Nothing Special   »   [go: up one dir, main page]

JP3712185B2 - Fine powder material supply equipment - Google Patents

Fine powder material supply equipment Download PDF

Info

Publication number
JP3712185B2
JP3712185B2 JP2001008399A JP2001008399A JP3712185B2 JP 3712185 B2 JP3712185 B2 JP 3712185B2 JP 2001008399 A JP2001008399 A JP 2001008399A JP 2001008399 A JP2001008399 A JP 2001008399A JP 3712185 B2 JP3712185 B2 JP 3712185B2
Authority
JP
Japan
Prior art keywords
raw material
fine powder
powder raw
barrel
material supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001008399A
Other languages
Japanese (ja)
Other versions
JP2002210805A (en
Inventor
誠二 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2001008399A priority Critical patent/JP3712185B2/en
Publication of JP2002210805A publication Critical patent/JP2002210805A/en
Application granted granted Critical
Publication of JP3712185B2 publication Critical patent/JP3712185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/763Vent constructions, e.g. venting means avoiding melt escape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマーにかさ密度の小さい微粉原料を混合して押し出す押出機に、前記微粉原料を供給するための微粉原料供給装置に関するものである。
【0002】
【従来の技術】
ポリマーにかさ密度の小さい微粉原料を混合して押し出す押出機に用いられる、従来の微粉原料供給装置の一例について説明する。
【0003】
図6に示すように、押出機201は、加熱シリン202と、加熱シリンダ202内に回転自在に配設されたかみ合い型の2本のスクリュ203と、2本のスクリュ203を同方向または逆方向へ回転させるための図示しない回転駆動機構と、混練部の上流側における加熱シリンダ202の側壁に設けられた微粉原料供給口204を備えている。
【0004】
他方、微粉原料供給装置101は、先端に吐出口102aを有するとともに後端側にホッパ104を有するバレル102と、バレル102内に回転自在に配設されたかみ合い型の2本のスクリュ103と、2本のスクリュ103を同方向または逆方向へ回転させる回転駆動機構105を備え、ホッパ104にはガス抜き口106が設けられているとともに、バレル102の吐出口102aが押出機201における加熱シリンダ202の微粉原料供給口204に連通されている。
【0005】
この従来の微粉原料供給装置101において、ホッパ104内に投入された微粉原料は、混在する空気がガス抜き口106を介して強制排気されたのち、バレル102内において同方向または逆方向へ回転する2本のスクリュ103によって先端側へ移送され、吐出口102aより押出機201の微粉原料供給口204を介して加熱シリンダ201内に供給され、押出機201内においてポリマーと混合されたのち押し出される。
【0006】
【発明が解決しようとする課題】
上記従来の技術においては、ホッパに供給された微粉原料に混在する空気をホッパに設けられたガス抜き口を介して強制排気しているが、これだけでは微粉原料中に混在する空気を十分に除去することができず、ホッパ中の微粉原料に混在する空気量が多くなって微粉原料のかさ密度が低減し、微粉原料供給装置の実質的な微粉原料輸送能力が低下してしまう。その結果、押出機への微粉原料の供給量が不安定になる。加えて、押出機においてポリマー中の揮発成分がガス化して、微粉原料供給装置のバレル内へ逆流すると、微粉原料供給装置の輸送能力が極端に減少してしまうという問題点があった。
【0007】
本発明は、上記従来の技術の有する問題点に鑑みてなされたものであって、バレル内における微粉原料中に混入した空気やガスを十分に強制排気して、高い輸送能力を安定して維持することができる、ポリマーにかさ密度の小さい微粉原料を混合して押し出す押出機に、前記微粉原料を供給するための微粉原料供給装置を実現することを目的とするものである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の微粉原料供給装置は、ポリマーにかさ密度の小さい微粉原料を混合して押し出す押出機に、前記微粉原料を供給するための微粉原料供給装置であって、前記微粉原料供給装置は、一端に前記押出機の加熱シリンダの側壁に設けられた微粉原料供給口に接続される吐出口を有するとともに他端側にホッパを有するバレルと、前記バレル内に回転自在に配設されたスクリュと、前記スクリュを回転させる回転駆動機構と、前記バレルにおける前記ホッパと前記吐出口間の壁に外壁面から内壁面へ貫通して設けられた少なくとも2個のベント口と、前記ベント口のバレル外壁側開口部に連通された強制排気室と、前記ベント口に装着されたスクリーンユニットとを備えており、前記スクリーンユニットは、前記バレルの内壁面とほぼ同一面になる多孔板状の湾曲壁および前記湾曲壁に相対する面が開放された箱状の受け部材と、前記湾曲壁を覆う前記微粉原料の平均粒径よりも小さい網目を有するスクリーンと、前記スクリーンを前記受け部材の前記湾曲壁に密着させるとともにベント流路を形成する格子状の押え板を有する押え部材とを備えたことを特徴とするものである。
【0009】
また、バレルの壁に、冷却媒体を流す冷却用ジャケットを内設する。
【0010】
さらに、強制排気室に、給気用バルブを介して給気用ダクトの一端側を接続し、前記給気用ダクトを介して加圧した空気または不活性ガスを瞬間供給してスクリーンの逆洗浄ができるように構成する。
【0011】
また、強制排気室に、内圧を検出するための圧力計を付設する。
【0012】
【発明の実施の形態】
本発明に係る微粉原料供給装置の一実施の形態について説明する。
【0013】
図1に示すように、微粉原料供給装置1は、先端に吐出口2aを有するとともに後端側にホッパ4が設けられたバレル2と、バレル2内に回転自在に配設されたかみ合い型の2本のスクリュ3と、2本のスクリュ3を同方向または逆方向へ回転させる回転駆動機構5を備えており、吐出口2aが押出機41の加熱シリンダ42の側壁に設けられた微粉原料供給口44に連通された状態で配設されている。
【0014】
バレル2における吐出口2aとホッパ4間の図示両側壁には、図2に示すように、外壁面から内壁面へ貫通したベント口8が相対して設けられており、各ベント口8内には後述するスクリーンユニット10が装着されているとともに、各ベント口8の外壁面側開口部が強制排気室20にそれぞれ連通されている。
【0015】
また、バレル2のベント口8を避けた壁内には、冷却用ジャケット6を内設し、微粉原料が低融点のものである場合に、冷却ジャケット6に冷却媒体を流して冷却できるように構成されている。
【0016】
各強制排気室20には、排気用バルブ21を介して排気用ダクト22の一端側が接続されており、この排気用ダクト22の他端側は強制排気手段(不図示)に接続されている。
【0017】
なお、本実施の形態において、各強制排気室20には、給気用バルブ23を介して給気用ダクト24の一端側が接続されている。
【0018】
また、各強制排気室20には、内部を観察するためののぞき窓26や、内圧を検出するための圧力計25が設けられている。
【0019】
さらに、バレル2におけるベント口8の下流側に圧力計27を設け、この圧力計によってバレル2内の異常圧力を検出した場合に、その信号を制御システムに送って運転停止を行なう等の安全対策に用いることができる。
【0020】
加えて、ホッパ4にレベルセンサ28を配設し、このレベルセンサ28によってホッパ内の微粉原料のレベルを検出することにより、輸送能力を管理するようになっている。
【0021】
スクリーンユニット10は、図3および図4に示すように、バレル2の内壁面2bとほぼ同じ曲率半径を有する多孔板状の湾曲壁12aを備えるとともに湾曲壁12aに相対する面が開放されている箱状の受け部材12と、受け部材12の湾曲壁12aを覆う形状であって微粉原料の平均粒径よりも小さい網目を有するスクリーン11と、スクリーン11を湾曲壁12aに密着させるとともにベント流路を形成する格子状の押え板13bを有する押え部材13とを備えている。
【0022】
押え部材13は、受け部材12内に着脱自在に嵌挿できる形状であって相対する面が開放された外枠13aと、外枠13a内に一体的に設けられた格子状の押え板13bからなり、押え板13bのスクリーン11に当接する先端13cは、スクリーン11を湾曲壁12aに密着させた状態で保持できるように湾曲壁12aと同様に湾曲している。
【0023】
なお、本実施の形態においては、受け部材12の開放縁部に鍔状部12cを設けるとともに、押え部材13にも鍔状部13dを設け、受け部材12に押え部材13を嵌挿すると両鍔状部12c、13dが重なるようにし、この両鍔状部12c、13dを図示しないビス等の着脱自在な固着手段を用いて着脱自在に固着するように構成されている。このため、スクリーン11の交換が自在であり、スクリーン11が破損した場合に新しいスクリーン11と交換することができる。
【0024】
スクリーンユニット10は、上述のとおり構成されているので、スクリーンユニット10を受け部材12の多孔板状の湾曲壁12aがバレル2の内壁面2bとほぼ同一面になるようにベント口8内に装着すると、ベント口8のバレル2の内壁面側開口部がスクリーン11によって覆われる。その結果、バレル2内の微粉原料は通過しないが、混在する空気やガスは通過して強制排気室20内へ流れる。
【0025】
なお、多孔板状の湾曲壁12aとスクリュ3のフライト外周面との間隙は、1mm以下に設定すると、湾曲壁12aのセルフクリーニング性が向上する。
【0026】
続いて、本実施の形態による微粉原料供給装置の動作について説明する。
【0027】
通常運転時には、各強制排気室20の給気用バルブ23を閉じ、排気用バルブ21を開いて排気用ダクト22と強制排気室20とを連通させ、排気用ダクト22の他端側に接続された強制排気手段によって強制排気室20を減圧した強制排気状態にする。
【0028】
ホッパ4に供給された微粉原料は、ホッパ4に設けられたガス抜き口7より混在する空気の一部が強制排気されたのち、バレル2内に入り、回転している2本のスクリュ3によって吐出口2aへ向けて搬送されて行く。
【0029】
微粉原料がホッパ4よりバレル2内に入る際にホッパ4内の空気がまき込まれて微粉原料に混入するが、この微粉原料に混入した空気は各ベント口8に装着されたスクリーンユニット10のスクリーン11の網目を通過して矢印で示すように強制排気室20へ流れ、排気用ダクト22を介して強制排気される。
【0030】
その結果、バレル2内を吐出口2aに向けて搬送される微粉原料は、空気の混入によるかさ密度の低下が防止され、微粉原料供給装置1の微粉原料輸送能力が低減することがなく、スクリュ式押出機41の微粉原料供給口44より一定量の微粉原料が安定供給される。
【0031】
スクリーン11の目詰まりが発生した場合には、排気用バルブ21を閉じ、給気用バルブ23を開いて給気用ダクト24と強制排気室20とを連通させた状態にし、給気用ダクト24を介して加圧した空気または不活性ガスを強制排気室20内へ瞬間供給(パルス供給)する。強制排気室20内へ瞬間供給(パルス供給)された加圧した空気または不活性ガスは、スクリーンユニット10を逆流してスクリーン11の網目に目詰まりした微粉原料をバレル2内へ向かって吹き飛ばす。つまり、逆洗浄を行なってスクリーンの目詰まりを解消する。
【0032】
なお、この逆洗浄は、各ベント口8のスクリーンユニット10毎に行なうことができることはいうまでもない。
【0033】
次に、本発明に係る微粉原料供給装置の他の実施の形態について説明する。図5に示すように、本実施の形態による微粉原料供給装置31は、バレル2の両側壁に2個のベント口8を相対して設けるとともに、バレル2の図示上面壁に2個のベント口8を併設し、各ベント口8のバレル外壁側開口部がそれぞれ強制排気室20に連通されている。これ以外は、上述した一実施の形態による微粉原料供給装置と同様であるので、その説明は省略する。
【0034】
なお、上述した各実施の形態においては、バレル2内にかみ合い型の2本のスクリュを有するものを示したが、これに限らず本発明は、バレル2内に1本のスクリュを有するものやバレル2内に非かみ合い型の2本のスクリュを有するものに適用できることはいうまでもない。
【0035】
また、ベント口の数も、上述した各実施の形態に示した2個または4個に限らず、必要に応じて3個あるいは5個以上に変更できる。
【0036】
【発明の効果】
本発明は、上述のとおり構成されているので、次に記載するような効果を奏する。
【0037】
バレルに設けられたベント口に装着されたスクリーンユニットの微粉原料の平均粒径よりも小さい網目を有するスクリーンを通して、微粉原料に混入した空気またはガスを強制排気するため、バレル内における微粉原料のかさ密度の低下が防止されて高い輸送能力を維持することができる。その結果、小型化が可能であるとともに、ポリマーに微粉原料を混合して押し出す押出機へ微粉原料を安定供給することができる。
また、押え部材は受け部材内に着脱自在であるため、スクリーンの交換が自在である。
【図面の簡単な説明】
【図1】一実施の形態による微粉原料供給装置の説明図である。
【図2】図1のA−A線に沿う模式断面図である。
【図3】図1に示す微粉原料供給装置におけるスクリーンユニットを、一部破断して示す模式斜視図である。
【図4】図3に示したスクリーンユニットを分解して示す模式斜視図である。
【図5】他の実施の形態による微粉原料供給装置の説明図である。
【図6】従来の微粉原料供給装置の一例を示す説明図である。
【符号の説明】
1、31 微粉原料供給装置
2 バレル
3 スクリュ
4 ホッパ
5 回転駆動機構
6 冷却用ジャケット
7 ガス抜き口
8 ベント口
10 スクリーンユニット
11 スクリーン
12 受け部材
12a 湾曲壁
12b 孔
12c 鍔状部
13 押え部材
13a 外枠
13b 押え板
13c 先端
20 強制排気室
21 排気用バルブ
22 排気用ダクト
23 給気用バルブ
24 給気用ダクト
25、27 圧力計
26 のぞき窓
28 レベルセンサ
41 押出機
42 加熱シリンダ
43 スクリュ
44 微粉原料供給口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine powder raw material supply apparatus for supplying the fine powder raw material to an extruder for mixing and extruding a fine powder raw material having a small bulk density to a polymer.
[0002]
[Prior art]
An example of a conventional fine powder raw material supply apparatus used in an extruder for extruding a polymer by mixing a fine powder raw material with a small bulk density will be described.
[0003]
As shown in FIG. 6, the extruder 201 is heated and Cylinders 202, and two screws 203 of intermeshing rotatably disposed within the heating cylinder 202, two screw 203 same or opposite A rotation drive mechanism (not shown) for rotating in the direction, and a fine material feed port 204 provided on the side wall of the heating cylinder 202 on the upstream side of the kneading section.
[0004]
On the other hand, the fine powder raw material supply apparatus 101 includes a barrel 102 having a discharge port 102a at the front end and a hopper 104 at the rear end side, and two meshing type screws 103 rotatably disposed in the barrel 102, A rotary drive mechanism 105 that rotates the two screws 103 in the same direction or in the opposite direction is provided. The hopper 104 is provided with a gas vent port 106, and the discharge port 102 a of the barrel 102 is a heating cylinder 202 in the extruder 201. To the fine powder raw material supply port 204.
[0005]
In this conventional fine powder raw material supply apparatus 101, the fine powder raw material charged into the hopper 104 rotates in the same direction or in the reverse direction within the barrel 102 after the mixed air is forcibly exhausted through the gas vent 106. It is transferred to the tip side by the two screws 103, supplied into the heating cylinder 201 from the discharge port 102a via the fine powder material supply port 204 of the extruder 201, mixed with the polymer in the extruder 201, and then extruded.
[0006]
[Problems to be solved by the invention]
In the above conventional technology, air mixed in the fine powder material supplied to the hopper is forcibly exhausted through the vent hole provided in the hopper, but this alone sufficiently removes the air mixed in the fine powder material. The amount of air mixed in the fine powder raw material in the hopper increases, the bulk density of the fine powder raw material is reduced, and the substantial fine powder raw material transport capability of the fine powder raw material supply device is reduced. As a result, the supply amount of the fine powder raw material to the extruder becomes unstable. In addition, if the volatile component in the polymer is gasified in the extruder and flows back into the barrel of the fine powder raw material supply apparatus, there is a problem that the transport capability of the fine powder raw material supply apparatus is extremely reduced.
[0007]
The present invention has been made in view of the above-described problems of the prior art, and sufficiently forcibly exhausts air and gas mixed in the fine powder raw material in the barrel to stably maintain a high transport capability. An object of the present invention is to realize a fine powder raw material supply device for supplying the fine powder raw material to an extruder that can mix and extrude a fine powder raw material having a low bulk density into a polymer.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the fine powder raw material supply apparatus of the present invention is a fine powder raw material supply apparatus for supplying the fine powder raw material to an extruder that mixes and extrudes a fine powder raw material having a small bulk density to a polymer. The fine raw material supply device has a discharge port connected to a fine powder raw material supply port provided on a side wall of the heating cylinder of the extruder at one end and a barrel having a hopper at the other end, and is rotatable in the barrel. An arranged screw, a rotation drive mechanism for rotating the screw, and at least two vent ports provided through the wall between the hopper and the discharge port in the barrel from the outer wall surface to the inner wall surface ; wherein the forcible exhaust chamber communicating with the barrel outer wall side opening of the vent port, and a screen unit mounted to the vent in the opening, wherein the screen unit, the A perforated plate-like curved wall that is substantially flush with the inner wall surface of the rel, a box-shaped receiving member having an open surface facing the curved wall, and an average particle size of the fine powder raw material that covers the curved wall A screen having a mesh, and a pressing member having a grid-like pressing plate for bringing the screen into close contact with the curved wall of the receiving member and forming a vent channel are provided.
[0009]
In addition, a cooling jacket for flowing a cooling medium is provided in the wall of the barrel.
[0010]
Further, one end side of the air supply duct is connected to the forced exhaust chamber via the air supply valve, and the pressurized air or inert gas is instantaneously supplied through the air supply duct to reversely clean the screen. Configure to be able to.
[0011]
A pressure gauge for detecting the internal pressure is attached to the forced exhaust chamber.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a fine powder raw material supply apparatus according to the present invention will be described.
[0013]
As shown in FIG. 1, the fine powder raw material supply apparatus 1 includes a barrel 2 having a discharge port 2 a at the front end and a hopper 4 provided at the rear end side, and a meshing type rotatably disposed in the barrel 2. A fine powder raw material supply provided with two screws 3 and a rotary drive mechanism 5 for rotating the two screws 3 in the same direction or in the opposite direction, and the discharge port 2a provided on the side wall of the heating cylinder 42 of the extruder 41. It is arranged in communication with the port 44.
[0014]
As shown in FIG. 2, a vent port 8 penetrating from the outer wall surface to the inner wall surface is provided on both side walls of the barrel 2 between the discharge port 2 a and the hopper 4. Is equipped with a screen unit 10 which will be described later, and the opening on the outer wall surface side of each vent port 8 communicates with the forced exhaust chamber 20.
[0015]
Further, a cooling jacket 6 is provided in the wall of the barrel 2 avoiding the vent port 8 so that when the fine powder material has a low melting point, the cooling jacket 6 can be cooled by flowing a cooling medium. It is configured.
[0016]
Each forced exhaust chamber 20 is connected to one end side of an exhaust duct 22 via an exhaust valve 21, and the other end side of the exhaust duct 22 is connected to forced exhaust means (not shown).
[0017]
In the present embodiment, each forced exhaust chamber 20 is connected to one end side of an air supply duct 24 via an air supply valve 23.
[0018]
Each forced exhaust chamber 20 is provided with a viewing window 26 for observing the inside and a pressure gauge 25 for detecting the internal pressure.
[0019]
Further, a pressure gauge 27 is provided on the downstream side of the vent port 8 in the barrel 2, and when an abnormal pressure in the barrel 2 is detected by the pressure gauge, a safety measure is taken such as sending a signal to the control system to stop the operation. Can be used.
[0020]
In addition, a level sensor 28 is provided in the hopper 4, and the level sensor 28 detects the level of the fine powder raw material in the hopper, thereby managing the transportation capacity.
[0021]
As shown in FIGS. 3 and 4, the screen unit 10 includes a perforated plate-like curved wall 12a having substantially the same radius of curvature as the inner wall surface 2b of the barrel 2, and a surface facing the curved wall 12a is open. A box-shaped receiving member 12, a screen 11 having a shape covering the curved wall 12a of the receiving member 12 and having a mesh smaller than the average particle diameter of the fine powder raw material, the screen 11 being in close contact with the curved wall 12a and a vent channel And a presser member 13 having a grid-like presser plate 13b.
[0022]
The pressing member 13 includes a shape that can be removably inserted into the receiving member 12, and an outer frame 13 a that has an open opposite surface, and a lattice-shaped pressing plate 13 b that is integrally provided in the outer frame 13 a. Thus, the tip 13c of the pressing plate 13b that contacts the screen 11 is curved in the same manner as the curved wall 12a so that the screen 11 can be held in close contact with the curved wall 12a.
[0023]
In the present embodiment, when the hook-shaped portion 12 c is provided at the open edge of the receiving member 12, the hook-shaped portion 13 d is also provided in the holding member 13, and the holding member 13 is inserted into the holding member 12. The ridges 12c and 13d are overlapped with each other, and both the ridges 12c and 13d are detachably fixed using detachable fixing means such as screws (not shown). Therefore, the screen 11 can be replaced freely, and when the screen 11 is damaged, it can be replaced with a new screen 11.
[0024]
Since the screen unit 10 is configured as described above, the screen unit 10 is mounted in the vent port 8 so that the perforated plate-like curved wall 12a of the receiving member 12 is substantially flush with the inner wall surface 2b of the barrel 2. Then, the inner wall surface side opening of the barrel 2 of the vent port 8 is covered with the screen 11. As a result, the fine powder raw material in the barrel 2 does not pass, but mixed air and gas pass and flow into the forced exhaust chamber 20.
[0025]
If the gap between the perforated plate-shaped curved wall 12a and the flight outer peripheral surface of the screw 3 is set to 1 mm or less, the self-cleaning property of the curved wall 12a is improved.
[0026]
Then, operation | movement of the fine powder raw material supply apparatus by this Embodiment is demonstrated.
[0027]
During normal operation, the air supply valve 23 of each forced exhaust chamber 20 is closed and the exhaust valve 21 is opened to allow the exhaust duct 22 and the forced exhaust chamber 20 to communicate with each other, and is connected to the other end of the exhaust duct 22. Then, the forced exhaust chamber 20 is depressurized to a forced exhaust state.
[0028]
The pulverized raw material supplied to the hopper 4 enters the barrel 2 after a part of the air mixed from the gas vent 7 provided in the hopper 4 is forcibly exhausted, and is rotated by the two rotating screws 3. It is conveyed toward the discharge port 2a.
[0029]
When the fine powder raw material enters the barrel 2 from the hopper 4, the air in the hopper 4 is mixed and mixed into the fine powder raw material. The air mixed in the fine powder raw material of the screen unit 10 attached to each vent port 8. It passes through the mesh of the screen 11 and flows into the forced exhaust chamber 20 as indicated by the arrow, and is forcedly exhausted through the exhaust duct 22.
[0030]
As a result, the fine powder raw material conveyed in the barrel 2 toward the discharge port 2a is prevented from being reduced in bulk density due to air mixing, and the fine powder raw material transport capability of the fine powder raw material supply apparatus 1 is not reduced. A certain amount of fine raw material is stably supplied from the fine raw material supply port 44 of the type extruder 41.
[0031]
When the screen 11 is clogged, the exhaust valve 21 is closed and the air supply valve 23 is opened so that the air supply duct 24 and the forced exhaust chamber 20 are in communication with each other. Compressed air or inert gas is supplied instantaneously (pulse supply) into the forced exhaust chamber 20. Pressurized air or inert gas instantaneously supplied (pulsed) into the forced exhaust chamber 20 flows backward through the screen unit 10 and blows away fine powder material clogged in the screen 11 toward the barrel 2. That is, the screen is clogged by reverse cleaning.
[0032]
Needless to say, this reverse cleaning can be performed for each screen unit 10 of each vent port 8.
[0033]
Next, another embodiment of the fine powder raw material supply apparatus according to the present invention will be described. As shown in FIG. 5, the fine powder raw material supply apparatus 31 according to the present embodiment is provided with two vent ports 8 opposed to both side walls of the barrel 2 and two vent ports on the illustrated upper wall of the barrel 2. 8 and the barrel outer wall side opening of each vent port 8 communicates with the forced exhaust chamber 20. Other than this, since it is the same as the fine powder raw material supply apparatus according to the above-described embodiment, the description thereof is omitted.
[0034]
In each of the embodiments described above, the barrel 2 having two meshing screws is shown. However, the present invention is not limited to this, and the barrel 2 has one screw. Needless to say, the present invention can be applied to one having two non-meshing screws in the barrel 2.
[0035]
Further, the number of vent ports is not limited to two or four shown in the above-described embodiments, but can be changed to three or five or more as necessary.
[0036]
【The invention's effect】
Since this invention is comprised as mentioned above, there exists an effect as described below.
[0037]
In order to forcibly exhaust air or gas mixed in the fine powder raw material through a screen having a mesh smaller than the average particle diameter of the fine powder raw material of the screen unit installed in the vent port provided in the barrel, the bulk of the fine raw material in the barrel A decrease in density is prevented and a high transportation capacity can be maintained. As a result, downsizing is possible, and the fine powder raw material can be stably supplied to an extruder that mixes and extrudes the fine powder raw material with the polymer.
Further, since the pressing member is detachable in the receiving member, the screen can be exchanged.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a fine powder raw material supply apparatus according to an embodiment.
FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG.
3 is a schematic perspective view of the screen unit in the fine powder raw material supply apparatus shown in FIG.
4 is an exploded perspective view schematically showing the screen unit shown in FIG. 3. FIG.
FIG. 5 is an explanatory view of a fine raw material supply apparatus according to another embodiment.
FIG. 6 is an explanatory view showing an example of a conventional fine powder raw material supply apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 31 Fine powder raw material supply apparatus 2 Barrel 3 Screw 4 Hopper 5 Rotation drive mechanism 6 Cooling jacket 7 Degassing port 8 Vent port 10 Screen unit 11 Screen 12 Receiving member 12a Curved wall 12b Hole 12c Gutter-shaped portion 13 Pressing member 13a Outside Frame 13b Presser plate 13c Tip 20 Forced exhaust chamber 21 Exhaust valve 22 Exhaust duct 23 Exhaust duct 23 Inlet valve 24 Inlet duct 25, 27 Pressure gauge 26 Peep window 28 Level sensor 41 Extruder 42 Heating cylinder 43 Screw 44 Fine powder material Supply port

Claims (4)

ポリマーにかさ密度の小さい微粉原料を混合して押し出す押出機(41)に、前記微粉原料を供給するための微粉原料供給装置(1、31)であって、
前記微粉原料供給装置は、一端に前記押出機の加熱シリンダの側壁に設けられた微粉原料供給口(44)に接続される吐出口(2a)を有するとともに他端側にホッパ(4)を有するバレル(2)と、前記バレル内に回転自在に配設されたスクリュ(3)と、前記スクリュを回転させる回転駆動機構(5)と、前記バレルにおける前記ホッパと前記吐出口間の壁に外壁面から内壁面へ貫通して設けられた少なくとも2個のベント口(8)と、前記ベント口のバレル外壁側開口部に連通された強制排気室(20)と、前記ベント口に装着されたスクリーンユニット(10)とを備えており、
前記スクリーンユニットは、前記バレルの内壁面とほぼ同一面になる多孔板状の湾曲壁(12a)および前記湾曲壁に相対する面が開放された箱状の受け部材(12)と、前記湾曲壁を覆う前記微粉原料の平均粒径よりも小さい網目を有するスクリーン(11)と、前記スクリーンを前記受け部材の前記湾曲壁に密着させるとともにベント流路を形成する格子状の押え板(13b)を有する押え部材(13)とを備えたことを特徴とする微粉原料供給装置。
A fine raw material supply device (1, 31) for supplying the fine raw material to an extruder (41) for mixing and extruding a fine raw material having a small bulk density to a polymer,
The fine powder raw material supply device has a discharge port (2a) connected to a fine powder raw material supply port (44) provided on a side wall of a heating cylinder of the extruder at one end and a hopper (4) at the other end side. A barrel (2), a screw (3) rotatably disposed in the barrel, a rotation drive mechanism (5) for rotating the screw, and an outer wall of the barrel between the hopper and the discharge port; at least two vent ports provided through the inner wall surface from the wall (8), the vent port of the barrel outer wall side opening communicated with the forced ventilation chamber (20), is attached to the vent in the opening Screen unit (10),
The screen unit includes a perforated plate-shaped curved wall (12a) that is substantially flush with the inner wall surface of the barrel, a box-shaped receiving member (12) having an open surface facing the curved wall, and the curved wall. A screen (11) having a mesh smaller than the average particle size of the fine powder raw material covering the grid, and a grid-like presser plate (13b) that closely contacts the curved wall of the receiving member and forms a vent channel A fine powder raw material supply device comprising a holding member (13) having a holding member.
バレル(2)の壁に、冷却媒体を流す冷却用ジャケット(6)を内設したことを特徴とする請求項1記載の微粉原料供給装置。The fine powder raw material supply apparatus according to claim 1, wherein a cooling jacket (6) for flowing a cooling medium is provided in the wall of the barrel (2). 強制排気室(20)に、給気用バルブ(23)を介して給気用ダクト(24)の一端側を接続し、前記給気用ダクトを介して加圧した空気または不活性ガスを瞬間供給してスクリーン(11)の逆洗浄ができるように構成したことを特徴とする請求項1または2記載の微粉原料供給装置。One end of an air supply duct (24) is connected to the forced exhaust chamber (20) via an air supply valve (23), and pressurized air or inert gas is instantaneously supplied through the air supply duct. The fine powder raw material supply apparatus according to claim 1 or 2, wherein the fine powder raw material supply apparatus is configured to supply the screen (11) for back washing. 強制排気室(20)に、内圧を検出するための圧力計(25)を付設したことを特徴とする請求項1ないし3いずれか1項記載の微粉原料供給装置。The fine powder raw material supply device according to any one of claims 1 to 3, wherein a pressure gauge (25) for detecting an internal pressure is attached to the forced exhaust chamber (20).
JP2001008399A 2001-01-17 2001-01-17 Fine powder material supply equipment Expired - Lifetime JP3712185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001008399A JP3712185B2 (en) 2001-01-17 2001-01-17 Fine powder material supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008399A JP3712185B2 (en) 2001-01-17 2001-01-17 Fine powder material supply equipment

Publications (2)

Publication Number Publication Date
JP2002210805A JP2002210805A (en) 2002-07-31
JP3712185B2 true JP3712185B2 (en) 2005-11-02

Family

ID=18876024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008399A Expired - Lifetime JP3712185B2 (en) 2001-01-17 2001-01-17 Fine powder material supply equipment

Country Status (1)

Country Link
JP (1) JP3712185B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161998A1 (en) 2012-04-27 2013-10-31 株式会社日本製鋼所 Device and method for screw-type supply of fine powder raw material
CN105793011A (en) * 2013-10-11 2016-07-20 布拉赫管理两合公司 Side-feeder with rearward venting
US10676603B2 (en) 2015-07-16 2020-06-09 The Japan Steel Works, Ltd. Method for producing resin composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE536981T1 (en) 2007-04-07 2011-12-15 Coperion Gmbh EXTRUDER
KR100981537B1 (en) 2008-06-20 2010-09-10 김광근 The prevent structure of gas outlet hole for an extruder
ATE541691T1 (en) * 2009-02-11 2012-02-15 Coperion Gmbh SCREW MACHINE
DE102009036915A1 (en) * 2009-08-11 2011-02-24 List Holding Ag Process for treating a monomer, pre-polymer, polymer or a corresponding mixture
JP5484858B2 (en) * 2009-10-20 2014-05-07 古河産機システムズ株式会社 Powder granulator
US9108354B2 (en) * 2010-12-01 2015-08-18 The Bonnot Company Process for de-airing material in an extruder that includes a vent block
CN103029284A (en) * 2012-12-25 2013-04-10 江苏金发科技新材料有限公司 Moistureproof and leakproof feeding hopper for side feeding machine
JP5623568B2 (en) * 2013-02-21 2014-11-12 株式会社日本製鋼所 Bent hardware for twin screw extruder
DE102013208993B4 (en) * 2013-05-15 2017-05-11 Coperion Gmbh Screw machine and process as well as processing plant for the treatment of bulk material
CN111660534A (en) * 2020-06-17 2020-09-15 河南神马华威塑胶股份有限公司 Hollow glass bead material powder supplementing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161998A1 (en) 2012-04-27 2013-10-31 株式会社日本製鋼所 Device and method for screw-type supply of fine powder raw material
KR20150008127A (en) 2012-04-27 2015-01-21 가부시끼가이샤 니혼 세이꼬쇼 Device and method for screw-type supply of fine powder raw material
CN105793011A (en) * 2013-10-11 2016-07-20 布拉赫管理两合公司 Side-feeder with rearward venting
CN105793011B (en) * 2013-10-11 2019-04-19 布拉赫管理两合公司 Side feeder with rear portion ventilation equipment
US10676603B2 (en) 2015-07-16 2020-06-09 The Japan Steel Works, Ltd. Method for producing resin composition

Also Published As

Publication number Publication date
JP2002210805A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP3712185B2 (en) Fine powder material supply equipment
JP5049839B2 (en) Extruder
US8360627B2 (en) Screw machine having a vacuum housing insert
CN210846281U (en) Controlled release mixes roll-in granulator of raw materials fertilizer
US9233499B2 (en) Feed device for feeding fibers during the production of fiber-reinforced plastics materials
JP3803457B2 (en) Biaxial continuous kneading extrusion equipment
US20100024903A1 (en) Device for the controlled guidance of a polymer melt
JP2960885B2 (en) Screw-type kneading extruder
JP3264649B2 (en) Vent type extruder and extrusion method using the same
US11577441B2 (en) Side feeder having separate pressure regions for degassing
JP3113879B2 (en) Continuous kneading extruder
JP3390972B2 (en) Powder supply device
CN114303022A (en) Sealing device
JP2007160686A (en) Extruder
JP2009202357A (en) Rubber extruding apparatus and rubber extruding method
JP3868614B2 (en) Material extruder
CN220786875U (en) Arch breaking equipment for outlet of cement silo
CN218872426U (en) Vertical grinding machine
CN118238415A (en) Compounding device and 3D printer
KR200300136Y1 (en) Equipment for recycling wasted paint powder
CN220781131U (en) Screening plant with sieve mesh dredging mechanism
JP2002001794A (en) Kneading adjusting apparatus for twin-screw extruder
CN210417756U (en) Anti-blocking batching hopper
JP7534927B2 (en) Die plate cover, die head, extruder, and resin pellet manufacturing method
CN114302799B (en) Sealing device with cooling mechanism

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3712185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term