JP3702360B2 - Method for producing glass base plate for chemical strengthening - Google Patents
Method for producing glass base plate for chemical strengthening Download PDFInfo
- Publication number
- JP3702360B2 JP3702360B2 JP2001000023A JP2001000023A JP3702360B2 JP 3702360 B2 JP3702360 B2 JP 3702360B2 JP 2001000023 A JP2001000023 A JP 2001000023A JP 2001000023 A JP2001000023 A JP 2001000023A JP 3702360 B2 JP3702360 B2 JP 3702360B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- chemical strengthening
- temperature
- composition
- glass composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
- Magnetic Record Carriers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、化学強化用ガラス組成物からなる化学強化用のガラス素板の製造方法に関する。
【0002】
【従来の技術】
一般に化学強化ガラス物品は、ガラス組成中に含まれる一価の金属イオンよりイオン半径の大きな1価の金属イオンを含有する溶融塩中に浸漬され、ガラス中の金属イオンと溶融塩中の金属イオンとが交換されることにより製造される。
【0003】
このような化学強化ガラス物品の用途の一つとして、情報記録媒体用の基板、特に磁気ディスク基板として用いられるようになってきた。このような磁気ディスクドライブの用途には、ガラスの熱膨張と固定用の金属治具との熱膨張のマッチングが必要であり、また長期保存および悪環境すなわち高温高湿下での使用に耐える耐候性が要求される。さらに磁気ディスク基板の用途では、使用される板厚の薄板化が進んでいる。これとともに、記録密度の増大のためにその表面の高平坦化が望まれているため、磁気ディスク基板をそれに適したフロート法で成形することは有利な方法である。
【0004】
現在、このような化学強化ガラス基板としては、フロート法により成形されたソーダライム組成のガラス基板に化学強化が施されて用いられている。しかしながら、前記ガラス基板は化学強化処理を施すと耐候性が著しく悪くなるため、高温多湿の環境での使用に問題があった。
【0005】
ところで、耐候性の優れた化学強化ガラスとしては、米国特許4,156,755号にリチウム含有イオン交換強化ガラスについての記載がある。前記公報、7項、2〜15行目に、重量%で、59〜63%のSiO2 、10〜13%のNa2O、4〜5.5%のLi2O、15〜23%のAl2O3、2〜5%のZrO2を含有し、Al2O3+ZrO2が19〜25%、Na2O/ZrO2が2.2〜5.5であるガラス組成物が開示されている。
【0006】
また、強化ガラスの製造方法としては、例えば特開昭62−187140号公報に記載されており、前記公報、第1項、左側5〜16行目に重量%で、64〜70%のSiO2、14〜20%のAl2O3、4〜6%のLi2O、7〜10%のNa2O、0〜4%のMgO、0〜1.5%のZrO2を含有する強化ガラスの製造方法について開示されている。
【0007】
しかし、上記米国特許4,156,755号および特開昭62−187140号公報の実施例で示されたガラス組成物は、溶解および成形に高温を要し、フロート法にて製造するのは容易ではない。
【0008】
他の化学強化ガラスとしては、特開平5−32431号公報に記載されており、前記公報、第2項、左側2〜7行目に重量%で、62〜75%のSiO2、 4〜12%のNa2O、4〜10%のLi2O、5〜15%のAl2O3を含有し、かつNa2O/ZrO2の重量比が0.5〜2.0であり、さらにAl2O3/ZrO2 の重量比が0.4〜2.5である化学強化ガラス物品について開示されている。前記公報に開示された組成には多量のZrO2 が含まれており、溶融炉を用いて製造する場合、炉内でZrO2の結晶が析出し易く、品質上に問題があった。
【0009】
自動車、航空機等の風防用に適した化学強化ガラスとして、特公昭47−1312号に、リチウムまたはナトリウムアルミノシリケートガラスシートおよびその製造方法が開示されている。前記公報、第3項右側29〜34行目に、特に適当なガラス組成物は、内部部分が酸化物基準重量で、2〜6%Li2O 、5〜10%Na2O、15〜25%Al2O3および60〜70%SiO2からなり、Li2O,Na2O,Al2O3およびSiO2 の総和が組成物の少くとも95重量%である、との記載がある。前記公報の第3項第1表の3に記載されている前記組成範囲に含まれる実施例は、溶解および成形に高温を要しフロート成形にて高品質なガラスを製造するのは困難である。
【0010】
また、強化ガラスの製造方法および強化ガラスが英国特許1322510号公報に開示されている。前記公報の一つの目的として、第1項61〜75行目に、Froucault process,Pennvernon or Pittsburgh prosess,Colburn processでのガラスシート製造が可能な組成を提供することであり、このためのガラス組成の条件として歪点が450〜550℃、作業温度が980〜1150℃、液相温度が1100℃以下との記載がある。前記公報記載の実施例の組成物は、作業温度が高い、液相温度が作業温度より高くフロート法による成形に適さない、化学強化ガラスの耐候性が悪い等の問題点があった。
【0011】
【発明が解決しようとする課題】
そこで本発明は、溶融炉を用いて製造する場合に問題となるZrO2 を含まずに、さらにフロート成形に適した溶解温度および作業温度を有し、さらに化学強化処理後の耐水性や耐候性が良好である化学強化用のガラス素板の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記従来技術の課題および要求に基づいて行われたものであり、
重量%で表して、
SiO2 58〜66%、
Al2O3 13〜19%、
Li2O 3〜 4.5%、
Na2O 6〜13%、
K2O 0〜 5%、
R2O 9〜18%、
(ただし、R2O=Li2O+Na2O+K2O)
MgO 0〜 3.5%、
CaO 1〜 7%、
SrO 0〜 2%、
BaO 0〜 2%、
RO 2〜10%、
(ただし、RO=MgO+CaO+SrO+BaO)
TiO2 0〜 3%、
CeO2 0〜 1%、
Fe2O3 0〜 2%、
MnO 0〜 1%、
TiO2+CeO2+Fe2O3+MnO=0.01〜3%
の成分を含有し、かつZrO 2 を含まないガラス組成物となるように調合したガラスバッチ原料を溶融し、フロート法でシート状に成形することを特徴とする化学強化用のガラス素板の製造方法である。
【0013】
さらに、その50〜350℃の温度範囲における平均線熱膨張が80×10-7/K以上であることが好ましい。
【0014】
また、前記ガラス組成物は、
重量%で表して、
SiO2 60〜66%、
Al2O3 15〜19%、
Li2O 3〜 4.5%、
Na2O 7.5〜12.5%、
K2O 0〜 2%、
R 2 O 10〜17%、
MgO 0.5〜 3%、
CaO 2.5〜 6%、
SrO 0〜 1%、
BaO 0〜 1%、
RO 3〜 9%、
TiO2 0〜 2%、
CeO2 0〜 1%、
Fe2O3 0〜 2%、
MnO 0〜 1%、
TiO2+CeO2+Fe2O3+MnO=0.01〜3%
の成分を含有する化学強化用のガラス素板の製造方法である。
【0015】
さらに、その50〜350℃の温度範囲における平均線熱膨張が84×10-7/K以上であることが好ましい。
【0016】
またさらに、上述の化学強化用ガラス組成物において、前記ガラス組成物の溶融温度(102poiseの粘性を有する温度)が1550℃以下で、作業温度(104poiseの粘性を有する温度)が1100℃以下であり、かつ前記液相温度が前記作業温度以下である化学強化用ガラス組成物とするのが好ましい。
【0017】
さらには、前記ガラス組成物の溶融温度(102poiseの粘性を有する温度)が1540℃以下で、作業温度(104poiseの粘性を有する温度)が1055℃以下であり、かつ前記液相温度が前記作業温度以下であるのが好ましい。
【0018】
以下に、本発明に用いるガラス組成物の限定理由について説明する。
SiO2 はガラスを形成するための主要成分であり、必須の構成成分である。その割合が58%未満であると、イオン交換後の耐水性が悪化する。一方、66%を越えるとガラス融液の粘性が高くなりすぎ、溶融や成形が困難となるとともに、膨張係数が小さくなりすぎる。このため、SiO2 の範囲としては58〜66%が好ましく、さらに60〜66%が好ましい。
【0019】
Al2O3はイオン交換速度を速めるため、およびイオン交換後の耐水性を向上するために必須の構成成分である。その割合が13%未満では、その効果が不十分である。一方、19%を越えるとガラス融液の粘性が高くなりすぎ、溶融や成形が困難となるとともに、膨張係数が小さくなりすぎる。このため、Al2O3の範囲としては13〜19%が好ましく、さらに15〜19%が好ましい。
【0020】
Li2O はイオン交換を行うための必須の構成成分であるとともに、溶解性を高める成分である。その割合が3%未満では、イオン交換後の表面圧縮応力が十分得られず、また溶解性も悪い。一方、4.5%を越えるとイオン交換後の耐水性が悪化するとともに、液相温度が上がり、成形が困難となる。このため、Li2O の範囲としては、3〜4.5%が好ましい。
【0021】
Na2O は溶解性を高める成分である。その割合が6%未満では、その効果が不十分である。一方、13%を越えるとイオン交換後の耐水性が悪化する。このため、Na2O の範囲としては6〜13%が好ましく、さらに7.5〜12.5%が好ましい。
【0022】
K2O は溶解性を高める成分であるが、イオン交換後の表面圧縮応力が低下するため必須成分ではない。このため、K2O の範囲としては5%以下が好ましく、さらに2%以下が好ましい。
【0023】
さらに、Li2O+Na2O+K2Oの合計R2Oが、9%未満ではガラス融液の粘性が高くなりすぎ、溶融や成形が困難となると共に膨張係数が小さくなりすぎる。一方、18%を越えるとイオン交換後の耐水性が悪化する。このため、Li2O+Na2O+K2Oの合計R2Oの範囲は9〜18%が好ましく、さらに10〜17%が好ましい。
【0024】
MgOは溶解性を高める成分であるが、3.5%を越えると液相温度が上がり、成形が困難となる。このためMgOは3.5%以下が好ましく、さらに0.5〜3%が好ましい。
【0025】
CaOは溶解性を高める成分であるとともに、イオン交換速度を調整するための必須成分である。その割合が1%未満ではその効果が十分でない。一方、7%を越えると液相温度が上がり、成形が困難となる。このため、CaOの範囲は1〜7%が好ましく、さらに2.5〜6%が好ましい。
【0026】
SrOやBaOは、溶解性を高める成分であるとともに液相温度を下げるのに有効な成分である。しかし、ガラスの密度が大きくなるとともに、原料代のアップの要因となるので、SrOやBaOはそれぞれ2%以下が好ましく、さらに1%以下が好ましい。
【0027】
さらに、MgO+CaO+SrO+BaOの合計ROが、2%未満ではガラス融液の粘性が高くなりすぎ、溶融、成形が困難となり、10%を越えると液相温度が上がり、成形が困難となる。このため、MgO+CaO+SrO+BaOの合計ROの範囲としては2〜10%が好ましく、さらに3〜9%が好ましい。
【0028】
Fe2O3はガラス融液中でFe2+とFe3+が平衡状態にあり、これらのイオンが融液中の光の透過率、特に赤外域の透過率を大きく左右する。全鉄をFe2O3に換算して2%を超えると赤外域の吸収が大きくなりすぎ、溶融や成形時にガラスの温度分布をコントロールできなくなり、品質の悪化を招く。このため、全鉄はFe2O3として2%以下が好ましい。
【0029】
TiO2,CeO2,MnOはFe2+とFe3+の平衡状態を変化させ、また相互作用することにより光の透過率を変化させるのに有効な成分である。しかし、過剰に含有するとガラス素地品質が悪化するとともに、原料代のアップにつながるため、TiO2 の範囲としては3%以下が好ましく、さらに2%以下が好ましい。また、CeO2,MnOの範囲としては1%以下が好ましい。
【0030】
本発明の化学強化用ガラス組成物には、以上の成分の他に本発明の特性を損なわない範囲で、NiO,Cr2O3,CoO等の着色剤、およびSO3 ,As2O3、Sb2O3等の清澄剤を含有することができる。
【0031】
このうち、SO3 は清澄剤として用いる硫酸塩に起因するものであり、硫酸塩を清澄剤に用いる場合は、ガラス中の残存量が0.05%未満では清澄の効果が十分でない。一方、残存量が0.5%を越えても清澄の効果は同等であり、さらにガラス溶融時の排ガス中に含まれるSOx が増加するので、環境上好ましくない。このため、ガラス中に残存するSO3 は0.05%〜0.5%が好ましい。
【0032】
また、一般に清澄剤として用いられるAs2O3,Sb2O3はその毒性より1%以下が好ましく、不純物からの混入する量以下、すなわち0.1%以下とするのが望ましい。
【0033】
また、揮発性の高いB2O3,ZnO,P2O5,PbO等は、ガラス溶解炉のレンガを浸食するとともに、揮発成分が炉の天井に凝集し、レンガとともにガラス上に落下するなど品質を悪化させるので、不純物からの混入する量以下、すなわち0.1%以下とするのが好ましい。
【0034】
本発明によって得られた化学強化用のガラス素板を用いて、溶融・成形した基板を円板加工し、さらに荒研磨・化学強化・精密研磨をして、磁気ディスク基板とすることができる。この場合、金属製の固定治具との膨張係数のマッチングが必要である。このとき、その50〜350℃の温度範囲における平均熱膨張係数が80×10-7/K以上が好ましく、さらに84×10-7/K以上が望ましい。
【0035】
ガラスの粘性は、高品質ガラスを溶解するには、溶融温度すなわち102poiseの粘性を有する温度が1550℃以下が好ましく、さらに1540℃以下が望ましい。また、高平坦度のシート状に成形するには、特にフロート法にて成形するには、作業温度すなわち104poiseの粘性を有する温度が1100℃以下、かつ液相温度が作業温度以下であることが好ましく、さらに作業温度が1055℃以下、かつ液相温度が作業温度以下であることが望ましい。
【0036】
【発明の実施の形態】
(実施例)
本発明における5種の実施例である組成物、およびガラスの特性を表1に示す。
【0037】
【表1】
【0038】
まず、実施例1について説明する。表1に示した組成となるように通常のガラス原料であるシリカ、アルミナ、炭酸リチウム、炭酸ナトリウムを用いて、バッチを調合した。調合したバッチは白金るつぼを用いて1450℃で4時間溶融し、鉄板上に流し出した。このガラスを500℃の炉で30min保持した後、炉の電源を切り、室温まで放冷し、試料ガラスとした。
【0039】
試料ガラスの特性として、溶融温度(logη=2の温度)、作業温度(TW:logη=4の温度)、液相温度(TL)、作業温度と液相温度との差(TW−TL)および歪点(logη=14.5の温度)の測定結果を表1に示す。
【0040】
高温域の粘性は白金球引き上げ式自動粘度測定装置にて、また歪点はビーム曲げ式粘度測定装置により測定した。
【0041】
液相温度は次のようにして測定した。試料ガラスを粉砕し、2380μmのフルイを通過し、1000μmのフルイ上にとどまったガラス粒をエタノールに浸漬し、超音波洗浄した後、恒温槽で乾燥させた。幅12mm、長さ200mm、深さ10mmの白金ボート上に前記ガラス粒25gをほぼ一定の厚さになるよう入れ、900〜1150℃の勾配炉内に2時間保持した後、炉から取り出し、ガラス内部に発生した失透を40倍の光学顕微鏡にて観察し、発生した最高温度をもって液相温度とした。
【0042】
イオン交換後の特性として、表面応力、表面応力層深さ、耐水性の測定結果を表1に示す。イオン交換は、試薬1級の硝酸ナトリウム40%と試薬1級の硝酸カリウム60%の混合溶融塩中にガラスを浸漬し、380℃で1時間保持して行った。表面応力、表面応力層深さはイオン交換処理したガラスの薄片を作製し、偏光顕微鏡を用いて測定した。耐水性は、上記試料ガラスを50×100×2mmに切り出し、鏡面研磨した板をイオン交換し、この板を20mlの精製水とともにビニール袋に入れ、60℃で120時間保持した後、精製水中に溶出したガラス成分量を測定し、単位面積当たりの溶出量として求めた。
【0043】
実施例2〜5も実施例1と同様の方法で試料ガラスを作製し、実施例1と同様にしてガラスの特性およびイオン交換後の特性を測定した。
【0044】
いずれの実施例においても、溶融温度は1550℃以下で、作業温度は1100℃以下であり、さらに液相温度は作業温度より低いガラス組成物が得られた。したがって、このガラス組成物は、失透、脈理やスジの発生が少なく、高品質のガラスが得られ、溶解性および成形性も優れていることがわかった。さらに、フロート法による成形が可能なことが確認された。また当然ではあるが、ZrO2を含まないので、溶融の際にZrO2の結晶が析出することもない。
【0045】
また、イオン交換後の耐水性テストにおける重量減は1μg/cm2 以下と優れていることがわかった。
【0046】
(比較例)
一方、本発明に含まれない4種の比較例である組成物、およびガラスの特性を表2に示す。
【0047】
【表2】
【0048】
比較例1、2、3および4は本特許請求範囲に含まれない組成である。実施例1と同様の方法で試料ガラスを作製し、ガラスの特性およびイオン交換後の特性を測定した。ただし、イオン交換は試薬1級の硝酸ナトリウム40%と試薬1級の硝酸カリウム60%の混合溶融塩中にガラスを浸漬し、380℃で3時間保持して行った。
【0049】
比較例1は米国特許4,156,755号の実施例18に記載された組成であり、溶融点は1615℃と高いので、失透、脈理やスジの発生が少ない高品質のガラスを製造するのが容易ではない。
【0050】
比較例2は特開昭62−187140号公報の実施例1に記載された組成であり、溶融点は1590℃以上と高いので、失透、脈理やスジの発生が少ない高品質のガラスを製造するのが容易ではない。
【0051】
比較例3は特開平5−32431号公報の実施例4に記載された組成であり、作業温度に比べ液相温度が高いので、ガラスの成形が困難である。
【0052】
比較例4は英国特許1322510号公報の実施例6に記載された組成であり、溶融点は1555℃以上と高いので、失透、脈理やスジの発生が少ない高品質のガラスを製造するのが容易ではない。
【0053】
比較例5は前記市販のソーダライムガラスであり、実施例1と同様の方法で試料ガラスを作製し、ガラスの特性およびイオン交換後の特性を測定した。ただし、イオン交換は試薬1級の硝酸カリウムの溶融塩中にガラスを浸漬し470℃で3時間保持して行った。イオン交換後の耐水性テストにおける重量減は20μg/cm2 であり、本発明の実施例の20倍以上の溶出があり、耐水性が悪い。
【0054】
(応用例)
上記実施例1から5の化学強化用ガラス組成物を溶融し、シート状に成形した素板を、外径65×内径20mmのドーナッツ状に加工した。さらに荒研磨した後、化学強化を施し精密研磨し所定の板厚にして、磁気ディスク基板を作製した。
【0055】
また、実施例3の組成物を溶融し、フロート法にて成形して基板を作製した。この素板を上述したようにして、磁気ディスク基板を作製した。なお、この基板は元々の素板がフロート法によって製造されているため、反りの程度が小さく平坦性に優れていた。
【0056】
以上のようにして作製した磁気ディスク基板を用いて、磁気ディスク媒体を作製した。媒体の作製はスパッタリング法により行った。まず、精密に洗浄した基板に、下地層としてCrを、記録層としてCo−Cr−Taを、保護層としてCを、それぞれスパッタリング法で形成した。さらに潤滑層を形成して、磁気ディスク媒体とした。このようにして得た媒体を、密閉型の磁気ディスクドライブに装着し、連続稼動させた。この場合、モータからの発熱やディスク表面の空気との摩擦で、ドライブ内部には温度上昇が発生していたが、金属製の固定治具との膨張係数のマッチングがとれているため、何ら問題を生じることはなかった。
【0057】
【発明の効果】
以上のように本発明の化学強化用のガラス素板の製造方法によれば、高品質なガラス素板の製造が容易であり、さらに化学強化処理後の耐水性も良好な化学強化ガラス物品が得られる。
【0058】
さらに、本発明に用いる化学強化用ガラス組成物では、その液相温度が作業温度より低く、溶解性および成形性に優れているため、フロート法にて製造することが可能である。したがって、フロート法の特徴である高平坦性を有している高品質なガラス素板を容易に得ることができる。
【0059】
またさらに、金属製の固定治具との膨張係数のマッチングをとることが可能なため、情報記録媒体の基板等への応用が可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how the glass workpiece for chemical strengthening of a chemically strengthened glass composition.
[0002]
[Prior art]
Generally, a chemically strengthened glass article is immersed in a molten salt containing a monovalent metal ion having a larger ion radius than a monovalent metal ion contained in the glass composition, and the metal ion in the glass and the metal ion in the molten salt And are manufactured by exchanging.
[0003]
As one application of such chemically tempered glass articles, it has come to be used as a substrate for an information recording medium, particularly a magnetic disk substrate. Such magnetic disk drive applications require matching of the thermal expansion of the glass to the thermal expansion of the metal fixture for fixing, and are weather resistant to withstand long-term storage and use in adverse environments, i.e. high temperatures and high humidity. Sex is required. Further, in the use of a magnetic disk substrate, the thickness of the plate used is being reduced. At the same time, since it is desired to make the surface highly flat in order to increase the recording density, it is advantageous to form the magnetic disk substrate by a float method suitable for it.
[0004]
At present, as such a chemically strengthened glass substrate, a glass substrate having a soda lime composition formed by a float process is used after being chemically strengthened. However, since the weather resistance of the glass substrate is remarkably deteriorated when subjected to a chemical strengthening treatment, there is a problem in use in a high temperature and high humidity environment.
[0005]
By the way, as a chemically strengthened glass excellent in weather resistance, there is a description of a lithium-containing ion exchange strengthened glass in US Pat. No. 4,156,755. In the publication, paragraph 7, lines 2 to 15, in terms of% by weight, 59 to 63% SiO 2 , 10 to 13% Na 2 O, 4 to 5.5% Li 2 O, 15 to 23% Disclosed is a glass composition containing Al 2 O 3 , 2-5% ZrO 2 , Al 2 O 3 + ZrO 2 19-25%, Na 2 O / ZrO 2 2.2-5.5. ing.
[0006]
As the method for manufacturing a tempered glass, for example, JP is described in 62-187140 JP, the publication, first paragraph, in weight percent on the left 5 to 16 line, 64 to 70% of SiO 2 , 14-20% of Al 2 O 3, 4 to 6 percent Li 2 O, 7 to 10 percent of Na 2 O, 0 to 4 percent of MgO, tempered glass containing ZrO2 of from 0 to 1.5% A manufacturing method is disclosed.
[0007]
However, the glass compositions shown in the examples of the above-mentioned US Pat. No. 4,156,755 and Japanese Patent Application Laid-Open No. 62-187140 require high temperatures for melting and molding and are easy to produce by the float process. is not.
[0008]
Other chemically strengthened glass are described in Japanese Patent Laid-Open No. 5-32431, the publication, paragraph 2, in weight percent on the 2-7 line left, 62-75% of SiO 2, 4 to 12 % of Na 2 O, 4 to 10% of Li 2 O, containing 5 to 15% Al 2 O 3, and the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, further A chemically strengthened glass article having a weight ratio of Al 2 O 3 / ZrO 2 of 0.4 to 2.5 is disclosed. The composition disclosed in the above publication contains a large amount of ZrO 2 , and when manufactured using a melting furnace, crystals of ZrO 2 are likely to precipitate in the furnace, causing a problem in quality.
[0009]
Japanese Patent Publication No. 47-1312 discloses a lithium or sodium aluminosilicate glass sheet and a method for producing the same as a chemically strengthened glass suitable for windshields of automobiles, aircrafts and the like. The publication, the third term right 29-34 line, particularly suitable glass composition, on an oxide basis weight inner part, 2~6% Li 2 O, 5~10 % Na 2 O, 15~25 % Al 2 consists O 3 and 60~70% SiO 2, Li 2 O , Na 2 O, the sum of Al 2 O 3 and SiO 2 is at least 95% by weight of the composition, is described with. Examples included in the composition range described in Table 3 of Table 3 of the above publication require high temperatures for melting and forming, and it is difficult to produce high-quality glass by float forming. .
[0010]
Further, a method for producing tempered glass and tempered glass are disclosed in British Patent No. 13222510. One object of the above publication is to provide a composition capable of producing a glass sheet in the first column 61-75 in the first paragraph of the process, the Pennvernon or Pittsburgh process, and the Colburn process. The conditions include a strain point of 450 to 550 ° C., a working temperature of 980 to 1150 ° C., and a liquidus temperature of 1100 ° C. or lower. The compositions of the examples described in the above publication have problems such as high working temperature, liquid phase temperature higher than the working temperature, unsuitable for forming by the float process, and poor weather resistance of chemically strengthened glass.
[0011]
[Problems to be solved by the invention]
Therefore, the present invention does not contain ZrO 2 which is a problem when producing using a melting furnace, and further has a melting temperature and working temperature suitable for float forming, and further has water resistance and weather resistance after chemical strengthening treatment. It aims at providing the manufacturing method of the glass base plate for chemical strengthening which is favorable .
[0012]
[Means for Solving the Problems]
The present invention has been made based on the above-described problems and demands of the prior art,
Expressed in weight percent
SiO 2 58~66%,
Al 2 O 3 13-19%,
Li 2 O 3-4.5%,
Na 2 O 6-13%,
K 2 O 0-5%,
R 2 O 9 ~18%,
(However, R 2 O = Li 2 O + Na 2 O + K 2 O)
MgO 0 to 3.5%,
CaO 1-7%,
SrO 0-2%,
BaO 0-2%,
RO 2-10%,
(However, RO = MgO + CaO + SrO + BaO)
TiO 2 0 to 3 %,
CeO 2 0 to 1 %,
Fe 2 O 3 0 to 2%,
MnO 0-1%,
TiO 2 + CeO 2 + Fe 2 O 3 + MnO = 0.01 to 3%
The components were containing organic and glass batch material which is prepared to have a glass composition that does not contain ZrO 2 was molten, the glass workpiece for chemical strengthening, characterized in that formed into a sheet by a float process It is a manufacturing method.
[0013]
Furthermore, it is preferable that the average linear thermal expansion in the temperature range of 50 to 350 ° C. is 80 × 10 −7 / K or more.
[0014]
Further, the glass composition is
Expressed in weight percent
SiO 2 60~66%,
Al 2 O 3 15~1 9%,
Li 2 O 3-4.5%,
Na 2 O 7.5~12.5%,
K 2 O 0-2%,
R 2 O 10-17%,
MgO 0.5-3%,
CaO 2.5-6%,
SrO 0 to 1 %,
BaO 0 to 1 %,
RO 3-9%,
TiO 2 0-2%,
CeO 2 0 to 1 %,
Fe 2 O 3 0 to 2%,
MnO 0-1%,
TiO 2 + CeO 2 + Fe 2 O 3 + MnO = 0.01 to 3%
The component which is a method for producing a glass workpiece for strengthening that chemical Yusuke free.
[0015]
Furthermore, it is preferable that the average linear thermal expansion in the temperature range of 50 to 350 ° C. is 84 × 10 −7 / K or more.
[0016]
Furthermore, in the glass composition for chemical strengthening described above, the melting temperature (temperature having a viscosity of 10 2 poise) of the glass composition is 1550 ° C. or lower, and the working temperature (temperature having a viscosity of 10 4 poise) is 1100. It is preferable that the glass composition for chemical strengthening has a liquid phase temperature not higher than the working temperature and not higher than ° C.
[0017]
Furthermore, the melting temperature (temperature having a viscosity of 10 2 poise) of the glass composition is 1540 ° C. or lower, the working temperature (temperature having a viscosity of 10 4 poise) is 1055 ° C. or lower, and the liquidus temperature Is preferably below the working temperature.
[00 18 ]
The following describes the reasons for limitation of the glass assembly formed product for use in the present invention.
SiO 2 is a main component for forming glass and is an essential component. If the proportion is less than 58%, the water resistance after ion exchange deteriorates. On the other hand, if it exceeds 66%, the viscosity of the glass melt becomes too high, making melting and molding difficult, and the expansion coefficient too low. For this reason, the range of SiO 2 is preferably 58 to 66%, more preferably 60 to 66%.
[00 19 ]
Al 2 O 3 is an essential component for increasing the ion exchange rate and for improving the water resistance after ion exchange. If the ratio is less than 13%, the effect is insufficient. On the other hand, if it exceeds 19%, the viscosity of the glass melt becomes too high, making melting and molding difficult, and the expansion coefficient too small. Therefore, preferably 13 to 19% is a range of Al 2 O 3, further 15-19% is preferred.
[00 20 ]
Li 2 O is an essential component for performing ion exchange and a component for improving solubility. If the ratio is less than 3%, a sufficient surface compressive stress after ion exchange cannot be obtained, and the solubility is poor. On the other hand, if it exceeds 4.5%, the water resistance after ion exchange deteriorates, the liquidus temperature rises, and molding becomes difficult. For this reason, the range of Li 2 O is preferably 3 to 4.5%.
[00 21 ]
Na 2 O is a component that enhances solubility. If the ratio is less than 6%, the effect is insufficient. On the other hand, if it exceeds 13%, the water resistance after ion exchange deteriorates. For this reason, the range of Na 2 O is preferably 6 to 13%, more preferably 7.5 to 12.5%.
[00 22 ]
K 2 O is a component that enhances solubility, but is not an essential component because the surface compressive stress after ion exchange decreases. For this reason, the range of K 2 O is preferably 5% or less, and more preferably 2% or less.
[00 23 ]
Further, if the total R 2 O of Li 2 O + Na 2 O + K 2 O is less than 9%, the viscosity of the glass melt becomes too high, and melting and molding become difficult and the expansion coefficient becomes too small. On the other hand, if it exceeds 18%, the water resistance after ion exchange deteriorates. For this reason, the range of the total R 2 O of Li 2 O + Na 2 O + K 2 O is preferably 9 to 18%, and more preferably 10 to 17%.
[00 24 ]
MgO is a component that enhances solubility, but if it exceeds 3.5%, the liquidus temperature rises and molding becomes difficult. For this reason, MgO is preferably 3.5% or less, more preferably 0.5 to 3%.
[00 25 ]
CaO is a component that enhances solubility and is an essential component for adjusting the ion exchange rate. If the ratio is less than 1%, the effect is not sufficient. On the other hand, if it exceeds 7%, the liquidus temperature rises and molding becomes difficult. For this reason, the range of CaO is preferably 1 to 7%, and more preferably 2.5 to 6%.
[00 26 ]
SrO and BaO are components that enhance solubility and are effective components for lowering the liquidus temperature. However, since the density of the glass increases and the raw material cost increases, SrO and BaO are each preferably 2% or less, and more preferably 1% or less.
[00 27 ]
Furthermore, if the total RO of MgO + CaO + SrO + BaO is less than 2%, the viscosity of the glass melt becomes too high, and melting and molding become difficult. If it exceeds 10%, the liquidus temperature rises and molding becomes difficult. For this reason, the range of the total RO of MgO + CaO + SrO + BaO is preferably 2 to 10%, and more preferably 3 to 9%.
[00 28 ]
In Fe 2 O 3 , Fe 2+ and Fe 3+ are in an equilibrium state in the glass melt, and these ions greatly influence the light transmittance in the melt, particularly in the infrared region. If the total iron exceeds 2% when converted to Fe 2 O 3 , absorption in the infrared region becomes too large, and it becomes impossible to control the temperature distribution of the glass during melting and molding, leading to deterioration of quality. For this reason, the total iron is preferably 2% or less as Fe 2 O 3 .
[00 29 ]
TiO 2 , CeO 2 and MnO are effective components for changing the equilibrium state of Fe 2+ and Fe 3+ and for changing the light transmittance by interacting with each other. However, if the content is excessive, the glass substrate quality deteriorates and the raw material cost increases, so the range of TiO 2 is preferably 3% or less, and more preferably 2% or less. The range of CeO 2 and MnO is preferably 1% or less.
[00 30 ]
In the glass composition for chemical strengthening of the present invention, in addition to the above components, a colorant such as NiO, Cr 2 O 3 , CoO, SO 3 , As 2 O 3 , and the like, as long as the characteristics of the present invention are not impaired. A clarifying agent such as Sb 2 O 3 can be contained.
[00 31 ]
Of these, SO 3 is attributed to the sulfate used as a fining agent. When sulfate is used as the fining agent, the fining effect is not sufficient if the residual amount in the glass is less than 0.05%. On the other hand, even if the residual amount exceeds 0.5%, the clarification effect is equivalent, and SOx contained in the exhaust gas at the time of melting the glass increases. For this reason, the SO 3 remaining in the glass is preferably 0.05% to 0.5%.
[00 32 ]
In general, As 2 O 3 and Sb 2 O 3 used as fining agents are preferably 1% or less from their toxicity, and are preferably less than the amount mixed from impurities, that is, 0.1% or less.
[00 33 ]
In addition, highly volatile B 2 O 3 , ZnO, P 2 O 5 , PbO, and the like erode the bricks of the glass melting furnace, and volatile components aggregate on the ceiling of the furnace and fall onto the glass together with the bricks. Since the quality is deteriorated, it is preferable that the amount is not more than the amount of impurities, that is, 0.1% or less.
[00 34 ]
Using glass workpiece for chemical strengthening obtained by the present invention, the substrate was melted and molded and processed discs, and further to rough polishing, chemical strengthening and precision polishing may be a magnetic disk substrate. In this case, it is necessary to match the expansion coefficient with a metal fixture. At this time, the average thermal expansion coefficient in the temperature range of 50 to 350 ° C. is preferably 80 × 10 −7 / K or more, and more preferably 84 × 10 −7 / K or more.
[00 35 ]
The glass viscosity is preferably 1550 ° C. or lower, more preferably 1540 ° C. or lower, for melting high-quality glass, that is, a temperature having a viscosity of 10 2 poise. Further, in order to form a sheet with high flatness, particularly for forming by the float process, the working temperature, that is, the temperature having a viscosity of 10 4 poise is 1100 ° C. or lower, and the liquidus temperature is lower than the working temperature. It is preferable that the working temperature is 1055 ° C. or lower and the liquidus temperature is lower than the working temperature.
[00 36 ]
DETAILED DESCRIPTION OF THE INVENTION
(Example)
Table 1 shows the characteristics of the compositions as examples of the five types of the present invention and the glass.
[00 37 ]
[Table 1]
[00 38 ]
First, Example 1 will be described. Batches were prepared using silica, alumina, lithium carbonate, and sodium carbonate, which are ordinary glass raw materials, so as to have the composition shown in Table 1. The prepared batch was melted at 1450 ° C. for 4 hours using a platinum crucible and poured out on an iron plate. After holding this glass in a 500 ° C. furnace for 30 minutes, the furnace was turned off and allowed to cool to room temperature to obtain a sample glass.
[00 39 ]
As characteristics of the sample glass, melting temperature (temperature of log η = 2), working temperature (TW: temperature of log η = 4), liquid phase temperature (TL), difference between working temperature and liquid phase temperature (TW−TL) and Table 1 shows the measurement results of the strain point (temperature of log η = 14.5).
[00 40 ]
The viscosity in the high temperature range was measured with a platinum ball pulling type automatic viscosity measuring device, and the strain point was measured with a beam bending type viscosity measuring device.
[00 41 ]
The liquidus temperature was measured as follows. The sample glass was pulverized, passed through a 2380 μm sieve, and the glass particles remaining on the 1000 μm sieve were immersed in ethanol, subjected to ultrasonic cleaning, and then dried in a thermostatic bath. 25 g of the glass particles are placed on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 10 mm so as to have a substantially constant thickness, held in a gradient furnace at 900 to 1150 ° C. for 2 hours, and then removed from the furnace. The devitrification generated inside was observed with a 40 × optical microscope, and the maximum temperature generated was defined as the liquidus temperature.
[00 42 ]
Table 1 shows the measurement results of surface stress, surface stress layer depth, and water resistance as characteristics after ion exchange. The ion exchange was performed by immersing the glass in a mixed molten salt of 40% of reagent grade 1 sodium nitrate and 60% of reagent grade 1 potassium nitrate and holding at 380 ° C. for 1 hour. The surface stress and the depth of the surface stress layer were measured using a polarizing microscope after producing a glass flake after ion exchange treatment. For water resistance, the sample glass was cut into 50 × 100 × 2 mm, a mirror-polished plate was ion-exchanged, this plate was placed in a plastic bag with 20 ml of purified water, kept at 60 ° C. for 120 hours, and then in purified water. The amount of the eluted glass component was measured and determined as the amount of elution per unit area.
[00 43 ]
In Examples 2 to 5, sample glasses were prepared in the same manner as in Example 1, and the characteristics of the glass and the properties after ion exchange were measured in the same manner as in Example 1.
[00 44 ]
In any of the examples, a glass composition having a melting temperature of 1550 ° C. or lower, a working temperature of 1100 ° C. or lower, and a liquidus temperature lower than the working temperature was obtained. Therefore, it has been found that this glass composition has little devitrification, striae and streaks, a high-quality glass is obtained, and is excellent in solubility and formability. Furthermore, it was confirmed that molding by the float process was possible. As a matter of course, since ZrO 2 is not included, ZrO 2 crystals are not precipitated during melting.
[00 45 ]
Moreover, it turned out that the weight loss in the water resistance test after ion exchange is as excellent as 1 microgram / cm < 2 > or less.
[00 46 ]
(Comparative example)
On the other hand, Table 2 shows the properties of the four types of comparative examples not included in the present invention and the glass.
[00 47 ]
[Table 2]
[00 48 ]
Comparative Examples 1, 2, 3 and 4 are compositions not included in the claims. A sample glass was prepared in the same manner as in Example 1, and the characteristics of the glass and the characteristics after ion exchange were measured. However, the ion exchange was performed by immersing the glass in a mixed molten salt of 40% of reagent grade 1 sodium nitrate and 60% of reagent grade 1 potassium nitrate and holding at 380 ° C. for 3 hours.
[00 49 ]
Comparative Example 1 has the composition described in Example 18 of US Pat. No. 4,156,755, and has a melting point as high as 1615 ° C., thus producing a high-quality glass with less devitrification, striae and streaks. Not easy to do.
[00 50 ]
Comparative Example 2 has the composition described in Example 1 of JP-A No. 62-187140, and has a high melting point of 1590 ° C. or higher. Therefore, a high-quality glass with less devitrification, striae and streaks is used. It is not easy to manufacture.
[00 51 ]
Comparative Example 3 has the composition described in Example 4 of JP-A-5-32431, and the liquidus temperature is higher than the working temperature, so that it is difficult to form glass.
[00 52 ]
Comparative Example 4 is the composition described in Example 6 of British Patent No. 13222510. Since the melting point is as high as 1555 ° C. or higher, high-quality glass with less devitrification, striae and streaks is produced. Is not easy.
[00 53 ]
Comparative Example 5 is the commercially available soda lime glass. A sample glass was prepared in the same manner as in Example 1, and the characteristics of the glass and the characteristics after ion exchange were measured. However, ion exchange was performed by immersing glass in a molten salt of first grade potassium nitrate and holding at 470 ° C. for 3 hours. The weight loss in the water resistance test after ion exchange is 20 μg / cm 2 , and the elution is 20 times or more that of the example of the present invention, and the water resistance is poor.
[00 54 ]
(Application examples)
The glass plate for chemical strengthening of Examples 1 to 5 was melted and formed into a sheet shape, and processed into a donut shape having an outer diameter of 65 × inner diameter of 20 mm. Further, after rough polishing, chemical strengthening was performed and precision polishing was performed to obtain a predetermined plate thickness, thereby producing a magnetic disk substrate.
[0055]
Further, the composition of Example 3 was melted and molded by the float process to produce a substrate. A magnetic disk substrate was manufactured using this base plate as described above. In addition, since the original base plate was manufactured by the float process, this board had a small degree of warpage and excellent flatness.
[00 56 ]
A magnetic disk medium was manufactured using the magnetic disk substrate manufactured as described above. The medium was produced by a sputtering method. First, Cr was formed as a base layer, Co—Cr—Ta as a recording layer, and C as a protective layer on a precisely cleaned substrate by a sputtering method. Further, a lubricating layer was formed to obtain a magnetic disk medium. The medium thus obtained was mounted on a sealed magnetic disk drive and continuously operated. In this case, the temperature inside the drive increased due to the heat generated by the motor and the friction with the air on the disk surface, but there was no problem because the expansion coefficient matched with the metal fixing jig. Did not result.
[00 57 ]
【The invention's effect】
As described above, according to the method for producing a glass base plate for chemical strengthening of the present invention, it is easy to produce a high-quality glass base plate, and further a chemically strengthened glass article having good water resistance after chemical strengthening treatment. can get.
[00 58 ]
Furthermore, the glass composition for chemical strengthening used in the present invention has a liquidus temperature lower than the working temperature, and is excellent in solubility and moldability, and therefore can be produced by a float process. Therefore, a high-quality glass base plate having high flatness, which is a feature of the float process, can be easily obtained.
[00 59 ]
Furthermore, since it is possible to match the expansion coefficient with a metal fixture, application to an information recording medium substrate or the like is possible.
Claims (4)
SiO2 58〜66%、
Al2O3 13〜19%、
Li2O 3〜 4.5%、
Na2O 6〜13%、
K2O 0〜 5%、
R2O 9〜18%、
(ただし、R2O=Li2O+Na2O+K2O)
MgO 0〜 3.5%、
CaO 1〜 7%、
SrO 0〜 2%、
BaO 0〜 2%、
RO 2〜10%、
(ただし、RO=MgO+CaO+SrO+BaO)
TiO2 0〜 3%、
CeO2 0〜 1%、
Fe2O3 0〜 2%、
MnO 0〜 1%、
TiO2+CeO2+Fe2O3+MnO=0.01〜3%
の成分を含有し、かつZrO 2 を含まないガラス組成物となるように調合したガラスバッチ原料を溶融し、フロート法でシート状に成形することを特徴とする化学強化用のガラス素板の製造方法。Expressed in weight percent
SiO 2 58~66%,
Al 2 O 3 13-19%,
Li 2 O 3-4.5%,
Na 2 O 6-13%,
K 2 O 0-5%,
R 2 O 9 ~18%,
(However, R 2 O = Li 2 O + Na 2 O + K 2 O)
MgO 0 to 3.5%,
CaO 1-7%,
SrO 0-2%,
BaO 0-2%,
RO 2-10%,
(However, RO = MgO + CaO + SrO + BaO)
TiO 2 0 to 3 %,
CeO 2 0 to 1 %,
Fe 2 O 3 0 to 2%,
MnO 0-1%,
TiO 2 + CeO 2 + Fe 2 O 3 + MnO = 0.01 to 3%
The components were containing organic and glass batch material which is prepared to have a glass composition that does not contain ZrO 2 was molten, the glass workpiece for chemical strengthening, characterized in that formed into a sheet by a float process Manufacturing method.
前記ガラス組成物は、重量%で表して、
SiO2 60〜66%、
Al2O3 15〜19%、
Li2O 3〜 4.5%、
Na2O 7.5〜12.5%、
K2O 0〜 2%、
R 2 O 10〜17%、
MgO 0.5〜 3%、
CaO 2.5〜 6%、
SrO 0〜 1%、
BaO 0〜 1%、
RO 3〜 9%、
TiO2 0〜 2%、
CeO2 0〜 1%、
Fe2O3 0〜 2%、
MnO 0〜 1%、
TiO2+CeO2+Fe2O3+MnO=0.01〜3%
の成分を含有する化学強化用のガラス素板の製造方法。In the glass composition for chemical strengthening according to claim 1,
The glass composition is expressed in wt%,
SiO 2 60~66%,
Al 2 O 3 15~1 9%,
Li 2 O 3-4.5%,
Na 2 O 7.5~12.5%,
K 2 O 0-2%,
R 2 O 10-17%,
MgO 0.5-3%,
CaO 2.5-6%,
SrO 0 to 1 %,
BaO 0 to 1 %,
RO 3-9%,
TiO 2 0-2%,
CeO 2 0 to 1 %,
Fe 2 O 3 0 to 2%,
MnO 0-1%,
TiO 2 + CeO 2 + Fe 2 O 3 + MnO = 0.01 to 3%
The manufacturing method of the glass base plate for chemical strengthening containing the component of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001000023A JP3702360B2 (en) | 2001-01-04 | 2001-01-04 | Method for producing glass base plate for chemical strengthening |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001000023A JP3702360B2 (en) | 2001-01-04 | 2001-01-04 | Method for producing glass base plate for chemical strengthening |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15433996A Division JP3187321B2 (en) | 1996-06-14 | 1996-06-14 | Chemically strengthened glass composition and chemically strengthened glass article |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001226137A JP2001226137A (en) | 2001-08-21 |
JP3702360B2 true JP3702360B2 (en) | 2005-10-05 |
Family
ID=18868918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001000023A Expired - Lifetime JP3702360B2 (en) | 2001-01-04 | 2001-01-04 | Method for producing glass base plate for chemical strengthening |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3702360B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4530618B2 (en) | 2002-09-27 | 2010-08-25 | コニカミノルタオプト株式会社 | Glass composition and glass substrate |
CN1305794C (en) * | 2004-06-25 | 2007-03-21 | 中国洛阳浮法玻璃集团有限责任公司 | Superthin float glass |
JP5467490B2 (en) * | 2007-08-03 | 2014-04-09 | 日本電気硝子株式会社 | Method for producing tempered glass substrate and tempered glass substrate |
JP2012500177A (en) * | 2008-08-21 | 2012-01-05 | コーニング インコーポレイテッド | Durable glass housing / enclosure for electronic devices |
US8647995B2 (en) | 2009-07-24 | 2014-02-11 | Corsam Technologies Llc | Fusion formable silica and sodium containing glasses |
JP2014058408A (en) * | 2012-09-14 | 2014-04-03 | Asahi Glass Co Ltd | Casing and chemically strengthened glass |
JP6172445B2 (en) * | 2013-03-08 | 2017-08-02 | 日本電気硝子株式会社 | cover glass |
CN105121371A (en) | 2013-04-29 | 2015-12-02 | 康宁公司 | Photovoltaic module package |
CN103833223B (en) * | 2014-01-20 | 2016-01-06 | 秦皇岛星箭特种玻璃有限公司 | Space flight flexible foundation glass ingredient |
KR20200085387A (en) * | 2019-01-04 | 2020-07-15 | 삼성디스플레이 주식회사 | Windowte manufacturing method |
-
2001
- 2001-01-04 JP JP2001000023A patent/JP3702360B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001226137A (en) | 2001-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3187321B2 (en) | Chemically strengthened glass composition and chemically strengthened glass article | |
JP3384286B2 (en) | Glass substrate for magnetic recording media | |
JP2001236634A (en) | Magnetic disk substrate comprising glass composition for chemical strengthening and magnetic disk medium | |
JP7435706B2 (en) | Chemically strengthened glass | |
JP2001229526A (en) | Magnetic disk substrate consisting of glass composition for chemical strengthening and magnetic disk medium | |
TWI796316B (en) | crystallized glass | |
JP4086211B2 (en) | Glass composition and method for producing the same | |
JP3657453B2 (en) | Information processing recording medium | |
JP4742046B2 (en) | Glass composition comprising lithia-alumina-silica and glass suitable for chemical tempering and articles made using chemically tempered glass | |
JP5977841B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display | |
JP4785274B2 (en) | Glass article and glass substrate for magnetic recording medium using the same | |
JP4213077B2 (en) | GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM AND ITS MANUFACTURING METHOD, AND INFORMATION RECORDING MEDIUM AND ITS MANUFACTURING METHOD | |
JPH07300340A (en) | Crystallized glass for information-recording disk | |
JP2018513828A (en) | Chemically temperable glass plate | |
KR20010070063A (en) | Glass substrate for information recording medium and information recording medium to which the glass substrate is applied | |
JP2000203872A (en) | Glass composition, substrate for information recording medium by using the same, and information recording medium | |
JP4656863B2 (en) | Zirconium-containing glass composition, chemically strengthened glass article, glass substrate for magnetic recording medium, and method for producing glass plate | |
JP3702360B2 (en) | Method for producing glass base plate for chemical strengthening | |
JP2977068B2 (en) | Glass for chemical strengthening | |
CN100373462C (en) | Substrate for information recording medium, information recording medium and process for producing the same | |
WO2006064878A1 (en) | Glass composition and process for producing the same | |
CN114853337A (en) | Optical glass, glass preform, optical element and optical instrument | |
JPH02133334A (en) | Alkali-free glass | |
JPWO2020021933A1 (en) | Tempered glass and tempered glass | |
US4255199A (en) | Stable, chemically-strengthenable lithium aluminosilicate glasses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050628 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080729 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090729 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090729 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100729 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110729 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110729 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120729 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120729 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130729 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |