Nothing Special   »   [go: up one dir, main page]

JP3795970B2 - Method for producing α, β-unsaturated aldehyde - Google Patents

Method for producing α, β-unsaturated aldehyde Download PDF

Info

Publication number
JP3795970B2
JP3795970B2 JP21720196A JP21720196A JP3795970B2 JP 3795970 B2 JP3795970 B2 JP 3795970B2 JP 21720196 A JP21720196 A JP 21720196A JP 21720196 A JP21720196 A JP 21720196A JP 3795970 B2 JP3795970 B2 JP 3795970B2
Authority
JP
Japan
Prior art keywords
reaction
ion exchange
exchange resin
cationic ion
unsaturated aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21720196A
Other languages
Japanese (ja)
Other versions
JPH1059892A (en
Inventor
知也 桑山
高史 濱崎
五朗 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21720196A priority Critical patent/JP3795970B2/en
Publication of JPH1059892A publication Critical patent/JPH1059892A/en
Application granted granted Critical
Publication of JP3795970B2 publication Critical patent/JP3795970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、α,β−不飽和アルデヒドの製造方法に関する。本発明により製造されるα,β−不飽和アルデヒド、例えばチグリンアルデヒド(トランス−2−メチル−2−ブテナール)は、各種テルペン類の合成原料として有用である。また、チグリンアルデヒド誘導体であるチグリン酸(トランス−2−メチル−2−ブテン酸)は、香料、インク等の乾燥剤の合成原料として有用である。
【0002】
【従来の技術】
α,β−不飽和アルデヒドの製造方法としては、▲1▼アセトアルデヒドとプロピオンアルデヒドとを、水酸化ナトリウムを用いて交差アルドール縮合反応させることによりチグリンアルデヒドを得る方法[ジャーナル オブ ザ ケミカルソサエティー(Journal of the Chemical Society)、3262頁(1957年)参照]、▲2▼2−エチルアクロレインを水素ガスの存在下、パラジウム触媒を用いて異性化させ、チグリンアルデヒドを得る方法(特開昭61−33137号公報参照)等が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記▲1▼の方法は、多くの副生成物が生じ、目的物の収率が低いこと、反応条件の制御が困難であること、反応の後処理として、触媒として用いた塩基(水酸化ナトリウム)の中和が必要となる等の操作的な煩雑さを伴うこと等の問題点を有している。また、上記▲2▼の方法では、副反応として2−エチルアクロレインの水素付加反応が進行し、2−メチルブタナールが生成する。この2−エチルアクロレインの水素付加反応は、収率の低下を引き起こすのみならず、粗生成物の精製操作が複雑になるという欠点を伴う。さらに、この水素付加反応を抑制するためには、チオ尿素、チオフェン等のような硫黄化合物による触媒の不活性化が必要となる。したがって、これらの方法は、α,β−不飽和アルデヒドの工業的に優れた製造方法であるとは言い難い。
しかして、本発明の目的は、α,β−不飽和アルデヒドを簡便に、高純度、高収率で製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、上記の目的は、アセトアルデヒドと一般式(I)
【0005】
【化3】

Figure 0003795970
【0006】
(式中、Rはアルキル基を表す。)
で示されるアルデヒドとを、カチオン性イオン交換樹脂を用いて交差アルドール縮合反応させることを特徴とする一般式(II)
【0007】
【化4】
Figure 0003795970
【0008】
(式中、Rは前記定義のとおりである。)
で示されるα,β−不飽和アルデヒドの製造方法を提供することによって達成される。
【0009】
【発明の実施の形態】
上記一般式(I)および(II)においてRが表すアルキル基は、直鎖状または分岐鎖状のいずれでもよく、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等が挙げられる。
【0010】
本発明において使用されるカチオン性イオン交換樹脂としては、例えば強酸性スルホン酸基を含有するものが挙げられる。スルホン酸基は、遊離のスルホン酸基であっても、部分的にアルカリ金属またはアルカリ土類金属の酸性塩として存在していてもよいが、一般に遊離のスルホン酸基が有利である。
【0011】
本発明の反応は、溶媒の存在下または不存在下に行うことが可能である。使用する溶媒は、原料とのアルドール反応を起こす等の悪影響を与えない限り特に限定されるものではないが、例えばジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン等のハロゲン系炭化水素;ベンゼン、トルエン、キシレン、クメン、ヘプタン、オクタン等の炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル;アセトニトリル、プロピオニトリル等のニトリル等が挙げられる。溶媒の使用量はアセトアルデヒドに対して0.1〜10重量倍が好ましく、0.1〜1.0重量倍がより好ましい。
【0012】
反応は、常圧下または加圧下において行うことができるが、不活性ガスによる加圧下において行うのが好ましい。反応温度は0〜150℃の範囲が好ましく、80〜120℃の範囲がより好ましい。また、反応時間は反応温度により異なるが、10〜120分の範囲が好ましく、10〜100分の範囲がより好ましい。
【0013】
カチオン性イオン交換樹脂と別離することにより得られた反応混合物からのα,β−不飽和アルデヒドの単離精製は、一般的方法により行うことができる。例えば、反応混合物を静置し、有機層と水層とを分液し、有機層を常圧下、必要ならば減圧下にて蒸留精製することにより行う。
【0014】
【実施例】
以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
【0015】
実施例1
カチオン性イオン交換樹脂[ダウエックス−50W(DOWEX−50W);ダウケミカル社製]620mgを100ml容ステンレス製耐圧反応容器中に入れ、次いでアセトアルデヒドおよびプロピオンアルデヒドの等モル混合液38.7g(各379mmol)を導入し、その後、窒素ガスにより10kg/cm2 加圧し、120℃にて100分間反応させた。反応終了後、反応混合液とカチオン性イオン交換樹脂を濾別し、縮合反応により生成した水を分液ロートにより分液した。その後、有機層を常圧にて精密に蒸留し、チグリンアルデヒドを22.3g(266mmol)得た。
収率:70.2%
純度:98.8%
沸点:118〜120℃
1H−NMR(270MHz,CDCl3 ),δ
1.79(s,3H),1.97(d,3H),6.67(q,1H),9.38(s,1H)
【0016】
実施例2
カチオン性イオン交換樹脂[アンバーリスト−15E(Amberlyst−15E);オルガノ社製]50mgを100ml容ステンレス製耐圧反応容器中に入れ、次いでアセトアルデヒドおよびプロピオンアルデヒドの等モル混合液54.7g(各536mmol)を導入し、その後、窒素ガスにより10kg/cm2 に加圧し、120℃にて100分間反応させた。反応終了後、反応混合液とカチオン性イオン交換樹脂を濾別し、縮合反応により生成した水を分液ロートにより分液した。その後、有機層を精密に蒸留し、チグリンアルデヒドを32.4g(386mmol)得た。
収率:72.
純度:98.1%
【0017】
実施例3
カチオン性イオン交換樹脂[アンバーライトIR−120B(Amberlite IR−120B);オルガノ社製]62mgを100ml容ステンレス製耐圧反応容器中に入れ、次いでアセトアルデヒドおよびプロピオンアルデヒドの等モル混合液48.5g(各475mmol)を導入し、その後、窒素ガスにより10kg/cm2 に加圧し、120℃にて100分間反応させた。反応終了後、反応混合液とカチオン性イオン交換樹脂を濾別し、縮合反応により生成した水を分液ロートにより分液した。その後、有機層を精密に蒸留し、チグリンアルデヒドを27.6g(329mmol)得た。
収率:69.2%
純度:98.5%
【0018】
実施例4
カチオン性イオン交換樹脂[ダウエックス−50W(DOWEX−50W);ダウケミカル社製]6.5gを充填し、加圧下(N2 、10kg/cm2 )、100℃に加熱された反応管(内容積12.0ml)中へ、アセトアルデヒドおよびプロピオンアルデヒドの等モル混合液を、流速42ml/時間となるように送液ポンプを用いて8時間送液した(送液量336ml、269g、各2.64mol)。流出液の有機層を精密に蒸留し、チグリンアルデヒド153.1g(1.82mol)を得た。
収率:70.0%
純度:98.4%
【0019】
実施例5
カチオン性イオン交換樹脂[アンバーリスト−15E(Amberlyst−15E);オルガノ社製]6.0gを充填し、加圧下(N2 、10kg/cm2 、100℃に加熱された反応管(内容積12.0ml)中へ、アセトアルデヒドおよびプロピオンアルデヒドの等モル混合液を、流速60ml/時間となるように送液ポンプを用いて8時間送液した(送液量480ml、384g、各3.76mol)。流出液の有機層を精密に蒸留し、チグリンアルデヒド221.2g(2.63mol)を得た。
収率:69.0%
純度:98.1%
【0020】
実施例6
カチオン性イオン交換樹脂[アンバーリスト−15E(Amberlyst−15E);オルガノ社製]200gを充填し、加圧下(N2 、10kg/cm2 、100℃に加熱された反応管(内容積400ml)中へ、アセトアルデヒドおよびプロピオンアルデヒドの等モル混合液を、流速2000ml/時間となるように送液ポンプを用いて10時間送液した(送液量20000ml、16.0kg、各157mol)。流出液の有機層を精密に蒸留し、チグリンアルデヒド9.10kg(108mol)を得た。
収率:69.0%
純度:98.1%
【0021】
実施例7
カチオン性イオン交換樹脂[アンバーリスト−15E(Amberlyst−15E);オルガノ社製]380mgを500ml容ステンレス製耐圧反応容器中に入れ、次いでアセトアルデヒドおよびブチルアルデヒドの等モル混合液117g(各1.0mol)を導入し、その後、窒素ガスにより10kg/cm2 に加圧し120℃にて100分間反応させた。反応終了後、反応混合液とカチオン性イオン交換樹脂を濾別し、縮合反応により生成した水を分液ロートにより分液した。その後、有機層を精密に蒸留し、2−エチルクロトンアルデヒドを68.6g(0.70mol)得た。
収率:70.0%
純度:97.8%
沸点:132〜134℃
1H−NMR(270MHz,CDCl3 ),δ
1.58(t,3H),1.75(q,3H),2.01(d,3H),6.81(q,1H),9.40(s,1H)
【0022】
【発明の効果】
本発明によれば、穏和な条件下、簡便にα,β−不飽和アルデヒドを工業的に有利に製造する方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an α, β-unsaturated aldehyde. The α, β-unsaturated aldehyde produced by the present invention, for example, tigulin aldehyde (trans-2-methyl-2-butenal) is useful as a raw material for synthesizing various terpenes. Further, tiglinic acid (trans-2-methyl-2-butenoic acid), which is a tiglinaldehyde derivative, is useful as a synthetic raw material for desiccants such as fragrances and inks.
[0002]
[Prior art]
As a method for producing α, β-unsaturated aldehyde, (1) a method of obtaining a tigulin aldehyde by cross-aldol condensation reaction between acetaldehyde and propionaldehyde using sodium hydroxide [Journal of the Chemical Society ( Journal of the Chemical Society), page 3262 (1957)], {circle around (2)} 2-ethylacrolein is isomerized using a palladium catalyst in the presence of hydrogen gas to obtain tiglinaldehyde (JP-A-61). No. 33137) is known.
[0003]
[Problems to be solved by the invention]
However, in the method (1), many by-products are produced, the yield of the target product is low, the reaction conditions are difficult to control, and the base (water) used as a catalyst as a post-treatment of the reaction. (Sodium oxide) has a problem that it involves operational complexity such as necessitating neutralization. In the method (2), a hydrogenation reaction of 2-ethylacrolein proceeds as a side reaction to produce 2-methylbutanal. This hydrogenation reaction of 2-ethylacrolein not only causes a decrease in yield, but also has the disadvantage that the purification operation of the crude product becomes complicated. Furthermore, in order to suppress this hydrogenation reaction, it is necessary to deactivate the catalyst with a sulfur compound such as thiourea or thiophene. Therefore, it cannot be said that these methods are industrially excellent production methods for α, β-unsaturated aldehydes.
Therefore, an object of the present invention is to provide a method for producing an α, β-unsaturated aldehyde simply and with high purity and high yield.
[0004]
[Means for Solving the Problems]
According to the present invention, the object is to achieve acetaldehyde and general formula (I)
[0005]
[Chemical 3]
Figure 0003795970
[0006]
(In the formula, R represents an alkyl group.)
A cross-aldol condensation reaction with an aldehyde represented by the general formula (II) using a cationic ion exchange resin
[0007]
[Formula 4]
Figure 0003795970
[0008]
(Wherein R is as defined above.)
It is achieved by providing a method for producing an α, β-unsaturated aldehyde represented by the formula:
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The alkyl group represented by R in the above general formulas (I) and (II) may be linear or branched, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group Group, decyl group and the like.
[0010]
Examples of the cationic ion exchange resin used in the present invention include those containing a strongly acidic sulfonic acid group. The sulfonic acid group may be a free sulfonic acid group or partly present as an alkali metal or alkaline earth metal acid salt, but generally a free sulfonic acid group is preferred.
[0011]
The reaction of the present invention can be carried out in the presence or absence of a solvent. The solvent to be used is not particularly limited as long as it does not cause an adverse effect such as causing an aldol reaction with the raw material. For example, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2 -Halogen hydrocarbons such as tetrachloroethane; hydrocarbons such as benzene, toluene, xylene, cumene, heptane, octane; ethers such as diethyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, dimethoxyethane; acetonitrile, propionitrile And nitriles. 0.1-10 weight times is preferable with respect to acetaldehyde, and, as for the usage-amount of a solvent, 0.1-1.0 weight times is more preferable.
[0012]
The reaction can be performed under normal pressure or under pressure, but is preferably performed under pressure with an inert gas. The reaction temperature is preferably in the range of 0 to 150 ° C, more preferably in the range of 80 to 120 ° C. Moreover, although reaction time changes with reaction temperature, the range for 10 to 120 minutes is preferable, and the range for 10 to 100 minutes is more preferable.
[0013]
Isolation and purification of the α, β-unsaturated aldehyde from the reaction mixture obtained by separating from the cationic ion exchange resin can be performed by a general method. For example, the reaction mixture is allowed to stand, the organic layer and the aqueous layer are separated, and the organic layer is purified by distillation under normal pressure, if necessary, under reduced pressure.
[0014]
【Example】
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
[0015]
Example 1
Cationic ion exchange resin [Dowex-50W (DOWEX-50W); manufactured by Dow Chemical Co., Ltd.] 620 mg was placed in a 100 ml stainless steel pressure-resistant reaction vessel, and then 38.7 g (379 mmol each) of an equimolar mixture of acetaldehyde and propionaldehyde. Then, the pressure was increased to 10 kg / cm 2 with nitrogen gas, and the mixture was reacted at 120 ° C. for 100 minutes. After completion of the reaction, the reaction mixture and the cationic ion exchange resin were separated by filtration, and water produced by the condensation reaction was separated using a separatory funnel. Thereafter, the organic layer was precisely distilled at normal pressure to obtain 22.3 g (266 mmol) of tiglinaldehyde.
Yield: 70.2%
Purity: 98.8%
Boiling point: 118-120 ° C
1 H-NMR (270 MHz, CDCl 3), δ :
1.79 (s, 3H), 1.97 (d, 3H), 6.67 (q, 1H), 9.38 (s, 1H)
[0016]
Example 2
Cationic ion exchange resin [Amberlyst-15E (Amberlyst-15E); manufactured by Organo Corporation] 50 mg was placed in a 100 ml stainless steel pressure-resistant reaction vessel, and then 54.7 g (536 mmol each) of an equimolar mixture of acetaldehyde and propionaldehyde. After that, it was pressurized to 10 kg / cm 2 with nitrogen gas and reacted at 120 ° C. for 100 minutes . After completion of the reaction, the reaction mixture and the cationic ion exchange resin were separated by filtration, and water produced by the condensation reaction was separated using a separatory funnel. Thereafter, the organic layer was distilled precisely to obtain 32.4 g (386 mmol) of tigulin aldehyde.
Yield: 72. 0 %
Purity: 98.1%
[0017]
Example 3
62 mg of a cationic ion exchange resin [Amberlite IR-120B (manufactured by Organo)] was placed in a 100 ml stainless steel pressure-resistant reaction vessel, and then 48.5 g of an equimolar mixture of acetaldehyde and propionaldehyde (each 475 mmol) was introduced, and then pressurized to 10 kg / cm 2 with nitrogen gas and reacted at 120 ° C. for 100 minutes. After completion of the reaction, the reaction mixture and the cationic ion exchange resin were separated by filtration, and water produced by the condensation reaction was separated using a separatory funnel. Thereafter, the organic layer was precisely distilled to obtain 27.6 g (329 mmol) of tigulin aldehyde.
Yield: 69.2%
Purity: 98.5%
[0018]
Example 4
Cationic ion exchange resin [Dowex-50W (DOWEX-50W); manufactured by Dow Chemical Co., Ltd.] 6.5 g, reaction tube heated to 100 ° C. under pressure (N 2 , 10 kg / cm 2 ) (contents) 12.0 ml), an equimolar mixture of acetaldehyde and propionaldehyde was fed for 8 hours using a feed pump so that the flow rate was 42 ml / hour (liquid feed amount 336 ml, 269 g, 2.64 mol each). ). The organic layer of the effluent was distilled precisely to obtain 153.1 g (1.82 mol) of tiglinaldehyde.
Yield: 70.0%
Purity: 98.4%
[0019]
Example 5
Cationic ion exchange resin [Amberlyst-15E (Amberlyst-15E); manufactured by Organo Corporation] 6.0 g, and heated to 100 ° C. under pressure (N 2, 10 kg / cm 2 ) (internal volume 12) 0.0 ml), an equimolar mixture of acetaldehyde and propionaldehyde was fed for 8 hours using a feed pump at a flow rate of 60 ml / hour (amount of liquid fed 480 ml, 384 g, 3.76 mol each). The organic layer of the effluent was precisely distilled to obtain 221.2 g (2.63 mol) of tiglinaldehyde.
Yield: 69.0%
Purity: 98.1%
[0020]
Example 6
Cationic ion exchange resin [Amberlyst-15E (Amberlyst-15E); manufactured by Organo Corporation] 200 g was charged in a reaction tube (internal volume 400 ml) heated to 100 ° C. under pressure (N 2, 10 kg / cm 2 ) . To the solution, an equimolar mixture of acetaldehyde and propionaldehyde was fed for 10 hours using a feeding pump so that the flow rate was 2000 ml / hour (feeding amount 20000 ml, 16.0 kg, 157 mol each). The organic layer of the effluent was distilled precisely to obtain 9.10 kg (108 mol) of tiglinaldehyde.
Yield: 69.0%
Purity: 98.1%
[0021]
Example 7
380 mg of a cationic ion exchange resin [Amberlyst-15E (Amberlyst-15E); manufactured by Organo Corporation] was placed in a 500 ml stainless steel pressure-resistant reaction vessel, and then 117 g (1.0 mol each) of an equimolar mixture of acetaldehyde and butyraldehyde. It was introduced and then pressurized to 10 kg / cm 2 with nitrogen gas, and reacted for 100 minutes at 120 ° C.. After completion of the reaction, the reaction mixture and the cationic ion exchange resin were separated by filtration, and water produced by the condensation reaction was separated using a separatory funnel. Thereafter, the organic layer was distilled precisely to obtain 68.6 g (0.70 mol) of 2-ethylcrotonaldehyde.
Yield: 70.0%
Purity: 97.8%
Boiling point: 132-134 ° C
1 H-NMR (270 MHz, CDCl 3), δ :
1.58 (t, 3H), 1.75 (q, 3H), 2.01 (d, 3H), 6.81 (q, 1H), 9.40 (s, 1H)
[0022]
【The invention's effect】
According to the present invention, there is provided a method for industrially advantageously producing an α, β-unsaturated aldehyde easily under mild conditions.

Claims (1)

アセトアルデヒドと一般式(I)
Figure 0003795970
(式中、Rはアルキル基を表す。)
で示されるアルデヒドとを、カチオン性イオン交換樹脂を用いて交差アルドール縮合反応させることを特徴とする一般式(II)
Figure 0003795970
(式中、Rは前記定義のとおりである。)
で示されるα,β−不飽和アルデヒドの製造方法。
Acetaldehyde and general formula (I)
Figure 0003795970
(In the formula, R represents an alkyl group.)
A cross-aldol condensation reaction with an aldehyde represented by the general formula (II) using a cationic ion exchange resin
Figure 0003795970
(Wherein R is as defined above.)
The manufacturing method of the alpha, beta-unsaturated aldehyde shown by these.
JP21720196A 1996-08-19 1996-08-19 Method for producing α, β-unsaturated aldehyde Expired - Fee Related JP3795970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21720196A JP3795970B2 (en) 1996-08-19 1996-08-19 Method for producing α, β-unsaturated aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21720196A JP3795970B2 (en) 1996-08-19 1996-08-19 Method for producing α, β-unsaturated aldehyde

Publications (2)

Publication Number Publication Date
JPH1059892A JPH1059892A (en) 1998-03-03
JP3795970B2 true JP3795970B2 (en) 2006-07-12

Family

ID=16700456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21720196A Expired - Fee Related JP3795970B2 (en) 1996-08-19 1996-08-19 Method for producing α, β-unsaturated aldehyde

Country Status (1)

Country Link
JP (1) JP3795970B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1997796A1 (en) * 2007-06-01 2008-12-03 DSMIP Assets B.V. Aldol condensation reaction and catalyst therefore
US8742177B2 (en) * 2011-12-28 2014-06-03 Rohm And Haas Company Catalyst and process to produce branched unsaturated aldehydes
CN103804160B (en) * 2014-01-27 2016-03-02 南京运华立太能源科技有限公司 The preparation method of 3-methyl-3-amylene-2-ketone
WO2022019142A1 (en) * 2020-07-20 2022-01-27 花王株式会社 α,β-UNSATURATED ALDEHYDE PRODUCTION METHOD

Also Published As

Publication number Publication date
JPH1059892A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP2830211B2 (en) Method for producing β-hydroxyketones
US7026522B2 (en) Production of 2-amino-2-[2- (4-alkylphenyl) ethyl] propane-1, 3-diols
KR101223949B1 (en) Process for the purification of 1,4-butanediol
JP3795970B2 (en) Method for producing α, β-unsaturated aldehyde
CN109535120B (en) Preparation method of 7-substituted-3, 4,4, 7-tetrahydrocyclobutane coumarin-5-ketone
JP2830210B2 (en) Synthesis of α, β-unsaturated ketones
US4231962A (en) 3-Phenoxybenzylideneamines and 3-benzylbenzylideneamines
US3992452A (en) Method for the production of alkoxycyclohexanones
JP4380024B2 (en) Process for producing 2- (1-hydroxyalkyl) cycloalkanone
EP0376184B1 (en) Process for preparing DL-serine and process for separation and purification of the same
JP2006513246A (en) Production of water-soluble β-hydroxynitrile
USRE29200E (en) Production of alkoxy phenolic compounds
USRE29201E (en) Production of alkoxy phenolic compounds
JPS649974B2 (en)
EP0031909B1 (en) 3-hydroxy-4-cyclopentenones and process for their production
US5597941A (en) Process for production of 5-amino-3-methylpyrazole
JPH0892150A (en) Production of 5(e), 8(z), 11(z)-tetradecatrien-2-one
US4532082A (en) Preparation of 3-cyano-2-alkylalkanals
JPS6148815B2 (en)
US4163111A (en) 2-Cyclopentenone derivatives
JP3477915B2 (en) Method for producing 1,6-dioxyiminohexane
JPS62164656A (en) Production of cyanoisophorone
JP3805435B2 (en) Process for producing 6-methyl-3-hepten-2-one
JP4294130B2 (en) Method for producing α, β-unsaturated ketone compound
KR20010022485A (en) Process for the preparation of 1-(3,4-dimethoxyphenyl)ethanol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees