JP3715004B2 - Treatment of acrylamide-containing wastewater - Google Patents
Treatment of acrylamide-containing wastewater Download PDFInfo
- Publication number
- JP3715004B2 JP3715004B2 JP27068795A JP27068795A JP3715004B2 JP 3715004 B2 JP3715004 B2 JP 3715004B2 JP 27068795 A JP27068795 A JP 27068795A JP 27068795 A JP27068795 A JP 27068795A JP 3715004 B2 JP3715004 B2 JP 3715004B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylamide
- added
- polymer
- polymerization
- precipitate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Removal Of Specific Substances (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、アクリルアミドを含有した排水の、有利な処理法に関する。
【0002】
【従来の技術】
アクリルアミドを含んだ排水が排出される工業プロセスは多いが 取り分け、リッター反応と言われるアクリロニトリル、オレフィン(あるいは対応するアルコール)、濃硫酸からアクリロイルメチルプロパンスルホン酸、ダイアセトンアクリルアミド、N−イソプロピルアクリルアミド等のN−置換アクリルアミド誘導体を製造するプロセスでは、数%という濃厚なアクリルアミドを含んだ排水が出る。
かかるアクリルアミド含有排水の処理法としては、例えば特公昭55−50477号公報の様に、活性汚泥による生物化学的処理によるものが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、生物化学処理法は維持管理が面倒であり、また塩濃度が高い場合には大希釈が必要となる等、濃厚な排水の処理法としては適切とはいい難い。
本発明は、これら欠点のない、化学プラントで扱い易い重合、加水分解処理等のプロセスの組み合わせによるアクリルアミド含有排水の処理法を提供することを課題とする。
【0004】
【課題を解決する手段】
本発明者らは、かかる課題を解決するため鋭意研究の結果、アクリルアミド含有排水にアルカリを加え加熱により部分的に加水分解し、次いで酸を加え弱酸性にした後、鉄−過酸化水素水のようなレドックス重合触媒により重合させ、生成したポリマーにカルシウム、Mg等のイオンを加える事により不溶性ポリマーとして析出させろ過、浮上分離等で除去することにより、好適に排水中のアクリルアミドが除去できることを見いだし、本発明を完成するに至った。
なお、本発明でいうアクリルアミドを含有する排水とは、アクリルアミドを濃度範囲として0.3〜3%含有した排水をいう。
【0005】
以下、本発明を詳細に説明する。
加水分解工程
アクリルアミドを含有する排水は、アルカリ存在下加水分解される。使用できるアルカリとしては特に制限はないが、入手容易なカセイソーダフレーク、もしくはカセイソーダ水溶液が特に好ましく、排水中に加え所定の濃度に調整する。アルカリの濃度を上がれば加水分解速度は速くなるが、次の工程の酸による中和で多量の酸を必要とするため、添加量としては、アクリルアミドに対してモル量で2.5〜4.5倍、排水中の濃度で>3wt%が好適である。
加水分解は室温より若干高められた温度、例えば50〜70℃前後で、発生するアンモニアを除去するの為に空気を吹き込みながら実施される。反応条件にもよるが、数時間で約8割のアクリルアミドが加水分解されてアクリル酸に変換される。後述するように、重合したポリマーにアルカリ土類金属イオンを加えて不溶解ポリマーとして析出させる際にアクリル酸が多いほど固く締まったポリマーが得られて処理しやすいが、反面、加水分解率を上げるためには時間とコストがかかることから、実験例に示すようにアクリルアミドの70%以上を加水分解すれば十分である。
【0006】
重合工程
上記加水分解した排水に、酸、例えば濃硫酸を加え弱酸性、例えばpH4〜4.5に調整した後、重合反応を実施する。中性では重合速度が遅く重合率が上がらない。
重合反応はレドックス重合の公知の方法が使用できる。
第一鉄イオンとしては硫酸第一鉄、もしくは塩化第一鉄が望ましく鉄イオン濃度としては500〜1000ppmが好ましい。窒素バブリングで脱酸素した後、過酸化水素(通常の30%水溶液でよい)を2000〜4000ppmとなるよう加え40〜50℃に昇温し、1時間程度重合するとアクリル酸/アクリルアミドの共重合体、あるいは重合体混合物が生成する。重合が始まれば窒素バブリングの必要はない。さらに1時間程度加温することにより過酸化水素分解の泡が出なくなったら反応を止める。残存モノマー量から重合率は97%以上である。
生成した重合物が共重合体なのか、アクリル酸、アクリルアミドそれぞれのポリマーの混合物なのかは確認出来ていない。しかし、後述のアルカリ土類金属イオンを加えて析出したポリマーに再びアルカリ加水分解操作を施すと、アクリルアミド由来と思われるアンモニアが発生する事、ポリアクリルアミド自身はアルカリ土類金属イオンを加えても析出しない事から、共重合物であると発明者らは推察している。
【0007】
分離工程
上記重合反応した排水に、アルカリ土類金属イオンを添加することにより、不溶解ポリマーを析出させ、これを分離する。
重合反応した排水は更に酸を添加しても不溶解ポリマーが析出する。しかしその様にして析出させたものは高含水率でベタベタして壁に付着しやすく、また分離したポリマーを水洗すれば再溶解して処理がしにくい。
金属多価イオンを加えて析出させたポリマーは付着性のない低含水率のポリマーであり、例えば、浮上分離、ろ過等で容易に除去され、更に焼却処理を行う事が出来る。
金属多価イオンとしてはアルカリ土類金属イオンが好ましく、コストや後処理のやり易さを考えれば、特にカルシウムが好ましく、消石灰を用いるのが普通である。
【0008】
【実施例】
以下実施例を挙げて本発明を更に詳細に説明する。
実施例1
攪拌機付きのフラスコに200mlの蒸留水を入れアクリルアミド3g(42ミリモル)、カセイソーダ4gを溶かし、攪拌下、空気でバブリングしながら60℃で3時間反応を続け、反応終了後、室温まで冷却し濃硫酸5gを加え中和した。反応液をガスクロで分析した所、79%のアクリルアミドが分解されており、大部分はアクリル酸、一部はそれに水が付加した3ヒドロキシプロピオン酸に転化していた。なお、この液のpH=4.5、Mn−CODは17,000ppmであった。
10分間、窒素でバブリングをし硫酸第一鉄・7水塩0.5g、30%過酸化水素水1.5gを加え、攪拌しながら45℃で1.5時間反応を続けた。次いで水酸化カルシウム1.5gを加えると灰褐色の沈澱が液の表面に浮上してくるのでろ過し洗浄した。
濾液中にアクリルアミド、アクリル酸はいずれも0.04%以下であった。また濾液のCODは3,100ppmであった。
一方、沈澱を洗浄後、乾燥させたものの重量は3.15gであった。なおGPC(ウォーターズ社製ウルトラハイドロジェル120カラム使用)で濾液中の残存ポリマーを調べたが検出出来なかった。
なお沈澱を再度10%カセイソーダ水中に分散させ、加熱するとアンモニアの発生が認められたので沈澱ポリマー中にはアミド基は存在すると考えられる。
【0009】
実施例2
フラスコに蒸留水200mlとアクリルアミド6gを入れた。これにカセイソーダ8gを加え、60℃で3時間加熱した。室温まで冷却後硫酸でpH4.5に調整し、10分間窒素でバブリングをした後、硫酸第一鉄・7水塩0.5g、30%過酸化水素水1.5gを加え、攪拌しながら45℃で1.5時間反応を続けた。次いで水酸化カルシウム3gを加えると灰褐色の沈澱が液の表面に浮上してくるのでろ過し洗浄した。沈澱の乾燥重量は6.5g、濾液中の残存アクリル酸、アクリルアミドは各0.04%以下、またポリマーは検出出来なかった。
【0010】
実施例3
実施例1のアクリルアミド水溶液の代わりに、リッター反応によるN−イソプロピルアクリルアミド合成反応の中和後排水(アクリルアミド1.2wt%含有、COD16,000ppm)200mlを取り、カセイソーダ4gを加え以下実施例1と同様な操作を施した。
水酸化カルシウムを加えて灰褐色沈澱を析出させた濾液のCODは3,800ppmであり、アクリルアミド、アクリル酸はいずれも0.04%以下であった。また、沈澱の乾燥重量は3.1gであった。
【0011】
比較例1
実施例1において、アルカリ加水分解を行うことなく、他は実施例1と同様に実施することにより重合反応液を得た。この液は粘度は上がっているが、水酸化カルシウムを1.5gを加えても不溶性沈澱は析出してこなかった。
【0012】
実験例1〜4
200mlの水に下に示す様な割合でアクリル酸(分子量72)、アクリルアミド(分子量71)を混ぜpH4.5に調整した模擬液を作り、重合・析出操作を行った。
ポリマー除去率(水酸化カルシウムを加えろ過する前後のGPC分析値より求めた)と析出沈澱の性状を表1に示す。
【0013】
【表1】
【0014】
【発明の効果】
以上説明してきたように、本発明の処理法によれば、アクリルアミドを濃厚に含有した排水についても、容易に処理することができる。[0001]
[Industrial application fields]
The present invention relates to an advantageous treatment method for wastewater containing acrylamide.
[0002]
[Prior art]
There are many industrial processes in which wastewater containing acrylamide is discharged, especially acrylonitrile, olefin (or corresponding alcohol), which is called liter reaction, concentrated sulfuric acid to acryloylmethylpropane sulfonic acid, diacetone acrylamide, N-isopropylacrylamide, etc. In the process for producing N-substituted acrylamide derivatives, wastewater containing a few percent of concentrated acrylamide is discharged.
As a method for treating such acrylamide-containing wastewater, for example, as disclosed in JP-B-55-50477, a method using biochemical treatment with activated sludge is known.
[0003]
[Problems to be solved by the invention]
However, the biochemical treatment method is troublesome to maintain and is not suitable as a treatment method for concentrated wastewater, such as requiring large dilution when the salt concentration is high.
This invention makes it a subject to provide the processing method of the acrylamide containing waste_water | drain by the combination of processes, such as superposition | polymerization and a hydrolysis process which are easy to handle in a chemical plant without these faults.
[0004]
[Means for solving the problems]
As a result of earnest research to solve such problems, the present inventors have added alkali to acrylamide-containing wastewater, partially hydrolyzed by heating, and then made acid and weakly acidic, followed by iron-hydrogen peroxide solution. It has been found that acrylamide in the waste water can be suitably removed by polymerizing with such a redox polymerization catalyst and adding the ions of calcium, Mg, etc. to the resulting polymer to precipitate it as an insoluble polymer and removing it by filtration, flotation separation, etc. The present invention has been completed.
The effluent containing acrylamide as used in the present invention refers to effluent containing 0.3 to 3% of acrylamide in the concentration range.
[0005]
Hereinafter, the present invention will be described in detail.
Hydrolysis Step Wastewater containing acrylamide is hydrolyzed in the presence of alkali. Although there is no restriction | limiting in particular as an alkali which can be used, The caustic soda flake or caustic soda aqueous solution which is easy to acquire is especially preferable, and it adjusts to predetermined concentration in addition to waste_water | drain. If the alkali concentration is increased, the hydrolysis rate increases. However, since a large amount of acid is required for neutralization with the acid in the next step, the amount added is 2.5 to 4. mol in molar amount relative to acrylamide. 5 times,> 3 wt% is preferred for the concentration in the wastewater.
The hydrolysis is carried out at a temperature slightly higher than room temperature, for example, around 50 to 70 ° C. while blowing air to remove the generated ammonia. Depending on the reaction conditions, about 80% of acrylamide is hydrolyzed and converted to acrylic acid in a few hours. As will be described later, when alkaline earth metal ions are added to the polymerized polymer and precipitated as an insoluble polymer, the more acrylic acid is obtained, the harder the polymer is obtained and the easier it is to process, but the hydrolysis rate is increased. Therefore, since it takes time and cost, it is sufficient to hydrolyze 70% or more of acrylamide as shown in the experimental examples.
[0006]
Polymerization step After acidity, for example, concentrated sulfuric acid is added to the hydrolyzed waste water to adjust to weak acidity, for example, pH 4 to 4.5, a polymerization reaction is performed. At neutrality, the polymerization rate is slow and the polymerization rate does not increase.
For the polymerization reaction, a known method of redox polymerization can be used.
The ferrous sulfate is preferably ferrous sulfate or ferrous chloride, and the iron ion concentration is preferably 500 to 1000 ppm. After deoxygenation by nitrogen bubbling, hydrogen peroxide (a normal 30% aqueous solution may be used) is added to 2000 to 4000 ppm, the temperature is raised to 40 to 50 ° C., and polymerization is carried out for about 1 hour. Or a polymer mixture is formed. There is no need for nitrogen bubbling once polymerization has begun. Further, the reaction is stopped when hydrogen peroxide decomposition bubbles disappear by heating for about 1 hour. From the amount of residual monomer, the polymerization rate is 97% or more.
Whether the polymer produced is a copolymer or a mixture of polymers of acrylic acid and acrylamide has not been confirmed. However, when alkaline hydrolysis is performed again on the polymer precipitated by adding alkaline earth metal ions described later, ammonia that appears to be derived from acrylamide is generated. Polyacrylamide itself is precipitated even when alkaline earth metal ions are added. The inventors speculate that it is a copolymer because it does not.
[0007]
Separation process By adding alkaline earth metal ions to the waste water subjected to the polymerization reaction, an insoluble polymer is precipitated and separated.
Even if an acid is further added to the waste water after the polymerization reaction, an insoluble polymer is deposited. However, what is deposited in this manner is sticky and sticks to the wall with a high water content, and the separated polymer is difficult to be treated by re-dissolution if washed with water.
The polymer deposited by adding metal polyvalent ions is a low moisture content polymer without adhesion, and can be easily removed by, for example, flotation separation or filtration, and further incinerated.
As the metal polyvalent ions, alkaline earth metal ions are preferable, and calcium is particularly preferable in view of cost and ease of post-treatment, and slaked lime is usually used.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
200 ml of distilled water is put into a flask equipped with a stirrer, 3 g (42 mmol) of acrylamide and 4 g of caustic soda are dissolved, and the reaction is continued for 3 hours at 60 ° C. while bubbling with air under stirring. 5g was added and neutralized. When the reaction solution was analyzed by gas chromatography, 79% of acrylamide was decomposed, and most of it was converted to acrylic acid, and a part was converted to 3-hydroxypropionic acid with water added thereto. The pH of this solution was 4.5 and Mn-COD was 17,000 ppm.
Bubbling was carried out with nitrogen for 10 minutes, 0.5 g of ferrous sulfate heptahydrate and 1.5 g of 30% hydrogen peroxide were added, and the reaction was continued at 45 ° C. for 1.5 hours with stirring. Next, when 1.5 g of calcium hydroxide was added, a grayish brown precipitate floated on the surface of the liquid, and was filtered and washed.
Both acrylamide and acrylic acid in the filtrate were 0.04% or less. The COD of the filtrate was 3,100 ppm.
On the other hand, the weight of the precipitate washed and dried was 3.15 g. The residual polymer in the filtrate was examined by GPC (using Ultrahydrogel 120 column manufactured by Waters), but could not be detected.
The precipitate was again dispersed in 10% caustic soda water, and when heated, the generation of ammonia was observed, so it is considered that amide groups are present in the precipitated polymer.
[0009]
Example 2
A flask was charged with 200 ml of distilled water and 6 g of acrylamide. To this, 8 g of caustic soda was added and heated at 60 ° C. for 3 hours. After cooling to room temperature, the pH was adjusted to 4.5 with sulfuric acid, and after bubbling with nitrogen for 10 minutes, 0.5 g of ferrous sulfate heptahydrate and 1.5 g of 30% hydrogen peroxide were added and stirred while stirring. The reaction was continued for 1.5 hours at ° C. Next, when 3 g of calcium hydroxide was added, a grayish brown precipitate floated on the surface of the liquid, and was filtered and washed. The dry weight of the precipitate was 6.5 g, residual acrylic acid and acrylamide in the filtrate were each 0.04% or less, and no polymer was detected.
[0010]
Example 3
Instead of the acrylamide aqueous solution of Example 1, 200 ml of waste water (1.2% by weight of acrylamide, COD 16,000 ppm) after neutralization of N-isopropylacrylamide synthesis reaction by liter reaction was taken, 4 g of caustic soda was added, and the same as in Example 1 below. The operation was performed.
The COD of the filtrate obtained by adding calcium hydroxide to precipitate a grayish brown precipitate was 3,800 ppm, and acrylamide and acrylic acid were both 0.04% or less. The dry weight of the precipitate was 3.1 g.
[0011]
Comparative Example 1
In Example 1, a polymerization reaction liquid was obtained by carrying out in the same manner as in Example 1 without performing alkaline hydrolysis. Although the viscosity of this solution increased, insoluble precipitate did not precipitate even when 1.5 g of calcium hydroxide was added.
[0012]
Experimental Examples 1-4
A simulated solution prepared by mixing 200 ml of water with acrylic acid (molecular weight 72) and acrylamide (molecular weight 71) at a ratio as shown below to adjust the pH to 4.5 was used for polymerization and precipitation.
Table 1 shows the polymer removal rate (obtained from GPC analysis values before and after adding calcium hydroxide and filtering) and the properties of the precipitate.
[0013]
[Table 1]
[0014]
【The invention's effect】
As described above, according to the treatment method of the present invention, wastewater containing acrylamide in a concentrated manner can be easily treated.
Claims (1)
1)アルカリ存在下加熱する事により、アクリルアミドを部分的に加水分解してアクリル酸に変換し、
2)次いで酸で弱酸性にした後、レドックス重合開始剤を加え重合させ、
3)該重合溶液にアルカリ土類金属イオンを添加し、不溶解ポリマーを析出させ、これを分離すること、
を特徴とする、アクリルアミド含有排水の処理法。For wastewater containing acrylamide,
1) By heating in the presence of alkali, acrylamide is partially hydrolyzed and converted to acrylic acid,
2) Next, after acidifying with an acid, a redox polymerization initiator is added and polymerized,
3) adding alkaline earth metal ions to the polymerization solution to precipitate insoluble polymer and separating it;
A method for treating acrylamide-containing wastewater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27068795A JP3715004B2 (en) | 1995-09-26 | 1995-09-26 | Treatment of acrylamide-containing wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27068795A JP3715004B2 (en) | 1995-09-26 | 1995-09-26 | Treatment of acrylamide-containing wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0985260A JPH0985260A (en) | 1997-03-31 |
JP3715004B2 true JP3715004B2 (en) | 2005-11-09 |
Family
ID=17489560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27068795A Expired - Fee Related JP3715004B2 (en) | 1995-09-26 | 1995-09-26 | Treatment of acrylamide-containing wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3715004B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117430291B (en) * | 2023-12-12 | 2024-04-30 | 南通博亿化工有限公司 | Impurity removal and purification process for acrylamide wastewater |
-
1995
- 1995-09-26 JP JP27068795A patent/JP3715004B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0985260A (en) | 1997-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU646763B2 (en) | Dithiocarbamate polymers | |
US5093091A (en) | Method of removing iron from concentrated alum solutions | |
JP3412842B2 (en) | Metal collecting agent and method for producing the same | |
US4089780A (en) | Color removal process | |
US3798160A (en) | Treatment of aluminum waste liquors | |
US6162340A (en) | Membrane filtration of polymer containing solutions | |
JP2002316173A (en) | Method for treating wastewater containing arsenic and hydrogen peroxide | |
JP3715004B2 (en) | Treatment of acrylamide-containing wastewater | |
JP4543481B2 (en) | Method for treating water containing boron and fluorine | |
US3751474A (en) | Method of preparing nontoxic polyamines | |
JP3172728B2 (en) | Method for removing divalent manganese ions | |
EP0535836A1 (en) | Dithiocarbamate polymers | |
Skotnikova et al. | Sorption of Metal Ions by Chitosan Copolymers with Vinyl Monomers | |
JPH05185073A (en) | Method for treating dilute acidic solution | |
JP3695276B2 (en) | Wastewater treatment method | |
CN1597550A (en) | Cation type polymer flocculating agent and its preparation method | |
JPS5941798B2 (en) | Wastewater treatment method | |
JP2938270B2 (en) | Waste paper pulp wastewater treatment method | |
JPS59177190A (en) | Coagulation of organic waste water | |
RU2658032C1 (en) | Method of purification of industrial sewage water from chromium compounds | |
CN106830246B (en) | Aluminum-based composite polymer coagulant for treating micro-polluted source water and preparation method thereof | |
JPS6027684B2 (en) | Method for producing emulsion polymer rubber | |
JPS61114744A (en) | Treatment of ion exchange resin regeneration solution containing copper | |
JP2023167782A (en) | Method and apparatus for treating wastewater containing organic chelating agent and heavy metals | |
JPH10216738A (en) | Method for treating organic waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050824 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |