Nothing Special   »   [go: up one dir, main page]

JP3798923B2 - Method for producing positive electrode active material for lithium secondary battery - Google Patents

Method for producing positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP3798923B2
JP3798923B2 JP20896699A JP20896699A JP3798923B2 JP 3798923 B2 JP3798923 B2 JP 3798923B2 JP 20896699 A JP20896699 A JP 20896699A JP 20896699 A JP20896699 A JP 20896699A JP 3798923 B2 JP3798923 B2 JP 3798923B2
Authority
JP
Japan
Prior art keywords
lithium
temperature
powder
firing
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20896699A
Other languages
Japanese (ja)
Other versions
JP2001035492A5 (en
JP2001035492A (en
Inventor
学 数原
貴志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP20896699A priority Critical patent/JP3798923B2/en
Publication of JP2001035492A publication Critical patent/JP2001035492A/en
Publication of JP2001035492A5 publication Critical patent/JP2001035492A5/ja
Application granted granted Critical
Publication of JP3798923B2 publication Critical patent/JP3798923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム含有複合酸化物からなる新規なリチウム二次電池用正極活物質及びその製造方法に関する。
【0002】
【従来の技術】
近年、機器のポータブル化、コードレス化が進むにつれ、小型、軽量でかつ高エネルギー密度を有する非水電解液二次電池、特にリチウム二次電池に対する期待が高まっている。リチウム二次電池用の正極活物質には、LiCoO2、LiNiO2、LiNi0.8Co0.22、LiMn24、LiMnO2などのリチウムと遷移金属の複合酸化物が知られている。LiNi0.8Co0.22のようにコバルトやニッケルを固溶させた岩塩層状複合酸化物を正極活物質に用いたリチウム二次電池は、180〜190mAh/gと比較的高い容量密度を達成できるとともに2.7〜4.3Vといった高い電圧域で良好な可逆性を示す。
【0003】
特に最近では、高容量を発現できる材料として、LiNi0.8Co0.22に代表されるリチウム−ニッケル−コバルト複合酸化物の採用が始まっている。これらを正極活物質に用い、リチウムを吸蔵、放出することができる炭素材料等を負極活物質として使用することによる、高電圧、高エネルギー密度のリチウム二次電池の商品化が進められている。
【0004】
従来、LiNi0.8Co0.22のようにコバルトやニッケルを固溶させた岩塩層状複合酸化物の製造方法として、ニッケル−コバルト共沈物をリチウム化合物と混合し、静置炉で空気中、920℃で3時間加熱する方法(特開平1−129364号公報)、ニッケル−コバルト共沈物をリチウム化合物と混合し、ロータリーキルンを用いて330℃/分の速度で昇温し、予備焼成を行なった後、降温し、更に静置炉で酸素雰囲気下にて750℃で4〜20時間本焼成を行う方法(特開平11−111290号公報)、ニッケル−コバルト共沈物をリチウム化合物と混合し、静置炉にて500℃で予備焼成を5時間行なった後、降温し、更に静置炉にて酸素雰囲気下で720℃で10時間本焼成を行う方法(特開平10−214624号公報)等が提案されている。
【0005】
しかし、ロータリーキルンを用いて予備焼成または本焼成を行う方法では、固体粉末をロータリーキルン内で流動させるためにロータリーキルンの摩耗により、内壁材料であるアルミナ等の不純物の混入が避けられないため、その焼成物を活物質に用いたリチウム二次電池の充放電サイクル耐久性が乏しい問題や、ロータリーキルンのアルミナ等の内壁材料の高温劣化等の問題がある。
【0006】
また、静置炉で予備焼成または本焼成をおこなう場合、生産性向上のために1回に多量に焼成することを要する工業規模生産では固体粉末の昇温および降温時のロット内の温度バラツキが避けられないため、特性の良いリチウム含有複合酸化物が製造し難い問題や、温度バラツキを少なくするために、昇温又は降温速度を小さくする必要がある。その結果、昇温および降温時間が長くなり、著しく生産性が低下する問題がある。
【0007】
また、ニッケル塩とコバルト塩のアルカリ共沈水酸化物と水酸化リチウムとを混合し熱処理して得られるX線回折における(003)面に基づく回折ピークの半値幅が0.01〜0.1°のリチウム含有複合酸化物が、高容量かつ熱安定性に優れるとの提案もある(特開平9−129231号公報)。しかし、かかる公報記載の製造方法で得られ、且つ(003)面に基づく回折ピークの半値幅が上記範囲を有するリチウム含有複合酸化物であっても、容量、放電平均電圧、充放電サイクル耐久性および安全性は未だ不満足なものであった。
【0008】
【発明が解決しようとする課題】
上記のように、従来の方法で製造されたリチウム含有複合酸化物は、リチウム二次電池用の正極活物質としては、電池の初期容量、初期放電平均電圧、充放電サイクル耐久性、安全性および生産性において更なる改良を必要としていた。
【0009】
本発明は、大きな電池容量を有し、放電平均電圧が高く、充放電サイクル耐久性に優れ、安全性の高い、リチウム含有複合酸化物からなる新規なリチウム二次電池用正極活物質及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、特定の一般式で表され、且つ、CuKα線を使用した粉末X線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅が特定値を有するリチウム含有複合酸化物が、リチウム二次電池の正極活物質として、高い初期電池容量、高い放電平均電圧、優れた充放電サイクル耐久性および高い安全性のいずれも満足することを見出した。
【0011】
かくして、本発明は、一般式、LiNiCo(但し、Mは、Al、Mn、Ti、Mg及びCrから選ばれる少なくとも1種の元素、0.95≦x+y+z≦1.05、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.2)で表され、且つ、CuKα線を使用した粉末X線回折の、2θ=65±1°における(110)面に基づく回折ピークの半値幅が、0.13〜0.20°であるリチウム含有複合酸化物からなるリチウム二次電池用正極活物質の製造方法であって、ニッケルとコバルトを含む塩若しくは共沈物、又はニッケルとコバルトと元素Mを含む塩若しくは共沈物と、リチウム化合物との混合物、又はリチウム化合物と元素Mを含む化合物との混合物の前段焼成を焼成温度430〜530℃、降温速度200〜600℃/時で行い、次いで後段焼成を焼成温度700〜850℃、降温速度100〜500℃/時で行い、かつ、少なくとも上記後段焼成をローラーハースキルンにて行うことを特徴とするリチウム二次電池用正極活物質の製造方法にある。
【0012】
以下に、本発明について更に詳細に説明する。
【0013】
【発明の実施の形態】
本発明において、リチウム二次電池の正極活物質を構成するリチウム含有複合酸化物は、一般式、LiNixCoyz2で表される。ここにおいて、Mは、Al、Mn、Ti、Cr及びMgから選ばれる少なくとも一種の元素である。x、y、zは、それぞれ、0.95≦x+y+z≦1.05、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.2を満足するように選ばれる。
【0014】
上記において、z=0で、Mが含まれない場合でも、電池の初期容量は高く、充放電サイクル安定性も高い。zが0でなく、MがAlの場合は、Mの無添加(z=0)に較べ、電池の充放電サイクル安定性が更に高く、急速充放電における容量低下が少なく、発熱温度が高く、安全性が更に高い。zが0でなく、MがMnの場合、Mの無添加に較べ、電池の発熱温度が高く、安全性が更に高い。更に、zが0でなく、MがTi、Cr又はMgの場合、それらの無添加に較べ、電池の充放電サイクル安定性が高く、放電電圧も高い。特に、本発明において、Mは、Al及びMnの少なくとも一種の元素が好ましい。
【0015】
上記において、x、y、zについて、xが0.5未満であると、電池の初期容量が低下する。0.9を超えると、電池の熱安定性が低下したり、充放電サイクル耐久性が低下する。好ましくは、0.60≦x≦0.85である。yが0.05未満であると、電池の熱安定性が低下したり、充放電サイクル耐久性が低下するので好ましくない。0.3を超えると、電池の初期容量が低下する。好ましくは、0.10≦y≦0.20である。また、zは、添加元素にもよるが、好ましくは、0.005≦z≦0.10である。
【0016】
また、本発明の正極活物質であるリチウム含有複合酸化物は、CuKα線を使用した粉末X線回折において、2θ=65±1°における、(110)面に基づく回折ピークの半値幅が、0.13〜0.20°を有する。(110)面に基づく回折ピークの半値幅はリチウム含有複合酸化物の結晶子径を反映し、半値幅が大きいほど結晶子径は小さくなる関係にあると思われる。(110)面に基づく回折ピークの半値幅が0.13°未満であると、正極活物質として用いた電池の充放電サイクル耐久性、初期容量、平均放電電圧、あるいは安全性が低下する。また、(110)面に基づく回折ピークの半値幅が0.20°を超えると、電池の初期容量、安全性が低下する。好ましい半値幅は、0.14〜0.17°である。
【0017】
本発明では、上記特定の一般式及び特定のX線回折ピークの半値幅を有するリチウム含有複合酸化物は、以下のようにして製造する。即ち、ニッケルとコバルトを含む塩若しくは共沈物、又はニッケルとコバルトと元素Mを含む塩若しくは共沈物と、リチウム化合物との混合物、又はリチウム化合物と元素Mを含む化合物との混合物を、430〜530℃で前段焼成し、次いで、700〜850℃で後段焼成する。上記において、リチウム複合酸化物に元素Mが含まれない場合(z=0のとき)には、ニッケルとコバルトを含む塩若しくは共沈物とリチウム化合物との混合物が焼成される。
【0018】
上記ニッケルとコバルトを含む塩若しくは共沈物、又はニッケルとコバルトと元素Mを含む塩若しくは共沈物では、ニッケルとコバルト、そして元素Mが含まれる場合は、ニッケルとコバルトと元素Mとが均一に分布しているのが好ましい。また、ニッケルとコバルトを含む塩及びニッケルとコバルトと元素Mを含む塩では、炭酸塩、硫酸塩、硝酸塩、錯塩などが好ましく用いられる。
【0019】
これらニッケルとコバルトを含む塩若しくは共沈物、又はニッケルとコバルトと元素Mを含む塩若しくは共沈物は、好ましくは、以下の方法により製造される。例えば、塩化ニッケル、塩化コバルト、及び元素Mを含む場合には、元素Mのそれぞれの塩化物を炭酸ガスを飽和させた水溶液に溶解せしめ、炭酸水素ナトリウム溶液を加えて共沈させて、乾燥させる方法、上記と同じニッケル、コバルト、及び元素Mを含む場合には、元素Mのそれぞれの塩化物を含む水溶液にアルカリを添加して共沈させて乾燥させる方法、ニッケル、コバルト及び、必要に応じて、元素Mを含むアンミン錯体混合水溶液を1〜5気圧の圧力で100〜150℃に加熱させ、乾燥する方法が採用される。
【0020】
上記で、元素Mがリチウム含有複合酸化物に含まれる場合で、ニッケルとコバルトと元素Mを含む塩若しくは共沈物を使用しないときは、ニッケルとコバルトを含む塩若しくは共沈物と、元素Mの化合物を含む水溶液とを混合し、更にリチウム化合物を混合し、乾燥する方法が好ましく採用される。また、ニッケルとコバルトと元素Mを含む塩若しくは共沈物を使用するときでも、更に元素Mの化合物を含む水溶液と混合して元素Mを補充してもよい。ニッケル、コバルト及び必要に応じて含まれる元素Mを含む塩若しくは共沈物に対して混合されるリチウム化合物としては、水酸化リチウム、炭酸リチウム、酸化リチウム等が好ましく使用される。
【0021】
本発明で、ニッケル、コバルト及び必要に応じて元素Mを含む塩若しくは共沈物とリチウム化合物との混合物は、次いで焼成される。焼成は、上記それぞれの特定の温度範囲での前段焼成と、後段焼成とで行うことが必要である。前段と後段の焼成は、それぞれ2段以上の複数であってもよい。上記の前段と後段との2段焼成の代わりに、いずれかの1段焼成を行うと、得られたリチウム含有複合酸化物の正極活物質としての特性、具体的には、電池の初期容量、充放電サイクル耐久性、安全性、平均放電電圧等が低下する。2段焼成にあっても、前段焼成の温度が430℃未満、又は530℃を超えたり、後段焼成の温度が700℃未満、又は850℃を越えた場合には、上記と同様に得られたリチウム含有複合酸化物の正極活物質としての特性、即ち、初期容量、充放電サイクル耐久性、安全性、平均放電電圧、急速充放電特性等が低下する。
【0022】
また、本発明で、前段焼成は、上記焼成温度における保持時間が、0.3〜3時間であるのが好ましく、特には0.5〜2時間が適切である。また、前段焼成における降温速度(焼成温度から200℃まで炉の温度が降下する速度)は、200〜600℃/時であり、300〜500℃/時が好ましい。前段焼成時間が0.3時間未満であるとニッケル、コバルトを主体とする粉末とリチウム化合物との反応が不十分であり、得られたリチウム含有複合酸化物を正極活物質として用いたリチウム二次電池の初期容量が低下するので好ましくない。一方、焼成時間が3時間を超えると、電池の生産性が低下するので好ましくない。前段焼成では、その昇温速度がほとんど影響を及ぼさないのに対して、この降温速度が200℃/時未満であるとリチウム含有複合酸化物の結晶径が大きくなり好ましくない。一方、降温速度が600℃/時を超えると、大規模生産においては急速冷却設備を必要とするので設備費、ランニングコストが高くなるので好ましくない。更に、本発明で、後段焼成は、上記焼成温度での保持時間が1〜4時間であるのが好ましく、特には、1〜2.5時間が適切である。また、後段焼成における降温速度(焼成温度から200℃まで炉の温度が降下する速度)は、100〜500℃/時であり、200〜400℃/時が好ましい。上記焼成時間が1時間未満であるとニッケル、コバルトを主体とする粉末とリチウム化合物とのリチウムを含む層状構造への転化反応が不十分であるので好ましくない。一方、上記焼成時間が4時間を超えた場合、結晶が成長する結果、得られたリチウム含有複合酸化物の正極活物質としての性能が低下し、またリチウム含有複合酸化物の生産性が低下するので好ましくない。後段焼成でも、その昇温速度がほとんど影響を及ぼさないのに対して、この降温速度が100℃/時未満であるとリチウム含有複合酸化物の結晶径が大きくなる。一方、降温速度が300℃/時以上を超えると、大規模生産においては急速冷却設備を必要とするので設備費、ランニングコストが高くなるので好ましくない。
【0023】
上記の前段焼成及び後段焼成は、酸素含有ガス中で行うことが好ましく、前段焼成での酸素濃度は、特に問題にされないが、大気中で行うのが適切である。一方、後段焼成は、酸素濃度の高い酸素含有ガス中で行うのが好ましい。後段焼成の酸素濃度は、19〜100体積%が好ましく、特には25〜50体積%が適切である。かかる後段焼成での酸素濃度が低いと得られたリチウム含有複合酸化物の正極活物質としての性能が低下するので好ましくない。
【0024】
本発明の上記前段焼成及び後段焼成を工業規模で実施する手段として、ロータリーキルン、トンネル炉、ローラーハースキルン等が挙げられるが、ロータリーキルンはキルン内壁の摩耗によるその構成材料の製品への混入問題やキルン内壁の耐久性が乏しく、また急速焼成の場合には出口での粉塵処理問題があるので好ましくない。トンネル炉は工業規模で多量の粉体を処理する場合には温度分布を均一にし難い結果、得られたリチウム含有複合酸化物の正極活物質としての性能が劣るので好ましくない。
【0025】
一方、ローラーハースキルンは、耐火物からなる鞘箱に焼成すべき粉末を充填し、連続的に鞘箱をトンネル状の炉に投入して回転ローラー上を鞘箱が移動することにより連続焼成する装置である。ローラーハースキルンは、急速な昇温あるいは急速な降温においても、鞘箱内の温度分布を均一にできるので得られたリチウム含有複合酸化の正極活物質としての特性が特に優れ、かつ生産性が高いので好ましい。これは温度分布が均一であるために平均結晶子径を制御できるためである。前段焼成及び後段焼成は、いずれもローラーハースキルンで実施することが好適であるが、本発明では、少なくとも後段焼成をローラーハースキルンで実施する。
【0026】
本発明において、上記リチウム含有複合酸化物の正極活物質とする正極は、好ましくは、次のようにして製造される。即ち、上記リチウム含有複合酸化物の粉末に、アセチレンブラック、黒鉛、ケッチェンブラック等のカーボン系導電材と結合材を混合することにより正極合剤が形成される。
【0027】
上記の正極合剤と、該正極合剤中の結合材の溶媒又は分散媒とからなるスラリーまたは混練物を、アルミニウム箔、ステンレス箔等の正極集電体に塗布及び/又は、担持せしめて正極板とする。結合材には、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミド、カルボキシメチルセルロース、アクリル樹脂等が用いられる。セパレータには多孔質ポリエチレン、多孔質ポリプロピレンフィルム等が使用される。
【0028】
本発明のリチウム含有複合酸化物を正極活物質とするリチウム二次電池に使用される電解質溶液の溶媒としては炭酸エステルが好ましい。炭酸エステルは、環状、鎖状いずれも使用できる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート(以下、ECという)等が例示される。鎖状炭酸エステルとしてはジメチルカーボネート、ジエチルカーボネート(以下、DECという)、エチルメチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート等が例示される。
【0029】
本発明では、上記炭酸エステルを単独で、又は2種以上を混合して使用できる。また、他の溶媒と混合して使用してもよい。また、負極活物質の材料によっては、鎖状炭酸エステルと環状炭酸エステルを併用すると、放電特性、サイクル耐久性、充放電効率が改良できる場合がある。また、これらの有機溶媒にフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(例えば、「カイナー」アトケム社商品名)、特開平10−294131号公報に開示されたフッ化ビニリデン−パーフルオロ(プロピルビニルエーテル)共重合体を添加し、後記する溶質を加えることによりゲルポリマー電解質としても良い。
【0030】
本発明に使用する電解質溶液を構成する溶質としては、ClO4 -、CF3SO3 -、BF4 -、PF6 -、AsF6 -、SbF6 -、CF3CO2 -、(CF3SO22-等をアニオンとするリチウム塩のいずれか1種以上を使用することが好ましい。上記の電解質溶液またはポリマー電解質は、リチウム塩からなる電解質を前記溶媒または溶媒含有ポリマーに0.2〜2.0モル/リットルの濃度で添加するのが好ましい。この範囲を逸脱すると、イオン伝導度が低下し、電解質溶液の電気伝導度が低下する。特に好ましくは0.5〜1.5モル/リットルが選定される。
【0031】
本発明のリチウム二次電池における負極活物質は、リチウムイオンを吸蔵、放出可能な材料である。これらの負極活物質を形成する材料は特に限定されないが、例えばリチウム金属、リチウム合金、炭素材料、周期律表の14又は15族の金属を主体とした酸化物、炭化ケイ素化合物、炭化ホウ素化合物等の炭素化合物、酸化ケイ素化合物、硫化チタン等が挙げられる。炭素材料としては、有機物の熱分解物、人造黒鉛、天然黒鉛、土状黒鉛、膨張黒鉛、鱗片状黒鉛等を使用できる。また、酸化物としては、酸化スズを主体とする化合物が使用できる。負極集電体としては、銅箔、ニッケル箔等が用いられる。
【0032】
本発明で使用される負極は、活物質が炭素材料等である場合は、有機溶媒と混練してスラリーとし、該スラリーを金属箔集電体に塗布、乾燥、又はプレスして製造することが好ましい。リチウム電池の形状には特に制約はない。シート状(いわゆるフィルム状)、折り畳み状、巻回型有底円筒形、ボタン形等が用途に応じて選択される。
【0033】
【実施例】
以下に、実施例により、本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。なお、例6〜例8は、本発明の比較例である。
[例1]
ニッケルとコバルトのそれぞれのアンミン錯体を混合し、これを1〜5気圧の圧力下で100〜150℃に加熱して得られたニッケルとコバルトを含む塩(Ni:Coの原子比0.8:0.2)と水酸化リチウム1水和物粉末とを混合し、ムライト−コージェライト系耐火物からなる鞘箱(外寸で、長さ300mm×幅300mm×高さ80mm)に充填した。原料粉末が充填された上記の鞘箱を、ローラーハースキルン(全長15m、高さ1.8m、幅1.8m)に連続的に供給し、515℃にて30分保持して前段焼成を行った。室温から515℃までの昇温速度は、100℃/時、515℃から200℃までの降温時間は40分(降温速度470℃/時)であった。
【0034】
前段焼成後、鞘箱より粉体を取り出し再混合後、再度、鞘箱に前段焼成後の粉体を充填した。上記と同じローラーハースキルンを用い、入口から出口までの温度分布設定と鞘箱の供給速度を変えて、鞘箱を連続的に供給し、酸素40体積%を含む酸素−窒素気流下で、770℃にて1.5時間保持して後段焼成を行った。室温から770℃までの昇温速度は400℃/時、770℃から200℃までの降温速度は350℃/時であった。
【0035】
このようにして得られたLiNi0.80Co0.202粉末について、理学電機製RINT2100型X線回折装置を用い、CuKαでX線回折を測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.148°であった。
【0036】
上記LiNi0.80Co0.202粉末とアセチレンブラックとポリテトラフルオロエチレン粉末とを80/16/4の重量比で混合し、トルエンを添加しつつ混練、成形、乾燥し、厚さ150μmの正極板を製作した。厚さ20μmのアルミニウム箔を正極集電体とし、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、厚さ500μmの金属リチウム箔を負極に用い負極集電体に厚さ20μmのニッケル箔を使用し、電解液には、ECとDECの1:1の混合溶媒にLiPF6を1モルの濃度で含む溶解液を用いてステンレス製簡易密閉セル(電池)をアルゴングローブボックス内で組立た。
【0037】
上記セルを、その正極面積1cm2当たり、定電流0.2mAで4.3Vまで充電し、次いで、定電流0.2mAにて2.5Vまで放電して初期放電容量を求めるとともに充放電サイクル試験を20回行なった。2.5〜4.3Vにおける初期放電容量は198mAh/gであり、初期放電平均電圧は3.777Vであり、20回充放電サイクル後の容量は198mAh/gであった。また、同様にステンレス製簡易密閉セルを、その正極面積1cm2当たり、定電流0.2mAで4.3Vまで充電し、アルゴングローブボックス内で解体し充電後の正極体シートを取り出しその正極板を洗浄後、径3mmに打ち抜き、ECと共にアルミニウムカプセルに密閉し、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は186℃であった。
[例2]
ニッケルとコバルトのそれぞれのアンミン錯体を混合し、これを1〜5気圧の圧力下で100〜150℃に加熱させることで得られたニッケルとコバルトを含む塩と、硝酸アルミニウム水溶液とを混合した後乾燥し、300℃にて5時間焼成することにより粉体を得た。該粉体と水酸化リチウム1水和物粉末を混合し、例1と同じローラーハースキルンに、原料粉末が充填された鞘箱を連続的に供給し、例1と同じ条件にて前段焼成と後段焼成を行った。
【0038】
例1と同様にして、得られたLiNi0.8Co0.17Al0.032粉末についてX線回折チャートを測定した。このX線回折において、2θ=65±1°付近の(110)面に基づく回折ピークの半値幅は0.168°であった。
【0039】
上記LiNi0.8Co0.17Al0.032粉末を用いて例1と同様にして電池性能を評価した。その結果、2.5〜4.3Vにおける初期放電容量は188mAh/gであり、初期放電平均電圧は3.770Vであり、20回充放電サイクル後の容量は185mAh/gであった。また、例1と同様にして、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は192℃であった。
[例3]
ニッケルとコバルトのそれぞれの塩化物を含む水溶液をアルカリで共沈させた共沈物を加熱して得たニッケル−コバルト共沈水酸化物と硝酸マンガン水溶液を混合した後乾燥し、300℃にて5時間焼成することにより粉体を得た。
【0040】
該粉体と水酸化リチウム1水和物粉末を混合し、例1と同じローラーハースキルンに、原料粉末が充填された鞘箱を連続的に供給し、例1と同じ条件にて前段焼成と後段焼成を行った。得られたLiNi0.76Co0.18Mn0.062粉末について、例1と同様にして、CuKα線を使用し、X線回折を測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.161°であった。
【0041】
上記LiNi0.76Co0.18Mn0.062粉末を用いて例1と同様にして電池性能を評価した。その結果、2.5〜4.3Vにおける初期放電容量は183mAh/gであり、初期放電平均電圧は3.767Vであり、20回充放電サイクル後の容量は183mAh/gであった。また、例1と同様にして、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は188℃であった。
[例4]
ニッケルとコバルトのそれぞれの塩化物を含む水溶液をアルカリで共沈させた共沈物を加熱して得たニッケル−コバルト共沈水酸化物と硝酸チタン水溶液を混合した後乾燥し、300℃にて5時間焼成することにより粉体を得た。
【0042】
該粉体と水酸化リチウム1水和物粉末を混合し、例1と同じローラーハースキルンに、原料粉末が充填された鞘箱を連続的に供給し、例1と同じ条件にて前段焼成と後段焼成を行った。得られた、LiNi0.75Co0.22Ti0.032粉末について、例1と同様にして。CuKα線を使用し、X線回折を測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.162°であった。
【0043】
上記LiNi0.75Co0.22Ti0.032粉末を用いて例1と同様にして電池性能を評価した。その結果、2.5〜4.3Vにおける初期放電容量は187mAh/gであり、初期放電平均電圧は3.795Vであり、20回充放電サイクル後の容量は187mAh/gであった。また、例1と同様にして、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は195℃であった。また、硝酸チタンの替わりに硝酸マグネシウムあるいは硝酸クロムをもちいたLiNi0.75Co0.22Mg0.032及びLiNi0.75Co0.22Cr0.032についても同様の回折ピークの半値幅が得られ、優れた電池特性が得られた。
[例5]
例1と同じく、ニッケルとコバルトのそれぞれのアンミン錯体を混合し、これを1〜5気圧の圧力下で100〜150℃に加熱させることにより得られた塩(Ni:Co原子比は、0.8:0.2)と水酸化リチウム1水和物粉末とを混合し、ムライト−コージェライト系耐火物からなる鞘箱に充填した。例1と同じローラーハースキルンに、原料粉末が充填された上記鞘箱を連続的に供給し、490℃で1時間保持して前段焼成を行った。室温から490℃への昇温速度は100℃/時、490℃から200℃までの降温速度400℃/時であった。
【0044】
前段焼成後の鞘箱より粉体を取り出し再混合後、再度、鞘箱に前段焼成後の粉体を充填した。例1と同じローラーハースキルンを用い、入口から出口までの温度分布設定と鞘箱の供給速度を変えて、鞘箱を連続的に供給し、酸素40体積%の酸素−窒素気流下で、790℃にて2時間保持して後段焼成を行った。室温から790℃までの昇温速度は200℃/時とし、790℃から200℃までの降温速度は150℃/時とした。 例1と同様にして、LiNi0.80Co0.202粉末について、CuKα線を使用したX線回折を測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.142°であった。
【0045】
上記LiNi0.80Co0.202粉末を用いて電池性能を例1と同様にして評価した結果、2.5〜4.3Vにおける初期放電容量は198mAh/gであり、初期放電平均電圧は3.760Vであり、20回充放電サイクル後の容量は197mAh/gであった。また、例1と同様に、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は183℃であった。
[例6]
例1と同じく、ニッケルとコバルトのそれぞれのアンミン錯体を混合し、これを1〜5気圧の圧力下で100〜150℃に加熱させることにより得られた塩(Ni:Coの原子比は、0.8:0.2)と水酸化リチウム1水和物粉末とを混合し、ムライト−コージェライト系耐火物からなる鞘箱に充填した。高さ2.8m、幅2.8m、奥行き2.8mの静止炉に、原料粉末が充填された上記鞘箱を積層し、515℃で18時間保持して前段焼成を行った。室温から515℃への昇温速度は30℃/時、515℃から200℃までの降温時間は5時間(降温速度63℃/時)であった。
【0046】
前段焼成後の鞘箱より粉体を取り出し再混合後、再度、鞘箱に前段焼成後の粉体を充填した。上記と同じ静止炉を用い、鞘箱を積層し、酸素40体積%を含む酸素−窒素気流下で、770℃にて35時間保持して後段焼成を行った。室温から770℃までの昇温速度は70℃/時とし、770℃から200℃までの降温速度は60℃/時とした。
【0047】
得られたLiNi0.80Co0.202粉末について、例1と同様にして、CuKα線を使用したX線回折を測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.125°であった。
【0048】
上記LiNi0.80Co0.202粉末を用いて電池性能を例1と同様にして評価した結果、2.5〜4.3Vにおける初期放電容量は187mAh/gであり、初期放電平均電圧は3.730Vであり、20回充放電サイクル後の容量は182mAh/gであった。また、例1と同様に、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は176℃であった。
[例7]
ニッケルとコバルトのそれぞれのおアンミン錯体を混合し、炭酸ガスで共沈させた共沈物を加熱して得たニッケル−コバルト水酸化物(Ni:Coの原子比は、0.8:0.2)と水酸化リチウム1水和物粉末とを混合し、ムライト−コージェライト系耐火物からなる鞘箱に充填した。例1と同じローラーハースキルンに、原料粉末が充填された上記鞘箱を連続的に供給し、515℃で5時間保持して前段焼成を行った。室温から515℃への昇温速度は50℃/時、515℃から200℃までの降温時間は5時間(降温速度63℃/時)であった。
【0049】
前段焼成後の鞘箱より粉体を取り出し再混合後、再度、鞘箱に前段焼成後の粉体を充填した。
【0050】
上記と同じローラーハースキルンを用い入口から出口までの温度分布設定と鞘箱の供給速度を変えて、前段焼成後の粉体を充填した鞘箱を連続的に供給し、酸素40体積%の酸素−窒素気流下で、770℃にて8時間保持して後段焼成を行った。室温から770℃までの昇温速度は50℃/時、770℃から200℃までの降温速度は63℃/時であった。
【0051】
例1と同様にして、得られたLiNi0.80Co0.202粉末について、CuKα線を使用したX線回折を測定した。このX線回折の、2θ=64±1°における、(110)面に基づく回折ピークの半値幅は0.118°であった。
【0052】
上記LiNi0.80Co0.202粉末を用いて電池性能を評価した結果、2.5〜4.3Vにおける初期放電容量は182mAh/gであり、初期放電平均電圧は3.715Vであり、20回充放電サイクル後の容量は175mAh/gであった。また、例1と同様に、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は179℃であった。
[例8]
ニッケルとコバルトのそれぞれのアンミン錯体を混合し、炭酸ガスで共沈させた共沈物を加熱して得たニッケル−コバルト水酸化物(Ni:Coの原子比は、0.8:0.2)と水酸化リチウム1水和物粉末とを混合し、ムライト−コージェライト系耐火物からなる鞘箱に充填した。例1と同じローラーハースキルンに、上記鞘箱を連続的に供給し、515℃で5時間保持して前段焼成を行った。室温から515℃への昇温速度は50℃/時、515℃から200℃までの降温時間は5時間(降温速度63℃/時)であった。
【0053】
前段焼成後の鞘箱より粉体を取り出し再混合後、再度、鞘箱に前段焼成後の粉体を充填した。前段焼成の合計時間は20時間であった。上記と同じローラーハースキルンを用い入口から出口までの温度分布設定と鞘箱の供給速度を変えて、前段焼成後の粉体を充填した鞘箱を連続的に供給し、酸素40体積%を含む酸素−窒素気流下で、750℃にて1時間保持して後段焼成を行った。室温から750℃までの昇温速度は50℃/時とし、750℃から200℃までの降温速度は63℃/時とした。
【0054】
例1と同様にして、得られたLiNi0.80Co0.202粉末について、CuKα線を使用したX線回折スペクトルを測定した。このX線回折の、2θ=65±1°における、(110)面に基づく回折ピークの半値幅は0.215°であった。
【0055】
上記LiNi0.80Co0.202粉末を用いて電池性能を評価した結果、2.5〜4.3Vにおける初期放電容量は178mAh/gであり、初期放電平均電圧は3.765Vであり、20回充放電サイクル後の容量は177mAh/gであった。また、例1と同様に、走査型示差熱量計にて5℃/分の速度で昇温して発熱開始温度を測定した。その結果、発熱開始温度は179℃であった。
【0056】
【発明の効果】
本発明によれば、高い初期電池容量、高い放電平均電圧、優れた充放電サイクル耐久性および高い安全性をいずれも満足するリチウム二次電池の正極活物質として使用されるリチウム含有複合酸化物が、低コストで、効率的な製造方法にて提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel positive electrode active material for a lithium secondary battery comprising a lithium-containing composite oxide and a method for producing the same.
[0002]
[Prior art]
In recent years, as devices become portable and cordless, expectations for non-aqueous electrolyte secondary batteries, particularly lithium secondary batteries, that are small, lightweight, and have high energy density are increasing. Known positive electrode active materials for lithium secondary batteries include composite oxides of lithium and transition metals, such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 , and LiMnO 2 . A lithium secondary battery using a rock salt layered composite oxide in which cobalt or nickel is dissolved as LiNi 0.8 Co 0.2 O 2 as a positive electrode active material can achieve a relatively high capacity density of 180 to 190 mAh / g. Good reversibility is exhibited in a high voltage range of 2.7 to 4.3 V.
[0003]
Particularly recently, the adoption of lithium-nickel-cobalt composite oxides typified by LiNi 0.8 Co 0.2 O 2 has begun as a material capable of developing a high capacity. Commercialization of lithium secondary batteries with high voltage and high energy density has been promoted by using these as positive electrode active materials and using carbon materials or the like that can occlude and release lithium as negative electrode active materials.
[0004]
Conventionally, as a method for producing a rock salt layered composite oxide in which cobalt or nickel is dissolved, such as LiNi 0.8 Co 0.2 O 2 , a nickel-cobalt coprecipitate is mixed with a lithium compound, and is 920 ° C. in air in a stationary furnace. After heating for 3 hours (JP-A-1-129364), mixing nickel-cobalt coprecipitate with lithium compound, heating at a rate of 330 ° C./min using a rotary kiln, and pre-baking The method of lowering the temperature and further performing the main firing at 750 ° C. for 4 to 20 hours in an oxygen atmosphere in a stationary furnace (Japanese Patent Laid-Open No. 11-111290), mixing the nickel-cobalt coprecipitate with a lithium compound, A method of pre-baking at 500 ° C. for 5 hours and then lowering the temperature and further performing main baking at 720 ° C. for 10 hours in an oxygen atmosphere in a stationary furnace (Japanese Patent Laid-Open No. 10-214624) There has been proposed.
[0005]
However, in the method of performing pre-firing or main-firing using a rotary kiln, since solid powder flows in the rotary kiln, contamination of impurities such as alumina as the inner wall material is unavoidable due to wear of the rotary kiln. There are problems such as poor charge / discharge cycle durability of lithium secondary batteries using as active materials and high temperature deterioration of inner wall materials such as alumina of rotary kilns.
[0006]
In addition, when pre-firing or main-firing is performed in a stationary furnace, in industrial scale production that requires a large amount of firing at one time to improve productivity, avoid temperature fluctuations within the lot when solid powder is heated and cooled. Therefore, it is necessary to decrease the temperature increase or decrease rate in order to reduce the problem that it is difficult to produce a lithium-containing composite oxide with good characteristics and temperature variations. As a result, there is a problem that the temperature rise / fall time becomes long and the productivity is remarkably lowered.
[0007]
Moreover, the half width of the diffraction peak based on the (003) plane in X-ray diffraction obtained by mixing and heat-treating an alkali coprecipitated hydroxide of nickel salt and cobalt salt and lithium hydroxide is 0.01 to 0.1 °. There is also a proposal that this lithium-containing composite oxide has a high capacity and excellent thermal stability (Japanese Patent Laid-Open No. 9-129231). However, even if it is a lithium-containing composite oxide obtained by the production method described in this publication and having a half-value width of the diffraction peak based on the (003) plane within the above range, capacity, discharge average voltage, charge / discharge cycle durability And the safety was still unsatisfactory.
[0008]
[Problems to be solved by the invention]
As described above, the lithium-containing composite oxide produced by the conventional method includes the initial capacity of the battery, the initial discharge average voltage, the charge / discharge cycle durability, the safety and the positive electrode active material for the lithium secondary battery. We needed further improvements in productivity.
[0009]
The present invention provides a novel positive electrode active material for a lithium secondary battery having a large battery capacity, high discharge average voltage, excellent charge / discharge cycle durability, and high safety, and comprising a lithium-containing composite oxide, and its production It aims to provide a method.
[0010]
[Means for Solving the Problems]
The inventor of the present invention has a specific value in a half-value width of a diffraction peak represented by a specific general formula and based on the (110) plane at 2θ = 65 ± 1 ° in powder X-ray diffraction using CuKα rays. It has been found that the lithium-containing composite oxide satisfies all of high initial battery capacity, high discharge average voltage, excellent charge / discharge cycle durability and high safety as a positive electrode active material of a lithium secondary battery.
[0011]
Thus, the present invention has the general formula LiNi x Co y M z O 2 (where M is at least one element selected from Al, Mn, Ti, Mg and Cr, 0.95 ≦ x + y + z ≦ 1.05). 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.2) and 2θ = 65 ± of powder X-ray diffraction using CuKα ray. A method for producing a positive electrode active material for a lithium secondary battery comprising a lithium-containing composite oxide having a half-width of a diffraction peak based on a (110) plane at 1 ° of 0.13 to 0.20 °, comprising: A pre-firing of a salt or coprecipitate containing cobalt, a mixture of a salt or coprecipitate containing nickel, cobalt, and element M and a lithium compound, or a mixture of a lithium compound and a compound containing element M is performed at a firing temperature 430. ~ 530 ° C , temperature drop rate 20 Lithium characterized in that it is carried out at 0 to 600 ° C./hour , followed by post- stage calcination at a calcination temperature of 700 to 850 ° C. and a temperature drop rate of 100 to 500 ° C./hour , and at least the post-stage calcination performed at a roller hearth kiln It exists in the manufacturing method of the positive electrode active material for secondary batteries.
[0012]
Hereinafter, the present invention will be described in more detail.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, lithium-containing composite oxide constituting the positive electrode active material of a lithium secondary battery, the general formula is represented by LiNi x Co y M z O 2 . Here, M is at least one element selected from Al, Mn, Ti, Cr and Mg. x, y, and z are 0.95 ≦ x + y + z ≦ 1.05, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, and 0 ≦ z ≦ 0.2, respectively. Chosen to satisfy.
[0014]
In the above, even when z = 0 and M is not included, the initial capacity of the battery is high and the charge / discharge cycle stability is also high. In the case where z is not 0 and M is Al, the charge / discharge cycle stability of the battery is further higher than that in the case where M is not added (z = 0), the capacity decrease during rapid charge / discharge is small, the heat generation temperature is high, Safety is even higher. When z is not 0 and M is Mn, the heat generation temperature of the battery is higher and the safety is higher than when M is not added. Furthermore, when z is not 0 and M is Ti, Cr, or Mg, the charge / discharge cycle stability of the battery is high and the discharge voltage is high as compared with the case where they are not added. In particular, in the present invention, M is preferably at least one element of Al and Mn.
[0015]
In the above, when x is less than 0.5 for x, y, and z, the initial capacity of the battery decreases. When it exceeds 0.9, the thermal stability of the battery is lowered or the charge / discharge cycle durability is lowered. Preferably, 0.60 ≦ x ≦ 0.85. It is not preferred that y is less than 0.05 because the thermal stability of the battery is lowered or the charge / discharge cycle durability is lowered. If it exceeds 0.3, the initial capacity of the battery is lowered. Preferably, 0.10 ≦ y ≦ 0.20. Further, z is preferably 0.005 ≦ z ≦ 0.10 although it depends on the additive element.
[0016]
In addition, the lithium-containing composite oxide that is the positive electrode active material of the present invention has a half-value width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° in powder X-ray diffraction using CuKα rays is 0. .13 to 0.20 °. The half width of the diffraction peak based on the (110) plane reflects the crystallite diameter of the lithium-containing composite oxide, and it seems that the larger the half width, the smaller the crystallite diameter. When the half width of the diffraction peak based on the (110) plane is less than 0.13 °, the charge / discharge cycle durability, initial capacity, average discharge voltage, or safety of the battery used as the positive electrode active material is lowered. On the other hand, when the half width of the diffraction peak based on the (110) plane exceeds 0.20 °, the initial capacity and safety of the battery are lowered. A preferred half width is 0.14 to 0.17 °.
[0017]
In the present invention, the lithium-containing composite oxide having the specific formula and the half-value width of the specific X-ray diffraction peak is manufactured as follows . That is, a salt or coprecipitate containing nickel and cobalt, a mixture of a salt or coprecipitate containing nickel, cobalt and element M and a lithium compound, or a mixture of a compound containing lithium compound and element M Pre-stage baking is performed at ˜530 ° C., and then post-stage baking is performed at 700 to 850 ° C. In the above, when the element M is not included in the lithium composite oxide (when z = 0), a mixture of a salt or coprecipitate containing nickel and cobalt and a lithium compound is fired.
[0018]
In the salt or coprecipitate containing nickel and cobalt, or the salt or coprecipitate containing nickel, cobalt, and element M, when nickel, cobalt, and element M are contained, nickel, cobalt, and element M are uniform. Are preferably distributed. In addition, in the salt containing nickel and cobalt and the salt containing nickel, cobalt and element M, carbonate, sulfate, nitrate, complex salt and the like are preferably used.
[0019]
The salt or coprecipitate containing nickel and cobalt, or the salt or coprecipitate containing nickel, cobalt and element M is preferably produced by the following method. For example, when nickel chloride, cobalt chloride, and the element M are contained, the respective chlorides of the element M are dissolved in an aqueous solution saturated with carbon dioxide gas, and a sodium hydrogen carbonate solution is added to cause coprecipitation, followed by drying. Method, when nickel, cobalt, and element M are the same as above, alkali is added to an aqueous solution containing the respective chlorides of element M and coprecipitated and dried, nickel, cobalt, and if necessary Then, an ammine complex mixed aqueous solution containing the element M is heated to 100 to 150 ° C. at a pressure of 1 to 5 atm and dried.
[0020]
In the case where the element M is included in the lithium-containing composite oxide and the salt or coprecipitate containing nickel, cobalt, and the element M is not used, the salt or coprecipitate containing nickel and cobalt, and the element M A method of mixing an aqueous solution containing the above compound, further mixing a lithium compound, and drying is preferably employed. Even when a salt or coprecipitate containing nickel, cobalt and element M is used, element M may be replenished by further mixing with an aqueous solution containing a compound of element M. As the lithium compound mixed with the salt or coprecipitate containing nickel, cobalt, and element M contained as necessary, lithium hydroxide, lithium carbonate, lithium oxide and the like are preferably used.
[0021]
In the present invention, a mixture of a salt or coprecipitate containing nickel, cobalt and optionally the element M and a lithium compound is then fired. Firing is required to be performed by pre-stage firing and post-stage firing in each of the specific temperature ranges described above. The firing in the former stage and the latter stage may be two or more, respectively. When any one-stage firing is performed instead of the above-mentioned two-stage firing of the former stage and the latter stage, characteristics of the obtained lithium-containing composite oxide as a positive electrode active material, specifically, an initial capacity of the battery, Charge / discharge cycle durability, safety, average discharge voltage, etc. are reduced. Even in the two-stage firing, when the temperature of the first-stage firing was less than 430 ° C. or over 530 ° C., or the temperature of the second-stage firing was less than 700 ° C. or over 850 ° C., it was obtained in the same manner as above. The characteristics of the lithium-containing composite oxide as the positive electrode active material, that is, the initial capacity, the charge / discharge cycle durability, the safety, the average discharge voltage, the rapid charge / discharge characteristics and the like are deteriorated.
[0022]
In the present invention, in the pre-stage firing, the holding time at the firing temperature is preferably 0.3 to 3 hours, and particularly 0.5 to 2 hours is appropriate. Further, the rate of temperature decrease in the pre-stage firing (rate at which the furnace temperature falls from the firing temperature to 200 ° C.) is 200 to 600 ° C./hour , preferably 300 to 500 ° C./hour. When the pre-stage firing time is less than 0.3 hours, the reaction between the powder mainly composed of nickel and cobalt and the lithium compound is insufficient, and the lithium secondary oxide using the obtained lithium-containing composite oxide as the positive electrode active material This is not preferable because the initial capacity of the battery is reduced. On the other hand, if the firing time exceeds 3 hours, the productivity of the battery decreases, which is not preferable. In the pre-stage firing, the rate of temperature increase has little effect, but if the rate of temperature decrease is less than 200 ° C./hour, the crystal diameter of the lithium-containing composite oxide becomes unfavorable. On the other hand, if the rate of temperature decrease exceeds 600 ° C./hour, rapid cooling equipment is required in large-scale production, which increases equipment costs and running costs. Further, in the present invention, the post-stage baking is preferably performed for 1 to 4 hours at the above-mentioned baking temperature, and in particular, 1 to 2.5 hours is appropriate. Moreover, the temperature-fall rate (speed at which the furnace temperature falls from the firing temperature to 200 ° C.) in the latter-stage firing is 100 to 500 ° C./hour , and preferably 200 to 400 ° C./hour. When the firing time is less than 1 hour, the conversion reaction of a powder mainly composed of nickel and cobalt and a lithium compound into a layered structure containing lithium is not preferable. On the other hand, when the calcination time exceeds 4 hours, as a result of crystal growth, the performance of the obtained lithium-containing composite oxide as a positive electrode active material decreases, and the productivity of the lithium-containing composite oxide decreases. Therefore, it is not preferable. Even in the post-stage firing, the rate of temperature rise has little effect, whereas when the rate of temperature drop is less than 100 ° C./hour, the crystal diameter of the lithium-containing composite oxide increases. On the other hand, if the temperature lowering rate exceeds 300 ° C./hour or more, rapid cooling equipment is required in large-scale production, which is not preferable because equipment costs and running costs increase.
[0023]
The above-mentioned pre-stage baking and post-stage baking are preferably carried out in an oxygen-containing gas, and the oxygen concentration in the pre-stage baking is not particularly problematic, but is suitably carried out in the atmosphere. On the other hand, the post-stage firing is preferably performed in an oxygen-containing gas having a high oxygen concentration. The oxygen concentration in the subsequent firing is preferably 19 to 100% by volume, and particularly preferably 25 to 50% by volume. If the oxygen concentration in the subsequent firing is low, the performance of the obtained lithium-containing composite oxide as a positive electrode active material is undesirably lowered.
[0024]
Examples of means for carrying out the above pre-stage baking and post-stage baking of the present invention on an industrial scale include a rotary kiln, a tunnel furnace, a roller hearth kiln, and the like. The durability of the inner wall is poor, and in the case of rapid firing, there is a problem of dust treatment at the outlet, which is not preferable. The tunnel furnace is not preferable when processing a large amount of powder on an industrial scale, because it is difficult to make the temperature distribution uniform, and as a result, the performance of the obtained lithium-containing composite oxide as a positive electrode active material is inferior.
[0025]
On the other hand, a roller hearth kiln is filled with powder to be fired in a sheath box made of refractory, and continuously fired by moving the sheath box over the rotating roller by putting the sheath box into a tunnel-shaped furnace. Device. Roller hearth kiln, also in the rapid temperature rise or rapid cooling, the positive electrode active properties as materials are particularly good, and the productivity of the lithium-containing composite oxide obtained since the temperature distribution can be made uniform in the sheath boxes It is preferable because it is high. This is because the average crystallite diameter can be controlled because the temperature distribution is uniform. Pre-stage calcination and subsequent firing, which both are suitable to be implemented in a roller hearth kiln, in the present invention, it performs at least subsequent firing in a roller hearth kiln.
[0026]
In the present invention, the positive electrode used as the positive electrode active material of the lithium-containing composite oxide is preferably produced as follows. That is, a positive electrode mixture is formed by mixing the lithium-containing composite oxide powder with a carbon-based conductive material such as acetylene black, graphite, and ketjen black and a binder.
[0027]
A slurry or kneaded material comprising the above-mentioned positive electrode mixture and a solvent or dispersion medium of the binder in the positive electrode mixture is applied to and / or supported on a positive electrode current collector such as an aluminum foil or a stainless steel foil, and the positive electrode A board. As the binder, polyvinylidene fluoride, polytetrafluoroethylene, polyamide, carboxymethyl cellulose, acrylic resin, or the like is used. A porous polyethylene, a porous polypropylene film, etc. are used for a separator.
[0028]
As the solvent of the electrolyte solution used in the lithium secondary battery using the lithium-containing composite oxide of the present invention as the positive electrode active material, carbonate is preferable. The carbonate ester can be either cyclic or chain. Examples of the cyclic carbonate include propylene carbonate and ethylene carbonate (hereinafter referred to as EC). Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate (hereinafter referred to as DEC), ethyl methyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, and the like.
[0029]
In this invention, the said carbonate ester can be used individually or in mixture of 2 or more types. Moreover, you may mix and use with another solvent. Moreover, depending on the material of the negative electrode active material, when a chain carbonate ester and a cyclic carbonate ester are used in combination, discharge characteristics, cycle durability, and charge / discharge efficiency may be improved. Further, vinylidene fluoride-hexafluoropropylene copolymer (for example, “Kyner” Atchem Co., Ltd. trade name), vinylidene fluoride-perfluoro (propyl vinyl ether) disclosed in JP-A-10-294131 is used as these organic solvents. It is good also as a gel polymer electrolyte by adding a copolymer and adding the solute mentioned later.
[0030]
Solutes constituting the electrolyte solution used in the present invention include ClO 4 , CF 3 SO 3 , BF 4 , PF 6 , AsF 6 , SbF 6 , CF 3 CO 2 , (CF 3 SO 2 ) It is preferable to use any one or more of lithium salts having 2 N or the like as an anion. In the above electrolyte solution or polymer electrolyte, an electrolyte comprising a lithium salt is preferably added to the solvent or solvent-containing polymer at a concentration of 0.2 to 2.0 mol / liter. If it deviates from this range, the ionic conductivity is lowered, and the electrical conductivity of the electrolyte solution is lowered. Particularly preferably, 0.5 to 1.5 mol / liter is selected.
[0031]
The negative electrode active material in the lithium secondary battery of the present invention is a material that can occlude and release lithium ions. Although the material which forms these negative electrode active materials is not specifically limited, For example, a lithium metal, a lithium alloy, a carbon material, an oxide mainly composed of a metal of group 14 or 15 of the periodic table, a silicon carbide compound, a boron carbide compound, etc. Carbon compounds, silicon oxide compounds, titanium sulfide, and the like. As the carbon material, pyrolyzate of organic matter, artificial graphite, natural graphite, earth graphite, expanded graphite, scale-like graphite and the like can be used. As the oxide, a compound mainly composed of tin oxide can be used. As the negative electrode current collector, a copper foil, a nickel foil or the like is used.
[0032]
When the active material is a carbon material or the like, the negative electrode used in the present invention can be produced by kneading with an organic solvent to form a slurry, and applying the slurry to a metal foil current collector, drying, or pressing. preferable. There are no particular restrictions on the shape of the lithium battery. A sheet shape (so-called film shape), a folded shape, a wound-type bottomed cylindrical shape, a button shape, or the like is selected depending on the application.
[0033]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Examples 6 to 8 are comparative examples of the present invention.
[Example 1]
Each of the nickel and cobalt ammine complexes is mixed and heated to 100 to 150 ° C. under a pressure of 1 to 5 atm. A salt containing nickel and cobalt (Ni: Co atomic ratio 0.8: 0.2) and lithium hydroxide monohydrate powder were mixed and filled into a sheath box (external dimensions, length 300 mm × width 300 mm × height 80 mm) made of mullite-cordierite refractory. The above-mentioned sheath box filled with the raw material powder is continuously supplied to a roller hearth kiln (full length 15m, height 1.8m, width 1.8m) and held at 515 ° C for 30 minutes for pre-stage firing. It was. The temperature increase rate from room temperature to 515 ° C. was 100 ° C./hour, and the temperature decrease time from 515 ° C. to 200 ° C. was 40 minutes (temperature decrease rate 470 ° C./hour).
[0034]
After the pre-stage firing, the powder was taken out from the sheath box, remixed, and again filled with the powder after the pre-stage firing. Using the same roller hearth kiln as above, changing the temperature distribution setting from the inlet to the outlet and the supply speed of the sheath box, continuously supplying the sheath box, under an oxygen-nitrogen stream containing 40% by volume of oxygen, 770 Subsequent firing was performed by holding at 1.5 ° C. for 1.5 hours. The temperature increase rate from room temperature to 770 ° C. was 400 ° C./hour, and the temperature decrease rate from 770 ° C. to 200 ° C. was 350 ° C./hour.
[0035]
The LiNi 0.80 Co 0.20 O 2 powder thus obtained was measured for X-ray diffraction with CuKα using a RINT2100 type X-ray diffractometer manufactured by Rigaku Corporation. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.148 °.
[0036]
The above LiNi 0.80 Co 0.20 O 2 powder, acetylene black, and polytetrafluoroethylene powder are mixed at a weight ratio of 80/16/4, and kneaded, molded, and dried while adding toluene to form a positive electrode plate having a thickness of 150 μm. Produced. Aluminum foil with a thickness of 20 μm is used as a positive electrode current collector, porous polypropylene with a thickness of 25 μm is used as a separator, a metal lithium foil with a thickness of 500 μm is used as a negative electrode, and a nickel foil with a thickness of 20 μm is used as a negative electrode current collector. Then, a stainless steel simple sealed cell (battery) was assembled in an argon glove box using a solution containing LiPF 6 at a concentration of 1 mol in a 1: 1 mixed solvent of EC and DEC.
[0037]
The cell is charged to 4.3 V at a constant current of 0.2 mA per 1 cm 2 of the positive electrode area, and then discharged to 2.5 V at a constant current of 0.2 mA to obtain an initial discharge capacity and a charge / discharge cycle test Was performed 20 times. The initial discharge capacity at 2.5 to 4.3 V was 198 mAh / g, the initial discharge average voltage was 3.777 V, and the capacity after 20 charge / discharge cycles was 198 mAh / g. Similarly, a stainless steel simple sealed cell is charged to 4.3 V at a constant current of 0.2 mA per 1 cm 2 of the positive electrode area, disassembled in an argon glove box, and the positive electrode sheet after charging is taken out. After washing, punched out to a diameter of 3 mm, sealed in an aluminum capsule together with EC, and heated at a rate of 5 ° C./min with a scanning differential calorimeter to measure the heat generation start temperature. As a result, the heat generation start temperature was 186 ° C.
[Example 2]
After mixing each ammine complex of nickel and cobalt and mixing the salt containing nickel and cobalt obtained by heating this to 100 to 150 ° C. under a pressure of 1 to 5 atm, and an aluminum nitrate aqueous solution The powder was obtained by drying and baking at 300 ° C. for 5 hours. The powder and lithium hydroxide monohydrate powder are mixed, and the sheath box filled with the raw material powder is continuously supplied to the same roller hearth kiln as in Example 1, and the pre-stage firing is performed under the same conditions as in Example 1. Subsequent firing was performed.
[0038]
In the same manner as in Example 1, an X-ray diffraction chart of the obtained LiNi 0.8 Co 0.17 Al 0.03 O 2 powder was measured. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane near 2θ = 65 ± 1 ° was 0.168 °.
[0039]
Using the LiNi 0.8 Co 0.17 Al 0.03 O 2 powder, the battery performance was evaluated in the same manner as in Example 1. As a result, the initial discharge capacity at 2.5 to 4.3 V was 188 mAh / g, the initial discharge average voltage was 3.770 V, and the capacity after 20 charge / discharge cycles was 185 mAh / g. Further, in the same manner as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 192 ° C.
[Example 3]
A nickel-cobalt coprecipitation hydroxide obtained by heating a coprecipitate obtained by coprecipitation of an aqueous solution containing chlorides of nickel and cobalt with an alkali and a manganese nitrate aqueous solution were mixed and dried, and the mixture was dried at 300 ° C. for 5 hours. Powder was obtained by firing for a period of time.
[0040]
The powder and lithium hydroxide monohydrate powder are mixed, and the sheath box filled with the raw material powder is continuously supplied to the same roller hearth kiln as in Example 1, and the pre-stage firing is performed under the same conditions as in Example 1. Subsequent firing was performed. For the obtained LiNi 0.76 Co 0.18 Mn 0.06 O 2 powder, X-ray diffraction was measured in the same manner as in Example 1 using CuKα rays. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.161 °.
[0041]
Battery performance was evaluated in the same manner as in Example 1 using the above LiNi 0.76 Co 0.18 Mn 0.06 O 2 powder. As a result, the initial discharge capacity at 2.5 to 4.3 V was 183 mAh / g, the initial discharge average voltage was 3.767 V, and the capacity after 20 charge / discharge cycles was 183 mAh / g. Further, in the same manner as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation starting temperature was 188 ° C.
[Example 4]
A nickel-cobalt coprecipitation hydroxide obtained by heating a coprecipitate obtained by coprecipitation of an aqueous solution containing chlorides of nickel and cobalt with an alkali and a titanium nitrate aqueous solution were mixed and then dried, and the mixture was dried at 300 ° C. for 5 hours. Powder was obtained by firing for a period of time.
[0042]
The powder and lithium hydroxide monohydrate powder are mixed, and the sheath box filled with the raw material powder is continuously supplied to the same roller hearth kiln as in Example 1, and the pre-stage firing is performed under the same conditions as in Example 1. Subsequent firing was performed. The obtained LiNi 0.75 Co 0.22 Ti 0.03 O 2 powder was used in the same manner as in Example 1. X-ray diffraction was measured using CuKα rays. In this X-ray diffraction, the half-value width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.162 °.
[0043]
Using the LiNi 0.75 Co 0.22 Ti 0.03 O 2 powder, the battery performance was evaluated in the same manner as in Example 1. As a result, the initial discharge capacity at 2.5 to 4.3 V was 187 mAh / g, the initial discharge average voltage was 3.795 V, and the capacity after 20 charge / discharge cycles was 187 mAh / g. Further, in the same manner as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 195 ° C. In addition, LiNi 0.75 Co 0.22 Mg 0.03 O 2 and LiNi 0.75 Co 0.22 Cr 0.03 O 2 using magnesium nitrate or chromium nitrate instead of titanium nitrate can obtain the same half-width of the diffraction peak, and have excellent battery characteristics. Obtained.
[Example 5]
As in Example 1, each of the ammine complexes of nickel and cobalt was mixed and heated to 100 to 150 ° C. under a pressure of 1 to 5 atm. 8: 0.2) and lithium hydroxide monohydrate powder were mixed and filled into a sheath box made of mullite-corgerite refractory. The above-mentioned sheath box filled with the raw material powder was continuously supplied to the same roller hearth kiln as in Example 1 and held at 490 ° C. for 1 hour for pre-stage firing. The rate of temperature increase from room temperature to 490 ° C. was 100 ° C./hour, and the rate of temperature decrease from 490 ° C. to 200 ° C. was 400 ° C./hour.
[0044]
After the powder was taken out from the sheath box after the pre-stage firing and remixed, the sheath box was again filled with the powder after the pre-stage firing. Using the same roller hearth kiln as in Example 1, changing the temperature distribution setting from the inlet to the outlet and changing the feeding speed of the sheath box, the sheath box was continuously fed, and under the oxygen-nitrogen flow of 40 vol% oxygen, 790 Subsequent firing was performed by holding at 2 ° C. for 2 hours. The rate of temperature increase from room temperature to 790 ° C. was 200 ° C./hour, and the rate of temperature decrease from 790 ° C. to 200 ° C. was 150 ° C./hour. In the same manner as in Example 1, X-ray diffraction using CuKα rays was measured for LiNi 0.80 Co 0.20 O 2 powder. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.142 °.
[0045]
As a result of evaluating battery performance in the same manner as in Example 1 using the above LiNi 0.80 Co 0.20 O 2 powder, the initial discharge capacity at 2.5 to 4.3 V was 198 mAh / g, and the initial discharge average voltage was 3.760 V. The capacity after 20 charge / discharge cycles was 197 mAh / g. Further, as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 183 ° C.
[Example 6]
As in Example 1, each ammine complex of nickel and cobalt was mixed and heated to 100 to 150 ° C. under a pressure of 1 to 5 atmospheres (the atomic ratio of Ni: Co was 0 .8: 0.2) and lithium hydroxide monohydrate powder were mixed and filled into a sheath box made of mullite-cordierite refractory. The above-mentioned sheath box filled with the raw material powder was laminated in a static furnace having a height of 2.8 m, a width of 2.8 m, and a depth of 2.8 m, and pre-baking was performed by holding at 515 ° C. for 18 hours. The temperature increase rate from room temperature to 515 ° C. was 30 ° C./hour, and the temperature decrease time from 515 ° C. to 200 ° C. was 5 hours (temperature decrease rate 63 ° C./hour).
[0046]
After the powder was taken out from the sheath box after the pre-stage firing and remixed, the sheath box was again filled with the powder after the pre-stage firing. Using the same static furnace as described above, the sheath box was laminated, and the subsequent firing was performed by holding at 770 ° C. for 35 hours under an oxygen-nitrogen stream containing 40% by volume of oxygen. The rate of temperature increase from room temperature to 770 ° C. was 70 ° C./hour, and the rate of temperature decrease from 770 ° C. to 200 ° C. was 60 ° C./hour.
[0047]
The obtained LiNi 0.80 Co 0.20 O 2 powder was measured for X-ray diffraction using CuKα rays in the same manner as in Example 1. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.125 °.
[0048]
As a result of evaluating the battery performance using the above LiNi 0.80 Co 0.20 O 2 powder in the same manner as in Example 1, the initial discharge capacity at 2.5 to 4.3 V was 187 mAh / g, and the initial discharge average voltage was 3.730 V. The capacity after 20 charge / discharge cycles was 182 mAh / g. Further, as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 176 ° C.
[Example 7]
Nickel-cobalt hydroxide obtained by heating the coprecipitate obtained by mixing each ammine complex of nickel and cobalt and coprecipitating with carbon dioxide gas (atomic ratio of Ni: Co is 0.8: 0. 2) and lithium hydroxide monohydrate powder were mixed and filled into a sheath box made of mullite-corgerite refractory. The above-mentioned sheath box filled with the raw material powder was continuously supplied to the same roller hearth kiln as in Example 1 and held at 515 ° C. for 5 hours for pre-stage baking. The temperature increase rate from room temperature to 515 ° C. was 50 ° C./hour, and the temperature decrease time from 515 ° C. to 200 ° C. was 5 hours (temperature decrease rate 63 ° C./hour).
[0049]
After the powder was taken out from the sheath box after the pre-stage firing and remixed, the sheath box was again filled with the powder after the pre-stage firing.
[0050]
Using the same roller hearth kiln as above, changing the temperature distribution setting from the inlet to the outlet and the supply speed of the sheath box, continuously supplying the sheath box filled with the powder after the pre-stage firing, oxygen of 40 vol% oxygen -Post-stage baking was performed at 770 ° C for 8 hours under a nitrogen stream. The temperature increase rate from room temperature to 770 ° C. was 50 ° C./hour, and the temperature decrease rate from 770 ° C. to 200 ° C. was 63 ° C./hour.
[0051]
In the same manner as in Example 1, the obtained LiNi 0.80 Co 0.20 O 2 powder was measured for X-ray diffraction using CuKα rays. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 64 ± 1 ° was 0.118 °.
[0052]
As a result of evaluating the battery performance using the above LiNi 0.80 Co 0.20 O 2 powder, the initial discharge capacity at 2.5 to 4.3 V is 182 mAh / g, the initial discharge average voltage is 3.715 V, and charging is performed 20 times. The capacity after the discharge cycle was 175 mAh / g. Further, as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 179 ° C.
[Example 8]
Nickel-cobalt hydroxide obtained by mixing nickel and cobalt ammine complexes and heating the coprecipitate coprecipitated with carbon dioxide (Ni: Co atomic ratio is 0.8: 0.2). ) And lithium hydroxide monohydrate powder were mixed and filled into a sheath box made of mullite-corgerite refractory. The above-mentioned sheath box was continuously supplied to the same roller hearth kiln as in Example 1, and pre-baking was performed by holding at 515 ° C. for 5 hours. The temperature increase rate from room temperature to 515 ° C. was 50 ° C./hour, and the temperature decrease time from 515 ° C. to 200 ° C. was 5 hours (temperature decrease rate 63 ° C./hour).
[0053]
After the powder was taken out from the sheath box after the pre-stage firing and remixed, the sheath box was again filled with the powder after the pre-stage firing. The total time for pre-stage firing was 20 hours. Using the same roller hearth kiln as above, changing the temperature distribution setting from the inlet to the outlet and the supply speed of the sheath box, continuously supplying the sheath box filled with the powder after the pre-stage firing, containing 40% by volume of oxygen Subsequent firing was performed by holding at 750 ° C. for 1 hour under an oxygen-nitrogen stream. The rate of temperature increase from room temperature to 750 ° C. was 50 ° C./hour, and the rate of temperature decrease from 750 ° C. to 200 ° C. was 63 ° C./hour.
[0054]
In the same manner as in Example 1, the obtained LiNi 0.80 Co 0.20 O 2 powder was measured for an X-ray diffraction spectrum using CuKα rays. In this X-ray diffraction, the half width of the diffraction peak based on the (110) plane at 2θ = 65 ± 1 ° was 0.215 °.
[0055]
As a result of evaluating the battery performance using the above LiNi 0.80 Co 0.20 O 2 powder, the initial discharge capacity at 2.5 to 4.3 V was 178 mAh / g, the initial discharge average voltage was 3.765 V, and charging was performed 20 times. The capacity after the discharge cycle was 177 mAh / g. Further, as in Example 1, the temperature was increased at a rate of 5 ° C./min with a scanning differential calorimeter, and the heat generation start temperature was measured. As a result, the heat generation start temperature was 179 ° C.
[0056]
【The invention's effect】
According to the present invention, high initial battery capacity, a high average discharge voltage, a lithium-containing composite oxides used as the positive electrode active material of a lithium secondary battery that satisfies both excellent charge and discharge cycle durability and high safety , at low cost, it is provided in an efficient manufacturing process.

Claims (1)

一般式、LiNiCo(但し、Mは、Al、Mn、Ti、Mg及びCrから選ばれる少なくとも1種の元素、0.95≦x+y+z≦1.05、0.5≦x≦0.9、0.05≦y≦0.3、0≦z≦0.2)で表され、且つ、CuKα線を使用した粉末X線回折の、2θ=65±1°における(110)面に基づく回折ピークの半値幅が、0.13〜0.20°であるリチウム含有複合酸化物からなるリチウム二次電池用正極活物質の製造方法であって、ニッケルとコバルトを含む塩若しくは共沈物、又はニッケルとコバルトと元素Mを含む塩若しくは共沈物と、リチウム化合物との混合物、又はリチウム化合物と元素Mを含む化合物との混合物の前段焼成を焼成温度430〜530℃、降温速度200〜600℃/時で行い、次いで後段焼成を焼成温度700〜850℃、降温速度100〜500℃/時で行い、かつ、少なくとも上記後段焼成をローラーハースキルンにて行うことを特徴とするリチウム二次電池用正極活物質の製造方法。General formula, LiNi x Co y M z O 2 (where M is at least one element selected from Al, Mn, Ti, Mg and Cr, 0.95 ≦ x + y + z ≦ 1.05, 0.5 ≦ x ≦ 0.9, 0.05 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.2), and X-ray powder diffraction using CuKα ray at 2θ = 65 ± 1 ° (110) A method for producing a positive electrode active material for a lithium secondary battery comprising a lithium-containing composite oxide having a half-value width of a diffraction peak based on a surface of 0.13 to 0.20 °, the method comprising: precipitate, or a salt or co-precipitate containing nickel, cobalt and element M, mixture, or sintering temperature four hundred thirty to five hundred thirty ° C. the pre-stage calcination of the mixture of compounds including lithium compound and element M with the lithium compound, cooling rate 200-600 ℃ / hour Then, post- stage firing is performed at a firing temperature of 700 to 850 ° C. , a temperature drop rate of 100 to 500 ° C./hour , and at least the latter-stage firing is performed in a roller hearth kiln. Manufacturing method.
JP20896699A 1999-07-23 1999-07-23 Method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP3798923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20896699A JP3798923B2 (en) 1999-07-23 1999-07-23 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20896699A JP3798923B2 (en) 1999-07-23 1999-07-23 Method for producing positive electrode active material for lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005373043A Division JP4394068B2 (en) 2005-12-26 2005-12-26 Positive electrode material for lithium secondary battery and method for producing the same

Publications (3)

Publication Number Publication Date
JP2001035492A JP2001035492A (en) 2001-02-09
JP2001035492A5 JP2001035492A5 (en) 2005-03-17
JP3798923B2 true JP3798923B2 (en) 2006-07-19

Family

ID=16565117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20896699A Expired - Fee Related JP3798923B2 (en) 1999-07-23 1999-07-23 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3798923B2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
JP4604347B2 (en) * 2000-12-27 2011-01-05 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US6921609B2 (en) * 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
US6855461B2 (en) * 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JPWO2003088382A1 (en) * 2002-04-18 2005-08-25 日本電池株式会社 Non-aqueous electrolyte secondary battery
US7674556B2 (en) 2002-05-30 2010-03-09 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for charging the same
JP4583727B2 (en) * 2002-05-30 2010-11-17 パナソニック株式会社 Non-aqueous electrolyte secondary battery charging method
JP4767484B2 (en) * 2002-08-08 2011-09-07 パナソニック株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP4626141B2 (en) * 2003-10-20 2011-02-02 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4061648B2 (en) 2003-04-11 2008-03-19 ソニー株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4237074B2 (en) 2004-02-16 2009-03-11 ソニー株式会社 Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4655599B2 (en) * 2004-11-24 2011-03-23 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4996117B2 (en) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
CN102044673B (en) * 2006-04-07 2012-11-21 三菱化学株式会社 Lithium nickel manganese cobalt series compound oxide powder for positive electrode material in lithium rechargeable battery
JP4591716B2 (en) * 2006-04-07 2010-12-01 三菱化学株式会社 Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4591717B2 (en) * 2006-09-22 2010-12-01 三菱化学株式会社 Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4613943B2 (en) * 2006-11-10 2011-01-19 三菱化学株式会社 Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5103923B2 (en) * 2007-02-08 2012-12-19 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5045135B2 (en) * 2007-02-08 2012-10-10 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5039640B2 (en) * 2008-06-09 2012-10-03 株式会社ノリタケカンパニーリミテド Pot for producing positive electrode active material for lithium ion battery and method for producing the same
JP5534657B2 (en) * 2008-07-18 2014-07-02 住友金属鉱山株式会社 Method for producing lithium nickel composite oxide
JP5670905B2 (en) * 2008-10-13 2015-02-18 ビーエーエスエフ コーポレーション Lithium / nickel / cobalt oxide and lithium / nickel / manganese / cobalt oxide cathodes
JP6359323B2 (en) * 2013-12-27 2018-07-18 住友化学株式会社 Surface-modified lithium-containing composite oxide for lithium ion secondary battery positive electrode
KR20160105348A (en) * 2015-02-27 2016-09-06 주식회사 엘지화학 Positive electrode active material, and positive electrode and lithium secondary battery comprising the same
JP6479632B2 (en) * 2015-11-30 2019-03-06 ユミコア Method for producing nickel lithium metal composite oxide
TWI651271B (en) * 2016-05-27 2019-02-21 比利時商烏明克公司 Method for producing small-diameter nickel-lithium metal composite oxide powder
JP7356786B2 (en) * 2017-09-13 2023-10-05 住友化学株式会社 Method for producing positive electrode active material for lithium secondary battery
JP6646129B1 (en) * 2018-12-07 2020-02-14 住友化学株式会社 Method for producing positive electrode active material for lithium secondary battery
CN109796052B (en) * 2019-01-24 2023-03-14 湖南桑瑞新材料有限公司 Cathode material, preparation method thereof and lithium ion battery
CN115956307A (en) 2020-08-19 2023-04-11 住友化学株式会社 Method for producing lithium metal composite oxide

Also Published As

Publication number Publication date
JP2001035492A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP3798923B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4394068B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP5044467B2 (en) Lithium transition metal composite oxide
KR100326455B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP4268392B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR100694567B1 (en) Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4109847B2 (en) Lithium-containing transition metal composite oxide and method for producing the same
KR101131479B1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP4353808B2 (en) Particulate cathode active material for lithium secondary battery
JP4063350B2 (en) Method for producing composite oxide using sol-gel method
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
US20070111097A1 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
JP7445692B2 (en) Positive electrode active material for lithium secondary batteries, method for producing the same, and lithium secondary batteries containing the same
JP2015041600A (en) Method of producing lithium-containing composite oxide for lithium ion secondary battery
WO2004088776A1 (en) Process for producing positive-electrode active material for lithium secondary cell
JPH0992285A (en) Nonaqueous electrolyte lithium secondary battery
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2000173599A (en) Manufacture of active material for lithium secondary battery positive electrode and lithium secondary battery
JP2004281163A (en) Baked container for positive active material powder, positive active material powder, and lithium ion secondary battery
JP4560168B2 (en) Method for producing composite oxide for non-aqueous lithium secondary battery
US20230030652A1 (en) Process for preparing lithium transition metal oxides
JPH10188988A (en) Lithium battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees