (b) is 80 to 300 nm. The photocatalytic coating agent according to claim 1. 前記(b)成分は、フッ素樹脂エマルジョン、シリコーンエマルジョンのうちの1種以上であることを特徴とする請求項1または2いずれか1項に記載の光触媒性コーティング剤。Wherein component (b), fluorine resin emulsion, the photocatalytic coating agent according to any one of claims 1 or 2, characterized in that at least one of silicone emulsion. 請求項1乃至のいずれか1項に記載の光触媒性コーティング剤を疎水性物質を表面に有する基材表面に被覆し、硬化せしめることを特徴とする光触媒性複合材の製造方法。A method for producing a photocatalytic composite material, wherein the photocatalytic coating agent according to any one of claims 1 to 3 is coated on a surface of a base material having a hydrophobic substance on the surface and cured. 前記硬化は常温で行うことを特徴とする請求項に記載の光触媒性複合材の製造方法。The method for producing a photocatalytic composite material according to claim 4 , wherein the curing is performed at room temperature. 請求項またはに記載の光触媒性複合材の製造方法によって得られることを特徴とする光触媒性複合材。A photocatalytic composite material obtained by the method for producing a photocatalytic composite material according to claim 4 or 5 .
JP2002158949A 2001-08-30 2002-05-31 Photocatalytic coating agent, photocatalytic composite material and production method thereof Expired - Fee Related JP3717868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002158949A JP3717868B2 (en) 2001-08-30 2002-05-31 Photocatalytic coating agent, photocatalytic composite material and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001261886 2001-08-30
JP2002157656 2002-05-30
JP2002158949A JP3717868B2 (en) 2001-08-30 2002-05-31 Photocatalytic coating agent, photocatalytic composite material and production method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004130037A Division JP2004269898A (en) 2001-08-30 2004-04-26 Photocatalytic coating agent and photocatalytic composite material, and preparation process for this agent
JP2005005333A Division JP2005179686A (en) 2001-08-30 2005-01-12 Photocatalytic coating agent, photocatalytic composite material and method for producing the same

Publications (3)

Publication Number Publication Date
JP2004051644A JP2004051644A (en) 2004-02-19
JP2004051644A5 JP2004051644A5 (en) 2005-04-28
JP3717868B2 true JP3717868B2 (en) 2005-11-16

Family

ID=31950396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002158949A Expired - Fee Related JP3717868B2 (en) 2001-08-30 2002-05-31 Photocatalytic coating agent, photocatalytic composite material and production method thereof

Country Status (1)

Country Link
JP (1) JP3717868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269898A (en) * 2001-08-30 2004-09-30 Toto Ltd Photocatalytic coating agent and photocatalytic composite material, and preparation process for this agent
JP2009280829A (en) * 2001-08-30 2009-12-03 Toto Ltd Photocatalytic coating material, photocatalytic composite material, and method of manufacturing the same
CN104861861A (en) * 2014-02-24 2015-08-26 Toto株式会社 Coating composition and coated body

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018338A1 (en) * 2004-04-15 2005-11-10 Sto Ag coating material
KR100876529B1 (en) * 2004-09-15 2008-12-31 주식회사 엘지화학 Film or building exterior material using self-cleaning coating composition and method for producing same
JP2006328196A (en) * 2005-05-25 2006-12-07 Daikin Ind Ltd Structure of stain-resistant coated film
JP2007262150A (en) * 2006-03-27 2007-10-11 Ohbayashi Corp Photocatalyst coating agent and photocatalyst carrier
JP5957175B2 (en) * 2008-03-04 2016-07-27 株式会社東芝 Antibacterial membrane and antibacterial member
JP5391890B2 (en) * 2009-07-14 2014-01-15 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP5391892B2 (en) * 2009-07-16 2014-01-15 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP5391902B2 (en) * 2009-07-30 2014-01-15 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP2012250134A (en) 2009-09-30 2012-12-20 Toto Ltd Photocatalyst-coated object, and photocatalyst coating liquid therefor
JP2012250133A (en) 2009-09-30 2012-12-20 Toto Ltd Photocatalyst-coated object, and photocatalyst coating liquid therefor
WO2012060398A1 (en) 2010-11-02 2012-05-10 Toto株式会社 Photocatalyst-coated object and photocatalyst coating liquid for same
KR101868192B1 (en) * 2011-06-07 2018-06-15 주식회사 다이셀 Photocatalytic coating film and method for producing same
JP2017042683A (en) * 2014-03-03 2017-03-02 株式会社鯤コーポレーション Photocatalyst coating liquid, and photocatalyst film using the same
JP6381483B2 (en) * 2014-10-29 2018-08-29 三菱電機株式会社 Coating composition, antifouling member, air conditioner and ventilation fan
JP6953107B2 (en) * 2015-08-31 2021-10-27 日本光触媒センター株式会社 Enclosure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09234375A (en) * 1996-03-01 1997-09-09 Mitsubishi Paper Mills Ltd Photo-reactive harmful matter removing material
DE19613645A1 (en) * 1996-04-04 1997-10-09 Inst Neue Mat Gemein Gmbh Graded-structure optical components and method of making the same
JPH10363A (en) * 1996-06-13 1998-01-06 Dainippon Toryo Co Ltd Formation of coating film having photochemical activity
JP3991172B2 (en) * 1997-02-06 2007-10-17 信越化学工業株式会社 Coating composition, hydrophilic film, and coated article having hydrophilic film
JPH11140433A (en) * 1997-11-10 1999-05-25 Toto Ltd Photocatalytic aqueous composition and formation of photocatalytic aqueous coat
JPH11166132A (en) * 1997-12-05 1999-06-22 Toto Ltd Photocatalytic hydrophilic composition
TW473400B (en) * 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
JP2001064583A (en) * 1999-08-31 2001-03-13 Toto Ltd Photocatalyst coating composition, photocatalytic coating film, article covered therewith, and method for forming the coating film
JP2002273233A (en) * 2000-12-04 2002-09-24 Asahi Kasei Corp Modified photocatalyst and photocatalytic composition using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269898A (en) * 2001-08-30 2004-09-30 Toto Ltd Photocatalytic coating agent and photocatalytic composite material, and preparation process for this agent
JP2009280829A (en) * 2001-08-30 2009-12-03 Toto Ltd Photocatalytic coating material, photocatalytic composite material, and method of manufacturing the same
CN104861861A (en) * 2014-02-24 2015-08-26 Toto株式会社 Coating composition and coated body
CN104861861B (en) * 2014-02-24 2017-09-15 Toto株式会社 Coating composition and coated-body

Also Published As

Publication number Publication date
JP2004051644A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP3717868B2 (en) Photocatalytic coating agent, photocatalytic composite material and production method thereof
EP1512728B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating compositions, and self-cleaning member
JP5589267B2 (en) Self-cleaning coating composition
US8512855B2 (en) Self-cleaning member and coating composition
JP3985164B2 (en) Functional coating material, functional composite material and method for producing the same
KR20040095156A (en) A self-decontaminating or self-cleaning coating for protection against hazardous bio-pathogens and toxic chemical agents
JP4812902B1 (en) Antifouling paint composition and method for forming antifouling coating film
JP2004143452A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP6046436B2 (en) Method for forming antifouling coating film and antifouling paint
JP2005179686A (en) Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP3584935B1 (en) Base coating composition for photocatalytic coating film, photocatalytic coated product, and method for producing photocatalytic coated product
JP2003342526A (en) Self-cleaning aqueous coating composition and self- cleaning member
JP5065236B2 (en) Antifouling coating liquid, antifouling coating layer forming method, and ceramic building material having antifouling coating layer
JP2004269898A (en) Photocatalytic coating agent and photocatalytic composite material, and preparation process for this agent
JP2009280829A (en) Photocatalytic coating material, photocatalytic composite material, and method of manufacturing the same
JP2010222427A (en) Aqueous coating agent
JP2005120212A (en) Functional coating material, functional composite material and method for producing the same
JP2010138358A5 (en)
JP2010222427A5 (en)
JP6116045B2 (en) Painted building materials
JP2007145977A (en) Aqueous coating liquid and functional coating film
JP6953107B2 (en) Enclosure
JP2004051643A (en) Self-cleaning water-borne coating composition and self-cleaning member
JP2004323739A (en) Method for controlling contact angle of photocatalyst coating film with water and photocatalyst coating film
JP2001089711A (en) Primer composition for fixing photocatalytic thin film to plastic substrate, and photocatalytic member

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040903

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3717868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees