Nothing Special   »   [go: up one dir, main page]

JP3702655B2 - Manufacturing method of resin-encapsulated semiconductor device - Google Patents

Manufacturing method of resin-encapsulated semiconductor device Download PDF

Info

Publication number
JP3702655B2
JP3702655B2 JP17150598A JP17150598A JP3702655B2 JP 3702655 B2 JP3702655 B2 JP 3702655B2 JP 17150598 A JP17150598 A JP 17150598A JP 17150598 A JP17150598 A JP 17150598A JP 3702655 B2 JP3702655 B2 JP 3702655B2
Authority
JP
Japan
Prior art keywords
resin
mold
semiconductor device
heat sink
radiating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17150598A
Other languages
Japanese (ja)
Other versions
JP2000012740A (en
Inventor
伸一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP17150598A priority Critical patent/JP3702655B2/en
Publication of JP2000012740A publication Critical patent/JP2000012740A/en
Application granted granted Critical
Publication of JP3702655B2 publication Critical patent/JP3702655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放熱板を内蔵する樹脂封止型半導体装置の製造方法に関し、その樹脂封止型半導体装置としては、自動車におけるエンジン制御ECU、ABS用ECU等に用いられるドライバICあるいは電源ICのような電力用半導体装置に用いて好適である。
【0002】
【従来の技術】
従来より、この種の樹脂封止型半導体装置は、例えば、自動車におけるエンジン制御ECU、ABS用ECU等に用いられるドライバICあるいは電源ICのような電力用半導体装置に用いられる。そのようなものとして、例えば、特開昭60−110145号公報、特開昭61−194861号公報、特開平8−70016号公報等に記載のものが提案されている。
【0003】
この種の樹脂封止型半導体装置は、一般に、パワーMOSFET等を含んだ半導体チップと、この半導体チップを搭載する搭載部を有するリードフレームと、半導体チップの放熱を促進するための放熱板(ヒートスプレッダ)とを、モールド樹脂で封止したパッケージ形態を採用した構成であり、金型内に半導体チップ、リードフレーム、放熱板を配置した状態で、樹脂を注入、充填することにより形成される。
【0004】
【発明が解決しようとする課題】
しかしながら、本発明者が上記従来技術に基づいて、樹脂封止型半導体装置を試作検討したところ、放熱板が原因で、モールド樹脂に未充填部分や巣、ウエルドラインが残るという不具合が発生することがわかった。以下、これら不具合の発生原因について、本発明者の試作品である樹脂封止型半導体装置(以下、半導体装置という)100について説明する。図4に半導体装置100の断面構成を示す。
【0005】
半導体装置100は、CuやAl等の熱伝導性に優れた材料からなる放熱板4と、この放熱板4の上面4cに配置されたリードフレーム3と、パワーMOSFET等を含んだ半導体チップ(半導体素子)2とが収納され、これら部材2〜4は、例えば黒色のエポキシ樹脂等からなるモールド樹脂5で薄型矩形状に封止され一体化されている。
【0006】
リードフレーム3は、半導体チップ2を搭載する搭載部(アイランド部)3aと、搭載部3a周囲からモールド樹脂5外部に引き出された複数本のリード部3b、3cとから構成されている。リード部3b、3cは、モールド樹脂5内に位置する部分であるインナリード3bと、モールド樹脂5外部に引き出された部分であるアウタリード3cとからなる。なお、搭載部3aは、リードフレーム3のうちモールド樹脂5外部の図示しない部分と連結されている。
【0007】
そして、リードフレーム3の搭載部3aには、半導体チップ2が、Agペースト等の導電性樹脂もしくは半田等の接着部材(図示せず)を介して搭載されている。半導体チップ2は、各インナリード3bとワイヤボンディングされて接続され、リード部3b、3c及びワイヤ6を介して、半導体チップ2と外部との電気信号のやり取りが可能となっている。
【0008】
ここで、半導体装置1においては、半導体チップ2から発生する熱を効率よく逃がすために、図4に示す様に、下面4dから上面4cに向かって基板部4bから段状に突出する台座部4aを、絞り加工等により形成し、この台座部4aと搭載部3aとを当接させた構造としている。また、この台座部4aにより、インナリード3bと基板部4bとの間にギャップGが設定され、両者3b、4bの接触(短絡)が防止されている。
【0009】
かかる構成を有する半導体装置100の製造方法について、図5(注入樹脂の流れを示す説明図)を参照して述べる。まず、所定の温度に加熱された金型(成形金型)7の下型7bに放熱板4単体を落とし込む(ドロップイン工程)。その後、半導体チップ2が搭載され且つワイヤボンディングされたリードフレーム3を、搭載部3aと放熱板4の台座部4aとを当接させて、下型7bにセットする。
【0010】
そして、金型7の上型7aをセットし、金型7内にモールド樹脂5を軟化状態で注入、充填することで樹脂封止を行なう。まず、金型7の熱により粘度の下がったモールド樹脂5が、金型7の下型7bに設けられたゲート(注入口)8から下型キャビティ9b内に注入される。樹脂硬化後、アウタリード3cに半田を付ける表面処理等を行い、最後に、このアウタリード3cを所定の形状に加工することにより、半導体装置100が完成する。
【0011】
ここで、放熱板4がモールド樹脂5を金型7に注入する際の障害物となり、未充填、巣、ウエルドラインといった成形不良をおこす原因となっている。金型7のゲート8から軟化状態のモールド樹脂5が、下型キャビティ9b内に注入されるが、注入された樹脂は、放熱板4の外縁部40に衝突するため、ここが障害物となって下型キャビティ9b方面への樹脂の進入が阻害される。
【0012】
その結果、上型キャビティ9aの方に樹脂が積極的に充填されるため、図5に太線と細線の矢印で示す様に、樹脂の流れが、上型キャビティ9aで多く、下型キャビティ9bで少ないというように不均一な流れとなる。そのため、放熱板4下面4d側の下部空間中央部付近に、未充填部分20または巣、ウエルドラインといった成形不良が発生する。
【0013】
このように、樹脂成形工程の際、放熱板4においてリードフレーム3配置面4cとは反対側の面である下面4d側、すなわち放熱板下部に発生するモールド樹脂5の成形不良は、製品の外観上問題となるとともに、信頼性上も耐湿性の面で問題となる。
そこで、本発明は上記点に鑑みて、金型を用いて樹脂を注入することにより形成される放熱板内蔵型の樹脂封止型半導体装置において、樹脂の成形不良を防止すべく放熱板下部への樹脂の注入性を向上させることを目的とする。
【0014】
【課題を解決するための手段】
本発明は、従来においては、放熱板のうち金型の注入口に対応する外縁部が平板形状であったため、注入口からの樹脂と衝突しやすくなっていることに着目し、放熱板外縁部形状について鋭意検討した結果なされたものである。すなわち、請求項1記載の発明においては、放熱板(10)として、その外縁部のうち注入口(8)と対向させる部位、放熱板(10)の面(11)から面(12)に向かって折り曲げられた折り曲げ部(15)となっているものを用い、放熱板(10)の折り曲げ部(15)が注入口(8)と対向するように放熱板(10)を金型(7)に配置して樹脂封止を行うことを特徴としている。
【0015】
それによって、注入口(8)から注入された樹脂は、放熱板(10)のり曲げ部(15)にできたスペースに流れ込むことができるため、放熱板(10)が障害物となることはない。また、放熱板(10)の折り曲げ部(15)は、放熱板(10)の面(12)に向かって折り曲げられているから、樹脂の流れは、充填が困難となる放熱板(10)面(11)(つまり、放熱板下部)側に積極的に誘導される。従って、本発明では、樹脂の成形不良を防止すべく放熱板下部への樹脂の注入性を向上させることができる。
【0016】
また、請求項2記載の発明においては、放熱板(10)として、その外縁部が四隅を有する形状で、外縁部の四隅に外方に突出した突出部(13a)が形成され、各突出部(13a)に折り曲げ部(15)が形成されたものを用いることを特徴としている
【0017】
なお、上記した括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0018】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。図1は本発明の実施形態に係る樹脂封止型半導体装置(以下、半導体装置という)1の断面図である。本例の半導体装置1は、QFP(Quad Flat Package)であり、例えば、自動車におけるエンジン制御ECU、ABS用ECU等に用いられるドライバICあるいは電源ICのような電力用半導体装置に用いられる。
【0019】
ここで、図1に示す半導体装置1は、上記図4に示した半導体装置100において、放熱板の構成を変えたのみであるため、以下、主として放熱板10の構成について述べると共に、上記図4と同一部分については、図中、同一符号を付して補足説明をするにとどめる。また、図2は、図1を矢印A方向からみた図であり、半導体装置1は平面矩形状となっている。
【0020】
なお、図1は、図2におけるB−B断面図であり、リード部3b、3c及びワイヤ6は、実際には同断面上に無いが、破線にて模式的に表してある。また、図2では、モールド樹脂5、インナリード3b及びワイヤ6は省略してあり、両図1及び2では、後述の製造方法を説明するために、便宜上、金型7のゲート(注入口)8を、対応する位置に破線にて示してある。
【0021】
放熱板(ヒートスプレッダ)10は、上記放熱板4と同様の材質からなり、下面11側から上面12側に向かって基板部13から段状に突出する台座部14が、絞り加工等により形成されている。そして、リードフレーム3の搭載部3aは、この台座部14に当接配置されている。ここで図2に示す様に、放熱板10の外縁部の四隅は、若干外方に突出した突出部13aを形成しており、金型7のゲート8は、これら突出部13aの1つに対向する位置に設けられている。
【0022】
なお、平面が多角形(本実施形態では矩形)であるフラットパッケージにおいては、通常、多角形における角部(隅部)を除く辺部分からアウタリードが引き出される。そのため、ゲートを通ってくる樹脂がアウタリードに付着しないように、ゲートは、アウタリードの存在しないパッケージの角部に対応した部位に形成され、本実施形態では、上記四隅に形成されている。
【0023】
ここで、本実施形態では、各突出部13aの先端部を、放熱板10の下面11から上面12に(つまりインナリード3bに)向かって、ある一定角度(例えば基板部13に対して20°程度)で折り曲げ、折り曲げ部15を形成したことが特徴とするところである。また、ゲート8に対向した突出部13aには、必ず折り曲げ部15を形成する。
【0024】
折り曲げ部15の折り曲げ角度は、モールド樹脂5の厚み(パッケージの厚み)によって異なるが、インナリード3bとの接触を避けるため、インナリード3bとは最低でも0.2mm程度のギャップを確保する必要がある。または、インナリード3bの下部にポリイミドテープ等の絶縁テープを設けることで、インナリード3bと折り曲げ部15との間に絶縁テープを介在させ、上記ギャップを0としてもよい。
【0025】
なお、通常のQFPでは、複数のインナリードのばたつきを防止するために、ポリイミドテープを各インナリードの上面(放熱板と反対側の面)に貼って、インナリードを互いに固定した構成としている。インナリード3bと折り曲げ部15との間に絶縁テープを介在させる構成では、各インナリード3bの下面にテープを貼るだけの工程変更で対応可能であるため、コストアップは全く無い。
【0026】
このように、本実施形態では、従来、平板形状であった注入口と対向する放熱板外縁部を折り曲げた形状とした独自の構成としている。次に、上記半導体装置100と異なる本実施形態独自の製造時における作用について、図3を参照して述べる。ここで、図3は、本実施形態における樹脂注入時の樹脂の流れを示す説明図であり、上記図5と同一部分には同一符号を付してある。
【0027】
金型(成形金型)7は、薄型矩形のモールド樹脂5外形に対応したキャビティ9a、9bを有し、上述の様に、ゲート8は、金型7の角部の1つに設けられている。まず、所定の温度に加熱された金型7の下型7bに、放熱板10単体を落とし込む(ドロップイン工程)。ここで、放熱板10は、各折り曲げ部15が金型7の各角部に対向するように、金型7内に配置される。
【0028】
その後、上述と同様に、ワイヤ接続された(図3ではワイヤ6省略)半導体チップ2を搭載したリードフレーム3を、搭載部3aを放熱板10の台座部14に当接させて、下型7bにセットする。そして、成形金型7の上型7aをセットし、ゲート8から、成形金型7内にモールド樹脂5を、ある程度溶融した軟化状態で注入、充填することで樹脂封止を行なう。
【0029】
ここで、本実施形態においては、注入口8から注入された樹脂は、放熱板10の折り曲げ部15によってできたスペースに流れ込むことができるため、放熱板10が障害物となって、放熱板10下部への進入が妨げられることはない。また、折り曲げ部15は、放熱板10の上面12に向かって折り曲げられているから、樹脂は放熱板10の下面11側に積極的に誘導される。
【0030】
そのため、矢印Uに示す上型キャビティ9aの樹脂流れと、矢印Lに示す下型キャビティ9bの樹脂流れとは、略均一な流れとでき、両キャビティ9a、9bにおいて均一な充填がなされる。また、放熱板10の下面11側へ流れ込んだ樹脂は、従来のように成形不良の発生しやすい放熱板下部を通過して、再び放熱板10の上面12側へ抜ける。
【0031】
このように、放熱板10は、従来のように樹脂流れの障害物となるのではなく、寧ろ、樹脂の流れを、充填が困難となる放熱板10下部へ積極的に誘導するという貴重な役目を果たす。従って、本実施形態では、樹脂充填のネックとなっていた放熱板下部への樹脂の注入性を向上させることができ、未充填、巣、ウエルドラインといった成形不良のないパッケージ形態を実現することができる。
【0032】
また、本実施形態では、上述の樹脂の流れとすることにより、放熱板10下面11に流入した樹脂によって、放熱板10を押し上げる力が働くため、リードフレーム3の搭載部3a下面と放熱板10台座部14上面との接触する力が、強固となり、両者間にモールド樹脂の入り込む余地がなくなり、両者が十分に接触する。このことによって、より良好な放熱性が得られるという波及効果もある。
【0033】
ところで、図1及び図4に示した様な、放熱板(ヒートスプレッダ)4、10を内蔵する半導体装置1、100は、放熱板4、10とリードフレーム3とが、独立した別個の部品であり、放熱板4、10は他の部品と固着しておらず、成形金型7に投げ込んだだけの構造であることにより、「ドロップイン方式」のヒートスプレッダ内蔵型パッケージと呼ばれている。
【0034】
このようなタイプにおいては、放熱板の無い構成のパッケージに用いる標準のリードフレームと成形金型が流用できるため、放熱板を付加したことによる新規なリードフレームと新規な製造設備は不要となり、コストアップを極力抑えることができる。そして、放熱板を内蔵した分、当然熱抵抗の低いパッケージが得られる。
【0035】
ちなみに、本発明者等の測定データによると、28m×28mボディの120ピンとしたQFPに関して、放熱板の無い構成が約30℃/Wであったのに対し、放熱板4、10を内蔵する半導体装置1、100では、約20℃/Wまで下げられ、放熱板の部品コスト上昇分以上のパフォーマンスが得られることが確認されている。
【0036】
(他の実施形態)
なお、上記実施形態では、放熱板10の全ての突出部13aに折り曲げ部15が形成されているが、少なくともゲート8と対向する突出部13aにのみ形成してもよい。また、1つの突出部13aに折り曲げ部15を形成し、金型に接地する際に、折り曲げ部15をゲート8に対向させるようにしてもよいことは勿論である。
【0037】
また、上記実施形態では、表面実装タイプのQFPを例にとって説明したが、同様な効果は、SOP(Small Out Line Package)、SIP(Single Inline Package)、DIP(Dual Inline Package)といったあらゆるパッケージ形態においても発揮できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る樹脂封止型半導体装置の断面構成図である。
【図2】図1のA矢視図である。
【図3】上記実施形態における樹脂注入時の樹脂の流れを示す説明図である。
【図4】本発明者の試作品である樹脂封止型半導体装置の断面構成図である。
【図5】図4の試作品における樹脂注入時の樹脂の流れを示す説明図である。
【符号の説明】
2…半導体チップ、3…リードフレーム、7…金型、8…ゲート、
10…放熱板、11…放熱板の下面、12…放熱板の上面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a resin-encapsulated semiconductor device having a built-in heat sink, and the resin-encapsulated semiconductor device includes a driver IC or a power supply IC used in an engine control ECU, an ABS ECU, etc. in an automobile. It is suitable for use in a power semiconductor device.
[0002]
[Prior art]
Conventionally, this type of resin-encapsulated semiconductor device is used in a power semiconductor device such as a driver IC or a power supply IC used in an engine control ECU, an ABS ECU, or the like in an automobile. As such a thing, the thing as described in Unexamined-Japanese-Patent No. 60-110145, Unexamined-Japanese-Patent No. 61-194461, Unexamined-Japanese-Patent No. 8-70016 etc. is proposed, for example.
[0003]
This type of resin-encapsulated semiconductor device generally includes a semiconductor chip including a power MOSFET and the like, a lead frame having a mounting portion for mounting the semiconductor chip, and a heat dissipation plate (heat spreader) for promoting heat dissipation of the semiconductor chip. ) Is used by injecting and filling a resin in a state where a semiconductor chip, a lead frame, and a heat dissipation plate are arranged in a mold.
[0004]
[Problems to be solved by the invention]
However, when the present inventor made a prototype of a resin-encapsulated semiconductor device based on the above-described conventional technology, a problem arises that an unfilled portion, nest, or weld line remains in the mold resin due to the heat sink. I understood. Hereinafter, the cause of the occurrence of these problems will be described with respect to a resin-encapsulated semiconductor device (hereinafter referred to as a semiconductor device) 100 which is a prototype of the present inventor. FIG. 4 shows a cross-sectional configuration of the semiconductor device 100.
[0005]
A semiconductor device 100 includes a semiconductor chip (semiconductor) including a heat sink 4 made of a material having excellent thermal conductivity such as Cu and Al, a lead frame 3 disposed on an upper surface 4c of the heat sink 4, a power MOSFET, and the like. The element 2 is housed, and these members 2 to 4 are sealed and integrated into a thin rectangular shape with a mold resin 5 made of, for example, black epoxy resin.
[0006]
The lead frame 3 includes a mounting portion (island portion) 3a for mounting the semiconductor chip 2 and a plurality of lead portions 3b and 3c drawn out of the mold resin 5 from the periphery of the mounting portion 3a. The lead portions 3 b and 3 c are composed of an inner lead 3 b that is a portion located in the mold resin 5 and an outer lead 3 c that is a portion drawn out of the mold resin 5. The mounting portion 3a is connected to a portion of the lead frame 3 outside the mold resin 5 (not shown).
[0007]
The semiconductor chip 2 is mounted on the mounting portion 3a of the lead frame 3 via a conductive resin such as Ag paste or an adhesive member (not shown) such as solder. The semiconductor chip 2 is connected to each inner lead 3 b by wire bonding, and electrical signals can be exchanged between the semiconductor chip 2 and the outside via the lead portions 3 b and 3 c and the wire 6.
[0008]
Here, in the semiconductor device 1, in order to efficiently release the heat generated from the semiconductor chip 2, as shown in FIG. 4, a pedestal portion 4 a that protrudes stepwise from the substrate portion 4 b toward the upper surface 4 c from the lower surface 4 d. Is formed by drawing or the like, and the base portion 4a and the mounting portion 3a are in contact with each other. Further, the pedestal portion 4a sets a gap G between the inner lead 3b and the substrate portion 4b, thereby preventing contact (short circuit) between the both 3b and 4b.
[0009]
A method of manufacturing the semiconductor device 100 having such a configuration will be described with reference to FIG. 5 (an explanatory diagram showing the flow of injected resin). First, the heat sink 4 is dropped into a lower mold 7b of a mold (molding mold) 7 heated to a predetermined temperature (drop-in process). Thereafter, the lead frame 3 on which the semiconductor chip 2 is mounted and wire-bonded is set on the lower die 7b by bringing the mounting portion 3a into contact with the pedestal portion 4a of the heat sink 4.
[0010]
Then, the upper mold 7a of the mold 7 is set, and the mold resin 5 is injected and filled in the mold 7 in a softened state to perform resin sealing. First, the mold resin 5 whose viscosity is lowered by the heat of the mold 7 is injected into the lower mold cavity 9b from the gate (injection port) 8 provided in the lower mold 7b of the mold 7. After the resin is cured, surface treatment or the like for applying solder to the outer lead 3c is performed, and finally, the outer lead 3c is processed into a predetermined shape, whereby the semiconductor device 100 is completed.
[0011]
Here, the heat radiating plate 4 becomes an obstacle when the mold resin 5 is injected into the mold 7 and causes molding defects such as unfilling, nest, and weld line. The soft mold resin 5 is injected from the gate 8 of the mold 7 into the lower mold cavity 9b. Since the injected resin collides with the outer edge portion 40 of the heat sink 4, this becomes an obstacle. This prevents the resin from entering the lower mold cavity 9b.
[0012]
As a result, since the resin is positively filled in the upper mold cavity 9a, the flow of the resin is large in the upper mold cavity 9a and in the lower mold cavity 9b as shown by thick and thin arrows in FIG. The flow becomes uneven as few. Therefore, molding defects such as the unfilled portion 20 or the nest and the weld line occur in the vicinity of the central portion of the lower space on the lower surface 4d side of the heat sink 4.
[0013]
Thus, in the resin molding process, the molding failure of the molding resin 5 occurring on the lower surface 4d side, that is, the surface opposite to the lead frame 3 arrangement surface 4c in the heat radiating plate 4, that is, the lower portion of the heat radiating plate is In addition to the above problems, the reliability is also a problem in terms of moisture resistance.
Therefore, in view of the above points, the present invention provides a heat sink built-in type resin-encapsulated semiconductor device formed by injecting resin using a metal mold to the lower portion of the heat sink to prevent resin molding defects. It aims at improving the injectability of the resin.
[0014]
[Means for Solving the Problems]
In the prior art, the outer edge portion of the heat sink corresponding to the injection port of the mold has a flat plate shape, so that it is easy to collide with the resin from the injection port. This has been made as a result of intensive studies on the shape. That is, in the first aspect of the present invention, as a heat sink (10), site Ru are opposed and the inlet (8) of the outer edge of its is, the upper surface from the lower surface of the heat radiating plate (10) (11) The heat sink (10) is used so that the bent portion (15) is bent toward (12) and the bent portion (15) of the heat sink (10) faces the inlet (8). It is characterized by being placed in the mold (7) and sealing with resin .
[0015]
Thereby, the resin injected from the injection port (8), because it can flow into the space can be a in fold bend portion of the heat radiating plate (10) (15), the heat radiating plate (10) is an obstacle There is no. Further, bent portions of the heat radiating plate (10) (15), since bent upward surface of the heat radiating plate (10) (12), the resin flow, the filling becomes difficult heat dissipation plate (10) lower surface (11) (i.e., the heat radiating plate bottom) is induced positively to the side. Therefore, in the present invention, it is possible to improve the injectability of the resin into the lower part of the heat sink so as to prevent the molding failure of the resin.
[0016]
Moreover, in invention of Claim 2, as the heat sink (10), the outer edge part has a shape having four corners, and projecting parts (13a) projecting outward are formed at the four corners of the outer edge part. A feature is that a bent portion (15) is formed on (13a) .
[0017]
In addition, the code | symbol in the above-mentioned parenthesis shows the correspondence with the specific means of embodiment description later mentioned.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. FIG. 1 is a cross-sectional view of a resin-encapsulated semiconductor device (hereinafter referred to as a semiconductor device) 1 according to an embodiment of the present invention. The semiconductor device 1 of this example is a QFP (Quad Flat Package), and is used, for example, in a power semiconductor device such as a driver IC or a power supply IC used in an engine control ECU, an ABS ECU, or the like in an automobile.
[0019]
Here, since the semiconductor device 1 shown in FIG. 1 is different from the semiconductor device 100 shown in FIG. 4 only in the configuration of the heat dissipation plate, the configuration of the heat dissipation plate 10 will be mainly described below. The same parts as those in FIG. 1 are designated by the same reference numerals and only supplementary explanations will be given. FIG. 2 is a view of FIG. 1 as viewed from the direction of arrow A, and the semiconductor device 1 has a planar rectangular shape.
[0020]
1 is a cross-sectional view taken along the line BB in FIG. 2, and the lead portions 3b and 3c and the wire 6 are not shown on the same cross section, but are schematically represented by broken lines. In FIG. 2, the mold resin 5, the inner lead 3b, and the wire 6 are omitted. In FIGS. 1 and 2, the gate (injection port) of the mold 7 is shown for convenience in order to describe the manufacturing method described later. 8 is indicated by a broken line at the corresponding position.
[0021]
The heat radiating plate (heat spreader) 10 is made of the same material as that of the heat radiating plate 4, and a pedestal portion 14 protruding in a stepped manner from the substrate portion 13 from the lower surface 11 side toward the upper surface 12 side is formed by drawing or the like. Yes. The mounting portion 3 a of the lead frame 3 is disposed in contact with the pedestal portion 14. Here, as shown in FIG. 2, the four corners of the outer edge portion of the heat sink 10 form protruding portions 13a that protrude slightly outward, and the gate 8 of the mold 7 is connected to one of these protruding portions 13a. It is provided at an opposing position.
[0022]
In a flat package whose plane is a polygon (rectangular in the present embodiment), the outer lead is usually drawn out from a side portion excluding a corner (corner) in the polygon. Therefore, the gate is formed at a portion corresponding to the corner of the package where the outer lead does not exist so that the resin passing through the gate does not adhere to the outer lead. In this embodiment, the gate is formed at the four corners.
[0023]
Here, in the present embodiment, the front end of each protrusion 13a is directed from the lower surface 11 of the heat radiating plate 10 to the upper surface 12 (that is, toward the inner lead 3b) at a certain angle (for example, 20 ° with respect to the substrate 13). And the bent portion 15 is formed. In addition, a bent portion 15 is always formed on the protruding portion 13 a facing the gate 8.
[0024]
Although the bending angle of the bent portion 15 varies depending on the thickness of the mold resin 5 (package thickness), it is necessary to secure a gap of at least about 0.2 mm from the inner lead 3b in order to avoid contact with the inner lead 3b. is there. Alternatively, an insulating tape such as a polyimide tape may be provided below the inner lead 3b so that the insulating tape is interposed between the inner lead 3b and the bent portion 15 so that the gap is zero.
[0025]
In the normal QFP, in order to prevent a plurality of inner leads from flapping, a polyimide tape is applied to the upper surface (surface opposite to the heat radiating plate) of each inner lead, and the inner leads are fixed to each other. In the configuration in which the insulating tape is interposed between the inner lead 3b and the bent portion 15, since it is possible to cope with the process change by simply sticking the tape to the lower surface of each inner lead 3b, there is no cost increase.
[0026]
Thus, in this embodiment, it is set as the original structure which made the shape which bent the heat sink outer edge part facing the injection port conventionally flat plate shape. Next, the operation of the present embodiment that is different from that of the semiconductor device 100 will be described with reference to FIG. Here, FIG. 3 is an explanatory view showing the flow of the resin at the time of resin injection in this embodiment, and the same parts as those in FIG.
[0027]
The mold (molding mold) 7 has cavities 9 a and 9 b corresponding to the outer shape of the thin rectangular mold resin 5, and the gate 8 is provided at one of the corners of the mold 7 as described above. Yes. First, the heat sink 10 alone is dropped into the lower mold 7b of the mold 7 heated to a predetermined temperature (drop-in process). Here, the heat radiating plate 10 is disposed in the mold 7 such that each bent portion 15 faces each corner of the mold 7.
[0028]
After that, in the same manner as described above, the lead frame 3 on which the semiconductor chip 2 that is wire-connected (in FIG. 3 is omitted) is mounted, the mounting portion 3a is brought into contact with the pedestal portion 14 of the heat sink 10, and the lower die 7b Set to. Then, the upper mold 7a of the molding die 7 is set, and the resin is sealed by injecting and filling the mold resin 5 from the gate 8 into the molding die 7 in a softened state melted to some extent.
[0029]
Here, in this embodiment, since the resin injected from the injection port 8 can flow into the space formed by the bent portion 15 of the heat sink 10, the heat sink 10 becomes an obstacle and the heat sink 10. The entry to the lower part is not hindered. Further, since the bent portion 15 is bent toward the upper surface 12 of the heat sink 10, the resin is positively guided to the lower surface 11 side of the heat sink 10.
[0030]
Therefore, the resin flow in the upper mold cavity 9a indicated by the arrow U and the resin flow in the lower mold cavity 9b indicated by the arrow L can be made substantially uniform, and the both cavities 9a and 9b are uniformly filled. Further, the resin flowing into the lower surface 11 side of the heat radiating plate 10 passes through the lower portion of the heat radiating plate where molding defects are likely to occur as in the conventional case, and again escapes to the upper surface 12 side of the heat radiating plate 10.
[0031]
Thus, the heat sink 10 does not become an obstacle to the resin flow as in the prior art, but rather is a valuable function of actively guiding the resin flow to the lower part of the heat sink 10 where filling is difficult. Fulfill. Therefore, in this embodiment, the resin injection property to the lower part of the heat sink, which has been a bottleneck for resin filling, can be improved, and a package configuration free from molding defects such as unfilled, nests, and weld lines can be realized. it can.
[0032]
In the present embodiment, since the resin flows into the lower surface 11 of the heat radiating plate 10 due to the above-described resin flow, a force that pushes up the heat radiating plate 10 works, and thus the lower surface of the mounting portion 3a of the lead frame 3 and the heat radiating plate 10. The force of contact with the upper surface of the pedestal portion 14 is strengthened, and there is no room for mold resin to enter between the two, so that both are in sufficient contact. This also has a ripple effect that better heat dissipation is obtained.
[0033]
By the way, as shown in FIGS. 1 and 4, in the semiconductor devices 1 and 100 including the heat sinks 4 and 10, the heat sinks 4 and 10 and the lead frame 3 are independent and separate parts. The heat sinks 4 and 10 are not fixed to other parts and are simply thrown into the molding die 7, so that they are called “drop-in type heat spreader built-in type packages”.
[0034]
In such a type, the standard lead frame and molding die used for a package without a heat sink can be used, so there is no need for a new lead frame and new manufacturing equipment due to the addition of a heat sink. Increases as much as possible. And since the heat sink is built in, a package having a low thermal resistance is naturally obtained.
[0035]
By the way, according to the measurement data of the present inventors, the QFP with 120 pins of a 28 m × 28 m body was about 30 ° C./W without the heat sink, whereas the semiconductor incorporating the heat sinks 4 and 10. In the apparatuses 1 and 100, the temperature is lowered to about 20 ° C./W, and it has been confirmed that a performance equal to or higher than the increase in the component cost of the heat sink can be obtained.
[0036]
(Other embodiments)
In the above embodiment, the bent portions 15 are formed on all the protruding portions 13a of the heat radiating plate 10. However, the bent portions 15 may be formed only at least on the protruding portions 13a facing the gate 8. Of course, the bent portion 15 may be formed on one projecting portion 13a, and the bent portion 15 may be opposed to the gate 8 when the bent portion 15 is grounded.
[0037]
In the above embodiment, the surface mount type QFP has been described as an example. However, the same effect can be obtained in any package form such as SOP (Small Out Line Package), SIP (Single Inline Package), and DIP (Dual Inline Package). Can also be demonstrated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a resin-encapsulated semiconductor device according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrow A in FIG.
FIG. 3 is an explanatory diagram showing the flow of resin during resin injection in the embodiment.
FIG. 4 is a cross-sectional configuration diagram of a resin-encapsulated semiconductor device which is a prototype of the present inventor.
FIG. 5 is an explanatory diagram showing a resin flow at the time of resin injection in the prototype of FIG. 4;
[Explanation of symbols]
2 ... Semiconductor chip, 3 ... Lead frame, 7 ... Mold, 8 ... Gate,
DESCRIPTION OF SYMBOLS 10 ... Heat sink, 11 ... Lower surface of heat sink, 12 ... Upper surface of heat sink.

Claims (2)

下面(11)側から上面(12)側に向かって段状に突出する台座部(14)が形成された放熱板(10)を、樹脂注入用の注入口(8)を有する金型(7)の下型(7b)に落とし込み、
その後、半導体素子(2)が搭載部(3a)に搭載され且つ前記半導体素子(2)がインナーリード(3b)にワイヤボンディングされたリードフレーム(3)を、前記搭載部(3a)と前記台座部(4a)とを当接させて、前記下型(7b)に配置し
そして、前記金型(7)の上型(7a)をセットし、軟化状態の樹脂を、前記注入口(8)から前記金型(7)内に注入し、前記放熱板(10)の面(12)及び面(11)側に充填することで樹脂封止を行う樹脂封止型半導体装置の製造方法において、
前記放熱板(10)として、その外縁部のうち前記注入口(8)と対向させる部位が、前記放熱板(10)の面(11)から面(12)に向かって折り曲げられた折り曲げ部(15)となっているものを用い、
前記折り曲げ部(15)が前記注入口(8)と対向するように前記放熱板(10)を前記下型(7b)に配置し、
前記インナーリード(3b)と前記折り曲げ部(15)との間に絶縁テープを介在させた構成として、前記樹脂封止を行うことを特徴とする樹脂封止型半導体装置の製造方法
A heat sink (10) formed with a pedestal (14) protruding stepwise from the lower surface (11) side to the upper surface (12) side is used as a mold (7) having an injection port (8) for resin injection. ) Into the lower mold (7b)
Thereafter, the lead frame (3) in which the semiconductor element (2) is mounted on the mounting portion (3a) and the semiconductor element (2) is wire-bonded to the inner lead (3b) is connected to the mounting portion (3a) and the pedestal. Place the part (4a) in contact with the lower mold (7b) ,
Then, the upper mold (7a) of the mold (7) is set, and the softened resin is injected into the mold (7) from the injection port (8), and the upper surface of the heat sink (10). the method of manufacturing a resin-sealed semiconductor device sealed with resin by filling the surface (12) and a lower surface (11) side,
As the heat radiating plate (10), bent portions cause opposite said inlet (8) of its outer edge, bent upward surface (12) from the bottom surface of the heat radiating plate (10) (11) Use what is part (15),
The heat sink (10) is disposed on the lower mold (7b) so that the bent portion (15) faces the inlet (8),
A method for manufacturing a resin-encapsulated semiconductor device , wherein the resin-encapsulation is performed as a configuration in which an insulating tape is interposed between the inner lead (3b) and the bent portion (15) .
前記放熱板(10)として、その外縁部が四隅を有する形状で、前記外縁部の四隅に外方に突出した突出部(13a)が形成され、各突出部(13a)に前記折り曲げ部(15)が形成されたものを用いることを特徴とする請求項1に記載の樹脂封止型半導体装置の製造方法 As the heat radiating plate (10), the outer edge portion has a shape having four corners, and projecting portions (13a) projecting outward are formed at the four corners of the outer edge portion, and the bent portions (15) are formed in each projecting portion (13a). 2. The method for manufacturing a resin-encapsulated semiconductor device according to claim 1, wherein a semiconductor device is formed .
JP17150598A 1998-06-18 1998-06-18 Manufacturing method of resin-encapsulated semiconductor device Expired - Fee Related JP3702655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17150598A JP3702655B2 (en) 1998-06-18 1998-06-18 Manufacturing method of resin-encapsulated semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17150598A JP3702655B2 (en) 1998-06-18 1998-06-18 Manufacturing method of resin-encapsulated semiconductor device

Publications (2)

Publication Number Publication Date
JP2000012740A JP2000012740A (en) 2000-01-14
JP3702655B2 true JP3702655B2 (en) 2005-10-05

Family

ID=15924363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17150598A Expired - Fee Related JP3702655B2 (en) 1998-06-18 1998-06-18 Manufacturing method of resin-encapsulated semiconductor device

Country Status (1)

Country Link
JP (1) JP3702655B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1318544A1 (en) 2001-12-06 2003-06-11 STMicroelectronics S.r.l. Method for manufacturing semiconductor device packages
JP2010040846A (en) * 2008-08-06 2010-02-18 Yamaha Corp Semiconductor device and method of manufacturing the same
JP6492935B2 (en) * 2015-04-27 2019-04-03 株式会社デンソー Controller-integrated rotating electrical machine
CN110087851B (en) * 2016-12-22 2024-04-12 日立安斯泰莫株式会社 Electronic control device
CN117410264B (en) * 2023-12-15 2024-03-19 北京七星华创微电子有限责任公司 Flip chip packaging structure

Also Published As

Publication number Publication date
JP2000012740A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
KR100192028B1 (en) Plastic package type semiconductor device
JPH04291948A (en) Semiconductor device and its manufacture; radiating fin
JPH1131776A (en) Semiconductor chip package
US5708294A (en) Lead frame having oblique slits on a die pad
CN107039368B (en) Resin-sealed semiconductor device
JP2959480B2 (en) Semiconductor device and manufacturing method thereof
JP2586835B2 (en) Semiconductor integrated circuit
US5793613A (en) Heat-dissipating and supporting structure for a plastic package with a fully insulated heat sink for an electronic device
JP3702655B2 (en) Manufacturing method of resin-encapsulated semiconductor device
JP2004515060A (en) Sealed electronic device and method for sealing electronic device
JP4623871B2 (en) Hybrid integrated circuit device
JP2001156235A (en) Resin-sealed semiconductor device and its manufacturing method
JP4614585B2 (en) Method for manufacturing hybrid integrated circuit device
KR101239117B1 (en) Power semiconductor package and method for fabricating the same
JP2713141B2 (en) Semiconductor device
JP3687347B2 (en) Resin-sealed semiconductor device
JP3424184B2 (en) Resin-sealed semiconductor device
JP2726011B2 (en) Semiconductor device
JP2555931B2 (en) Method for manufacturing semiconductor device
JP2663860B2 (en) Resin-sealed semiconductor device
JP4614579B2 (en) Method for manufacturing hybrid integrated circuit device
JP3284604B2 (en) Method of manufacturing resin-encapsulated semiconductor device with heat sink
JP2710207B2 (en) Semiconductor device and manufacturing method thereof
JP4120101B2 (en) Resin-sealed semiconductor device
JP3592040B2 (en) Resin-sealed semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Effective date: 20050331

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050628

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050711

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees