JP3707027B2 - Optimized structure of micro flat vibration motor - Google Patents
Optimized structure of micro flat vibration motor Download PDFInfo
- Publication number
- JP3707027B2 JP3707027B2 JP2001284135A JP2001284135A JP3707027B2 JP 3707027 B2 JP3707027 B2 JP 3707027B2 JP 2001284135 A JP2001284135 A JP 2001284135A JP 2001284135 A JP2001284135 A JP 2001284135A JP 3707027 B2 JP3707027 B2 JP 3707027B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- vibration motor
- coil
- commutator
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Dc Machiner (AREA)
Description
【0001】
[産業上の利用分野]本発明は,電機回転子に180度範囲に置いて2個のコアレスコイルを等分配置された時,半月形のローターは偏心荷重が重い、高速回転運動すると遠心力によって強い振動を発生する。マイクロ扁平振動モータは皆さんがご存知ように携帯電話、ページャ、マッサージ機、視聴覚障害者用の信号受信器、時計、玩具などに利用されています。
【0002】
[従来の技術]通常に扁平振動モータの構造は三つコアレスコイルとマグネット磁石の界磁が4極で構成されである。整流子の片数は6として、随時再起動する事が出来る。上述の三つコイル扁平振動モータは一個のコイルを削減したら振動モータになる、但し残した二つコイルの配置範囲は180度を越え、ローターの偏心重量は足らなくになる。ある場合にはコアレスコイル2個を偏心半月状に置いて、N,Sを交互に6磁極を有する扁平な界磁マグネットと9個の整流子片を有する整流子で構成されたマイクロ扁平振動モータもある。
【0003】
[発明が解決しようとする課題]
4極或いは6極N,S交互着磁した界磁マグネットの磁路空間の磁束線は(図1)磁界境の所で水平方向に流れてしまう為に直流通電したコイルが磁界境の空間に入ったラジアル方向導線に置いてローター回転電磁力の発生は殆どないの状況である(図2)。直流通電したコイルは只磁束線が界磁マグネットの平面に対して垂直状況になっている区域に入った時ラジアル方向導線に置いてローター回転電磁力の発生は働きによってモータ動力源として出力する事が出来る。ですからマグネット界磁極数の最適化になっているかどうかは問題のポイントである。モータのエネルギー転換効率に対して著しく影響しである。
【0004】
コンミュテータの構造に置いて整流子片数は6個とか9個とか、単純に言えばその絶縁溝の本数が増えれば増えるほど、回転する時ブラシの摩擦は激しくになる。その分の摩擦エネルギー損失は大きくになると、モータの効率は勿論悪くになる。ですから整流子片数の最適化の確認は必要である。ブラシは整流子片の絶縁溝に渡す時コイルの電源をOFF,ONする為に多少のスパークは発生しでも、ブラシの磨耗が早くになる。その同時にコイルの通電状況、つまりモータの出力状況も影響しである。電源OFF,ON動作により電磁波ノイズも出る。ブラシとセグメントの接触導通不良、熱変形と絶縁溝を渡す阻力の増大など色々な問題点を指摘されている。特にブラシの向きとローター回転の向きが不一致時前述の問題は著しくになる。実にテストすると向き逆うブラシの摺動面は完全に磨耗した時順方向のブラシの磨耗は僅から済む。その点はモータの使用寿命に対して直接の要因である。ローターの位置による駆動トルクリップルの問題も配慮しなければならない。モータ電気的な再起動性能及び起動トルクリップルの問題は電磁気的バランスの問題である。上述条件を満たすような構造一番簡単的なモータは勿論最適化の首選である。製品一層小型化の為に最簡単構造、しかも電磁気バランスを得る高性能モータの開発は重要の課題である。
【0005】
従来の含油軸受はローター高速回転により遠心力で潤滑油飛び出すの問題がある。結局モータ内部汚れている。油を使わない軸受の採用も一つ課題である。如何にシャフトをケースに簡単、確実的に固定するという問題もひとつ重要な課題である。
【0006】
[課題を解決するための手段]N,S二極平面着磁界磁マグネットを使用。ローター回転トルクを発生するために必要な磁石平面に対して垂直的に分布している磁束線を有する区域は有効磁場区域という事である。その区域を最大化した選択はN,S磁極2個だけ一番単純的な界磁構造である(図1)。全周駆動有効磁場区域を最大化した結果はローター回転中電磁駆動トルクが働き時間が長くになる。電気エネルギーから機械エネルギーまでの転換率も良くになる。永久磁石の電磁性能を最大限に発揮することができる。磁石を着磁する時に着磁の精度も高いし、着磁用ヨークの製造も2極だけで済む。特に超小型の磁石着磁にとって界磁数最小化のメリットが良く分かる。
【0007】
この発明は振動モータの基本構造が「2コイル・2磁極・3整流子片」という方式である(図3)。その電磁気バランスを得られる事は(図4)で説明する。直観の効果を狙う(図4)で表すようにローターの任意位置に対して駆動コイルの有効トルクが発生出来るラジアル方向導線a1,a2とb1,b2を合わせて四つの導線の中に二つの導線は常に必ず有効磁場区域に入る。言いかえればそのモータ回転駆動電磁力の源は常にローターコアレスコイルの二つの導線から供給確保されである。特に有効磁場区域中心部の垂直磁束線の密度は周辺部の密度より高いので、コイルのa1,a2或いはb1,b2の導線が受けている駆動電磁力の差があるから、その差はローターの回転駆動トルクになる。駆動トルクリップル値は最小化になっている。詳しく分析した結果は他の電磁気バランスを取ったマイクロ扁平振動モータの回転駆動電磁力の源も同じ二つの導線から供給しでも磁石の界磁数は余分以上4か6か或いはもっと多いので無効磁場区域の範囲も大きくになる。
【0008】
整流子片個数の最適化の結果は3個である。絶縁溝が3本だけで整流子の機能も充分的に発揮できる。整流子片数、つまり絶縁溝の本数は6本或いは9本から2倍3倍まで減らす事が出来るによってローター回転する時ブラシとコンミュテータの溝を渡す阻力、ノイズ、導通不良、熱変形、スパーク発生など被害は大部軽減出来る。尚且つローター回転方向と一致するブラシの構造を使用によってブラシの寿命は長くになる。整流子片とプリンタ基板反対側の結線はスルーホールを介して実施するため、整流子片の個数が減らせばスルーホールの個数も減らす、製造コストダウン出来る。
【0009】
モータ随時再起動性能を有する最小限度のコイル数は2個である。振動モータの場合にその2個コアレスコイルをローターの180度範囲中に等分配置した結果は半月形のローターの偏心重量が最大化になる。その偏心重量とローター回転遠心力の関係は正比例であるため、モータの振動強さと直接繋ぐである。3個コイル方式と比べると 2コイルの方がもっと小さい寸法小型モータの製造は可能になる。
【0010】
乾性潤滑スベリ軸受を使用する。減摩合金材とか表面物理減摩改性処理技術とか、品質・寿命・コストの最適化を図られる。ローター回転支持用固定シャフトの固定方法は特殊形状の下ケース(図5)に圧入する。その下ケースの中心部に凸起する円台があり、円台の中心部に抜き穴がある。穴の入り口はプレス作業した際円弧状面取りしてある為にシャフトピンの圧入はセットし易い。圧入作業の最後段階にて硬いシャフトの先端部の周りに下ケースの余った金属が集め、シャフトのストッパーリング状構造を形成られる。上ケース中心穴の位置決めの働きを合わせて振動に耐えられるしっかりした固定方法である。
【0011】
[発明の実施の形態](図6)で表し構造でこの発明の実施例モータを作る。コンミュテータをプリントされた2個コイルの配線プリント基板8にコイル6を配線した後軸受5と一緒に金型にセットして樹脂成形作業を行う。下ケース12にシャフト4を圧入する。ブラシ9をフシキ配線基板13にセットして半田付け後下ケース12に接着固定する。そしてマグネット磁石7を下ケース12に接着固定工程を行う。ブラシの高さと軸受のクリアランスを最適化調整した後ローター2(樹脂フレム)、スラスト軸受としての上、下ワッシャー3と10を入れて上ケース1と一緒に組立する。
【0012】
【実施例】
「2コイル・2磁極・3整流子片・順方向ブラシ」という方式のマイクロ扁平振動モータは構造最適化の結果として、もっと小さい小型モータを作る事が出来る。先ずコアレスコイルの巻線作業から見ると、(図3)に表すようなコイルa、コイルbの整列巻線は巻線治具の巻芯断面形状が円に近くしていますから整列巻線をし易い事になる。今までマイクロ扁平振動モータの最小外径は10Φ近くまでに付いたらローターの設計と製造は非常に難しくに成る。要するに小さすぎる半月状のローターベースにまず3個コイルの等分配置は工程能力上で難しい。1個コイルの特殊な場合にその配置スベースは足りますがコイルの巻芯の断面形状は扁形になって整列巻線が難しい。ここに提供した2個コイルの案が外径10Φ以下のマイクロ扁平振動モータのローター設計・製造に対して可能の道を開ける。半月形のローターベースに2個のコアレスコイルを等分配置することができる。コンミュテータのセグメント絶縁溝の広さと界磁溝の広さはもっと狭くて精度高いのは重要に視される。モータ基本構造を最簡単になっていますから精密工学の原理で高い精度を得る事が出来る。
【0013】
[発明の効果]マイクロ扁平振動モータに置いてモータを構成する各部品設計の最適化の結果として最簡単の基本構造を得られた。省エネルギー、低いノイズ、強い振動、もっと小型、起動性能優れ、寿命長い、出力安定のこのモータ製品を量産する時品質、良品率、コストダウンなど面でメリットはある。
【図面の簡単な説明】
【図1】2、4、6磁極界磁マグネットの磁束線平面分布図である。
【図2】直流電流を流しているコアレスコイルが磁場の中に置いて回転電磁力を発生することを表す平面図である。
【図3】本発明である「2コイル、2磁極、3整流子片、順方向ブラシ」マイクロ扁平振動モータの基本構造及び結線平面図である。
【図4】「2コイル、2磁極、3整流子片」方式マイクロ扁平振動モータの全周回転トルクリップル状況直観説明図である。
【図5】シャフトを下ケースに固定する方法を表す断面図である。
【図6】「2コイル、2磁極、3整流子片、順方向ブラシ」マイクロ扁平振動モータの実施例基本構造断面図である。
【符号の説明】
1 上ケース
2 樹脂フレム
3 上スラスト軸受ワッシャ
4 シャフト
5 減摩合金或いは表面減摩物理改性処理した軸受
6 コアレス電機子コイル2個
7 N,S二極界磁マグネット永久磁石
8 コイル配線プリント基板
9 ローター回転方向と同じ方向に向いている順方向ブラシ
10 下スラスト軸受ワッシャー
11 プリント基板上形成された整流子銅箔片
12 特別な形状の下ケース
13 ブラシのベースフレキ基板[0001]
[Industrial application field] In the present invention, when two coreless coils are equally arranged on an electric rotor within a range of 180 degrees, the half-moon shaped rotor has a heavy eccentric load. Generates strong vibration. Micro flat vibration motors are used in mobile phones, pagers, massage machines, signal receivers for the visually impaired, watches, and toys, as you all know.
[0002]
[Prior Art] Normally, a flat vibration motor has a structure in which three coreless coils and a magnet magnet have four poles. The number of commutators is 6 and can be restarted at any time. The above-described three-coil flat vibration motor becomes a vibration motor if one coil is reduced. However, the arrangement range of the remaining two coils exceeds 180 degrees, and the eccentric weight of the rotor becomes insufficient. In some cases, a micro flat vibration motor composed of a flat field magnet having six magnetic poles alternately and N, S and a commutator having nine commutator pieces by placing two coreless coils in an eccentric half-moon shape. There is also.
[0003]
[Problems to be solved by the invention]
The magnetic flux lines in the magnetic path space of the 4-pole or 6-pole N and S alternately magnetized field magnets flow in the horizontal direction at the magnetic field boundary. There is almost no generation of the rotor rotating electromagnetic force on the radial lead wire that entered (Fig. 2). When a coil energized with direct current enters an area where the magnetic flux lines are perpendicular to the plane of the field magnet, the rotor rotating electromagnetic force is generated and output as a motor power source. I can do it. Therefore, whether or not the number of magnetic field poles is optimized is a problem. This significantly affects the energy conversion efficiency of the motor.
[0004]
In the structure of the commutator, the number of commutator pieces is six or nine, or simply speaking, the more the number of the insulating grooves increases, the more friction of the brush becomes when rotating. As the frictional energy loss increases, the efficiency of the motor naturally becomes worse. Therefore, it is necessary to confirm the optimization of the number of commutator pieces. When the brush is passed to the insulating groove of the commutator piece, the power of the coil is turned off and on, so even if some sparks are generated, the brush wears quickly. At the same time, the energization status of the coil, that is, the output status of the motor is also affected. Electromagnetic noise is also generated when the power is turned off and on. Various problems have been pointed out, such as poor contact conduction between the brush and segment, thermal deformation, and increased barrier force passing through the insulating groove. In particular, when the brush direction and the rotor rotation direction do not match, the above-mentioned problem becomes significant. In fact, when tested, the opposite brush sliding surface is completely worn, and the forward brush wears slightly. This is a direct factor for the service life of the motor. The problem of drive torque ripple due to rotor position must also be considered. The problems of motor electrical restart performance and start-up torque ripple are electromagnetic balance problems. The simplest motor that satisfies the above conditions is of course the optimization choice. The development of high-performance motors with the simplest structure and electromagnetic balance for further product miniaturization is an important issue.
[0005]
Conventional oil-impregnated bearings have a problem of lubricating oil popping out by centrifugal force due to high-speed rotation of the rotor. After all, the inside of the motor is dirty. One issue is the use of bearings that do not use oil. One important issue is how to fix the shaft to the case easily and reliably.
[0006]
[Means for Solving the Problems] An N, S dipole planar magnetic field magnet is used. The area having the magnetic flux lines distributed perpendicular to the magnet plane required to generate the rotor rotational torque is the effective magnetic field area. The choice that maximizes the area is the simplest field structure with only two N and S magnetic poles (FIG. 1). As a result of maximizing the entire circumference driving effective magnetic field area, the electromagnetic driving torque works during the rotor rotation, and the time becomes longer. The conversion rate from electrical energy to mechanical energy is also improved. The electromagnetic performance of permanent magnets can be maximized. The magnetizing accuracy is high when magnetizing the magnet, and the magnetizing yoke can be manufactured with only two poles. In particular, the advantages of minimizing the number of magnetic fields can be clearly seen for ultra-small magnets.
[0007]
In the present invention, the basic structure of the vibration motor is a system of “two coils, two magnetic poles, and three commutator pieces” (FIG. 3). The fact that the electromagnetic balance can be obtained will be described with reference to FIG. As shown in Aiming for Intuitive Effects (Fig. 4), two conductors in the four conductors are combined with the radial conductors a1, a2 and b1, b2 that can generate the effective torque of the drive coil at any position of the rotor. Always enter the effective magnetic field area. In other words, the source of the motor rotation driving electromagnetic force is always secured from the two conductors of the rotor coreless coil. In particular, since the density of the vertical magnetic flux lines in the center of the effective magnetic field area is higher than the density in the peripheral part, there is a difference in the driving electromagnetic force received by the conductors a1 and a2 or b1 and b2 of the coil. Rotation drive torque. The drive torque ripple value is minimized. The result of detailed analysis shows that the electromagnetic field number of the magnet is more than 4 or 6 or more even if the source of rotational driving electromagnetic force of other micro-balanced motors with electromagnetic balance is supplied from the same two wires. The range of the area will also increase.
[0008]
The result of optimizing the number of commutator pieces is three. The function of the commutator can be sufficiently exhibited with only three insulating grooves. The number of commutator pieces, that is, the number of insulating grooves can be reduced from 6 or 9 to 2 to 3 times, so that when the rotor rotates, the blocking force passing through the groove between the brush and the commutator, noise, poor conduction, thermal deformation, and spark generation Damage can be largely reduced. In addition, the life of the brush is extended by using a brush structure that matches the rotor rotation direction. Since the connection between the commutator piece and the opposite side of the printer board is performed through a through hole, if the number of commutator pieces is reduced, the number of through holes is also reduced, and the manufacturing cost can be reduced.
[0009]
The minimum number of coils having the ability to restart the motor at any time is two. In the case of a vibration motor, the result of equally arranging the two coreless coils in the 180 degree range of the rotor maximizes the eccentric weight of the half-moon shaped rotor. Since the relationship between the eccentric weight and the rotor centrifugal force is directly proportional, it is directly linked to the vibration strength of the motor. Compared with the three-coil system, the two-coil method enables the manufacture of smaller motors with smaller dimensions.
[0010]
Use dry lubricated sliding bearings. It is possible to optimize the quality, life and cost, such as anti-friction alloy materials and surface physical anti-friction treatment technology. The fixing method of the rotor rotation support fixed shaft is press-fitted into a specially shaped lower case (FIG. 5). There is a round base protruding in the center of the lower case, and there is a punched hole in the center of the round base. Because the hole entrance is chamfered in an arc when pressing, it is easy to set the shaft pin. In the final stage of the press-fitting operation, the metal remaining in the lower case is collected around the hard shaft tip, and a stopper ring-like structure of the shaft is formed. It is a firm fixing method that can withstand vibration by combining the positioning of the upper case center hole.
[0011]
[Embodiment of the Invention] The motor shown in FIG. After wiring the
[0012]
【Example】
As a result of structural optimization, the micro flat vibration motor of “2 coils, 2 magnetic poles, 3 commutator pieces, forward brush” can make a smaller motor. First, looking at the winding work of the coreless coil, the aligned windings of coil a and coil b as shown in (Fig. 3) are similar in shape to the winding cross section of the winding jig. It will be easy to do. Until now, the minimum outer diameter of micro flat vibration motors is close to 10Φ, making rotor design and manufacturing very difficult. In short, it is difficult to arrange the three coils equally on the half-moon-shaped rotor base that is too small in terms of process capability. In the special case of a single coil, the arrangement base is sufficient, but the cross-sectional shape of the coil core is flat, making alignment winding difficult. The two-coil proposal provided here opens the way for rotor design and manufacture of micro flat vibration motors with an outer diameter of 10Φ or less. Two coreless coils can be equally arranged on the half-moon shaped rotor base. It is important that the width of the segment insulation groove and the field groove of the commutator are narrower and more accurate. Since the motor basic structure is the simplest, high precision can be obtained by the principle of precision engineering.
[0013]
[Effects of the Invention] The simplest basic structure was obtained as a result of optimizing the design of each component constituting the motor in the micro flat vibration motor. There are advantages in terms of energy saving, low noise, strong vibration, smaller size, excellent startup performance, long life, stable output, quality, yield rate, and cost reduction.
[Brief description of the drawings]
FIG. 1 is a distribution map of magnetic flux lines of 2, 4, and 6 magnetic pole field magnets.
FIG. 2 is a plan view showing that a coreless coil carrying a direct current is placed in a magnetic field to generate a rotating electromagnetic force.
FIG. 3 is a basic structure and connection plan view of a “2-coil, 2-pole, 3-commutator piece, forward brush” micro flat vibration motor according to the present invention.
FIG. 4 is an intuitional explanatory diagram of the state of all-round rotation torque ripple of a “2-coil, 2-pole, 3-commutator piece” type micro flat vibration motor.
FIG. 5 is a cross-sectional view illustrating a method for fixing a shaft to a lower case.
FIG. 6 is a cross-sectional view of a basic structure of an embodiment of a “2-coil, 2-pole, 3-commutator piece, forward brush” micro flat vibration motor.
[Explanation of symbols]
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284135A JP3707027B2 (en) | 2001-08-16 | 2001-08-16 | Optimized structure of micro flat vibration motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001284135A JP3707027B2 (en) | 2001-08-16 | 2001-08-16 | Optimized structure of micro flat vibration motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002224621A JP2002224621A (en) | 2002-08-13 |
JP3707027B2 true JP3707027B2 (en) | 2005-10-19 |
Family
ID=19107511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001284135A Expired - Fee Related JP3707027B2 (en) | 2001-08-16 | 2001-08-16 | Optimized structure of micro flat vibration motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3707027B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116383912B (en) * | 2023-06-02 | 2023-08-11 | 深蓝(天津)智能制造有限责任公司 | Micro motor structure optimization method and system for improving control precision |
-
2001
- 2001-08-16 JP JP2001284135A patent/JP3707027B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002224621A (en) | 2002-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6774523B2 (en) | Electric motor | |
JP3428161B2 (en) | motor | |
JP3535012B2 (en) | Radial gap type small cylindrical rotating electric machine | |
JPH11146617A (en) | Brushless dc motor structure | |
US6636007B2 (en) | DC brushless vibration motor | |
JP2010016958A (en) | Rotating electrical machine | |
JP4722225B2 (en) | Vibration motor | |
KR100213571B1 (en) | Double rotor/single stator and coreless-type bldc motor using one-body type stator | |
JP3707027B2 (en) | Optimized structure of micro flat vibration motor | |
JP4397465B2 (en) | Mounting structure of rotating shaft of rotating electrical machine | |
KR100377562B1 (en) | Flat coreless vibrator motor | |
US6838801B2 (en) | Rectifying structure and rotary machine employing the same | |
KR100847731B1 (en) | Stator core, brushless direct current motor and assembling method thereof | |
US7679257B2 (en) | Planar commutator, rotor and direct current electric motor | |
KR20180054087A (en) | Vehicle fan-motor using one-body type stator | |
JP5738084B2 (en) | Commutator, rotor provided with commutator, and method of manufacturing rotor provided with commutator | |
CN112994300A (en) | Permanent-magnet hollow coil generator | |
US4433259A (en) | Electric rotating machine | |
JP2006187075A (en) | Brushless dc motor and blower fan using it | |
JPH0746894B2 (en) | Brushless DC motor | |
JP3999358B2 (en) | Cylindrical radial gap type rotating electrical machine | |
KR100511272B1 (en) | Structure of rotor for magnetic type motor | |
JP2694318B2 (en) | DC motor | |
JP2000224805A (en) | Flat vibration motor | |
KR200222022Y1 (en) | Flat coreless vibrator motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050712 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050721 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100812 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120812 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |