Nothing Special   »   [go: up one dir, main page]

JP3701770B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP3701770B2
JP3701770B2 JP10458797A JP10458797A JP3701770B2 JP 3701770 B2 JP3701770 B2 JP 3701770B2 JP 10458797 A JP10458797 A JP 10458797A JP 10458797 A JP10458797 A JP 10458797A JP 3701770 B2 JP3701770 B2 JP 3701770B2
Authority
JP
Japan
Prior art keywords
upstream
pipe
intake
downstream
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10458797A
Other languages
Japanese (ja)
Other versions
JPH10299592A (en
Inventor
吉次 三澤
弘人 對馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10458797A priority Critical patent/JP3701770B2/en
Publication of JPH10299592A publication Critical patent/JPH10299592A/en
Application granted granted Critical
Publication of JP3701770B2 publication Critical patent/JP3701770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • F05C2225/08Thermoplastics

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関用吸気装置に関し、特に、スロットルボディに接続される共通吸気管と、該共通吸気管ならびにシリンダヘッドの複数の吸気ポート間を結ぶ複数の分岐吸気管とが合成樹脂製の吸気マニホールドに形成され、エアクリーナのハウジングの一部が前記吸気マニホールドに一体に形成される内燃機関用吸気装置に関するものである。
【0002】
【従来の技術】
従来、かかる吸気装置が、たとえば米国特許第5259356号公報等により既に知られいてる。
【0003】
【発明が解決しようとする課題】
ところで、上記従来のものでは、吸気マニホールドの中央部に配置された吸気管内にスロットルバルブが配置されており、比較的大重量となるスロットルバルブを合成樹脂から成る吸気管で支持するのは強度上好ましくない。またエアクリーナのフィルタエレメントはリング状に形成されており、該フィルタエレメントの外周の一部に対向するようにして空気導入口が配置されているので、空気導入口からの空気をフィルタエレメントの全周に均等に当てることができず、フィルタエレメントの機能がその部分汚損により低下し、長時間の運転によって機関がその性能を十分に発揮できなくなる場合がある。さらに吸気マニホールドは機関本体に近接して配置されることから温度が高くなり勝ちであり、吸気マニホールドの温度上昇に伴って吸気温度が上昇すると内燃機関の性能を充分に発揮できなくなる。
【0004】
本発明は、かかる事情に鑑みてなされたものであり、合成樹脂から成る吸気マニホールドにエアクリーナのハウジングの一部が一体に形成されるにもかからず充分な剛性を確保するようにした上で、フィルタエレメントの部分汚損を極力防止して機能低下に至るまでの時間を比較的長くすることを可能とし、さらに吸気マニホールドの温度上昇を抑えることにより吸気温度の上昇を抑えて内燃機関の性能を充分に発揮させるようにした内燃機関用吸気装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明は、スロットルボディに接続される共通吸気管と、該共通吸気管ならびにシリンダヘッドの複数の吸気ポート間を結ぶ複数の分岐吸気管とが合成樹脂製の吸気マニホールドに形成され、エアクリーナのハウジングの一部が前記吸気マニホールドに一体に形成される内燃機関用吸気装置において、吸気マニホールドが、各分岐吸気管の上流側の部分を構成する複数の上流側分岐管ならびに各上流側分岐管を共通に連通せしめる共通吸気管を一体に備える熱可塑性合成樹脂製の上流側管路集合体と、各分岐吸気管の下流側の部分を構成する複数の下流側分岐管を一体に備える熱可塑性合成樹脂製の下流側管路集合体とが、加熱、接合されて成り、上流側管路集合体には、共通吸気管の上流端に共通に連なる第1フランジがスロットルボディに接合すべく一体に設けられるとともに、各上流側分岐管の下流端に共通に連なる第2フランジが下流側管路集合体に加熱、接合されるべく一体に設けられ、前記第1および第2フランジに連なる第1および第2側壁と、各上流側分岐管の配列方向に沿う一端で第1および第2側壁間を結ぶ第3側壁と、第1および第2側壁の他端間を結ぶ第4側壁と、第1ないし第4側壁の下部ならびに各上流側分岐管の上下方向略中央部間を連結する底壁とで横断面四角形の箱形に形成されるハウジング主部が、各上流側分岐管の前記配列方向に沿う一端側に偏った配置で上流側管路集合体の上部に一体に形成され、該ハウジング主部と共働してエアクリーナのハウジングを構成するカバーが、ハウジング内を下方の未浄化室および上方の浄化室に区画するフィルタエレメントをハウジング主部との間に挟持して該ハウジング主部の上部に装着され、前記底壁よりも隆起した上流側分岐管の上端よりも低い位置に下端縁を配置して前記未浄化室に通じる空気導入口が前記第3側壁に設けられることを特徴とする。
【0006】
かかる構成によれば、吸気マニホールドにおける上流側管路集合体に一体に設けられるハウジング主部は、スロットルボディに接合せしめるべく上流側管路集合体に一体に設けられた第1フランジに連なる第1側壁と、下流側管路集合体に加熱、接合せしめるべく上流側管路集合体に一体に設けられた第2フランジに連なる第2側壁とを有して四角形の箱形に形成され、該ハウジング主部がエアクリーナのハウジングの一部を構成するので、第1フランジへのスロットルボディの接合、ならびに第2フランジへの下流側管路集合体の加熱、接合により、第1および第2側壁すなわちエアクリーナのハウジングの剛性を高め、吸気装置全体の強度向上を図ることができる。しかもハウジング主部の底壁は各上流側分岐管の上下方向略中央部間を連結するものであり、ハウジング主部の底面が各上流側分岐管で補強されることになり、ハウジング主部の底面剛性を高めることができる。またハウジング主部が各上流側分岐管の配列方向に沿う一端側に偏って配置されており、前記配列方向に沿う一端側で第1および第2側壁間を連結する第3側壁に空気導入口が設けられるので、第3側壁に近い上流側分岐管と第3側壁との間に比較的大きな空間を確保することができ、ハウジング主部の底壁から隆起した上流側分岐管の上端よりも低い位置に空気導入口の下端縁が配置されるので、空気導入口から未浄化室に導入された空気の一部を上流側分岐管の上部に衝突させて前記広い空間に分散させることができ、その分散した空気が未浄化室の上方を覆うフィルタエレメントを流通するので、ほぼ均等に分散された空気がフィルタエレメントを流通することになり、フィルタエレメントの部分汚損を極力防止して機能低下に至るまでの時間を比較的長くすることが可能となる。さらに各上流側分岐管の上部はエアクリーナにおけるハウジングに臨んで配置されているので、エアクリーナを流通する空気により各上流側分岐管が冷却されることになり、機関本体に近接していることによる吸気マニホールドの温度上昇を極力回避し、吸気マニホールドの温度上昇に伴なう吸気温度の上昇を防止して、内燃機関の性能を充分に発揮させることができる。また上流側管路集合体の上部から放射される吸気音を、エアクリーナにおける未浄化室の空気層およびフィルタエレメントにより遮断して放射音の拡散を抑制することができ、エアクリーナの一部および吸気マニホールドが一体化されていることにより、組付け作業性を向上することが可能となる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の一実施例に基づいて説明する。
【0008】
図1ないし図11は本発明の一実施例を示すものであり、図1は機関本体および吸気装置の縦断側面図、図2は図1の2矢視方向から見た吸気装置の平面図、図3は図2の3−3線断面図、図4は上流側管路集合体の平面図、図5は吸気マニホールドの分解縦断面図、図6は図3の6−6線拡大断面図、図7は上流側管路集合体成形時の棒状中子の配置を示す図、図8は湾曲中子による下流側分岐管内面の形成を説明するための下流側管路集合体および湾曲中子の縦断面図であって図9の8−8線に沿う断面図、図9は図8の9−9線拡大断面図、図10は上流側管路集合体および下流側管路集合体の加熱、接合を説明するための簡略化した斜視図、図11は図4の11−11線断面図である。
【0009】
先ず図1ないし図3において、直列多気筒たとえば直列3気筒内燃機関の機関本体Eは、図示しない車両の前部に前方に傾斜した姿勢で横置きに搭載されており、前傾姿勢であることにより機関本体Eの上方に生じたスペースに、機関本体Eにおけるシリンダヘッド21に設けられる3つの吸気ポート22…に接続される吸気装置23が配置される。
【0010】
この吸気装置23は、熱可塑性合成樹脂から成る吸気マニホールド24と、該吸気マニホールド24の上流端に接続されるスロットルボディ25と、前記吸気マニホールド24の上流側上部に一体に設けられたハウジング主部79をハウジング78の一部として吸気マニホールド24の上流側上方に配置されるエアクリーナ26と、該エアクリーナ26および前記スロットルボディ25間を結ぶエアフローチューブ27とを備える。
【0011】
吸気マニホールド24は、スロットルボディ25に接続される共通吸気管30と、該共通吸気管30ならびにシリンダヘッド21の各吸気ポート22…間を結ぶ複数たとえば3つの第1、第2および第3分岐吸気管31,32,33とを備えるものであり、各分岐吸気管31〜33は共通吸気管30から離反するにつれて相互間の間隔を大とした末広がりに配置され、しかも各分岐吸気管31〜33の上流端側がほぼ水平に延びるものであるのに対し、各分岐吸気管31〜33の下流端側は、前傾姿勢に在る機関本体Eの各吸気ポート22…に接続されるべくそれぞれ湾曲して形成される。
【0012】
図4ないし図6を併せて参照して、吸気マニホールド24は、熱可塑性合成樹脂たとえば6−ナイロンから成る上流側管路集合体34と、熱可塑性合成樹脂たとえば6−ナイロンから成る下流側管路集合体35とが、加熱、接合(熱溶着)されて成るものである。
【0013】
上流側管路集合体34は、各分岐吸気管31〜33の上流側の部分を構成してそれぞれ一直線状に延びる第1ないし第3上流側分岐管311 ,321 ,331 と、それらの上流側分岐管311 〜331 の上流端を共通に連通せしめて一直線状に延びる共通吸気管30と、共通吸気管30の上流端に一体に設けられる第1フランジ36と、各上流側分岐管311 〜331 の下流端に共通にかつ一体に設けられる第2フランジ37とを備える。
【0014】
第2上流側分岐管321 は、共通吸気管30の下流端に同軸に連なるものであり、第1および第3上流側分岐管311 ,331 は、共通吸気管30から離反するにつれて第2上流側分岐管321 との間の間隔を次第に大とするように配置される。すなわち各上流側分岐管311 〜331 は、共通吸気管30から離反するにつれて相互間の間隔を大とした末広がりに配置される。
【0015】
第1フランジ36には、スロットルバルブ38を備えるスロットルボディ25の下流端に設けられたフランジ39が図示しないボルトにより締結される。
【0016】
図7において、上流側管路集合体34は、樹脂型によってたとえば射出成形されるものであり、その樹脂型は、上流側管路集合体34の外形に対応した複数の金型(図示せず)と、第1ないし第3上流側分岐管311 〜331 の内面ならびに共通吸気管30の内面にそれぞれ対応して前記各金型内に装着される棒状中子41,42,43,44とを備える。而して前記各金型および各棒状中子41〜44間に充填された溶融合成樹脂の硬化後に、各棒状中子41〜44が前記金型から引き抜かれ、さらに各金型を相互に分離することにより上流側管路集合体34の成形が完了することになる。
【0017】
各棒状中子41〜44は、それらの軸方向移動により金型から引き抜かれるものであり、第2上流側分岐管321 および共通吸気管30の内面は、同軸である棒状中子42,44が相互に離反する方向に引き抜かれることにより形成され、第1および第3上流側分岐管311 ,331 の内面は、前記棒状中子44と角度をなす方向への棒状中子41,43の軸方向移動によりそれぞれ形成され、共通吸気管30からの各上流側分岐管311 〜331 の分岐部は、棒状中子41〜43が棒状中子44に接触することにより形成される。
【0018】
下流側管路集合体35は、前記各分岐吸気管31〜33の下流側の部分を構成してそれぞれ湾曲する第1ないし第3下流側分岐管312 ,322 ,332 と、それらの下流側分岐管312 ,322 ,332 の上流端に共通にかつ一体に設けられる第3フランジ45と、各下流側分岐管312 ,322 ,332 の下流端に共通にかつ一体に設けられる第4フランジ46とを備える。
【0019】
第4フランジ46は、機関本体Eにおけるシリンダヘッド21の側面に締結されるものであり、下流側管路集合体35の下流端上部には、シリンダヘッド21の各吸気ポート22…に向けてそれぞれ燃料を噴射する燃料噴射弁47…を装着するための装着孔48…が設けられるとともに、各燃料噴射弁47…の後端に共通に連なる燃料分配管49を一対のボルト50…で締結するための一対の支持ボス51,51が一体に設けられる。
【0020】
図8および図9を併せて参照して、下流側管路集合体35は、樹脂型によってたとえば射出成形されるものであり、その樹脂型は、下流側管路集合体35の外形に対応した複数の金型(図示せず)と、第1ないし第3下流側分岐管312 〜332 の内面にそれぞれ対応して前記各金型内に装着される湾曲中子54,55,56とを備える。而して前記各金型および各湾曲中子54〜56間に充填された溶融合成樹脂の硬化後に、各湾曲中子54〜56が前記金型から引き抜かれ、さらに各金型を相互に分離することにより下流側管路集合体35の成形が完了することになる。
【0021】
第2下流側分岐管321 に対応した湾曲中子55は、湾曲した第2下流側分岐管321 の中心線を含む平面での仮想円58に沿うように湾曲して形成されるものであり、第1および第3下流側分岐管312 ,332 に対応した湾曲中子54,56は、第2下流側分岐管321 の中心線を含む平面と平行な平面での前記仮想円58に対応した半径の仮想円(図示せず)に沿うようにそれぞれ湾曲して形成される。而して各湾曲中子54〜56は、前記仮想円58の中心Cのまわりに回転するようにして、各下流側分岐管311 〜332 の上流端側に向けて金型から引き抜かれるものであり、このような湾曲中子の回転、引き抜きにより湾曲した合成樹脂製管の内面を形成する成形方法は、たとえば特開平6−213087号公報等により既によく知られている。しかも各湾曲中子54〜56は連結部57に共通にかつ一体に連結されており、該連結部57に連結される図示しない駆動手段により、各湾曲中子54〜56は、相互に平行な平面に沿って同時にかつ共通に回転駆動されることになる。
【0022】
上流側管路集合体34の第2フランジ37と、下流側管路集合体35の第3フランジ45とは、加熱、接合により相互に接合される。この加熱、接合にあたっては、図10で示すように、第2フランジ37の第3フランジ45への接合面59と、第3フランジ45の第2フランジ37への接合面60とは、熱板61の両面に押当てられることにより加熱され、加熱後に両接合面59,60間から熱板61が外された後、両接合面59,60を相互に密着させることにより、各上流側分岐管311 〜331 の下流端に各下流側分岐管312 〜332 の上流端をそれぞれ連ならせる配置で、上流側および下流側管路集合体34,35が相互に加熱、接合されることになる。
【0023】
上流側管路集合体34における第2フランジ37の接合面59には、各上流側分岐管311 〜331 の下流端開口部をそれぞれ囲む第1嵌合凹部62,63,64が設けられ、下流側管路集合体34における第3フランジ45の接合面60には、各下流側分岐管312 〜332 の上流端開口部をそれぞれ囲む第2嵌合凹部65,66,67が設けられる。
【0024】
第1上流側分岐管311 の下流端の第1嵌合凹部62と第1下流側分岐管312 の上流端の第2嵌合凹部65との間には入れ子68が挟まれ、第2上流側分岐管321 の下流端の第1嵌合凹部63と第2下流側分岐管322 の上流端の第2嵌合凹部66との間には入れ子69が挟まれ、第3上流側分岐管331 の下流端の第1嵌合凹部67と第3下流側分岐管332 の上流端の第2嵌合凹部67との間には入れ子70が挟まれる。
【0025】
これらの入れ子68〜70は、上流側および下流側管路集合体34,35と同一の合成樹脂たとえば6−ナイロンにより形成されるものであり、上流側および下流側管路集合体34,35の加熱、接合時に加熱されることなく両集合体34,35間に挟まれるようにして配置される。
【0026】
また入れ子68には、第1上流側分岐管311 の下流端ならびに第1下流側分岐管312 の上流端を連通せしめる連通孔71が設けられ、入れ子69には、第2上流側分岐管321 の下流端ならびに第2下流側分岐管322 の上流端を連通せしめる連通孔72が設けられ、入れ子70には、第3上流側分岐管331 の下流端ならびに第3下流側分岐管332 の上流端を連通せしめる連通孔73が設けられる。
【0027】
ところで、第1ないし第3分岐吸気管31〜33が共通吸気管30から離反するにつれて相互の間隔を大とした末広がりに配置されるのにもかかわらず、下流側管路集合体35の各下流側分岐管312 〜332 の内面を形成する湾曲中子54〜56が相互に平行な平面に沿ってそれぞれ回転せしめられることに起因して、各下流側分岐管312 〜332 のうち第1および第3下流側分岐管322 ,332 の内面を形成する湾曲中子54,56は、第1および第3下流側分岐管322 ,332 に対応した第1および第3上流側分岐管311 〜331 の軸線と交差する平面で回転することになる。そのため、第1および第3下流側分岐管312 ,332 の上流端部内面と、第1および第3上流側分岐管311 ,331 の下流端内面との間には段差部が必然的に生じることになる。そこで、第1および第3下流側分岐管312 ,332 の上流端部内面には、第1および第3上流側分岐管311 ,331 の内面の延長線よりも外方側に位置する段差部に対応する収納凹部74,75が形成され、第1上流側および下流側分岐管311 ,312 間に介在する入れ子68と、第3上流側および下流側分岐管331 ,332 間に介在する入れ子70とには、前記収納凹部74,75に収納されて第1および第3上流側分岐管311 ,331 の内面を第1および第3下流側分岐管312 ,332 の内面に滑らかに連ならせる延長部68a,70aが一体に設けられる。
【0028】
エアクリーナ26のハウジング78は、上方が開放した箱形に形成されて上流側管路集合体34の上部に一体に設けられるハウジング主部79と、該ハウジング主部79の上部に装着される合成樹脂製のカバー80とで構成される。
【0029】
図11を併せて参照して、ハウジング主部79は、スロットルボディ25に接合されるべく上流側管路集合体34に一体に設けられている第1フランジ36に連なって上方に延びる第1側壁81と、下流側管路集合体35に加熱、接合されるべく上流側管路集合体34に一体に設けられている第2フランジ37に連なって上方に延びる第2側壁82と、下流側管路集合体34における各上流側分岐管311 〜331 の配列方向に沿う一端(図11の右端)で第1および第2側壁81,82間を第2上流側分岐管321 とほぼ平行にして結ぶ第3側壁83と、第1および第2側壁81,82の他端間を結んで第3側壁83に対向する第4側壁84と、第1ないし第4側壁81〜84の下部ならびに各上流側分岐管311 〜331 の上下方向略中央部間を連結する底壁85とで、上部を開放した横断面四角形の箱形に形成される。なお底壁85に、図示はしないが、多数のリブが設けられていてもよい。
【0030】
しかもハウジング主部79は、各上流側分岐管311 〜331 の前記配列方向に沿う一端側に偏った配置、すなわち第3側壁83が第3上流側分岐管331 から離隔した配置で上流側管路集合体34の上部に一体に形成されるものであり、第4側壁84は、第2上流側分岐管321 とは角度をなす方向に延びる第1上流側分岐管311 と角度をなすようにして配置され、第1上流側分岐管311 の中間部に一体に連なるように形成される。
【0031】
このハウジング主部79と、該ハウジング主部79の上部に装着されるカバー80との間には、フィルタエレメント86の周縁部が挟まれ、該フィルタエレメント86によりハウジング78内は、下方の未浄化室87と上方の浄化室88とに区画されることになる。
【0032】
第3側壁83には、未浄化室87内に空気を導入するための空気導入口89が設けられるとともに、該空気導入口89に内端を連ならせて外方に延びる空気導入管90が一体に設けられる。ところで、ハウジング主部79の底壁85は、各上流側分岐管311 〜331 の上下方向略中央部間を連結するものであり、上流側分岐管311 〜331 の上部は底壁85よりも上方に隆起しているものである。而して前記空気導入口89は、その下端縁を各上流側分岐管311 〜331 の上端よりも下方に位置させるようにして第3側壁83に設けられる。
【0033】
カバー80には、浄化室88に通じる導出管91がスロットルボディ25の上方に位置するようにして一体に設けられる。すなわちエアクリーナ26内において、空気導入口89から未浄化室87に導入された空気はフィルタエレメント86を通過して上方に流れ、さらに流通方向をほぼ90度変化させるようにして導出管91からほぼ水平方向に導出されることになる。
【0034】
エアクリーナ26の導出管91と、スロットルボディ25の上流端とは、エアフローチューブ27を介して連結されるものであり、該エアフローチューブ27は、上下に延びる拡張型チャンバ27aと、該拡張型チャンバ27aの上端に連なる蛇腹状の入口側接続管27bと、前記拡張型チャンバ27aの下端に連なる出口側接続管27cとを一体に有して合成樹脂により略U字形に形成されるものであり、入口側接続管27bが導出管51に嵌合、連結され、出口側接続管27cがスロットルボディ25の上流端部に嵌合、連結される。
【0035】
而して拡張型チャンバ27aの前記導出管51に対向する部分は、空気流の衝突を緩和して円滑な流れを可能とするために球面状に形成されており、この拡張型チャンバ27aにおける共鳴作用により、吸気装置23での吸気路における固有振動数の調整が可能となり、機関の低・中速回転域における出力トルクの向上に寄与することが可能となる。
【0036】
次にこの実施例の作用について説明すると、吸気マニホールド24において、共通吸気管30が一直線状に延びるものであるのに加えて、その共通吸気管30に共通に連なる各分岐吸気管31〜33が、一直線状に延びる上流側分岐管311 〜333 と、湾曲した下流側分岐管312 〜332 とから構成されるものであるので、前傾姿勢である機関本体Eのシリンダヘッド21に接続される吸気マニホールド24の共通吸気管30から各分岐吸気管31〜33の下流端に至るまでの管路形状を単純化することができる。
【0037】
しかも上流側管路集合体34における各上流側分岐管311 〜331 の内面が棒状中子41〜43の軸方向移動による引き抜きで形成されるとともに共通吸気管30の内面も棒状中子40の軸方向移動による引き抜きで形成されるので、上流側管路集合体34の成形が容易であり、また下流側管路集合体35における各下流側分岐管312 〜332 の内面が湾曲中子54〜56の回転による引き抜きで形成されるので下流側管路集合体35の成形も容易であり、両集合体34、35を高精度かつ低コストで製造することができる。
【0038】
ところで、上流側管路集合体34における第2フランジ37の接合面59と、下流側管路集合体35における第3フランジ45の接合面60とは、相互に加熱、接合されるものであり、その接合時に生じるばりが、上流側分岐管311 〜331 および下流側分岐管312 〜332 の連結部内面にはみだすおそれがある。しかるに前記両接合面59,60には、各上流側分岐管311 〜331 の下流端開口部を囲む第1嵌合凹部62〜64と、下流側分岐管312 〜332 の上流端開口部をそれぞれ囲む第2嵌合凹部65〜67とが設けられており、それらの嵌合凹部62,65;63,66;64,67間に挟まれるようにして合成樹脂製の入れ子68,69,70がそれぞれ配置されているので、前記加熱、接合時にばりが生じたとしても、そのばりが各分岐吸気管31〜33内に入り込むことは各入れ子68〜70により阻止されることになり、したがって各分岐吸気管31〜33の内面形状にばりによるばらつきが生じるのを防止して吸気性能の向上に寄与することができる。なお、前記加熱、接合時に接合面59,60から外方側にはみだすばりについては、吸気性能に影響を及ぼすことはないので、放置したままでよい。
【0039】
しかも前記両接合面59,60のうち上流側管路集合体34の接合面59は、エアクリーナ26のハウジング28を構成するハウジング主部29の一部である第2側壁82に連なって形成されるものであるので、両接合面59,60での接合強度を向上させ、両管路集合体34,35の接合信頼性を向上することができる。
【0040】
また下流側管路集合体35の各下流側分岐管312 〜332 の内面は、相互に平行な平面での湾曲中子54〜56の回転による引き抜きでそれぞれ形成されるものであるので、各湾曲中子54〜56の回転による引き抜きを共通の駆動手段で同時に行なうことが可能であり、下流側管路集合体35の成形がより容易となる。
【0041】
一方、各分岐吸気管31〜33が末広がりの配置であるのにもかかわらず、各湾曲中子54〜56が相互に平行な平面に沿ってそれぞれ回転せしめられることに起因して、第1および第3下流側分岐管312 ,332 の内面を形成する湾曲中子54,56は、第1および第3上流側分岐管311 ,331 の軸線と交差する平面で回転せしめられることになり、第1および第3下流側分岐管312 ,332 の上流端部内面と、第1および第3上流側分岐管311 ,331 の下流端内面との間には段差部が必然的に生じることになる。しかるに、第1および第3下流側分岐管312 ,332 の上流端部内面には、第1および第3上流側分岐管311 ,331 の内面の延長線よりも外方側に位置する収納凹部74,75が形成されており、第1上流側および下流側分岐管311 ,312 間、ならびに第3上流側および下流側分岐管331 ,332 間に介在する入れ子68,70には、前記収納凹部74,75に収納される延長部68a,70aが一体に設けられる。したがって、第1および第3上流側分岐管311 ,331 の内面が第1および第3下流側分岐管312 ,332 の内面に滑らかに連なることになり、上流側分岐管311 ,331 から下流側分岐管312 ,332 への空気の流通を円滑化ならしめ、吸気性能をより一層向上することができる。
【0042】
さらにエアクリーナ26のハウジング78は、上流側管路集合体34に一体に設けられるハウジング主部79と、該ハウジング主部79の上部に装着されるカバー80とで構成されるものであり、ハウジング主部79は、上流側管路集合体34が備える第1および第2フランジ36,37にそれぞれ連なって上方に延びる第1および第2側壁81,82を有して四角形の箱形に形成されるものである。したがって、第1フランジ36へのスロットルボディ25の接合部剛性を高めることができるとともに上流側および下流側管路集合体34,35の接合部の剛性を高めることができるだけでなく、第1および第2側壁81,82すなわちエアクリーナ26のハウジング78の剛性を高め、吸気装置23全体の強度向上を図ることができる。
【0043】
またハウジング主部79の一部である第4側壁84は、第1上流側分岐管311 に角度をなして交わるようにして一体に連なるものであり、第1上流側分岐管311 で補強するようにして第4側壁84の剛性を高めることができる。さらにハウジング主部79の底壁85は各上流側分岐管311 〜331 の上下方向略中央部間を連結するものであり、ハウジング主部79の底面が各上流側分岐管311 〜331 で補強されることになり、ハウジング主部79の底面剛性を高めることができる。したがって上記第1および第2側壁81,82の剛性が高いことと相まってハウジング主部79すなわちハウジング78の剛性をより一層高めることができる。
【0044】
前記ハウジング主部79は、各上流側分岐管311 〜331 の配列方向に沿う一端側に偏って配置されるものであり、その配列方向に沿う一端側に在る第3側壁83に空気導入口89が設けられるので、第3側壁89に近い上流側分岐管331 と第3側壁83との間に比較的大きな空間を確保することができる。しかも底壁85から隆起した上流側分岐管311 〜331 の上端よりも低い位置に空気導入口89の下端縁が配置されるので、空気導入口89から未浄化室87に導入された空気の一部を上流側分岐管331 の上部に衝突させて前記広い空間に分散させることができ、その分散した空気が未浄化室87の上方を覆うフィルタエレメント86を流通するので、ほぼ均等に分散された空気がフィルタエレメント86を流通することになる。したがってフィルタエレメント86の部分汚損を極力防止して機能低下に至るまでの時間を比較的長くすることができる。
【0045】
さらに各上流側分岐管311 〜331 の上部はエアクリーナ26におけるハウジング78内に臨んで配置されているので、エアクリーナ26を流通する空気により各上流側分岐管311 〜331 が冷却されることになり、機関本体Eに近接していることによる吸気マニホールド23の温度上昇を極力回避し、吸気マニホールド23の温度上昇に伴なう吸気温度の上昇を防止して、内燃機関の性能を充分に発揮させることができる。
【0046】
ところで、合成樹脂製であることに起因して吸気マニホールド24からは吸気音の放射が生じがちであるが、吸気マニホールド24における上流側管路集合体34の上部から放射される吸気音は、上流側管路集合体34の上方に在るエアクリーナ26における未浄化室87の空気層およびフィルタエレメント86により遮断されることになり、放射音の拡散を抑制することができる。
【0047】
さらにエアクリーナ26の一部および吸気マニホールド24が一体化されていることにより、吸気装置23の組付け作業性を向上することが可能となる。
【0048】
以上、本発明の実施例を詳述したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。
【0049】
たとえば拡張型チャンバ27aを備えるエアフローチューブ27に代えて、エアクリーナ26およびスロットルボディ25間を連結する単純なダクトを用い、該ダクトの中間部に開閉制御弁を介してレゾネータチャンバが接続される構成としてもよい。また各上流側分岐管311 〜331 およひ各下流側分岐管312 〜332 間に介在するようにして入れ子68〜70を上流側管路集合体34および下流側管路集合体35間に挟むようにしたが、本発明は、そのような入れ子68〜70を用いずに上流側および下流側管路集合体34,35を加熱、接合するようにしたものにも適用可能である。
【0050】
【発明の効果】
以上のように本発明によれば、ハウジング主部が、第1および第2フランジにそれぞれ連なる第1および第2側壁を有して四角形の箱形に形成され、上流側管路集合体に一体に形成されることにより、第1および第2側壁すなわちエアクリーナのハウジングの剛性を高め、吸気装置全体の強度向上を図ることができ、ハウジング主部の底面が各上流側分岐管で補強されることになり、ハウジング主部の底面剛性を高めることができる。
【0051】
またハウジング主部が各上流側分岐管の配列方向に沿う一端側に偏って配置されるとともに前記配列方向に沿う一端側の第3側壁に空気導入口が設けられるので、第3側壁に近い上流側分岐管と第3側壁との間に比較的大きな空間を確保することができ、ハウジング主部の底壁から隆起した上流側分岐管の上端よりも低い位置に空気導入口の下端縁が配置されることにより、空気導入口からの空気の一部を上流側分岐管の上部に衝突させて前記広い空間に分散させてフィルタエレメントに導くようにし、ほぼ均等に分散された空気がフィルタエレメントを流通するようにして、フィルタエレメントの部分汚損を極力防止して機能低下に至るまでの時間を比較的長くすることが可能となる。
【0052】
また各上流側分岐管の上部はエアクリーナにおけるハウジングに臨んで配置されているので、エアクリーナを流通する空気で各上流側分岐管を冷却して、吸気マニホールドの温度上昇を極力回避し、吸気マニホールドの温度上昇に伴なう吸気温度の上昇を防止し、内燃機関の性能を充分に発揮させることができる。
【0053】
さらに上流側管路集合体の上部から放射される吸気音を、エアクリーナにおける未浄化室の空気層およびフィルタエレメントにより遮断して放射音の拡散を抑制し、エアクリーナの一部および吸気マニホールドが一体化されていることにより、組付け作業性を向上することが可能となる。
【図面の簡単な説明】
【図1】機関本体および吸気装置の縦断側面図である。
【図2】図1の2矢視方向から見た吸気装置の平面図である。
【図3】図2の3−3線断面図である。
【図4】上流側管路集合体の平面図である。
【図5】吸気マニホールドの分解縦断面図である。
【図6】図3の6−6線拡大断面図である。
【図7】上流側管路集合体成形時の棒状中子の配置を示す図である。
【図8】湾曲中子による下流側分岐管内面の形成を説明するための下流側管路集合体および湾曲中子の縦断面図であって図9の8−8線に沿う断面図である。
【図9】図8の9−9線拡大断面図である。
【図10】上流側管路集合体および下流側管路集合体の加熱、接合を説明するための簡略化した斜視図である。
【図11】図4の11−11線断面図である。
【符号の説明】
21・・・シリンダヘッド
22・・・吸気ポート
23・・・吸気装置
24・・・吸気マニホールド
25・・・スロットルボディ
26・・・エアクリーナ
30・・・共通吸気管
31,32,33・・・分岐吸気管
311 ,321 ,331 ・・・上流側分岐管
312 ,322 ,332 ・・・下流側分岐管
34・・・上流側管路集合体
35・・・下流側管路集合体
36・・・第1フランジ
37・・・第2フランジ
78・・・ハウジング
79・・・ハウジング主部
80・・・カバー
81・・・第1側壁
82・・・第2側壁
83・・・第3側壁
84・・・第4側壁
85・・・底壁
86・・・フィルタエレメント
87・・・未浄化室
88・・・浄化室
89・・・空気導入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake device for an internal combustion engine, and in particular, a common intake pipe connected to a throttle body and a plurality of branch intake pipes connecting the common intake pipe and a plurality of intake ports of a cylinder head are made of a synthetic resin. The present invention relates to an intake device for an internal combustion engine, which is formed in an intake manifold and a part of a housing of an air cleaner is formed integrally with the intake manifold.
[0002]
[Prior art]
Conventionally, such an intake device is already known, for example, from US Pat. No. 5,259,356.
[0003]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional one, the throttle valve is arranged in the intake pipe arranged at the center of the intake manifold, and it is difficult to support the relatively heavy throttle valve with the intake pipe made of synthetic resin. It is not preferable. The filter element of the air cleaner is formed in a ring shape, and the air introduction port is arranged so as to face a part of the outer periphery of the filter element. In some cases, the function of the filter element is deteriorated due to the partial fouling, and the engine cannot sufficiently exhibit its performance due to long-time operation. Furthermore, since the intake manifold is disposed close to the engine body, the temperature tends to increase, and if the intake air temperature rises as the intake manifold temperature rises, the performance of the internal combustion engine cannot be fully exhibited.
[0004]
The present invention has been made in view of such circumstances, and has ensured sufficient rigidity even though a part of the housing of the air cleaner is integrally formed with the intake manifold made of synthetic resin. It is possible to prevent the filter element from being partially contaminated as much as possible, and to make the time until the function declines relatively long.In addition, by suppressing the temperature rise of the intake manifold, the rise of the intake air temperature is suppressed and the performance of the internal combustion engine is improved. It is an object of the present invention to provide an intake device for an internal combustion engine that can be sufficiently exerted.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a common intake pipe connected to a throttle body and a plurality of branch intake pipes connecting between the common intake pipe and a plurality of intake ports of a cylinder head. In an intake device for an internal combustion engine, which is formed in a manifold and a part of a housing of an air cleaner is formed integrally with the intake manifold, a plurality of upstream branch pipes that constitute an upstream portion of each branch intake pipe And an upstream duct assembly made of a thermoplastic synthetic resin integrally including a common intake pipe that allows the respective upstream branch pipes to communicate with each other, and a plurality of downstream branch pipes constituting a downstream portion of each branch intake pipe And a downstream pipe assembly made of a thermoplastic synthetic resin that is integrally provided with a first pipe connected to the upstream end of the common intake pipe. A flange is integrally provided to be joined to the throttle body, and a second flange connected in common to the downstream end of each upstream branch pipe is integrally provided to be heated and joined to the downstream pipe assembly. 1st and 2nd side wall which continues to 1 and 2nd flange, 3rd side wall which connects between 1st and 2nd side wall in the end along the arrangement direction of each upstream side branch pipe, and the other end of 1st and 2nd side wall A housing main portion formed in a box shape having a rectangular cross section with a fourth side wall connecting between the bottom wall and the bottom wall connecting the lower part of the first to fourth side walls and the substantially central part in the vertical direction of each upstream branch pipe; A cover that is formed integrally with the upper part of the upstream pipe assembly in an arrangement that is biased toward one end along the arrangement direction of each upstream branch pipe, and that cooperates with the housing main part to constitute the housing of the air cleaner. , Unpurified chamber below the housing And a filter element that is partitioned into an upper purification chamber and is sandwiched between the main portion of the housing and attached to the upper portion of the main portion of the housing, and has a lower end that is lower than the upper end of the upstream branch pipe that is raised above the bottom wall. The third side wall is provided with an air introduction port that is disposed at the edge and communicates with the unpurified chamber.
[0006]
According to such a configuration, the main housing portion provided integrally with the upstream pipe assembly in the intake manifold is connected to the first flange provided integrally with the upstream pipe assembly so as to be joined to the throttle body. The housing having a side wall and a second side wall connected to a second flange integrally provided in the upstream side pipe assembly to be heated and bonded to the downstream side pipe assembly, Since the main portion constitutes a part of the housing of the air cleaner, the first and second side walls, that is, the air cleaner, are obtained by joining the throttle body to the first flange and heating and joining the downstream pipe assembly to the second flange. The rigidity of the housing can be increased, and the strength of the entire intake device can be improved. In addition, the bottom wall of the main housing part connects between the central portions in the vertical direction of each upstream branch pipe, and the bottom surface of the main housing part is reinforced by each upstream branch pipe. The bottom surface rigidity can be increased. Further, the housing main part is arranged to be biased toward one end side along the arrangement direction of the respective upstream branch pipes, and the air inlet port is connected to the third side wall connecting the first and second side walls at one end side along the arrangement direction. Is provided, a relatively large space can be secured between the upstream side branch pipe close to the third side wall and the third side wall, which is higher than the upper end of the upstream side branch pipe raised from the bottom wall of the housing main part. Since the lower edge of the air inlet is arranged at a low position, a part of the air introduced from the air inlet into the unpurified chamber can collide with the upper part of the upstream branch pipe and be dispersed in the wide space. Since the dispersed air circulates through the filter element that covers the upper part of the unpurified chamber, the almost uniformly dispersed air circulates through the filter element, thereby preventing partial contamination of the filter element as much as possible and reducing the function. All the way It can be made relatively long time. Furthermore, since the upper part of each upstream branch pipe is arranged facing the housing in the air cleaner, each upstream branch pipe is cooled by the air flowing through the air cleaner, and the intake air due to the proximity to the engine body. An increase in the temperature of the manifold can be avoided as much as possible, an increase in the intake air temperature accompanying an increase in the temperature of the intake manifold can be prevented, and the performance of the internal combustion engine can be fully exerted. In addition, the intake sound radiated from the upper part of the upstream pipe assembly can be blocked by the air layer of the uncleaned chamber and the filter element in the air cleaner to suppress the diffusion of the radiated sound, and a part of the air cleaner and the intake manifold As a result of being integrated, assembly workability can be improved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0008]
1 to 11 show an embodiment of the present invention, FIG. 1 is a longitudinal side view of an engine body and an intake device, and FIG. 2 is a plan view of the intake device as viewed from the direction of arrow 2 in FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 2, FIG. 4 is a plan view of the upstream pipe assembly, FIG. 5 is an exploded vertical cross-sectional view of the intake manifold, and FIG. 6 is an enlarged cross-sectional view taken along line 6-6 in FIG. FIG. 7 is a view showing the arrangement of the rod-shaped cores at the time of forming the upstream side pipe assembly, and FIG. FIG. 9 is a longitudinal sectional view taken along line 8-8 in FIG. 9, FIG. 9 is an enlarged sectional view taken along line 9-9 in FIG. 8, and FIG. 10 is an upstream pipe assembly and downstream pipe assembly. FIG. 11 is a cross-sectional view taken along line 11-11 of FIG.
[0009]
First, in FIGS. 1 to 3, the engine body E of an in-line multi-cylinder, for example, in-line 3-cylinder internal combustion engine, is mounted horizontally in a posture inclined forward at a front portion of a vehicle (not shown) and is in a forward inclined posture. In the space generated above the engine main body E, the intake devices 23 connected to the three intake ports 22 provided in the cylinder head 21 of the engine main body E are arranged.
[0010]
The intake device 23 includes an intake manifold 24 made of a thermoplastic synthetic resin, a throttle body 25 connected to the upstream end of the intake manifold 24, and a housing main portion integrally provided on the upper upstream side of the intake manifold 24. 79 is provided with an air cleaner 26 disposed on the upstream side of the intake manifold 24 with 79 as a part of the housing 78, and an air flow tube 27 connecting the air cleaner 26 and the throttle body 25.
[0011]
The intake manifold 24 includes a common intake pipe 30 connected to the throttle body 25 and a plurality of, for example, three first, second, and third branched intake pipes connecting the common intake pipe 30 and the intake ports 22 of the cylinder head 21. The branch intake pipes 31 to 33 are arranged in such a manner that the distance between the branch intake pipes 31 to 33 increases with increasing distance from the common intake pipe 30, and the branch intake pipes 31 to 33 are arranged. The upstream end side of each of the branched intake pipes 31 to 33 is curved so as to be connected to each intake port 22 of the engine body E in a forward leaning posture. Formed.
[0012]
4 to 6, the intake manifold 24 includes an upstream pipe assembly 34 made of a thermoplastic synthetic resin such as 6-nylon and a downstream pipe line made of a thermoplastic synthetic resin such as 6-nylon. The assembly 35 is formed by heating and joining (thermal welding).
[0013]
The upstream-side pipe assembly 34 includes first to third upstream-side branch pipes 31 1 , 32 1 , 33 1 that constitute upstream portions of the branch intake pipes 31 to 33 and extend in a straight line. the upstream branch pipe 31 to 333 common intake pipe 30 which allowed communication with and extending in a straight line 1 of the upstream end in common, the first flange 36 provided integrally with the upstream end of the common intake pipe 30, the upstream side And a second flange 37 provided in common and integrally with the downstream ends of the branch pipes 31 1 to 33 1 .
[0014]
The second upstream branch pipe 32 1 is coaxially connected to the downstream end of the common intake pipe 30, and the first and third upstream branch pipes 31 1 , 33 1 increase as the distance from the common intake pipe 30 increases. It arrange | positions so that the space | interval between 2 upstream branch pipes 32 1 may become large gradually. In other words, the upstream branch pipes 31 1 to 33 1 are arranged so as to be widened with an increase in the distance between them as they are separated from the common intake pipe 30.
[0015]
A flange 39 provided at the downstream end of the throttle body 25 including the throttle valve 38 is fastened to the first flange 36 by a bolt (not shown).
[0016]
In FIG. 7, the upstream side pipe assembly 34 is, for example, injection-molded by a resin mold, and the resin mold includes a plurality of molds (not shown) corresponding to the outer shape of the upstream side pipe assembly 34. ) And the rod-shaped cores 41, 42, 43, 44 mounted in the molds corresponding to the inner surfaces of the first to third upstream branch pipes 31 1 to 33 1 and the inner surface of the common intake pipe 30, respectively. With. Thus, after the molten synthetic resin filled between the molds and the rod-shaped cores 41 to 44 is cured, the rod-shaped cores 41 to 44 are pulled out from the molds, and the molds are separated from each other. By doing so, the formation of the upstream side pipe assembly 34 is completed.
[0017]
Each of the rod-shaped cores 41 to 44 is pulled out of the mold by their axial movement, and the inner surfaces of the second upstream branch pipe 32 1 and the common intake pipe 30 are coaxial with the rod-shaped cores 42 and 44. Are pulled out in directions away from each other, and the inner surfaces of the first and third upstream branch pipes 31 1 , 33 1 are rod-shaped cores 41, 43 extending in an angle with the rod-shaped core 44. formed respectively by the axial movement, the upstream branch pipe 31 to 333 1 of the bifurcation from the common intake pipe 30, the rod-shaped core 41 to 43 is formed by contacting the rod-shaped core 44.
[0018]
The downstream-side pipe assembly 35 includes first to third downstream-side branch pipes 31 2 , 32 2 , 33 2 that form a downstream part of each of the branch intake pipes 31 to 33 and bend, respectively, downstream branch pipe 31 2, 32 2, 33 and a third flange 45 provided integrally and in common to the upstream end, integral and in common to the downstream branch pipe 31 2, 32 2, 33 2 of the downstream end And a fourth flange 46.
[0019]
The fourth flange 46 is fastened to the side surface of the cylinder head 21 in the engine main body E, and is arranged at the upper portion of the downstream end of the downstream side pipe assembly 35 toward the intake ports 22 of the cylinder head 21. A mounting hole 48 for mounting fuel injection valves 47 for injecting fuel is provided, and a fuel distribution pipe 49 connected in common to the rear end of each fuel injection valve 47 is fastened by a pair of bolts 50. A pair of support bosses 51, 51 are integrally provided.
[0020]
8 and 9 together, the downstream side pipe assembly 35 is, for example, injection-molded by a resin mold, and the resin mold corresponds to the outer shape of the downstream side pipe assembly 35. A plurality of molds (not shown), and curved cores 54, 55, 56 mounted in the respective molds corresponding to the inner surfaces of the first to third downstream branch pipes 31 2 to 33 2 , respectively. Is provided. Thus, after the molten synthetic resin filled between the molds and the bending cores 54 to 56 is cured, the bending cores 54 to 56 are pulled out from the molds, and the molds are separated from each other. By doing so, the molding of the downstream side pipe assembly 35 is completed.
[0021]
Curved core 55 corresponding to the second downstream branch pipe 32 1, in which curved and is formed along the imaginary circle 58 in the plane including the second downstream branch pipe 32 1 of the center line curved The bending cores 54 and 56 corresponding to the first and third downstream branch pipes 31 2 and 33 2 are the virtual circles in a plane parallel to the plane including the center line of the second downstream branch pipe 32 1. Each of them is curved so as to follow a virtual circle (not shown) having a radius corresponding to 58. Thus, each of the bending cores 54 to 56 is pulled out from the mold toward the upstream end side of each of the downstream branch pipes 31 1 to 33 2 so as to rotate around the center C of the virtual circle 58. A molding method for forming the inner surface of the synthetic resin pipe curved by the rotation and drawing of the bending core is already well known, for example, in Japanese Patent Laid-Open No. 6-213087. Moreover, the bending cores 54 to 56 are connected to the connecting portion 57 in common and integrally, and the bending cores 54 to 56 are parallel to each other by a driving means (not shown) connected to the connecting portion 57. They are driven to rotate at the same time along the plane.
[0022]
The second flange 37 of the upstream pipe assembly 34 and the third flange 45 of the downstream pipe assembly 35 are joined to each other by heating and joining. In this heating and joining, as shown in FIG. 10, the joining surface 59 of the second flange 37 to the third flange 45 and the joining surface 60 of the third flange 45 to the second flange 37 include a hot plate 61. Each of the upstream branch pipes 31 is heated by being pressed against both surfaces of the first and second heat pipes 61. After the heating, the hot plate 61 is removed from between the joint surfaces 59 and 60, and the joint surfaces 59 and 60 are brought into close contact with each other. to 333 1 of the arrangement for Ren'nara the upstream end of the downstream branch pipe 31 2-33 2 respectively to the downstream end, upstream and downstream conduit assemblies 34 and 35 to be heated to each other, bonding become.
[0023]
The bonding surface 59 of the second flange 37 on the upstream side conduit assembly 34 includes a first fitting recess 62, 63, 64 is provided which surrounds the downstream end opening of the upstream-side branch pipe 31 to 333 1, respectively The joint surface 60 of the third flange 45 in the downstream pipe assembly 34 is provided with second fitting recesses 65, 66, and 67 surrounding the upstream end openings of the downstream branch pipes 31 2 to 33 2 , respectively. It is done.
[0024]
Between the first second fitting recess 65 of the upstream-side branch pipe 31 1 of the first mating recess 62 of the downstream end first downstream the upstream end of the branch pipe 31 2 nest 68 is sandwiched, the second A nest 69 is sandwiched between the first fitting recess 63 at the downstream end of the upstream branch pipe 32 1 and the second fitting recess 66 at the upstream end of the second downstream branch pipe 32 2 , and the third upstream side A nest 70 is sandwiched between the first fitting recess 67 at the downstream end of the branch pipe 33 1 and the second fitting recess 67 at the upstream end of the third downstream branch pipe 33 2 .
[0025]
These inserts 68 to 70 are formed of the same synthetic resin as the upstream and downstream pipe assemblies 34 and 35, for example, 6-nylon, and the upstream and downstream pipe assemblies 34 and 35. It arrange | positions so that it may be pinched | interposed between both the assemblies 34 and 35, without being heated at the time of a heating and joining.
[0026]
The nest 68, communicating hole 71 which allowed to communicating the first upstream-side branch pipe 31 1 of the downstream end and the first downstream the upstream end of the branch pipe 31 2 is provided in the nesting 69, second upstream branch pipe 32 1 is provided with a communication hole 72 that allows the downstream end of 32 1 and the upstream end of second downstream branch pipe 32 2 to communicate with each other. The insert 70 has a downstream end of third upstream branch pipe 33 1 and a third downstream branch pipe. A communication hole 73 for communicating the upstream end of 33 2 is provided.
[0027]
By the way, although the first to third branch intake pipes 31 to 33 are arranged so as to widen away from each other as the distance from the common intake pipe 30 increases, Of the downstream branch pipes 31 2 to 33 2 , the curved cores 54 to 56 forming the inner surfaces of the side branch pipes 31 2 to 33 2 are rotated along planes parallel to each other. curved core 54, 56 to form the first and third downstream branch pipe 32 2, 33 2 of the inner surface, the first and third upstream corresponding to the first and third downstream branch pipe 32 2, 33 2 It will rotate in a plane that intersects the axis of the side branch 31 to 333 1. Therefore, a step portion is necessarily formed between the inner surfaces of the upstream end portions of the first and third downstream branch pipes 31 2 and 33 2 and the inner surface of the downstream ends of the first and third upstream branch pipes 31 1 and 33 1. Will occur. Therefore, the inner surfaces of the upstream end portions of the first and third downstream branch pipes 31 2 and 33 2 are located on the outer side of the extension lines of the inner surfaces of the first and third upstream branch pipes 31 1 and 33 1. The housing recesses 74 and 75 corresponding to the stepped portions are formed, the insert 68 interposed between the first upstream and downstream branch pipes 31 1 and 31 2 , and the third upstream and downstream branch pipes 33 1 and 33. The insert 70 interposed between the two is housed in the housing recesses 74 and 75 and the inner surfaces of the first and third upstream branch pipes 31 1 and 33 1 are connected to the first and third downstream branch pipes 31 2 and 31 2 . Extension portions 68a and 70a that are smoothly connected to the inner surface of 33 2 are integrally provided.
[0028]
A housing 78 of the air cleaner 26 is formed in a box shape having an open top and is integrally provided on the upper part of the upstream pipe assembly 34, and a synthetic resin attached to the upper part of the housing main part 79. And a cover 80 made of metal.
[0029]
Referring also to FIG. 11, the housing main portion 79 is connected to the throttle body 25 so as to be connected to the first flange 36 provided integrally with the upstream side pipe assembly 34 and extends upward. 81, a second side wall 82 extending upwardly connected to a second flange 37 provided integrally with the upstream side pipe assembly 34 to be heated and joined to the downstream side pipe assembly 35, and a downstream pipe The first and second side walls 81 and 82 are substantially parallel to the second upstream branch pipe 32 1 at one end (the right end in FIG. 11) along the arrangement direction of the upstream branch pipes 31 1 to 33 1 in the road assembly 34. A third side wall 83 connected to each other, a fourth side wall 84 connecting the other ends of the first and second side walls 81 and 82 to face the third side wall 83, a lower portion of the first to fourth side walls 81 to 84, and each upstream branch pipe 31 to 333 1 in the vertical direction substantially central In a bottom wall 85 for connecting the, it is formed in a box-shaped cross-section rectangle having an open top. Although not shown, the bottom wall 85 may be provided with a large number of ribs.
[0030]
In addition, the housing main portion 79 is disposed upstream of the upstream branch pipes 31 1 to 33 1 in an arrangement that is biased toward one end along the arrangement direction, that is, the third side wall 83 is separated from the third upstream branch pipe 33 1. The fourth side wall 84 is formed integrally with the upper part of the side pipe assembly 34, and the fourth side wall 84 has an angle with the first upstream branch pipe 31 1 extending in a direction that forms an angle with the second upstream branch pipe 32 1. And is formed so as to be integrally connected to an intermediate portion of the first upstream branch pipe 31 1 .
[0031]
The peripheral edge of the filter element 86 is sandwiched between the housing main portion 79 and the cover 80 mounted on the upper portion of the housing main portion 79, and the inside of the housing 78 is below the unpurified inside by the filter element 86. It is divided into a chamber 87 and an upper purification chamber 88.
[0032]
The third side wall 83 is provided with an air introduction port 89 for introducing air into the unpurified chamber 87, and an air introduction pipe 90 extending outwardly with the inner end connected to the air introduction port 89. Provided integrally. Incidentally, the bottom wall 85 of the housing main portion 79 is for connecting the vertically substantially central portion of the upstream-side branch pipe 31 to 333 1, the upstream-side branch pipe 31 to 333 1 of the upper bottom wall It is raised above 85. The air inlet 89 Thus is provided on the third side wall 83 with its lower edge so as to be positioned below the upper end of each upstream branch pipe 31 to 333 1.
[0033]
The cover 80 is integrally provided with a lead-out pipe 91 communicating with the purification chamber 88 so as to be positioned above the throttle body 25. That is, in the air cleaner 26, the air introduced into the unpurified chamber 87 from the air inlet 89 flows through the filter element 86 and flows upward, and further changes the flow direction by approximately 90 degrees so as to be substantially horizontal from the outlet pipe 91. Will be derived in the direction.
[0034]
The outlet pipe 91 of the air cleaner 26 and the upstream end of the throttle body 25 are connected via an air flow tube 27. The air flow tube 27 includes an expandable chamber 27a extending vertically and an expandable chamber 27a. A bellows-shaped inlet-side connecting pipe 27b that is continuous with the upper end of the expansion chamber 27a and an outlet-side connecting pipe 27c that is continuous with the lower end of the expansion chamber 27a are integrally formed with a synthetic resin in a substantially U shape. The side connection pipe 27b is fitted and connected to the outlet pipe 51, and the outlet side connection pipe 27c is fitted and connected to the upstream end of the throttle body 25.
[0035]
Thus, the portion of the expandable chamber 27a facing the lead-out pipe 51 is formed in a spherical shape so as to reduce the collision of the air flow and enable a smooth flow, and the resonance in the expandable chamber 27a. By the action, the natural frequency in the intake passage in the intake device 23 can be adjusted, and it is possible to contribute to the improvement of the output torque in the low / medium speed rotation region of the engine.
[0036]
Next, the operation of this embodiment will be described. In the intake manifold 24, in addition to the common intake pipe 30 extending in a straight line, each of the branched intake pipes 31 to 33 connected in common to the common intake pipe 30 is provided. The upstream branch pipes 31 1 to 33 3 that extend in a straight line and the curved downstream branch pipes 31 2 to 33 2 are formed on the cylinder head 21 of the engine body E that is in a forward inclined posture. The pipe shape from the common intake pipe 30 of the connected intake manifold 24 to the downstream end of each branch intake pipe 31 to 33 can be simplified.
[0037]
In addition, the inner surfaces of the upstream branch pipes 31 1 to 33 1 in the upstream pipe assembly 34 are formed by the axial movement of the rod-shaped cores 41 to 43, and the inner surface of the common intake pipe 30 is also the rod-shaped core 40. Therefore, the upstream side pipe assembly 34 is easily formed, and the inner surfaces of the downstream side branch pipes 31 2 to 33 2 in the downstream side pipe assembly 35 are curved. Since it is formed by pulling out by rotation of the cores 54 to 56, it is easy to form the downstream side pipe assembly 35, and both assemblies 34, 35 can be manufactured with high accuracy and low cost.
[0038]
By the way, the joint surface 59 of the second flange 37 in the upstream pipe assembly 34 and the joint surface 60 of the third flange 45 in the downstream pipe assembly 35 are heated and joined to each other. There is a risk that flash generated at the time of joining may protrude from the inner surfaces of the connecting portions of the upstream branch pipes 31 1 to 33 1 and the downstream branch pipes 31 2 to 33 2 . However wherein the the joining surfaces 59 and 60, the first fitting recess 62 to 64 surrounding the downstream end opening of the upstream-side branch pipe 31 to 333 1, downstream the upstream end of the branch pipe 31 2-33 2 2nd fitting recessed parts 65-67 surrounding each opening part are provided, and the synthetic resin inserts 68, 65, 63, 64, 67 are sandwiched between the fitting recessed parts 62, 65; 63, 66; 69 and 70 are arranged, so that even if a flash occurs during the heating and joining, the flashes are prevented from entering the branch intake pipes 31 to 33 by the inserts 68 to 70. Therefore, it is possible to prevent the variation in the inner surface shape of each of the branched intake pipes 31 to 33 from being caused by flashes, thereby contributing to the improvement of the intake performance. It should be noted that the flash that protrudes outward from the joint surfaces 59 and 60 during the heating and joining does not affect the intake performance and may be left as it is.
[0039]
Moreover, the joint surface 59 of the upstream side pipe assembly 34 of both the joint surfaces 59 and 60 is formed continuously to the second side wall 82 which is a part of the housing main portion 29 constituting the housing 28 of the air cleaner 26. Therefore, the joint strength at both joint surfaces 59 and 60 can be improved, and the joint reliability of both the pipe assemblies 34 and 35 can be improved.
[0040]
Further, the inner surfaces of the downstream branch pipes 31 2 to 33 2 of the downstream pipe assembly 35 are respectively formed by being drawn by the rotation of the bending cores 54 to 56 in planes parallel to each other. Pulling out by rotation of each of the bending cores 54 to 56 can be performed simultaneously by a common driving means, and the downstream side pipe assembly 35 can be formed more easily.
[0041]
On the other hand, despite the fact that each of the branch intake pipes 31 to 33 is in a divergent arrangement, the first and second curved cores 54 to 56 are rotated along planes parallel to each other. The curved cores 54 and 56 that form the inner surfaces of the third downstream branch pipes 31 2 and 33 2 are rotated on a plane that intersects the axis of the first and third upstream branch pipes 31 1 and 33 1. Therefore, a step portion is necessarily formed between the inner surfaces of the upstream end portions of the first and third downstream branch pipes 31 2 and 33 2 and the inner surface of the downstream ends of the first and third upstream branch pipes 31 1 and 33 1. Will occur. However, the inner surfaces of the upstream end portions of the first and third downstream branch pipes 31 2 and 33 2 are located on the outer side of the extension lines of the inner surfaces of the first and third upstream branch pipes 31 1 and 33 1. Storage recesses 74, 75 are formed, and nested 68, interposed between the first upstream and downstream branch pipes 31 1 , 31 2 and between the third upstream and downstream branch pipes 33 1 , 33 2 , 70 is integrally provided with extensions 68a and 70a that are accommodated in the accommodating recesses 74 and 75, respectively. Therefore, the inner surfaces of the first and third upstream branch pipes 31 1 , 33 1 are smoothly connected to the inner surfaces of the first and third downstream branch pipes 31 2 , 33 2 , and the upstream branch pipes 31 1 , The air flow from 33 1 to the downstream branch pipes 31 2 and 33 2 can be made smooth, and the intake performance can be further improved.
[0042]
Further, the housing 78 of the air cleaner 26 includes a housing main portion 79 provided integrally with the upstream side pipe assembly 34 and a cover 80 attached to the upper portion of the housing main portion 79. The portion 79 has first and second side walls 81 and 82 that extend upwardly from the first and second flanges 36 and 37 included in the upstream side pipe assembly 34 and are formed in a rectangular box shape. Is. Accordingly, not only can the rigidity of the joint portion of the throttle body 25 to the first flange 36 be increased, but also the rigidity of the joint portion of the upstream side and downstream side pipe assemblies 34 and 35 can be increased. The rigidity of the two side walls 81 and 82, that is, the housing 78 of the air cleaner 26 can be increased, and the strength of the entire intake device 23 can be improved.
[0043]
Further, the fourth side wall 84 which is a part of the housing main portion 79 is integrally connected so as to intersect the first upstream branch pipe 31 1 at an angle, and is reinforced by the first upstream branch pipe 31 1 . Thus, the rigidity of the fourth side wall 84 can be increased. Further, the bottom wall 85 of the housing main portion 79 connects the substantially central portions of the upstream branch pipes 31 1 to 33 1 in the vertical direction, and the bottom surface of the housing main portion 79 has the upstream branch pipes 31 1 to 33. would be reinforced by 1, it is possible to enhance the bottom surface rigidity of the main housing portion 79. Therefore, the rigidity of the housing main portion 79, that is, the housing 78, can be further enhanced in combination with the high rigidity of the first and second side walls 81, 82.
[0044]
The housing main portion 79 is arranged so as to be biased to one end side along the arrangement direction of the upstream branch pipes 31 1 to 33 1 , and the third side wall 83 located at one end side along the arrangement direction has air on the third side wall 83. since inlet 89 is provided, it is possible to secure a relatively large space between the upstream-side branch pipe 33 1 and the third side wall 83 closer to the third side wall 89. Moreover, since the lower end edge of the air inlet 89 is disposed at a position lower than the upstream upper end of the branch pipe 31 to 333 1 which is raised from the bottom wall 85, air from the air inlet 89 is introduced into the unpurified chamber 87 partially caused to collide with the upper portion of the upstream-side branch pipe 33 1 can be dispersed to the large space, because the dispersed air flows through the filter element 86 that covers the upper side of the unpurified chamber 87, substantially uniformly The dispersed air will flow through the filter element 86. Therefore, it is possible to prevent the partial contamination of the filter element 86 as much as possible and to make the time until the function is lowered relatively long.
[0045]
Further, since the upstream-side branch pipe 31 to 333 1 of the upper is disposed facing to the housing 78 in the air cleaner 26, the upstream-side branch pipe 31 to 333 1 is cooled by air flowing through the air cleaner 26 Therefore, an increase in the temperature of the intake manifold 23 due to the proximity to the engine body E is avoided as much as possible, and an increase in the intake air temperature accompanying an increase in the temperature of the intake manifold 23 is prevented, so that the performance of the internal combustion engine is sufficient. Can be demonstrated.
[0046]
By the way, although the intake manifold 24 tends to radiate intake sound due to being made of synthetic resin, the intake sound radiated from the upper part of the upstream side pipe assembly 34 in the intake manifold 24 is upstream. The air cleaner 26 located above the side pipe assembly 34 is blocked by the air layer of the unpurified chamber 87 and the filter element 86, and the diffusion of radiated sound can be suppressed.
[0047]
Furthermore, since a part of the air cleaner 26 and the intake manifold 24 are integrated, the assembling workability of the intake device 23 can be improved.
[0048]
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. Is possible.
[0049]
For example, instead of the air flow tube 27 having the expansion chamber 27a, a simple duct connecting the air cleaner 26 and the throttle body 25 is used, and a resonator chamber is connected to an intermediate portion of the duct via an opening / closing control valve. Also good. The respective upstream branch pipe 31 to 333 1 Oyohi each downstream branch pipe 31 2-33 nested 68-70 so as to be interposed between the second upstream-side conduit assembly 34 and the downstream conduit assembly However, the present invention is also applicable to those in which the upstream and downstream pipe assemblies 34, 35 are heated and joined without using such inserts 68-70. is there.
[0050]
【The invention's effect】
As described above, according to the present invention, the main portion of the housing is formed in a rectangular box shape having the first and second side walls connected to the first and second flanges, respectively, and integrated with the upstream side pipe assembly. As a result, the rigidity of the housing of the first and second side walls, that is, the air cleaner can be increased, the strength of the entire intake device can be improved, and the bottom surface of the main portion of the housing is reinforced by each upstream branch pipe. Thus, the bottom rigidity of the main portion of the housing can be increased.
[0051]
Moreover, since the housing main part is arranged to be deviated to one end side along the arrangement direction of each upstream branch pipe and the air introduction port is provided in the third side wall on one end side along the arrangement direction, the upstream side near the third side wall is provided. A relatively large space can be secured between the side branch pipe and the third side wall, and the lower end edge of the air inlet is arranged at a position lower than the upper end of the upstream side branch pipe raised from the bottom wall of the housing main portion. As a result, a part of the air from the air introduction port collides with the upper part of the upstream branch pipe and is distributed in the wide space to be guided to the filter element. As a result of the circulation, it is possible to prevent the partial fouling of the filter element as much as possible and to make the time until the function is lowered relatively long.
[0052]
In addition, since the upper part of each upstream branch pipe faces the housing in the air cleaner, each upstream branch pipe is cooled by the air flowing through the air cleaner to avoid the intake manifold temperature rise as much as possible. It is possible to prevent the intake air temperature from rising due to the temperature rise and to fully demonstrate the performance of the internal combustion engine.
[0053]
In addition, the intake sound radiated from the upper part of the upstream pipe assembly is blocked by the air layer of the uncleaned chamber and the filter element in the air cleaner to suppress the diffusion of the radiated sound, and part of the air cleaner and the intake manifold are integrated. As a result, the assembly workability can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of an engine body and an intake device.
FIG. 2 is a plan view of the intake device as seen from the direction of arrow 2 in FIG.
3 is a cross-sectional view taken along line 3-3 of FIG.
FIG. 4 is a plan view of an upstream duct assembly.
FIG. 5 is an exploded vertical sectional view of an intake manifold.
6 is an enlarged sectional view taken along line 6-6 of FIG.
FIG. 7 is a diagram showing the arrangement of rod-shaped cores when forming an upstream side pipe assembly.
8 is a longitudinal cross-sectional view of the downstream pipe assembly and the bending core for explaining the formation of the inner surface of the downstream branch pipe by the bending core, and is a cross-sectional view taken along line 8-8 in FIG. .
9 is an enlarged cross-sectional view taken along line 9-9 of FIG.
FIG. 10 is a simplified perspective view for explaining heating and joining of the upstream side pipe assembly and the downstream side pipe assembly.
11 is a cross-sectional view taken along line 11-11 in FIG.
[Explanation of symbols]
21 ... Cylinder head 22 ... Intake port 23 ... Intake device 24 ... Intake manifold 25 ... Throttle body 26 ... Air cleaner 30 ... Common intake pipes 31, 32, 33 ... Branch intake pipes 31 1 , 32 1 , 33 1 ... Upstream branch pipes 31 2 , 32 2 , 33 2 ... Downstream branch pipes 34. Road assembly 36 ... first flange 37 ... second flange 78 ... housing 79 ... housing main part 80 ... cover 81 ... first side wall 82 ... second side wall 83 .... Third side wall 84 ... Fourth side wall 85 ... Bottom wall 86 ... Filter element 87 ... Unpurified chamber 88 ... Purified chamber 89 ... Air inlet

Claims (1)

スロットルボディ(25)に接続される共通吸気管(30)と、該共通吸気管(30)ならびにシリンダヘッド(21)の複数の吸気ポート(22)間を結ぶ複数の分岐吸気管(31,32,33)とが合成樹脂製の吸気マニホールド(24)に形成され、エアクリーナ(26)のハウジング(78)の一部が前記吸気マニホールド(24)に一体に形成される内燃機関用吸気装置において、吸気マニホールド(24)が、各分岐吸気管(31〜33)の上流側の部分を構成する複数の上流側分岐管(311 ,321 ,331 )ならびに各上流側分岐管(311 〜331 )を共通に連通せしめる共通吸気管(30)を一体に備える熱可塑性合成樹脂製の上流側管路集合体(34)と、各分岐吸気管(31〜33)の下流側の部分を構成する複数の下流側分岐管(312 ,322 ,332 )を一体に備える熱可塑性合成樹脂製の下流側管路集合体(35)とが、加熱、接合されて成り、上流側管路集合体(34)には、共通吸気管(30)の上流端に共通に連なる第1フランジ(36)がスロットルボディ(25)に接合すべく一体に設けられるとともに、各上流側分岐管(311 〜331 )の下流端に共通に連なる第2フランジ(37)が下流側管路集合体(35)に加熱、接合されるべく一体に設けられ、前記第1および第2フランジ(36,37)に連なる第1および第2側壁(81,82)と、各上流側分岐管(311 〜331 )の配列方向に沿う一端で第1および第2側壁(81,82)間を結ぶ第3側壁(83)と、第1および第2側壁(81,82)の他端間を結ぶ第4側壁(84)と、第1ないし第4側壁(81〜84)の下部ならびに各上流側分岐管(311 〜331 )の上下方向略中央部間を連結する底壁(85)とで横断面四角形の箱形に形成されるハウジング主部(79)が、各上流側分岐管(311 〜331 )の前記配列方向に沿う一端側に偏った配置で上流側管路集合体(34)の上部に一体に形成され、該ハウジング主部(79)と共働してエアクリーナ(26)のハウジング(78)を構成するカバー(80)が、ハウジング(78)内を下方の未浄化室(87)および上方の浄化室(88)に区画するフィルタエレメント(86)をハウジング主部(79)との間に挟んで該ハウジング主部(79)の上部に装着され、前記底壁(85)よりも隆起した上流側分岐管(311 〜331 )の上端よりも低い位置に下端縁を配置して前記未浄化室(87)に通じる空気導入口(89)が前記第3側壁(83)に設けられることを特徴とする内燃機関用吸気装置。A common intake pipe (30) connected to the throttle body (25) and a plurality of branch intake pipes (31, 32) connecting the common intake pipe (30) and a plurality of intake ports (22) of the cylinder head (21). , 33) is formed in the intake manifold (24) made of synthetic resin, and a part of the housing (78) of the air cleaner (26) is formed integrally with the intake manifold (24). The intake manifold (24) includes a plurality of upstream branch pipes (31 1 , 32 1 , 33 1 ) constituting the upstream portion of each branch intake pipe (31 to 33) and the upstream branch pipes (31 1 to 31 1 ). 33 1 ) an upstream side pipe assembly (34) made of a thermoplastic synthetic resin integrally provided with a common intake pipe (30) that allows the common intake pipe (30) to communicate with each other, and a downstream part of each branch intake pipe (31 to 33). Composing The downstream branch pipe downstream conduit assembly of thermoplastic synthetic resin comprising a (31 2, 32 2, 33 2) integral with (35), but the heating, become joined, upstream conduit assemblies (34) is provided with a first flange (36) that is commonly connected to the upstream end of the common intake pipe (30) so as to be joined to the throttle body (25), and each upstream branch pipe (31 1 to 31- 33 1 ), a second flange (37) connected in common to the downstream end is integrally provided to be heated and joined to the downstream pipe assembly (35), and the first and second flanges (36, 37). The first and second side walls (81, 82) that are connected to each other, and the first and second side walls (81, 82) connected at one end along the arrangement direction of the upstream branch pipes (31 1 to 33 1 ). The side wall (83) is connected to the other end of the first and second side walls (81, 82). A side wall (84), cross out with lower and bottom wall for connecting the vertically substantially central portion of the upstream-side branch pipe (31 to 333 1) of the first to fourth side walls (81 to 84) (85) The upstream pipe assembly (34) is arranged in such a manner that the housing main part (79) formed in a rectangular box shape is biased toward one end along the arrangement direction of each upstream branch pipe (31 1 to 33 1 ). ) And a cover (80) which forms a housing (78) of the air cleaner (26) in cooperation with the housing main portion (79), and the uncleaned chamber below the housing (78). (87) and a filter element (86) partitioned into an upper purification chamber (88) is sandwiched between the housing main portion (79) and mounted on the upper portion of the housing main portion (79), and the bottom wall (85 ) Of the upstream branch pipe (31 1 to 33 1 ) An air intake system for an internal combustion engine, wherein a lower end edge is disposed at a position lower than the upper end, and an air introduction port (89) leading to the unpurified chamber (87) is provided in the third side wall (83).
JP10458797A 1997-04-22 1997-04-22 Intake device for internal combustion engine Expired - Fee Related JP3701770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10458797A JP3701770B2 (en) 1997-04-22 1997-04-22 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10458797A JP3701770B2 (en) 1997-04-22 1997-04-22 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10299592A JPH10299592A (en) 1998-11-10
JP3701770B2 true JP3701770B2 (en) 2005-10-05

Family

ID=14384578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10458797A Expired - Fee Related JP3701770B2 (en) 1997-04-22 1997-04-22 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3701770B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049724A (en) * 2001-08-02 2003-02-21 Mikuni Corp Intake passage member for internal combustion engine
JP4509012B2 (en) * 2005-12-06 2010-07-21 本田技研工業株式会社 Air cleaner apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10299592A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
US6467449B2 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
US6739301B2 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
US4686944A (en) Intake manifold structure for V-type engine
US6199530B1 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
JP3904285B2 (en) Intake device
JP3701770B2 (en) Intake device for internal combustion engine
JPH11147265A (en) Production of hollow product made of resin
JP3701769B2 (en) Synthetic resin intake manifold
US6234131B1 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
JP6332847B2 (en) Intake manifold with EGR gas distribution function
JP6344433B2 (en) Turbocharged engine
JP6332848B2 (en) Plastic intake manifold with EGR gas distribution function
JP3718038B2 (en) Intake manifold made of synthetic resin and mold for molding
JP3990650B2 (en) Resin intake manifold
US20050005888A1 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
JP2009024524A (en) Intake device of internal combustion engine
JPH09250408A (en) Intake pipe laying structure in intake device for internal combustion engine
US6234130B1 (en) Composite intake manifold assembly for an internal combustion engine and method for producing same
JP3610367B2 (en) Surge tank with built-in resonator
JP4422557B2 (en) Intake manifold
JP7477550B2 (en) Intake manifold
JP2002364470A (en) Intake manifold
JP7479202B2 (en) Heat exchanger
JP7281556B2 (en) Vehicle air intake structure
JPH11156953A (en) Resinous hollow product and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050714

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees