Nothing Special   »   [go: up one dir, main page]

JP3716041B2 - Absorption heat pump device - Google Patents

Absorption heat pump device Download PDF

Info

Publication number
JP3716041B2
JP3716041B2 JP12715596A JP12715596A JP3716041B2 JP 3716041 B2 JP3716041 B2 JP 3716041B2 JP 12715596 A JP12715596 A JP 12715596A JP 12715596 A JP12715596 A JP 12715596A JP 3716041 B2 JP3716041 B2 JP 3716041B2
Authority
JP
Japan
Prior art keywords
concentrated solution
absorber
channel
absorption
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12715596A
Other languages
Japanese (ja)
Other versions
JPH09310934A (en
Inventor
松本  聡
義明 山本
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12715596A priority Critical patent/JP3716041B2/en
Publication of JPH09310934A publication Critical patent/JPH09310934A/en
Application granted granted Critical
Publication of JP3716041B2 publication Critical patent/JP3716041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/002Generator absorber heat exchanger [GAX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱を利用して冷熱を得る吸収式ヒートポンプ装置に関するものである。
【0002】
【従来の技術】
従来の吸収式ヒートポンプ装置の構成を図6に示す。吸収式ヒートポンプ装置は、溶液ポンプ41、発生器43、凝縮器45、膨張弁46、蒸発器47、吸収器48、減圧部51から構成される。さらに、発生器43は、希溶液熱回収部56、GAX発生部57、分縮部58および59から、吸収器48は、吸収熱放熱部53、吸収熱回収部54、GAX吸収部55から構成される。
【0003】
吸収器48下部に溜まった冷媒濃度の高い濃溶液は、溶液ポンプ41により加圧された後、吸収器48の吸収熱回収部54で吸収熱の一部を回収して昇温される。さらに、発生器43の分縮部58で熱回収を行った後に、発生器43内に散布される。その後、発生器43内を流下するときに、発生器43下部より上昇する冷媒蒸気の熱を受けるとともに、吸収器43のGAX吸収部55で吸収熱を回収した2次高温媒体により加熱され、冷媒蒸気を発生する。この2次高温媒体は、循環ポンプ52により吸収器48と発生器43との間を循環する媒体である。冷媒蒸気を発生し濃度が低下した濃溶液は、さらに、発生器43下部でバーナー50からの燃焼熱を受けて昇温し、冷媒蒸気を発生する。
【0004】
冷媒濃度が低下した希溶液は、発生器43下部より希溶液熱回収部56に入り、その顕熱を管外に捨てながら発生器43内を上昇し、例えばキャピラリ管からなる減圧部51で減圧された後、吸収器48の上部から散布される。
【0005】
一方、発生器43内を上昇する冷媒蒸気は、冷媒だけでなく溶媒の蒸気も含んでいる。そこで、この溶媒蒸気を分縮部58および59において濃溶液および2次冷却水により冷却して凝縮させ、純度の高い冷媒蒸気を凝縮器45に供給している。発生器43を出た純度の高い冷媒蒸気は、凝縮器45で冷却水に凝縮熱を与えて液化する。その後、膨張弁46で減圧され低温となって蒸発器47に流入し、外部より熱を受けて蒸発し、吸収器48下部へと戻る。
【0006】
吸収器48では、発生器43からの希溶液に蒸発器47からの冷媒蒸気を吸収させ、そのとき発生する吸収熱を高温側から順に、GAX吸収部55で2次高温媒体に、吸収熱回収部54で濃溶液に回収するとともに、吸収熱放熱部53で冷却水により外部に放熱している。こうして冷媒濃度の高くなった濃溶液は、吸収器48下部に溜まり、溶液ポンプ41へと流出される。
【0007】
吸収熱の回収を行う従来の吸収式ヒートポンプ装置に用いられる吸収器48および発生器43としては、図6に示したようなタンク方式によるものが一般的である。吸収器48は、タンク上部に円管をコイル状に巻回し2次高温媒体および濃溶液の流路となるGAX吸収部55および吸収熱回収部54を設け、さらにその下部には同様に円管をコイル状に巻回し冷却水の流路となる吸収熱放熱部53を設けたものである。発生器43についても、ほぼ同様の構成であるので、ここでは説明を省略する。
【0008】
このように、吸収器48内で吸収熱を濃溶液に回収することで、発生器43で与える燃焼熱の低減を図り、サイクルの成績係数を向上させ、吸収式ヒートポンプ装置の高効率化を図るものである。
【0009】
【発明が解決しようとする課題】
しかしながら、このような従来の吸収式ヒートポンプ装置では、以下の様な課題が生じている。
【0010】
すなわち、吸収器や発生器にタンク方式を用いると、構造的に大きくかつ重くなるため、特に家庭用などの小型・軽量化が必要な装置には、必ずしも向いていない。また、内容積が大きくなるため、冷媒の充填量が大きくなり、コストや安全性の面からも不利になる。
【0011】
また、吸収器、発生器ともに流下式であることから、発生器は下部が高温、吸収器は上部が高温となる。したがって、吸収熱の回収には、2次高温媒体を用いて上下方向を変える必要が生じ、そのための配管や循環ポンプの設置は装置の複雑化や大型化を招くという課題を有していた。
【0012】
本発明は、上記した課題にもとづき、小型かつ軽量な吸収器および発生器を備え、簡単な構成で性能の高い吸収式ヒートポンプ装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は上記目的を達成するために、少なくとも発生器、精溜器、凝縮器、蒸発器、吸収器を有する吸収式ヒートポンプ装置であって、前記吸収器が、冷媒蒸気と希溶液との混合流の流路となる吸収流路をスリット状に形成したプレートAと、隔壁となるプレートBと、前記隔壁を介して前記吸収流路と対向する位置に濃溶液流路および冷却水流路をスリット状に形成したプレートCとを、複数組積層し一体化した構造を有するとともに、
(1)吸収器の濃溶液流路に送られる濃溶液の一部を分岐し、精溜器の上部から散布する、又は
(2)精溜器が分縮部を有し、吸収器の濃溶液流路に送られる濃溶液の一部を分岐し、精溜器の分縮部に送る、又は
(3)吸収器の濃溶液流路の一部に濃溶液分岐流路を設け、この濃溶液分岐流路からの濃溶液を、精溜器の上部から散布するものである。
【0014】
【発明の実施形態】
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明による吸収式ヒートポンプ装置の第1の実施形態であり、その構成を模式的に示したものである。本実施形態の吸収式ヒートポンプ装置は、溶液ポンプ1、溶液熱交換器2、発生器3、精溜器4、凝縮器5、膨張弁6、蒸発器7、吸収器8、溶液タンク9から構成される。さらに、吸収器8は、吸収熱放熱部13、吸収熱回収部14を一体的に構成したものである。
【0015】
溶液タンク9内の冷媒濃度の高い濃溶液は、溶液ポンプ1により加圧された後、2つに分けられ、主流は吸収器8へ、分岐流は精溜器4上部へと送られる。溶液ポンプ1は、例えばダイヤフラム等を用いた容積型あるいはトロコイドギア等を用いたギア型のポンプで構成される。
【0016】
濃溶液の主流側は、吸収器8の吸収熱回収部14で吸収熱を受けて昇温し、冷媒蒸気を発生する。さらに、溶液熱交換器2で精溜器4下部から流出してくる冷媒濃度の低い希溶液の顕熱を受けて昇温する。この濃溶液は、発生器3で外部より加熱されてさらに冷媒蒸気を発生し、気液2相状態で精溜器4下部に流入する。
【0017】
発生器3は、いわゆる貫流型の発生器であり、都市ガス等を用いたバーナー10により、管内の濃溶液を加熱するものである。貫流型の発生器3を用いることにより、従来のタンク方式に比べて、発生器の小型・軽量化が図られ、内容積を低減することができる。
【0018】
精溜器4は、図1に示したような略タンク形状を有し、密度差により気液を分離し、冷媒蒸気を凝縮器5へ、冷媒濃度の低くなった希溶液を溶液熱交換器2へと流出させる。ここで、発生器3からの冷媒蒸気は高温であるため、冷媒だけでなく溶媒の蒸気も含んでいる。溶媒蒸気の混入は、例えば蒸発温度を高め必要な冷熱を得ることができなくなるばかりではなく、蒸発器7における蒸発潜熱(冷凍効果)を減少させ、サイクルの効率低下の大きな要因となる。
【0019】
そこで、分岐させた比較的低温の濃溶液を精溜器4上部から散布することにより、濃溶液と冷媒蒸気とを直接接触させ熱物質交換させて、冷媒蒸気に含まれる溶媒蒸気を冷却して凝縮させる。その結果、純度の高い冷媒蒸気が凝縮器5に供給される。濃溶液の分岐量は、例えばキャピラリ管からなる分岐キャピ12により所定の量に設定される。
【0020】
精溜器4を出た希溶液は、その顕熱を溶液熱交換器2で濃溶液に与えて降温し、例えばキャピラリ管からなる減圧部11で減圧されて、吸収器8へと戻る。一方、精溜器4を出た冷媒蒸気は、凝縮器5で冷却水に凝縮熱を与えて液化する。その後、膨張弁6で減圧され低温となって蒸発器7に流入し、外部より熱を受けて蒸発した後、吸収器8へ戻る。
【0021】
減圧された希溶液と蒸発器7からの冷媒蒸気は、互いに混合され、吸収器8の吸収熱回収部14へ流入する。このとき発生する吸収熱は、対向して流れる濃溶液の主流に回収される。吸収の進行した希溶液と冷媒蒸気の混合流は、さらに、吸収熱放熱部13へ流入する。このとき発生する吸収熱は、対向して流れる冷却水により外部に放熱され、最終的にほぼ全ての冷媒蒸気が希溶液に吸収される。その結果得られた冷媒濃度の高い濃溶液は、溶液ポンプ1へと流出される。
【0022】
このように、濃溶液の一部を分岐し精溜器4上部から散布することにより、発生する冷媒蒸気の純度を高め、サイクル性能を向上させることができる。また、吸収器8の吸収熱回収部14で吸収熱を濃溶液に回収することで、発生器3で与える燃焼熱の低減を図り、サイクルの成績係数を向上させ、吸収式ヒートポンプ装置の高効率化を図ることができる。
【0023】
図2は、本発明の第1の実施形態の吸収式ヒートポンプ装置に用いる吸収器8の一実施形態であり、積層式熱交換器を用いた吸収器内部の構成およびその作用が簡潔に説明できるように、各プレートの流路構成を模式的に示したものである。
【0024】
本実施形態の吸収器8aは、吸収流路21aおよび21bをスリット状に構成したプレート31と、隔壁となるプレート32と、濃溶液流路22および冷却水流路23をスリット状に構成したプレート33とを交互に複数組積層し、上下にエンドプレート34および35を設けて一体化したものである。なお、エンドプレート34には、吸収式ヒートポンプ装置の各構成要素と吸収器8aとを接続するための例えば円管からなる導入部が備えられている。
【0025】
各プレートの構成を具体的に説明する。まず、プレート31には、吸収流路21aおよび21bが設けられている。さらに、各プレートを積層し一体化した際に、濃溶液のヘッダー部を形成する貫通孔61aおよび61b、冷却水のヘッダー部を形成する貫通孔62aおよび62bが設けられている。
【0026】
また、熱交換を行う際の隔壁となるプレート32には、各プレートを積層し一体化した際に、濃溶液のヘッダー部を形成する貫通孔71aおよび71b、冷却水のヘッダー部を形成する貫通孔72aおよび72b、希溶液および冷媒蒸気の混合流のヘッダー部を形成する貫通孔73a、濃溶液のヘッダー部を形成する貫通孔73bが設けられている。
【0027】
さらに、プレート33には、隔壁となるプレート32を介して、プレート31の吸収流路21aと対向する位置に濃溶液流路22が、吸収流路21bと対向する位置に冷却水流路23がそれぞれ設けられている。このプレート33には同様に、各プレートを積層し一体化した際に、希溶液および冷媒蒸気の混合流のヘッダー部を形成する貫通孔83a、濃溶液のヘッダー部を形成する貫通孔83bが設けられている。
【0028】
これらのプレート31、32、33、32を順番に重ねて1組とし、さらに複数組積層して一体化することにより、1つの吸収器8aが形成される。なお、各プレートを一体化接合する方法としては、例えば拡散溶接やロウ付けが用いられる。拡散溶接は、真空内でプレートの母材の融点より少し低い温度まで昇温し加圧するもので、プレート材料の拡散によって一体化するものである。ロウ付けは、プレートの母材よりも融点の低いロウ材を全ての接合面につけて、真空または不活性雰囲気内でロウ材の融点まで昇温し、ロウ材のみを溶融させて一体化するものである。
【0029】
次に、本発明の上記実施形態の作用について説明する。吸収式ヒートポンプ装置において、溶液熱交換器2から送られた希溶液は、減圧部11で減圧された後、蒸発器7から送られた冷媒蒸気とともに、吸収器導入部93aから吸収器8a内部に流入し、貫通孔73aおよび83aを経由して、各プレート31の吸収流路21aに送られる。ここで、希溶液は冷媒蒸気を吸収し、そのとき発生する吸収熱を、プレート33の濃溶液流路22を流れる濃溶液に回収する。
【0030】
この濃溶液は、溶液ポンプ1により濃溶液導入部91aから吸収器8a内部に送られ、貫通孔61aおよび71aを経由して、各プレート33の濃溶液流路22に送られたものである。濃溶液は、希溶液への冷媒蒸気の吸収熱を回収し、貫通孔71bおよび61bを経由して、濃溶液送出部91bから吸収器8a外部に送出され、発生器3へと送られる。
【0031】
吸収流路21a内で吸収熱を回収され、ある程度吸収の進行した希溶液および冷媒蒸気の混合流は、吸収流路21bへと進み、プレート33の冷却水流路23を流れる冷却水に放熱する。こうしてほぼ全ての冷媒蒸気が希溶液に吸収され、その結果得られた冷媒濃度の高い濃溶液は、貫通孔83bおよび73bを経由して、吸収器送出部93bから吸収器8a外部に送出され、溶液ポンプ1へと送られる。
【0032】
なお、冷却水は、冷却水導入部92aから吸収器8a内部に送られ、貫通孔62aおよび72aを経由して、各プレート33の冷却水流路23に送られたものである。この冷却水は、希溶液への冷媒蒸気の吸収熱を受け、貫通孔72bおよび62bを経由して、冷却水送出部92bから吸収器8a外部に送出される。
【0033】
このように、吸収器8aを、流路を設けたプレート31および33と隔壁となるプレート32とを多数組積層し一体化したいわゆる積層式熱交換器で構成するとともに、吸収熱の回収を行う濃溶液流路22と放熱を行う冷却水流路23とを同一のプレート33上に構成することにより、従来のタンク方式に比べて、吸収器の小型・軽量化が図られ、内容積を低減することができる。
【0034】
また、濃溶液の一部を分岐し精溜器4上部から散布するという簡単な構成で、発生する冷媒蒸気の純度を高め、サイクル性能を向上させることができる。
【0035】
したがって、本発明の第1の実施形態によれば、小型かつ軽量な吸収器を備え、簡単な構成で性能の高い吸収式ヒートポンプ装置を提供することが可能となる。
【0036】
図3は本発明による吸収式ヒートポンプ装置の第2の実施形態であり、その構成を模式的に示したものである。この吸収式ヒートポンプ装置に使用する吸収器としては、図2に示した第1の実施形態の吸収器8aと全く同一のものと考えてよい。
【0037】
第2の実施形態の構成が第1の実施形態と大きく異なるのは、精溜器4の上部に分縮部15を設け、分岐した濃溶液が、非接触で冷媒蒸気との熱交換を行った後に、精溜器4内に散布されるように構成した点である。その他の構成およびその作用については、第1の実施形態と略同一であるので、ここでは説明を省略する。また、吸収器8の詳細な構成およびその作用についても、第1の実施形態と略同一であるので、ここでは説明を省略する。
【0038】
溶液タンク9内の冷媒濃度の高い濃溶液は、溶液ポンプ1により加圧された後、2つに分けられ、主流は吸収器8の吸収熱回収部14へ、分岐流は精溜器4上部の分縮部15へと送られる。
【0039】
精溜器4は、図3に示したように略タンク形状を有し、その上部には円管をコイル状に巻回し分岐した濃溶液の流路となる分縮部15が設けられている。精溜器4は、密度差により気液を分離し、冷媒蒸気を凝縮器5へ、希溶液を溶液熱交換器2へと流出させるものである。ただし、冷媒蒸気は冷媒だけでなく溶媒の蒸気も含んでおり、既に述べたとおり、溶媒蒸気の混入はサイクルの性能劣化の大きな要因となる。
【0040】
そこで、まず分岐させた濃溶液を精溜器4上部の分縮部15に流入させる。この分縮部15内部を流れる比較的低温の濃溶液は、その外部を上昇する冷媒蒸気と非接触の状態で熱交換を行い、冷媒蒸気に含まれる溶媒蒸気を冷却し凝縮させて、冷媒蒸気の純度を高めるとともに、冷媒蒸気から十分な熱回収を行う。第1の実施形態のように、低温の濃溶液と冷媒蒸気とを直接接触させて熱物質交換を行うと、低温の濃溶液に対して冷媒蒸気の一部が吸収され、凝縮器5に送られる冷媒流量が低減する可能性がある。しかしながら、第2の実施形態によれば、構成はやや複雑になるものの、非接触で熱交換を行うため、冷媒流量の低減を回避しつつ冷媒純度を高めることができる。また、分縮器15で熱回収を行った濃溶液は、さらに精溜器4内に散布され、同様に溶媒蒸気を冷却し凝縮させて、冷媒蒸気の純度を高める。
【0041】
このように、濃溶液の一部を分岐し、精溜器4上部の分縮部15で冷媒蒸気と非接触で熱交換を行った後に、精溜器4内部に散布する構成とすることにより、冷媒純度を高めるだけでなく、冷媒流量の低減を回避することができるため、より一層サイクルの性能を向上させることができる。
【0042】
したがって、本発明の第2の実施形態によれば、小型かつ軽量な吸収器を備え、さらに性能の高い吸収式ヒートポンプ装置を提供することが可能となる。
【0043】
図4は本発明による吸収式ヒートポンプ装置の第3の実施形態であり、その構成を模式的に示したものである。第3の実施形態の構成が第1および第2の実施形態と大きく異なるのは、吸収器8の吸収熱回収部14で吸収熱の一部を回収した濃溶液を分岐し、精溜器4内に散布されるように構成した点である。その他の構成およびその作用については、第1および第2の実施形態と略同一であるので、ここでは説明を省略する。
【0044】
溶液タンク9内の冷媒濃度の高い濃溶液は、溶液ポンプ1により加圧された後、吸収器8の吸収熱回収部14へ送られる。吸収熱の一部を回収した濃溶液は、この吸収熱回収部14の途中で2つに分けられ、主流はそのまま吸収熱回収部14を流れ、分岐流は精溜器4上部よりその内部に散布される。
【0045】
精溜器4は、密度差により気液を分離し、冷媒蒸気を凝縮器5へ、希溶液を溶液熱交換器2へと流出させるものである。ただし、冷媒蒸気は冷媒だけでなく溶媒の蒸気も含んでおり、既に述べたとおり、溶媒蒸気の混入はサイクルの性能劣化の大きな要因となる。
【0046】
そこで、吸収熱回収部13で分岐された濃溶液を、精溜器4上部よりその内部に散布させる。この濃溶液は、吸収熱の一部を回収し比較的高温になっているため、冷媒蒸気をほとんど吸収することなく、冷媒蒸気に含まれる溶媒蒸気を冷却し凝縮させて、冷媒蒸気の純度を高める。すなわち、濃溶液と冷媒蒸気とを直接接触させて熱物質交換を行っても、第1の実施形態のような低温の濃溶液に対する冷媒蒸気の吸収はほとんど起こらず、凝縮器5に送られる冷媒流量の低減を回避することができる。
【0047】
このように、吸収熱回収部13で吸収熱の一部を回収した濃溶液の一部を分岐し、精溜器4内部に散布する構成とすることにより、冷媒純度を高めるだけでなく、冷媒流量の低減を回避することができるため、簡単な構成でより一層サイクルの性能を向上させることができる。
【0048】
図5は本発明の第3の実施形態の吸収式ヒートポンプ装置に用いる吸収器8の一実施形態であり、積層式熱交換器を用いた吸収器内部の構成およびその作用が簡潔に説明できるように、各プレートの流路構成を模式的に示したものである。本実施形態の吸収器8bは、吸収流路21aおよび21bをスリット状に構成したプレート31と、隔壁となるプレート32と、濃溶液流路22および冷却水流路23をスリット状に構成したプレート33とを交互に複数組積層し、上下にエンドプレート34および35を設けて一体化したものである。
【0049】
吸収器8bが、第1および第2の実施形態の吸収器8aと異なるのは、プレート33上の濃溶液流路22の途中で濃溶液の一部を分岐させ、吸収器8b外部に取り出すような流路構成とした点である。具体的には、各プレートを積層し一体化した際に、分岐した濃溶液のヘッダー部を形成する貫通孔61cおよび71cを、それぞれプレート31および32に形成し、プレート33上に設けた濃溶液流路22と連通する濃溶液分岐流路81cと連通させている。
【0050】
溶液ポンプ1により濃溶液導入部91aから吸収器8b内部に送られた濃溶液は、貫通孔61aおよび71aを経由して、各プレート33の濃溶液流路22に送られる。この濃溶液は、希溶液への冷媒蒸気の吸収熱を回収し沸点以下の比較的高温となった段階で、その一部が濃溶液分岐流路81cへと分岐され、貫通孔71cおよび61cを経由して、分岐濃溶液送出部91cから吸収器8a外部に送出され、精溜器4へと送られる。この分岐した比較的高温の濃溶液を用いて、先に述べた通り、精溜器4における冷媒純度の向上を行う。一方、主流となる濃溶液は、さらに濃溶液流路22を進み、吸収熱を十分に回収して冷媒蒸気を発生し気液2相の状態で、貫通孔71bおよび61bを経由し、濃溶液送出部91bから発生器3へと送られる。
【0051】
濃溶液の分岐量は、分岐濃溶液送出部91cに続く分岐キャピ12により所定の量に設定される。ただし、吸収熱の回収を行い沸点以上の温度となった濃溶液を分岐させると、濃溶液は気液2相の状態でこの分岐キャピ12に流入することになり、そこでの圧力損失の変動が激しくなる。分岐キャピ12における圧力損失の変動は、濃溶液の主流および分岐流の流量の変動を招き、結果的に安定したサイクルの形成を困難にする。よって、沸点以下の比較的高温となった段階で、濃溶液が液状態の単相流で分岐され、分岐キャピ12を通じて精溜器4に送られるように、濃溶液分岐流路81cを設置することが望ましい。
【0052】
吸収器8bの他の部分の構成および作用については、第1の実施形態で説明した吸収器8aと略同一であるので、ここでは省略する。
【0053】
したがって、本発明の第3の実施形態によれば、小型かつ軽量な吸収器を備え、簡単な構成でさらに性能の高い吸収式ヒートポンプ装置を提供することが可能となる。
【0054】
なお、本発明の各実施形態では、希溶液と冷媒蒸気を混合した後に吸収器内に流入させるとしたが、希溶液と冷媒蒸気とをそれぞれ独立に吸収器内部に流入させ、吸収流路内で混合させるような流路構成としても良い。
【0055】
また、プレート31および33の下面に位置し隔壁となるプレート32は、全て同一形状の貫通孔を有するものとしたが、流路構成に応じて異なる形状としても良い。
【0056】
さらに、濃溶液にその顕熱を回収させた希溶液を、吸収器外部の減圧部で減圧させた後に、再び吸収器内部に流入させるとしたが、吸収器内部に微細流路からなるキャピラリ部を設けることにより、減圧部を吸収器内部に一体的に設けるような流路構成とすることも容易である。
【0057】
また、蒸発器からの冷媒蒸気を2つに分岐し、それぞれ吸収器の吸収流路21aおよび吸収流路21bへ流入させることにより、吸収器の圧力損失を低減させ、吸収特性を向上させるような流路構成とすることも可能である。
【0058】
さらに、希溶液から濃溶液へ熱回収を行う溶液熱交換器2と、濃溶液への吸収熱回収部12と、冷却水への吸収熱放熱部13とを、積層式熱交換器を用いて一体的に構成することにより、より一層の小型・軽量化を図ることも可能である。
【0059】
【発明の効果】
以上のように、本発明によれば、小型かつ軽量で安全性に優れるとともに、能力が大きく効率の高い吸収式ヒートポンプ装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の吸収式ヒートポンプ装置の構成図
【図2】本発明の第1の実施形態の吸収式ヒートポンプ装置に用いる吸収器の斜視図
【図3】本発明の第2の実施形態の吸収式ヒートポンプ装置の構成図
【図4】本発明の第3の実施形態の吸収式ヒートポンプ装置の構成図
【図5】本発明の第3の実施形態の吸収式ヒートポンプ装置に用いる吸収器の斜視図
【図6】従来の吸収式ヒートポンプ装置の構成図
【符号の説明】
3 発生器
4 精溜器
5 凝縮器
7 蒸発器
8 吸収器
21a、21b 吸収流路
22 濃溶液流路
23 冷却水流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption heat pump apparatus that obtains cold using heat.
[0002]
[Prior art]
The configuration of a conventional absorption heat pump apparatus is shown in FIG. The absorption heat pump apparatus includes a solution pump 41, a generator 43, a condenser 45, an expansion valve 46, an evaporator 47, an absorber 48, and a decompression unit 51. Further, the generator 43 includes a dilute solution heat recovery unit 56, a GAX generation unit 57, and partial reduction units 58 and 59, and the absorber 48 includes an absorption heat radiation unit 53, an absorption heat recovery unit 54, and a GAX absorption unit 55. Is done.
[0003]
The concentrated solution having a high refrigerant concentration accumulated in the lower part of the absorber 48 is pressurized by the solution pump 41, and then a part of the absorbed heat is recovered by the absorption heat recovery part 54 of the absorber 48, and the temperature is raised. Furthermore, after heat recovery is performed by the partial reduction section 58 of the generator 43, the heat is dispersed in the generator 43. After that, when flowing down the generator 43, the refrigerant 43 receives heat from the refrigerant vapor rising from the lower part of the generator 43, and is heated by the secondary high-temperature medium that has recovered the absorbed heat by the GAX absorption portion 55 of the absorber 43. Generate steam. The secondary high-temperature medium is a medium that is circulated between the absorber 48 and the generator 43 by the circulation pump 52. The concentrated solution having a reduced concentration due to the generation of the refrigerant vapor is further heated by the combustion heat from the burner 50 at the lower portion of the generator 43 to generate the refrigerant vapor.
[0004]
The dilute solution having a reduced refrigerant concentration enters the dilute solution heat recovery unit 56 from the lower part of the generator 43, rises in the generator 43 while discarding the sensible heat to the outside of the tube, and is depressurized by, for example, the depressurization unit 51 formed of a capillary tube. And then sprayed from the upper part of the absorber 48.
[0005]
On the other hand, the refrigerant vapor rising in the generator 43 includes not only the refrigerant but also the solvent vapor. Therefore, the solvent vapor is cooled and condensed by the concentrated solution and the secondary cooling water in the partial compression sections 58 and 59, and the high-purity refrigerant vapor is supplied to the condenser 45. The high-purity refrigerant vapor exiting the generator 43 is liquefied by applying heat of condensation to the cooling water in the condenser 45. Thereafter, the pressure is reduced by the expansion valve 46 and the temperature becomes low, flows into the evaporator 47, evaporates by receiving heat from the outside, and returns to the lower part of the absorber 48.
[0006]
In the absorber 48, the refrigerant vapor from the evaporator 47 is absorbed by the dilute solution from the generator 43, and the absorbed heat generated at that time is sequentially recovered from the high temperature side to the secondary high-temperature medium by the GAX absorber 55. The concentrated solution is collected by the unit 54 and is radiated to the outside by the cooling water at the absorption heat radiation unit 53. The concentrated solution having a high refrigerant concentration in this manner accumulates in the lower part of the absorber 48 and flows out to the solution pump 41.
[0007]
As the absorber 48 and the generator 43 used in the conventional absorption heat pump apparatus that recovers the absorbed heat, a tank system as shown in FIG. 6 is generally used. The absorber 48 is provided with a GAX absorption part 55 and an absorption heat recovery part 54 that serve as a flow path for the secondary high-temperature medium and concentrated solution by winding a circular pipe in a coil shape at the upper part of the tank. Is provided in the form of a coil, and an absorption heat radiating portion 53 serving as a cooling water flow path is provided. Since the generator 43 has substantially the same configuration, the description thereof is omitted here.
[0008]
In this way, by collecting the absorbed heat in the absorber 48 in the concentrated solution, the combustion heat given by the generator 43 is reduced, the coefficient of performance of the cycle is improved, and the efficiency of the absorption heat pump device is improved. Is.
[0009]
[Problems to be solved by the invention]
However, such a conventional absorption heat pump apparatus has the following problems.
[0010]
That is, if a tank system is used for an absorber or a generator, it is structurally large and heavy, so it is not necessarily suitable for a device that requires a small size and light weight especially for home use. Further, since the internal volume is increased, the amount of refrigerant charged is increased, which is disadvantageous from the viewpoint of cost and safety.
[0011]
Further, since both the absorber and the generator are flow-down types, the lower part of the generator is hot and the upper part of the absorber is hot. Therefore, in order to recover the absorbed heat, it is necessary to change the vertical direction using the secondary high-temperature medium, and the installation of the piping and the circulation pump for that purpose has a problem that the apparatus becomes complicated and large.
[0012]
An object of the present invention is to provide an absorption heat pump device having a simple configuration and high performance, including a small and lightweight absorber and generator based on the above-described problems.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an absorption heat pump apparatus having at least a generator, a rectifier, a condenser, an evaporator, and an absorber, wherein the absorber is a mixture of refrigerant vapor and dilute solution. A plate A in which an absorption channel as a flow channel is formed in a slit shape, a plate B as a partition, and a concentrated solution channel and a cooling water channel through the partition at positions facing the absorption channel The plate C formed in a shape has a structure in which a plurality of sets are laminated and integrated,
(1) A part of the concentrated solution sent to the concentrated solution flow path of the absorber is branched and sprayed from the upper part of the rectifier, or (2) the rectifier has a partial reduction part, A part of the concentrated solution to be sent to the solution channel is branched and sent to the fractionator of the rectifier, or (3) a concentrated solution branch channel is provided in a part of the concentrated solution channel of the absorber. The concentrated solution from the solution branch channel is sprayed from the upper part of the rectifier.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of an absorption heat pump apparatus according to the present invention, and schematically shows the configuration thereof. The absorption heat pump apparatus according to this embodiment includes a solution pump 1, a solution heat exchanger 2, a generator 3, a rectifier 4, a condenser 5, an expansion valve 6, an evaporator 7, an absorber 8, and a solution tank 9. Is done. Furthermore, the absorber 8 is configured by integrally forming the absorption heat radiation unit 13 and the absorption heat recovery unit 14.
[0015]
The concentrated solution having a high refrigerant concentration in the solution tank 9 is pressurized by the solution pump 1 and divided into two, and the main flow is sent to the absorber 8 and the branch flow is sent to the upper portion of the rectifier 4. The solution pump 1 is configured by, for example, a positive displacement pump using a diaphragm or a gear pump using a trochoid gear or the like.
[0016]
The main stream side of the concentrated solution receives the heat of absorption by the absorption heat recovery unit 14 of the absorber 8 and rises in temperature to generate refrigerant vapor. Further, the solution heat exchanger 2 receives the sensible heat of the dilute solution having a low refrigerant concentration flowing out from the lower portion of the rectifier 4 and raises the temperature. This concentrated solution is heated from the outside by the generator 3 to further generate refrigerant vapor, and flows into the lower part of the rectifier 4 in a gas-liquid two-phase state.
[0017]
The generator 3 is a so-called once-through generator, and heats the concentrated solution in the pipe by a burner 10 using city gas or the like. By using the once-through generator 3, the generator can be made smaller and lighter than the conventional tank system, and the internal volume can be reduced.
[0018]
The rectifier 4 has a substantially tank shape as shown in FIG. 1, separates gas and liquid due to density difference, passes the refrigerant vapor to the condenser 5, and supplies the diluted solution having a low refrigerant concentration to the solution heat exchanger. Spill to 2. Here, since the refrigerant | coolant vapor | steam from the generator 3 is high temperature, it contains not only a refrigerant | coolant but the vapor | steam of a solvent. The mixing of the solvent vapor, for example, not only makes it impossible to increase the evaporation temperature and obtain the necessary cold heat, but also reduces the latent heat of vaporization (refrigeration effect) in the evaporator 7 and becomes a major factor in reducing the cycle efficiency.
[0019]
Therefore, by dispersing the branched relatively low-temperature concentrated solution from the upper part of the rectifier 4, the concentrated solution and the refrigerant vapor are brought into direct contact with each other to exchange heat and heat, and the solvent vapor contained in the refrigerant vapor is cooled. Condense. As a result, high-purity refrigerant vapor is supplied to the condenser 5. The branch amount of the concentrated solution is set to a predetermined amount by the branch cap 12 made of, for example, a capillary tube.
[0020]
The dilute solution that has exited the rectifier 4 is cooled by applying its sensible heat to the concentrated solution in the solution heat exchanger 2, and is depressurized by the decompression unit 11 formed of, for example, a capillary tube, and returns to the absorber 8. On the other hand, the refrigerant vapor exiting the rectifier 4 is liquefied by the condenser 5 giving heat of condensation to the cooling water. Thereafter, the pressure is reduced by the expansion valve 6, the temperature becomes low, flows into the evaporator 7, receives heat from the outside and evaporates, and then returns to the absorber 8.
[0021]
The diluted diluted solution and the refrigerant vapor from the evaporator 7 are mixed with each other and flow into the absorption heat recovery unit 14 of the absorber 8. The absorbed heat generated at this time is recovered in the main stream of the concentrated solution that flows oppositely. The mixed flow of the diluted solution and the refrigerant vapor that has been absorbed further flows into the absorption heat radiation unit 13. The absorbed heat generated at this time is radiated to the outside by the cooling water flowing oppositely, and finally almost all the refrigerant vapor is absorbed by the dilute solution. The resulting concentrated solution having a high refrigerant concentration is discharged to the solution pump 1.
[0022]
Thus, by branching a part of the concentrated solution and spraying it from the upper part of the rectifier 4, the purity of the generated refrigerant vapor can be increased and the cycle performance can be improved. Further, the absorption heat is recovered into a concentrated solution by the absorption heat recovery unit 14 of the absorber 8, thereby reducing the combustion heat given by the generator 3, improving the coefficient of performance of the cycle, and improving the efficiency of the absorption heat pump device. Can be achieved.
[0023]
FIG. 2 is an embodiment of the absorber 8 used in the absorption heat pump apparatus according to the first embodiment of the present invention, and the configuration and operation of the absorber using the stacked heat exchanger can be briefly described. Thus, the flow path configuration of each plate is schematically shown.
[0024]
The absorber 8a of the present embodiment includes a plate 31 in which the absorption channels 21a and 21b are configured in a slit shape, a plate 32 that is a partition wall, and a plate 33 in which the concentrated solution channel 22 and the cooling water channel 23 are configured in a slit shape. Are stacked alternately, and end plates 34 and 35 are provided on the upper and lower sides and integrated. In addition, the end plate 34 is provided with an introduction portion made of, for example, a circular tube for connecting each component of the absorption heat pump apparatus and the absorber 8a.
[0025]
The configuration of each plate will be specifically described. First, the plate 31 is provided with absorption channels 21a and 21b. Furthermore, when the plates are stacked and integrated, through holes 61a and 61b that form the header portion of the concentrated solution and through holes 62a and 62b that form the header portion of the cooling water are provided.
[0026]
Further, the plate 32 serving as a partition wall when performing heat exchange has through-holes 71a and 71b that form header portions of concentrated solution and through holes that form header portions of cooling water when the plates are laminated and integrated. Holes 72a and 72b, a through hole 73a that forms a header portion of a mixed flow of dilute solution and refrigerant vapor, and a through hole 73b that forms a header portion of a concentrated solution are provided.
[0027]
Further, the plate 33 has a concentrated solution flow path 22 at a position facing the absorption flow path 21a of the plate 31 and a cooling water flow path 23 at a position facing the absorption flow path 21b through the plate 32 serving as a partition wall. Is provided. Similarly, the plate 33 is provided with a through hole 83a that forms a header portion of a mixed flow of dilute solution and refrigerant vapor and a through hole 83b that forms a header portion of a concentrated solution when the plates are laminated and integrated. It has been.
[0028]
These absorbers 31, 32, 33, and 32 are sequentially stacked to form one set, and a plurality of sets are stacked and integrated to form one absorber 8 a. For example, diffusion welding or brazing is used as a method for integrally joining the plates. In diffusion welding, the temperature is raised to a temperature slightly lower than the melting point of the base material of the plate in a vacuum and the pressure is applied, and the plates are integrated by diffusion of the plate material. Brazing is a method in which a brazing material having a melting point lower than that of the base material of the plate is attached to all the joining surfaces, the temperature is raised to the melting point of the brazing material in a vacuum or an inert atmosphere, and only the brazing material is melted and integrated. It is.
[0029]
Next, the operation of the above embodiment of the present invention will be described. In the absorption heat pump device, the dilute solution sent from the solution heat exchanger 2 is decompressed by the decompression unit 11, and then, together with the refrigerant vapor sent from the evaporator 7, from the absorber introduction unit 93a into the absorber 8a. It flows in and is sent to the absorption flow path 21a of each plate 31 via the through holes 73a and 83a. Here, the dilute solution absorbs the refrigerant vapor, and the heat of absorption generated at that time is collected into a concentrated solution flowing through the concentrated solution flow path 22 of the plate 33.
[0030]
This concentrated solution is sent from the concentrated solution introduction part 91a to the inside of the absorber 8a by the solution pump 1, and sent to the concentrated solution flow path 22 of each plate 33 via the through holes 61a and 71a. The concentrated solution collects the heat of absorption of the refrigerant vapor into the diluted solution, and is sent out of the absorber 8a from the concentrated solution delivery part 91b via the through holes 71b and 61b and sent to the generator 3.
[0031]
The mixed flow of the dilute solution and the refrigerant vapor that has been absorbed in the absorption flow path 21a and has absorbed to some extent proceeds to the absorption flow path 21b and dissipates heat to the cooling water flowing through the cooling water flow path 23 of the plate 33. In this way, almost all the refrigerant vapor is absorbed by the dilute solution, and the resulting concentrated solution having a high refrigerant concentration is sent from the absorber sending portion 93b to the outside of the absorber 8a via the through holes 83b and 73b. It is sent to the solution pump 1.
[0032]
The cooling water is sent from the cooling water introduction part 92a to the inside of the absorber 8a, and sent to the cooling water flow path 23 of each plate 33 through the through holes 62a and 72a. This cooling water receives the heat of absorption of the refrigerant vapor into the dilute solution, and is sent out of the absorber 8a from the cooling water sending part 92b via the through holes 72b and 62b.
[0033]
As described above, the absorber 8a is constituted by a so-called laminated heat exchanger in which a large number of plates 31 and 33 provided with flow paths and a plate 32 serving as a partition are laminated and integrated, and the absorbed heat is recovered. By configuring the concentrated solution flow path 22 and the cooling water flow path 23 for radiating heat on the same plate 33, the absorber can be made smaller and lighter and the internal volume can be reduced compared to the conventional tank system. be able to.
[0034]
Further, with a simple configuration in which a part of the concentrated solution is branched and sprayed from the upper part of the rectifier 4, the purity of the generated refrigerant vapor can be increased and the cycle performance can be improved.
[0035]
Therefore, according to the first embodiment of the present invention, it is possible to provide an absorption heat pump device having a small and lightweight absorber and having a high performance with a simple configuration.
[0036]
FIG. 3 shows a second embodiment of the absorption heat pump apparatus according to the present invention, and schematically shows the configuration thereof. The absorber used in this absorption heat pump apparatus may be considered to be exactly the same as the absorber 8a of the first embodiment shown in FIG.
[0037]
The configuration of the second embodiment is significantly different from that of the first embodiment. A partial pressure reduction unit 15 is provided at the upper part of the rectifier 4, and the branched concentrated solution exchanges heat with the refrigerant vapor in a non-contact manner. After that, it is configured to be sprayed into the rectifier 4. Other configurations and operations thereof are substantially the same as those in the first embodiment, and thus description thereof is omitted here. Further, the detailed configuration and operation of the absorber 8 are also substantially the same as those in the first embodiment, and thus description thereof is omitted here.
[0038]
The concentrated solution having a high refrigerant concentration in the solution tank 9 is pressurized by the solution pump 1 and divided into two, the main flow is to the absorption heat recovery unit 14 of the absorber 8, and the branch flow is the upper part of the rectifier 4. To the partial reduction unit 15.
[0039]
As shown in FIG. 3, the rectifier 4 has a substantially tank shape, and a partial contraction portion 15 serving as a concentrated solution flow path is formed by winding a circular tube in a coil shape on the upper portion thereof. . The rectifier 4 separates the gas and liquid by the density difference, and causes the refrigerant vapor to flow to the condenser 5 and the dilute solution to flow to the solution heat exchanger 2. However, the refrigerant vapor includes not only the refrigerant but also the solvent vapor, and as described above, the incorporation of the solvent vapor is a major factor in the deterioration of the cycle performance.
[0040]
Therefore, first, the branched concentrated solution is caused to flow into the partial reduction section 15 at the upper part of the rectifier 4. The relatively low temperature concentrated solution flowing inside the partial contraction unit 15 exchanges heat in a non-contact state with the refrigerant vapor rising outside, and cools and condenses the solvent vapor contained in the refrigerant vapor to produce refrigerant vapor. And sufficient heat recovery from the refrigerant vapor. As in the first embodiment, when hot mass exchange is performed by bringing a low-temperature concentrated solution and refrigerant vapor into direct contact with each other, a part of the refrigerant vapor is absorbed by the low-temperature concentrated solution and sent to the condenser 5. There is a possibility that the refrigerant flow rate to be reduced. However, according to the second embodiment, although the configuration is somewhat complicated, heat exchange is performed in a non-contact manner, and therefore the purity of the refrigerant can be increased while avoiding the reduction of the refrigerant flow rate. In addition, the concentrated solution that has been heat-recovered by the partial condenser 15 is further dispersed in the rectifier 4, and similarly, the solvent vapor is cooled and condensed to increase the purity of the refrigerant vapor.
[0041]
In this way, a part of the concentrated solution is branched, and after heat exchange is performed in a non-contact manner with the refrigerant vapor in the partial reduction unit 15 at the upper part of the rectifier 4, it is sprayed inside the rectifier 4. In addition to increasing the refrigerant purity, it is possible to avoid a decrease in the refrigerant flow rate, and thus the cycle performance can be further improved.
[0042]
Therefore, according to the second embodiment of the present invention, it is possible to provide an absorption heat pump device having a small and lightweight absorber and having higher performance.
[0043]
FIG. 4 shows a third embodiment of the absorption heat pump apparatus according to the present invention, and schematically shows the configuration thereof. The configuration of the third embodiment is greatly different from that of the first and second embodiments. The concentrated solution obtained by collecting a part of the absorbed heat by the absorbed heat recovery unit 14 of the absorber 8 is branched, and the rectifier 4 It is the point which comprised so that it might be scattered inside. Other configurations and operations thereof are substantially the same as those of the first and second embodiments, and thus description thereof is omitted here.
[0044]
The concentrated solution having a high refrigerant concentration in the solution tank 9 is pressurized by the solution pump 1 and then sent to the absorption heat recovery unit 14 of the absorber 8. The concentrated solution from which a part of the absorbed heat has been recovered is divided into two in the middle of the absorbed heat recovery section 14, the main stream flows through the absorption heat recovery section 14 as it is, and the branch flow enters the interior from the upper part of the rectifier 4. Be sprayed.
[0045]
The rectifier 4 separates the gas and liquid by the density difference, and causes the refrigerant vapor to flow to the condenser 5 and the dilute solution to flow to the solution heat exchanger 2. However, the refrigerant vapor includes not only the refrigerant but also the solvent vapor, and as described above, the incorporation of the solvent vapor is a major factor in the deterioration of the cycle performance.
[0046]
Therefore, the concentrated solution branched by the absorption heat recovery unit 13 is sprayed into the interior of the rectifier 4 from above. This concentrated solution recovers a part of the heat of absorption and has a relatively high temperature, so that the solvent vapor contained in the refrigerant vapor is cooled and condensed without substantially absorbing the refrigerant vapor, thereby improving the purity of the refrigerant vapor. Increase. That is, even when the concentrated solution and the refrigerant vapor are brought into direct contact to exchange heat and mass, the refrigerant vapor is hardly absorbed by the low-temperature concentrated solution as in the first embodiment, and the refrigerant sent to the condenser 5 Reduction of the flow rate can be avoided.
[0047]
In this way, a part of the concentrated solution in which a part of the absorbed heat is recovered by the absorption heat recovery unit 13 is branched and dispersed inside the rectifier 4, thereby not only improving the purity of the refrigerant but also the refrigerant. Since reduction of the flow rate can be avoided, cycle performance can be further improved with a simple configuration.
[0048]
FIG. 5 shows an embodiment of the absorber 8 used in the absorption heat pump apparatus according to the third embodiment of the present invention, so that the configuration and operation of the absorber using the stacked heat exchanger can be briefly explained. Fig. 6 schematically shows the flow path configuration of each plate. The absorber 8b of this embodiment includes a plate 31 in which the absorption channels 21a and 21b are configured in a slit shape, a plate 32 that is a partition wall, and a plate 33 in which the concentrated solution channel 22 and the cooling water channel 23 are configured in a slit shape. Are stacked alternately, and end plates 34 and 35 are provided on the upper and lower sides and integrated.
[0049]
The absorber 8b differs from the absorber 8a of the first and second embodiments in that a part of the concentrated solution is branched in the middle of the concentrated solution flow path 22 on the plate 33 and taken out of the absorber 8b. It is the point which made the simple flow path structure. Specifically, when the plates are stacked and integrated, through-holes 61c and 71c that form the header portion of the branched concentrated solution are formed in the plates 31 and 32, respectively, and the concentrated solution provided on the plate 33 The concentrated solution branch flow path 81 c communicating with the flow path 22 is communicated.
[0050]
The concentrated solution sent from the concentrated solution introduction part 91a to the inside of the absorber 8b by the solution pump 1 is sent to the concentrated solution flow path 22 of each plate 33 via the through holes 61a and 71a. This concentrated solution recovers the heat of absorption of the refrigerant vapor into the diluted solution and reaches a relatively high temperature equal to or lower than the boiling point, and a part of the concentrated solution is branched into the concentrated solution branch flow path 81c, through the through holes 71c and 61c. Via the branched concentrated solution delivery unit 91c, the solution is sent to the outside of the absorber 8a and sent to the rectifier 4. Using this branched relatively high temperature concentrated solution, the refrigerant purity in the rectifier 4 is improved as described above. On the other hand, the concentrated solution that becomes the main stream further proceeds through the concentrated solution flow path 22 to sufficiently recover the absorption heat, generate refrigerant vapor, and in a gas-liquid two-phase state, pass through the through holes 71b and 61b, and concentrate the concentrated solution. It is sent from the sending unit 91b to the generator 3.
[0051]
The branch amount of the concentrated solution is set to a predetermined amount by the branch cap 12 following the branch concentrated solution delivery unit 91c. However, if the concentrated solution whose temperature is higher than the boiling point is recovered by recovering the absorption heat, the concentrated solution flows into the branch cap 12 in a gas-liquid two-phase state, and the pressure loss fluctuations there Become intense. The fluctuation of the pressure loss in the branch cap 12 leads to the fluctuation of the flow of the concentrated solution main flow and the branch flow, and consequently makes it difficult to form a stable cycle. Therefore, the concentrated solution branch flow path 81c is installed so that the concentrated solution is branched by a single-phase flow in a liquid state and sent to the rectifier 4 through the branch cap 12 at a stage where the temperature becomes relatively high below the boiling point. It is desirable.
[0052]
Since the configuration and operation of other parts of the absorber 8b are substantially the same as those of the absorber 8a described in the first embodiment, they are omitted here.
[0053]
Therefore, according to the third embodiment of the present invention, it is possible to provide an absorption heat pump device that includes a small and lightweight absorber and has a higher performance with a simple configuration.
[0054]
In each embodiment of the present invention, the dilute solution and the refrigerant vapor are mixed and then flowed into the absorber. However, the dilute solution and the refrigerant vapor are independently flowed into the absorber, and the absorption channel It is good also as a flow-path structure which is made to mix by.
[0055]
Further, the plates 32 located on the lower surfaces of the plates 31 and 33 and serving as the partition walls all have the same shape of the through holes, but may have different shapes depending on the flow path configuration.
[0056]
Furthermore, the dilute solution in which the sensible heat was recovered in the concentrated solution was decompressed by the decompression unit outside the absorber, and then flowed again into the absorber. It is easy to provide a flow path configuration in which the decompression unit is integrally provided inside the absorber.
[0057]
Further, the refrigerant vapor from the evaporator is branched into two, and flows into the absorption channel 21a and the absorption channel 21b of the absorber, respectively, thereby reducing the pressure loss of the absorber and improving the absorption characteristics. It is also possible to adopt a flow path configuration.
[0058]
Furthermore, the solution heat exchanger 2 that recovers heat from the dilute solution to the concentrated solution, the absorption heat recovery unit 12 to the concentrated solution, and the absorption heat radiation unit 13 to the cooling water are combined using a stacked heat exchanger. It is possible to further reduce the size and weight by integrally configuring.
[0059]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an absorption heat pump device that is small, light and excellent in safety and has a large capacity and high efficiency.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an absorption heat pump apparatus according to a first embodiment of the present invention. FIG. 2 is a perspective view of an absorber used in the absorption heat pump apparatus according to the first embodiment of the present invention. Fig. 4 is a block diagram of an absorption heat pump device according to a second embodiment of the present invention. Fig. 4 is a block diagram of an absorption heat pump device according to a third embodiment of the present invention. Fig. 5 is an absorption heat pump according to a third embodiment of the present invention. Fig. 6 is a perspective view of an absorber used in the apparatus. Fig. 6 is a block diagram of a conventional absorption heat pump apparatus.
3 generator 4 rectifier 5 condenser 7 evaporator 8 absorbers 21a and 21b absorption channel 22 concentrated solution channel 23 cooling water channel

Claims (4)

少なくとも発生器、精溜器、凝縮器、蒸発器、吸収器を有する吸収式ヒートポンプ装置であって、前記吸収器が、冷媒蒸気と希溶液との混合流の流路となる吸収流路をスリット状に形成したプレートAと、隔壁となるプレートBと、前記隔壁を介して前記吸収流路と対向する位置に濃溶液流路および冷却水流路をスリット状に形成したプレートCとを、複数組積層し一体化した構造を有するものであって、前記吸収器の濃溶液流路に送られる濃溶液の一部を分岐し、前記精溜器の上部から散布することを特徴とする吸収式ヒートポンプ装置。An absorption heat pump apparatus having at least a generator, a rectifier, a condenser, an evaporator, and an absorber, wherein the absorber slits an absorption channel that serves as a channel for a mixed flow of refrigerant vapor and a dilute solution. A plurality of sets of plate A formed in a shape, plate B serving as a partition, and plate C formed with a concentrated solution channel and a cooling water channel formed in a slit shape at a position facing the absorption channel via the partition An absorption heat pump having a laminated and integrated structure, wherein a part of the concentrated solution sent to the concentrated solution flow path of the absorber is branched and sprayed from the upper part of the rectifier apparatus. 少なくとも発生器、精溜器、凝縮器、蒸発器、吸収器を有する吸収式ヒートポンプ装置であって、前記吸収器が、冷媒蒸気と希溶液との混合流の流路となる吸収流路をスリット状に形成したプレートAと、隔壁となるプレートBと、前記隔壁を介して前記吸収流路と対向する位置に濃溶液流路および冷却水流路をスリット状に形成したプレートCとを、複数組積層し一体化した構造を有するものであって、前記精溜器が分縮部を有し、前記吸収器の濃溶液流路に送られる濃溶液の一部を分岐し、前記精溜器の分縮部に送ることを特徴とする吸収式ヒートポンプ装置。An absorption heat pump apparatus having at least a generator, a rectifier, a condenser, an evaporator, and an absorber, wherein the absorber slits an absorption channel that serves as a channel for a mixed flow of refrigerant vapor and a dilute solution. A plurality of sets of plate A formed in a shape, plate B serving as a partition, and plate C formed with a concentrated solution channel and a cooling water channel formed in a slit shape at a position facing the absorption channel via the partition The rectifier has a partial condensing part, and branches a part of the concentrated solution sent to the concentrated solution flow path of the absorber, Absorption heat pump device characterized by being sent to a partial contraction unit. 少なくとも発生器、精溜器、凝縮器、蒸発器、吸収器を有する吸収式ヒートポンプ装置であって、前記吸収器が、冷媒蒸気と希溶液との混合流の流路となる吸収流路をスリット状に形成したプレートAと、隔壁となるプレートBと、前記隔壁を介して前記吸収流路と対向する位置に濃溶液流路および冷却水流路をスリット状に形成したプレートCとを、複数組積層し一体化した構造を有するものであって、前記吸収器の濃溶液流路の一部に濃溶液分岐流路を設け、この濃溶液分岐流路からの濃溶液を前記精溜器の上部から散布することを特徴とする吸収式ヒートポンプ装置。An absorption heat pump apparatus having at least a generator, a rectifier, a condenser, an evaporator, and an absorber, wherein the absorber slits an absorption channel that serves as a channel for a mixed flow of refrigerant vapor and a dilute solution. A plurality of sets of plate A formed in a shape, plate B serving as a partition, and plate C formed with a concentrated solution channel and a cooling water channel formed in a slit shape at a position facing the absorption channel via the partition It has a laminated and integrated structure, and is provided with a concentrated solution branch channel in a part of the concentrated solution channel of the absorber, and the concentrated solution from this concentrated solution branch channel is placed at the top of the rectifier. Absorption heat pump device, characterized by being sprayed from. 吸収器の濃溶液分岐流路からの濃溶液がその沸点以下の状態にあるように、前記吸収器の濃溶液流路の一部に前記濃溶液分岐流路を構成したことを特徴とする請求項3記載の吸収式ヒートポンプ装置。The concentrated solution branching channel is configured in a part of the concentrated solution channel of the absorber so that the concentrated solution from the concentrated solution branching channel of the absorber is in a state below its boiling point. Item 6. The absorption heat pump device according to Item 3.
JP12715596A 1996-05-22 1996-05-22 Absorption heat pump device Expired - Fee Related JP3716041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12715596A JP3716041B2 (en) 1996-05-22 1996-05-22 Absorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12715596A JP3716041B2 (en) 1996-05-22 1996-05-22 Absorption heat pump device

Publications (2)

Publication Number Publication Date
JPH09310934A JPH09310934A (en) 1997-12-02
JP3716041B2 true JP3716041B2 (en) 2005-11-16

Family

ID=14953000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12715596A Expired - Fee Related JP3716041B2 (en) 1996-05-22 1996-05-22 Absorption heat pump device

Country Status (1)

Country Link
JP (1) JP3716041B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003286821A1 (en) * 2002-11-01 2004-06-07 Cooligy, Inc. Optimal spreader system, device and method for fluid cooled micro-scaled heat exchange
ATA5222004A (en) * 2004-03-25 2005-09-15 Martin Dipl Ing Hadlauer COMPRESSION / ABSORPTION SYSTEM
JP4720558B2 (en) * 2006-03-15 2011-07-13 ダイキン工業株式会社 Absorption refrigerator generator
WO2010014878A1 (en) * 2008-07-31 2010-02-04 Georgia Tech Research Corporation Microscale heat or heat and mass transfer system

Also Published As

Publication number Publication date
JPH09310934A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JP3716041B2 (en) Absorption heat pump device
JP2000337728A (en) Absorption type heat pump apparatus
JPH09280692A (en) Plate type evaporating and absorbing device for absorption refrigerating machine
JP2002022309A (en) Absorption type refrigerating machine
JP3650447B2 (en) Absorption heat pump device
JP3345975B2 (en) Absorption type heat pump device
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP4266697B2 (en) Absorption refrigerator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP2003254683A (en) Heat exchanger and absorption refrigerating machine using it
JP2004144394A (en) Multi-stage absorption freezing machine and freezing system
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JP3141728B2 (en) Refrigerant unit and outdoor unit of absorption heat pump
JP3785737B2 (en) Refrigeration equipment
JP3717234B2 (en) Plate type low temperature regenerator for double effect absorption refrigerator.
JP3489934B2 (en) Evaporator in absorption refrigerator
KR100229318B1 (en) Precooler system of absorption type
JP3277349B2 (en) Evaporation absorber for absorption refrigerator
JP3492590B2 (en) Absorption refrigerator / cooling / heating machine
JP2004011928A (en) Absorption refrigerator
JP3486382B2 (en) Absorption refrigerator
JP2004053085A (en) Triple effect absorbing type freezing device
JPH09264634A (en) Absorption refrigerating machine
JPH0354377Y2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees