Nothing Special   »   [go: up one dir, main page]

JP3794143B2 - Manufacturing method of display panel - Google Patents

Manufacturing method of display panel Download PDF

Info

Publication number
JP3794143B2
JP3794143B2 JP35532397A JP35532397A JP3794143B2 JP 3794143 B2 JP3794143 B2 JP 3794143B2 JP 35532397 A JP35532397 A JP 35532397A JP 35532397 A JP35532397 A JP 35532397A JP 3794143 B2 JP3794143 B2 JP 3794143B2
Authority
JP
Japan
Prior art keywords
substrate
substrates
cross
sealing material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35532397A
Other languages
Japanese (ja)
Other versions
JPH11183914A (en
Inventor
直繁 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP35532397A priority Critical patent/JP3794143B2/en
Publication of JPH11183914A publication Critical patent/JPH11183914A/en
Application granted granted Critical
Publication of JP3794143B2 publication Critical patent/JP3794143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、液晶等の電気光学物質を用いる表示パネルの製造方法に関するものである。
【0002】
【従来の技術】
液晶等の電気光学物質を用いる表示パネルは、枠状のシール材を介して互いに接合された一対の基板(ガラス等からなる透明基板)間の前記シール材で囲まれた領域に前記電気光学物質を封入したものであり、前記一対の基板の内面にはそれぞれ、前記電気光学物質に電界を印加するための電極(ITO等からなる透明電極)が設けられている。
【0003】
この表示パネルには、その両方の基板にそれぞれの基板の電極に駆動信号を供給するための駆動回路を接続する構成のものと、いずれか一方の基板の電極を他方の基板側の電極と電気的に接続し、この他方の基板に、両基板の電極に駆動信号を供給するための駆動回路を接続する構成のものとがあるが、後者の構成の表示パネルは、前記他方の基板だけに駆動回路を接続するか、あるいはこの基板にLSI等の駆動回路素子を搭載するだけでよいため、実装コストの面で有利である。
【0004】
前記後者の構成の表示パネルには、一方の基板の電極を前記シール材による基板接合領域内で他方の基板側に電気的に接続したものと、一方の基板の電極を前記基板接合領域の外側で他方の基板側に電気的に接続したものと、一方の基板の電極を前記シール材で囲まれた電気光学物質封入領域内で他方の基板側に電気的に接続したものとがある。
【0005】
これらの液晶パネルのうち、例えば一方の基板の電極を前記基板接合領域内で他方の基板側の電極とに電気的に接続した表示パネルは、従来、次のようにして製造されている。なお、ここでは、複数個の表示パネルを一括して組立てる場合を例にとって説明する。
【0006】
図5〜図8は上記表示パネルの従来の製造方法を示しており、図5は表示パネルを構成する一対の基板を電極形成面側から見た図、図6は図5のVIa−VIa線およびVIb−VIb線に沿う拡大断面図、図7は前記一対の基板をシール材を介して接合した状態の断面図、図8は図7のVIII−VIII線に沿う断面図である。
【0007】
[工程1]
まず、図5の(a),(b)に示すように、電気光学物質の封入領域を囲む枠状シール材7を介して互いに接合される一対の基板1,2のうちの一方の基板1に、前記電気光学物質に電界を印加するための複数の電極3およびこの電極3を他方の基板2側に電気的に接続するためのクロス電極部3bを形成し、他方の基板2に、前記電気光学物質に電界を印加するための複数の電極4と、前記一方の基板1の各電極3を駆動回路に接続するための複数のリード電極5およびクロス電極部5bを形成する。
【0008】
なお、ここでは単純マトリックス型の表示パネルを製造する例を示しており、前記電気光学物質に電界を印加するための電極3,4のうち、一方の基板1に形成する電極3は、行方向(図において左右方向)に沿う走査電極、他方の基板2に形成する電極4は、列方向(図において上下方向)に沿う信号電極である。
【0009】
前記各走査電極3は、図5の(a)に示したように、その一端側に、前記シール材7による枠状の基板接合領域の各辺部のうちの一端側の辺部に延びるリード部3aを有するパターンに形成し、そのリード部3aの端部に、この走査電極3を他方の基板2側に電気的に接続するためのクロス電極部3bを、前記基板接合領域の前記辺部内に対応させて形成したパターンに形成する。
【0010】
また、前記各信号電極4は、図5の(b)に示したように、その一端側に、前記基板接合領域のうちの一側の辺部の外側に延出する駆動回路接続端子部4aを形成したパターンに形成する。
【0011】
この信号電極4は、前記シール材7で囲まれる電気光学物質封入領域のうちの一端側の領域、つまり、前記基板接合領域の前記走査電極3のクロス電極部3bが対応する辺部付近の領域を除く領域に形成し、前記クロス電極部3bが対応する辺部付近の領域に、上記複数のリード電極5を形成する。
【0012】
前記各リード電極5は、図5の(b)に示したように、L字状に屈曲するとともに、その一端に、前記基板接合領域のうちの前記各信号電極4の端子部4aが延出する側の辺部の外側に延出する駆動回路接続端子部5aを形成し、他端に、前記基板接合領域の一端側の辺部内において前記各走査電極3のクロス電極部3bにそれぞれ対応するクロス電極部5bを形成したパターンに形成する。
【0013】
[工程2]
次に、図5の(a),(b)および図6の(a),(b)に示すように、前記一方の基板1の各走査電極3のクロス電極部3bの上に、導電性樹脂または銀ペースト等からなるクロス材6をスクリーン印刷法やディスペンサ−による塗布法等により印刷し、他方の基板2の電極形成面上に、例えば熱硬化性樹脂からなるシール材7を、電気光学物質の注入口8となる部分を欠落させた枠状パターンに印刷する。なお、前記シール材7には、図示しないが、このシール材7を介して接合される一対の基板1,2の間隔を規制するためのガラス粒子または樹脂粒子等からなるギャップ材が混入されている。
【0014】
この工程において、前記クロス材6は、前記シール材7に混入された前記ギャップ材により規制される所定の基板間隔よりも若干厚く印刷し、また前記シール材7は、次の基板合わせ工程におけるシール材7の潰れ広がりを考慮して、前記基板間隔よりも十分に厚く、かつ、上述した基板接合領域の各辺部の幅よりもある程度小さい幅に印刷する。
【0015】
[工程3]
次に、図7および図8に示すように、前記一対の基板1,2をそれぞれの電極形成面を互いに対向させて重ね合わせて加圧することにより、前記シール材7をその全域において潰し広げ、両基板1,2の間隔を前記シール材7に混入されたギャップ材で規制される所定の間隔に調整するとともに、一方の基板1の各走査電極3のクロス電極部3b上に印刷された前記クロス材6を、他方の基板2の各リード電極5のクロス電極部5bに当接させて、両基板1,2の前記クロス電極部3b,5bを前記クロス材6により電気的に接続する。
【0016】
この工程において、前記クロス材6は、加圧力により前記シール材7を周囲に押し出しながらシール材7中に入り込み、最終的にシール材7を貫通して他方の基板2のクロス電極部5bに当接する。
【0017】
[工程4]
この後は、前記加圧状態を保ちながら前記シール材7を硬化させ、このシール材7を介して一対の基板1,2を接合して、表示パネルを組立てる。
【0018】
次に、一括して組立てた前記複数の表示パネルを、前記一対の基板1,2をそれぞれ図に二点鎖線で示した分断線9a,9bに沿って分断することにより個々の表示パネルに分離し、その後、上記注入口8(シール材7の欠落部)から真空注入法により両基板1,2間の前記シール材7で囲まれた領域に電気光学物質(例えば液晶)を注入充填し、前記注入口8を封止して表示パネルを完成する。
【0019】
なお、一方の基板の電極を他方の基板側に電気的に接続した表示パネルには、上述したように、上記図5〜図8に示した製造方法で製造されるもののほかに、一方の基板の電極を前記基板接合領域の外側において他方の基板側に電気的に接続したものと、一方の基板の電極を前記シール材で囲まれた電気光学物質封入領域内において他方の基板側に電気的に接続したものとがあり、そのうちの前者の表示パネルは、前記クロス電極部3b,5bを前記基板接合領域の外側に形成し、その箇所において両基板1,2のクロス電極部3b,5bをクロス材6により接続する方法により製造され、また、後者の表示パネルは、前記クロス電極部3b,5bを前記電気光学物質封入領域内に形成し、その箇所において両基板1,2のクロス電極部3b,5bをクロス材6により接続する方法により製造されている。
【0020】
【発明が解決しようとする課題】
上記従来の製造方法のうち、一方の基板の電極をシール材による基板接合領域内で他方の基板側に電気的に接続した表示パネルを製造する図5〜図8に示した製造方法は、一対の基板1,2を重ね合せて加圧することにより、一方の基板1のクロス電極部3b上に印刷したクロス材6を、他方の基板2に印刷したシール材7に入り込ませて、最終的にシール材7を貫通させて他方の基板2のクロス電極部5bに当接させるものであるため、このクロス材6の端面と他方の基板2のクロス電極部5bとの間に前記シール材7が取り残されて、両基板1,2のクロス電極部3b,5b間に導通不良を発生するおそれがある。
【0021】
そこで従来は、上述したように、クロス材6をシール材7に混入されたギャップ材で規制される所定の基板間隔よりも若干厚く印刷することにより、前記クロス材6の端面と他方の基板2のクロス電極部5bとの間にシール材7が残らないようにして、前記導通不良の発生を防ぐようにしている。
【0022】
しかし、このように前記クロス材6を所定の基板間隔よりも厚く印刷したのでは、接合された一対の基板1,2の間隔が、前記基板接合領域の各辺部のうちの前記クロス材6が設けられた辺部付近において大きくなり、そのために、両基板1,2間に充填された電気光学物質の層厚が不均一になって、製造された表示パネルの電気光学特性が不均一になってしまう。
【0023】
また、上記のようにクロス材6を前記基板間隔よりも厚く印刷すると、一対の基板1,2を重ね合せてその基板間隔が所定の間隔になるように調整する際の加圧力により、前記クロス材6に潰れや亀裂が生じ、両基板1,2のクロス電極部3b,5b間に導通不良を発生することがある。
【0024】
一方、一方の基板の電極を前記基板接合領域の外側または電気光学物質封入領域内で他方の基板側に電気的に接続した表示パネルは、上述したように、前記クロス電極部3b,5bを前記基板接合領域の外側または前記電気光学物質封入領域内に形成し、その箇所において両基板1,2のクロス電極部3b,5bをクロス材6により接続する方法で製造されている。
【0025】
この製造方法では、前記クロス材6の接続面と他方の基板2のクロス電極部5bとの間にシール材7が挟まれることがないため、前記クロス材6を、一対の基板1,2をシール材7を介して接合したときの所定の基板間隔(シール材中のギャップ材で規制される間隔)と同じ厚さに印刷しておけば、一対の基板1,2を重ね合せて所定の基板間隔になるまで加圧したときに、前記クロス材6が他方の基板2のクロス電極部5bに密着状態で当接するため、両基板1,2のクロス電極部3b,5bを良好な導通状態で接続することができるとともに、両基板1,2の間隔を全域にわたって均一にすることができる。
【0026】
しかしながら、これらの製造方法のうち、基板接合領域の外側で両基板1,2のクロス電極部3b,5bをクロス材6により接続する方法では、例えば、接合した一対の基板1,2を分断線9a,9bに沿って分断して個々の表示パネルに分離する際などに前記クロス材6が剥がれて、導通不良を発生するおそれがあり、また、電気光学物質の封入領域内において両基板1,2のクロス電極部3b,5bをクロス材6により接続する方法では、表示エリアが小さくなってしまう。
【0027】
この発明は、表示エリアを小さくすることなく、一対の基板にそれぞれ形成したクロス電極部を良好な導通状態で接続するとともに、両基板の間隔を全域にわたって均一にして、均一な電気光学特性を得ることができる表示パネルの製造方法を提供することを目的としたものである。
【0028】
【課題を解決するための手段】
この発明の表示パネルの製造方法は、電気光学物質の封入領域を囲む枠状シール材を介して互いに接合される一対の基板にそれぞれ、前記電気光学物質に電界を印加するための複数の電極、および一方の基板の前記複数の電極を他方の基板側に前記シール材による基板接合領域で電気的に接続するための、前記基板接合領域に沿って配列された複数のクロス電極部を形成する工程と、前記一対の基板のうちのいずれか一方の基板の前記複数のクロス電極部の上にそれぞれ導電性を有するクロス材を印刷する工程と、他方の基板に前記シール材を、前記基板接合領域において前記複数のクロス材に対応する複数の部分を欠落させた不連続な枠状パターンに印刷する工程と、前記一対の基板を互いに重ね合わせて加圧することにより、前記シール材をその全域で潰し広げ、このシール材の前記複数のクロス材に対応する欠落部を前記複数のクロス材の周囲で連続させるとともに、前記一方の基板の複数のクロス電極部それぞれに印刷された前記複数のクロス材を前記他方の基板の対応するクロス電極部に当接させて両基板の前記複数のクロス電極部を電気的に接続する工程と、前記シール材を硬化させ、このシール材を介して前記一対の基板を接合する工程とからなることを特徴とするものである。
【0029】
すなわち、この発明の製造方法は、シール材による基板接合領域内で、その基板接合領域に沿って複数配列された両基板のクロス電極部をそれぞれクロス材により接続するものであり、したがって、電気光学物質の封入領域内で両基板のクロス電極部を接続する場合のように表示エリアが小さくなることはなく、また、前記基板接合領域の外側で両基板のクロス電極部を接続する場合のように、クロス材が剥がれて導通不良を発生することはない。
【0030】
そして、この製造方法では、一方の基板のクロス電極部の上にクロス材を印刷し、他方の基板にシール材を前記クロス材に対応する部分を欠落させた枠状パターンに印刷して、前記一対の基板を互いに重ね合せて加圧することにより、前記シール材をその全域で潰し広げ、このシール材の前記クロス材に対応する欠落部を前記クロス材周囲で連続させるとともに、前記一方の基板のクロス電極部に印刷された前記クロス材を前記他方の基板のクロス電極部に当接させて両基板の前記クロス電極部を電気的に接続するようにしているため、前記一対の基板を重ね合せて加圧する際に、前記クロス材の端面と他方の基板のクロス電極部との間にシール材が挟み込まれることはない。
【0031】
このため、前記クロス材は、一対の基板をシール材を介して接合したときの所定の基板間隔と同じ厚さに印刷しておけばよく、クロス材がこのような厚さであれば、一対の基板を重ね合せて所定の基板間隔になるまで加圧したときに、前記クロス材が他方の基板のクロス電極部に密着状態で当接するため、一対の基板にそれぞれ形成したクロス電極部を良好な導通状態で接続することができるとともに、両基板の間隔を全域にわたって均一にして、均一な電気光学特性を得ることができる。
【0032】
【発明の実施の形態】
この発明の表示パネルの製造方法は、上記のように、シール材による基板接合領域内で両基板のクロス電極部をクロス材により接続するようにし、しかも、一方の基板のクロス電極部の上にクロス材を印刷し、他方の基板にシール材を前記クロス材に対応する部分を欠落させた枠状パターンに印刷して、前記一対の基板を互いに重ね合せて加圧することにより、前記シール材をその全域で潰し広げてこのシール材の前記クロス材に対応する欠落部を前記クロス材の周囲で連続させるとともに、前記一方の基板のクロス電極部に印刷された前記クロス材を前記他方の基板のクロス電極部に当接させて両基板の前記クロス電極部を電気的に接続するようにして、表示エリアを小さくすることなく、両基板のクロス電極部を良好な導通状態で接続するとともに、両基板の間隔を全域にわたって均一にして、均一な電気光学特性を得るようにしたものである。
【0033】
【実施例】
以下、この発明の一実施例を、複数個の表示パネルを一括して組立てる場合の製造方法を例にとって図1〜図4を参照し説明する。図1は表示パネルを構成する一対の基板を電極形成面側から見た図、図2は図1のII部の拡大図、図3は前記一対の基板をシール材を介して接合した状態の断面図、図4は図3の III−III 線に沿う断面図である。
【0034】
[工程1]
まず、図1の(a),(b)に示すように、電気光学物質の封入領域を囲む枠状シール材17を介して互いに接合される一対の基板11,12のうちの一方の基板11に、前記電気光学物質に電界を印加するための複数の電極13と、前記電極13を他方の基板12側に電気的に接続するためのクロス電極部13bとを形成し、他方の基板12に、前記電気光学物質に電界を印加するための複数の電極14と、前記一方の基板11の各電極13を駆動回路に接続するための複数のリード電極15およびクロス電極部15bを形成する。
【0035】
なお、ここでは単純マトリックス型の表示パネルを製造する例を示しており、前記電気光学物質に電界を印加するための電極13,14のうち、一方の基板11に形成する電極13は、行方向(図では左右方向)に沿う走査電極、他方の基板12に形成する電極14は、列方向(図では上下方向)に沿う信号電極である。また、シール材17には、絶縁性の熱硬化性接着剤や光硬化性接着剤などが用いられる。
【0036】
前記各走査電極13は、図1の(a)に示したように、その一端側に、前記シール材17による枠状の基板接合領域の各辺部のうちの一端側の辺部に延びるリード部13aを有するパターンに形成し、そのリード部13aの端部に、この走査電極13を他方の基板2側に電気的に接続するためのクロス電極部13bを、前記基板接合領域の前記辺部内に対応させて形成したパターンに形成する。
【0037】
また、前記各信号電極14は、図1の(b)に示したように、その一端側に、前記基板接合領域のうちの一側の辺部の外側に延出する駆動回路接続端子部14aを形成したパターンに形成する。
【0038】
この信号電極14は、前記シール材17で囲まれる電気光学物質封入領域のうちの一端側の領域、つまり、前記クロス電極部13bが対応する辺部付近の領域を除く領域に形成し、前記クロス電極部13bが対応する辺部付近の領域には、上記複数のリード電極15を形成する。
【0039】
前記各リード電極15は、図1の(b)に示したように、L字状に屈曲するとともに、その一端に、前記基板接合領域のうちの前記各信号電極14の端子部14aが延出する側の同一の辺部の外側に延出する駆動回路接続端子部15aを形成し、他端に、前記基板接合領域の一端側の辺部内で前記各走査電極13のクロス電極部13bにそれぞれ対応するクロス電極部15bを形成したパターンに形成する。
【0040】
なお、図では便宜上、前記リード電極15の形成領域を大きく誇張して示したが、このリード電極5は極く狭い領域に形成する。したがって、前記電気光学物質封入領域のほとんどの領域(リード電極5が形成された極く僅かな領域を除く領域)が、前記走査電極3と信号電極4とが対向する表示エリアになる。
【0041】
また、図では省略しているが、例えば、製造する表示パネルがTN(ツイステッドネマティック)方式等の液晶表示パネルである場合は、前記一対の基板1,2の電極形成面上に配向膜を形成する。
【0042】
[工程2]
次に、図1の(a)に示すように、前記一方の基板11の各走査電極13のクロス電極部13bの上に、導電性樹脂または銀ペースト等からなるクロス材16をスクリーン印刷法やディスペンサーによる塗布法等により印刷し、図1の(b)および図2に示すように、他方の基板12の電極形成面上に、例えば熱硬化性樹脂からなるシール材17を、電気光学物質の注入口18となる部分と、前記各クロス材16に対応する部分とをそれぞれ欠落させた枠状パターンに印刷する。なお、前記シール材17には、図示しないが、このシール材17を介して接合される一対の基板11,12の間隔を規制するためのガラス粒子または樹脂粒子等からなるギャップ材が混入されている。
【0043】
この工程では、前記クロス材16は、前記シール材17に混入された前記ギャップ材により規制される基板間隔と同じ厚さに印刷し、また前記シール材17は、次の基板合わせ工程におけるシール材17の潰れ広がりを考慮して、前記基板間隔(ギャップ材の径)よりも十分に厚く、かつ、上述した基板接合領域の各辺部の幅よりもある程度小さい幅に印刷する。
【0044】
[工程3]
次に、図3および図4に示すように、前記一対の基板11,12をそれぞれの電極形成面を互いに対向させて重ね合せて加圧することにより、前記シール材17をその全域で潰し広げ、このシール材17の前記クロス材16に対応する欠落部を前記クロス材16の周囲で連続させるとともに、両基板11,12の間隔を前記シール材17に混入されたギャップ材で規制される間隔に調整し、同時に、一方の基板11の各走査電極13のクロス電極部13b上に印刷された前記クロス材16を、他方の基板12の各リード電極15のクロス電極部15bに当接させて、両基板11,12の前記クロス電極部13b,15bを前記クロス材16により電気的に接続する。
【0045】
この場合、前記シール材17は、各クロス材16に対応する部分を欠落させた枠状パターンに印刷されているため、前記一対の基板11,12を重ね合せて加圧する際に、前記クロス材16の基板12に対向する接触面と他方の基板12のクロス電極部15bとの間にシール材17が挟み込まれることはなく、したがって、前記クロス材16は、他方の基板12のクロス電極部15bに密着状態で当接する。
【0046】
[工程4]
この後は、前記加圧状態を保ちながら前記シール材17を加熱硬化させ、このシール材17を介して一対の基板11,12を接合して、表示パネルを組立てる。
【0047】
次に、一括して組立てた前記複数の表示パネルを、前記一対の基板11,12をそれぞれ図に二点鎖線で示した分断線19a,19bに沿って分断することにより個々の表示パネルに分離し、その後、上記注入口18(シール材17の欠落部)から真空注入法により両基板11,12間の前記シール材17で囲まれた領域に電気光学物質(例えば液晶)を注入充填し、前記注入口18を封止して表示パネルを完成する。
【0048】
すなわち、上記表示パネルの製造方法は、シール材17による基板接合領域内で両基板11,12のクロス電極部13b,15bをクロス材16により接続することにより、基板11上の電極13に、基板12側に設けた端子部15aより駆動信号を供給することができる。
【0049】
したがって、この製造方法によれば、前記クロス電極部13b,15bをシール材17で囲まれる電気光学物質封入領域内に形成し、前記電気光学物質封入領域内で両基板11,12のクロス電極部13b,15bを接続する場合のように表示エリアが小さくなることはなく、また、前記クロス電極部13b,15bを前記基板接合領域の外側に形成し、前記基板接合領域の外側で両基板11,12のクロス電極部13b,15bを接続する場合のように、クロス材16が剥がれて導通不良を発生することはない。
【0050】
そして、この製造方法では、一方の基板11のクロス電極部13bの上にクロス材16を印刷し、他方の基板12にシール材17を前記クロス材16に対応する部分を欠落させた枠状パターンに印刷して、一対の基板11,12を互いに重ね合せて加圧することにより、前記シール材17をその全域で潰し広げ、このシール材17のクロス材16に対応する欠落部を前記クロス材16の周囲で連続させるとともに、一方の基板11のクロス電極部13bに印刷されたクロス材16を他方の基板12のクロス電極部15bに当接させて両基板11,12のクロス電極部13b,15bを電気的に接続するようにしているため、一対の基板11,12を重ね合せて加圧する際に、前記クロス材16の端面と他方の基板12のクロス電極部15bとの間にシール材17が挟み込まれることはない。
【0051】
このため、前記クロス材16は、一対の基板11,12をシール材17を介して接合したときの所定の基板間隔(シール材17中に混入されたギャップ材により規制される間隔)と同じ厚さに印刷しておけばよく、クロス材16がこのような厚さであれば、一対の基板11,12を重ね合せて所定の基板間隔になるまで加圧したときに、前記クロス材16が他方の基板12のクロス電極部15bに密着状態で当接するため、一対の基板にそれぞれ形成したクロス電極部13b,15bを良好な導通状態で接続することができるとともに、両基板11,12の間隔を全域にわたって均一にすることができる。
【0052】
しかも、上記製造方法によれば、前記シール材17を前記クロス材16に対応する部分を欠落させた枠状パターンに印刷しておき、一対の基板11,12を互いに重ね合せて加圧することにより前記シール材17を潰し広げて、このシール材17のクロス材16に対応する欠落部を前記クロス材16の周囲で連続させるようにしているため、前記一対の基板11,12間の間隔を所定の基板間隔に調整したときのシール材17の幅が、クロス材16の付近で大きく広がることはない。
【0053】
すなわち、図5〜図8に示した従来の製造方法では、クロス材6が加圧力によりシール材7を周囲に押し出しながらシール材7中に入り込むため、図7および図8に示したように、シール材7の幅がクロス材6の付近で大きく広がり、一対の基板1,2が、図7および図8に示したように分断線9a,9b上でもシール材7により接合されることがある。
【0054】
そして、一括して組立てられた複数の表示パネルは、一対の基板1,2の外面にそれぞれダイシングマシン等により前記分断線9a,9bに沿って切り込みを入れ、その切り込みに沿って両基板1,2を切断する方法で行なわれるが、その場合、両基板1,2が分断線9a,9b上でもシール材7により接合されていると、基板1,2をうまく切断することができなくなる。
【0055】
この点、上記実施例の製造方法では、図3および図4に示したように、シール材17の幅がクロス材16の付近で大きく広がることはなく、一定の幅に形成されているので、両基板11,12が分断線19a,19b上でもシール材17により接合されることはなく、したがって、一対の基板11,12の外面にそれぞれ分断線19a,19bに沿って切り込みを入れ、その切り込みに沿って両基板11,12を切断する表示パネルの分離を、支障なく行なうことができる。
【0056】
なお、上記実施例の製造方法は、複数の表示パネルを一括して組立てる例であるが、この発明は、1つ1つの表示パネルを個々に組立てる場合にも適用することができる。
【0057】
また、上記実施例は、単純マトリックス型の表示パネルを製造する例であるが、この発明は、一方の基板に複数の画素電極とTFTまたはMIM等からなるアクティブ素子および前記アクティブ素子に信号を供給する配線を形成し、他方の基板に前記各画素電極に対向する対向電極を形成したアクティブマトリックス型の表示パネルや、一方の基板に複数のセグメント電極を形成し、他方の基板に前記各セグメント電極に対向するコモン電極を形成したセグメント表示型の表示パネルの製造にも適用することができる。
【0058】
【発明の効果】
この発明の表示パネルの製造方法は、シール材による基板接合領域内で、この基板接合領域に沿って複数配列された両基板のクロス電極部をそれぞれクロス材により接続するようにし、しかも、一方の基板のクロス電極部の上にクロス材を印刷し、他方の基板にシール材を、前記基板接合領域において前記複数の前記クロス材に対応する複数の部分を欠落させた不連続な枠状パターンに印刷して、前記一対の基板を互いに重ね合せて加圧することにより、前記シール材をその全域で潰し広げてこのシール材の前記クロス材に対応する欠落部を前記クロス材の周囲で連続させるとともに、前記一方の基板のクロス電極部に印刷された前記クロス材を前記他方の基板のクロス電極部に当接させて両基板の前記クロス電極部を電気的に接続するようにしたものであるから、表示エリアを小さくすることなく、両基板のクロス電極部を良好な導通状態で接続するとともに、両基板の間隔を全域にわたって均一にして、均一な電気光学特性を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す、表示パネルを構成する一対の基板を電極形成面側から見た図。
【図2】図1のII部の拡大図。
【図3】前記一対の基板をシール材を介して接合した状態の断面図。
【図4】図3の III−III 線に沿う断面図。
【図5】従来の表示パネルの製造方法を示す、表示パネルを構成する一対の基板を電極形成面側から見た図。
【図6】図5のVIa−VIa線およびVIb−VIb線に沿う拡大断面図。
【図7】前記一対の基板をシール材を介して接合した状態の断面図。
【図8】図7のVIII−VIII線に沿う断面図。
【符号の説明】
11,12…基板
13…走査電極
13b…クロス電極部
14…信号電極
15…リード電極
15b…クロス電極部
16…クロス材
17…シール材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a display panel using an electro-optical material such as liquid crystal.
[0002]
[Prior art]
A display panel using an electro-optical material such as a liquid crystal has the electro-optical material in a region surrounded by the sealing material between a pair of substrates (transparent substrates made of glass or the like) bonded to each other via a frame-shaped sealing material. Each of the inner surfaces of the pair of substrates is provided with electrodes (transparent electrodes made of ITO or the like) for applying an electric field to the electro-optic material.
[0003]
In this display panel, a drive circuit for supplying a drive signal to the electrodes of each substrate is connected to both of the substrates, and an electrode on one substrate is electrically connected to an electrode on the other substrate side. And the other substrate is connected to a drive circuit for supplying drive signals to the electrodes of both substrates. However, the display panel of the latter configuration can be connected only to the other substrate. Since it is only necessary to connect a driving circuit or to mount a driving circuit element such as an LSI on this substrate, it is advantageous in terms of mounting cost.
[0004]
In the display panel having the latter structure, the electrode of one substrate is electrically connected to the other substrate side in the substrate bonding region by the sealing material, and the electrode of one substrate is outside the substrate bonding region. There are one in which the electrode is electrically connected to the other substrate side and another electrode in which the electrode of one substrate is electrically connected to the other substrate side in the electro-optical material enclosing region surrounded by the sealing material.
[0005]
Among these liquid crystal panels, for example, a display panel in which an electrode on one substrate is electrically connected to an electrode on the other substrate in the substrate bonding region is conventionally manufactured as follows. Here, a case where a plurality of display panels are assembled together will be described as an example.
[0006]
5 to 8 show a conventional manufacturing method of the display panel, FIG. 5 is a view of a pair of substrates constituting the display panel as viewed from the electrode forming surface side, and FIG. 6 is a VIa-VIa line in FIG. FIG. 7 is a cross-sectional view taken along the line VIII-VIII in FIG. 7, and FIG. 7 is a cross-sectional view taken along the line VIII-VIII in FIG.
[0007]
[Step 1]
First, as shown in FIGS. 5A and 5B, one substrate 1 of a pair of substrates 1 and 2 that are bonded to each other via a frame-shaped sealing material 7 that encloses the encapsulating region of the electro-optical material. In addition, a plurality of electrodes 3 for applying an electric field to the electro-optical material and a cross electrode portion 3b for electrically connecting the electrodes 3 to the other substrate 2 side are formed. A plurality of electrodes 4 for applying an electric field to the electro-optic material, and a plurality of lead electrodes 5 and a cross electrode portion 5b for connecting each electrode 3 of the one substrate 1 to a drive circuit are formed.
[0008]
Here, an example in which a simple matrix type display panel is manufactured is shown. Of the electrodes 3 and 4 for applying an electric field to the electro-optical material, the electrode 3 formed on one substrate 1 has a row direction. The scanning electrodes along the left and right directions (in the drawing) and the electrodes 4 formed on the other substrate 2 are signal electrodes along the column direction (up and down in the drawing).
[0009]
As shown in FIG. 5A, each scanning electrode 3 has a lead extending to one end side of each side portion of the frame-like substrate bonding region by the sealing material 7 on one end side thereof. A cross electrode portion 3b for electrically connecting the scanning electrode 3 to the other substrate 2 side is formed at the end of the lead portion 3a in the side portion of the substrate bonding region. It forms in the pattern formed corresponding to.
[0010]
Further, as shown in FIG. 5B, each signal electrode 4 has, on one end side thereof, a drive circuit connection terminal portion 4a extending outside a side portion on one side of the substrate bonding region. To form a pattern.
[0011]
The signal electrode 4 is a region on one end side of the electro-optical material enclosing region surrounded by the sealing material 7, that is, a region near the side portion corresponding to the cross electrode portion 3b of the scanning electrode 3 in the substrate bonding region. The plurality of lead electrodes 5 are formed in a region near the side portion corresponding to the cross electrode portion 3b.
[0012]
As shown in FIG. 5B, each lead electrode 5 is bent in an L shape, and a terminal portion 4a of each signal electrode 4 in the substrate bonding region extends to one end thereof. The drive circuit connection terminal portion 5a extending outside the side portion on the side to be processed is formed, and the other end corresponds to the cross electrode portion 3b of each scanning electrode 3 in the side portion on one end side of the substrate bonding region. The cross electrode portion 5b is formed in a pattern.
[0013]
[Step 2]
Next, as shown in FIGS. 5A and 5B and FIGS. 6A and 6B, the conductive material is formed on the cross electrode portion 3b of each scanning electrode 3 of the one substrate 1. A cloth material 6 made of resin or silver paste or the like is printed by a screen printing method, a coating method using a dispenser, or the like, and a sealing material 7 made of, for example, a thermosetting resin is placed on the electrode forming surface of the other substrate 2. Printing is performed in a frame-like pattern in which a portion that becomes the substance injection port 8 is omitted. Although not shown, the sealing material 7 is mixed with a gap material made of glass particles, resin particles, or the like for regulating the distance between the pair of substrates 1 and 2 bonded via the sealing material 7. Yes.
[0014]
In this step, the cloth material 6 is printed slightly thicker than a predetermined substrate interval regulated by the gap material mixed in the seal material 7, and the seal material 7 is used as a seal in the next substrate alignment step. In consideration of the spread of the material 7, printing is performed with a width that is sufficiently thicker than the distance between the substrates and somewhat smaller than the width of each side of the substrate bonding region described above.
[0015]
[Step 3]
Next, as shown in FIGS. 7 and 8, the sealing material 7 is crushed and spread across the entire area by pressing the pair of substrates 1 and 2 with the electrode forming surfaces facing each other and pressing them. The distance between the two substrates 1 and 2 is adjusted to a predetermined distance regulated by the gap material mixed in the sealing material 7, and printed on the cross electrode portion 3 b of each scanning electrode 3 on one substrate 1. The cross member 6 is brought into contact with the cross electrode portion 5 b of each lead electrode 5 of the other substrate 2, and the cross electrode portions 3 b and 5 b of both the substrates 1 and 2 are electrically connected by the cross member 6.
[0016]
In this step, the cloth material 6 enters the seal material 7 while extruding the seal material 7 to the periphery by the applied pressure, and finally penetrates the seal material 7 and contacts the cross electrode portion 5b of the other substrate 2. Touch.
[0017]
[Step 4]
Thereafter, the sealing material 7 is cured while maintaining the pressurized state, and the pair of substrates 1 and 2 are joined via the sealing material 7 to assemble the display panel.
[0018]
Next, the plurality of display panels assembled together are separated into individual display panels by dividing the pair of substrates 1 and 2 along the dividing lines 9a and 9b shown by two-dot chain lines in the drawing. Then, an electro-optical material (for example, liquid crystal) is injected and filled into the region surrounded by the sealing material 7 between the substrates 1 and 2 by the vacuum injection method from the injection port 8 (the missing portion of the sealing material 7). The injection port 8 is sealed to complete a display panel.
[0019]
In addition, as described above, the display panel in which the electrode of one substrate is electrically connected to the other substrate side is not only manufactured by the manufacturing method shown in FIGS. Are electrically connected to the other substrate side outside the substrate bonding region, and the electrode of one substrate is electrically connected to the other substrate side in the electro-optical material enclosure region surrounded by the sealing material. In the former display panel, the cross electrode portions 3b and 5b are formed outside the substrate bonding region, and the cross electrode portions 3b and 5b of both the substrates 1 and 2 are formed at the positions. In the latter display panel, the cross electrode portions 3b and 5b are formed in the electro-optical material encapsulating region, and the cross electrode portions of both substrates 1 and 2 are formed at that location. 3b Manufactured by the method of connecting the cross-member 6 and 5b.
[0020]
[Problems to be solved by the invention]
Among the above-described conventional manufacturing methods, the manufacturing method shown in FIGS. 5 to 8 for manufacturing a display panel in which the electrode of one substrate is electrically connected to the other substrate side in the substrate bonding region by the sealing material is a pair. By superposing and pressing the substrates 1 and 2, the cloth material 6 printed on the cross electrode portion 3 b of one substrate 1 enters the sealing material 7 printed on the other substrate 2, and finally Since the sealing material 7 is penetrated and brought into contact with the cross electrode portion 5b of the other substrate 2, the sealing material 7 is interposed between the end surface of the cross material 6 and the cross electrode portion 5b of the other substrate 2. If left behind, there is a risk of poor conduction between the cross electrode portions 3b and 5b of both substrates 1 and 2.
[0021]
Therefore, conventionally, as described above, the cloth material 6 is printed slightly thicker than the predetermined substrate interval regulated by the gap material mixed in the seal material 7, whereby the end surface of the cloth material 6 and the other substrate 2 are printed. The seal material 7 is not left between the cross electrode portion 5b and the occurrence of the poor conduction is prevented.
[0022]
However, when the cloth material 6 is printed thicker than a predetermined substrate distance in this way, the distance between the pair of substrates 1 and 2 bonded to each other is such that the cloth material 6 in each side portion of the substrate bonding region. Therefore, the thickness of the electro-optical material filled between the substrates 1 and 2 becomes non-uniform, and the electro-optical characteristics of the manufactured display panel become non-uniform. turn into.
[0023]
Further, when the cloth material 6 is printed thicker than the substrate interval as described above, the cloth is caused by the applied pressure when the pair of substrates 1 and 2 are overlapped and adjusted so that the substrate interval becomes a predetermined interval. The material 6 may be crushed or cracked, and a conduction failure may occur between the cross electrode portions 3b and 5b of both substrates 1 and 2.
[0024]
On the other hand, in the display panel in which the electrode of one substrate is electrically connected to the other substrate side outside the substrate bonding region or in the electro-optical material sealing region, the cross electrode portions 3b and 5b are connected to the cross electrode portions 3b and 5b as described above. It is manufactured by a method in which the cross electrode portions 3b and 5b of both the substrates 1 and 2 are connected by a cross material 6 at the location outside the substrate bonding region or in the electro-optical material sealing region.
[0025]
In this manufacturing method, since the sealing material 7 is not sandwiched between the connection surface of the cloth material 6 and the cross electrode portion 5b of the other substrate 2, the cloth material 6 is formed of a pair of substrates 1 and 2. If printing is performed to the same thickness as a predetermined substrate interval (interval regulated by the gap material in the seal material) when bonded via the seal material 7, the pair of substrates 1 and 2 are overlapped to form a predetermined thickness. Since the cloth member 6 is in close contact with the cross electrode portion 5b of the other substrate 2 when the pressure is applied to the distance between the substrates, the cross electrode portions 3b and 5b of both the substrates 1 and 2 are in a good conductive state. And the distance between the substrates 1 and 2 can be made uniform over the entire area.
[0026]
However, among these manufacturing methods, in the method of connecting the cross electrode portions 3b and 5b of the two substrates 1 and 2 with the cross material 6 outside the substrate bonding region, for example, the pair of bonded substrates 1 and 2 are disconnected. The cross member 6 may be peeled off when being divided along the lines 9a and 9b to be separated into individual display panels, which may cause poor conduction. In the method of connecting the two cross electrode portions 3b and 5b with the cross member 6, the display area becomes small.
[0027]
In the present invention, the cross electrode portions formed on the pair of substrates are connected in a good conductive state without reducing the display area, and the distance between the substrates is made uniform over the entire area to obtain uniform electro-optical characteristics. An object of the present invention is to provide a method for manufacturing a display panel.
[0028]
[Means for Solving the Problems]
According to another aspect of the present invention, there is provided a display panel manufacturing method for applying an electric field to each of a pair of substrates bonded to each other via a frame-shaped sealing material surrounding an encapsulating region of the electro-optical material. plural Electrode, and said one of the substrates plural In order to electrically connect the electrode to the other substrate side in the substrate bonding region by the sealing material A plurality of arranged along the substrate bonding region A step of forming a cross electrode portion; and the one of the pair of substrates. plural On the cross electrode Respectively A step of printing a cloth material having conductivity, and the sealing material on the other substrate. The plurality of the substrate bonding regions Corresponding to cloth material plural Missing part Discontinuous The step of printing on the frame-shaped pattern and the pair of substrates are overlapped with each other and pressed to squeeze and spread the sealing material over the entire area, and the sealing material plural The missing part corresponding to the cloth material plural While continuing around the cloth material, the one substrate plural Cross electrode section Respectively Printed on the above plural Cloth material of the other substrate Corresponding The both electrodes are brought into contact with the cross electrode part. plural The method includes a step of electrically connecting the cross electrode portions, and a step of curing the sealing material and bonding the pair of substrates via the sealing material.
[0029]
That is, the manufacturing method of the present invention is used in the substrate bonding region by the sealing material. , A plurality of arrays are arranged along the substrate bonding region. Cross electrode part of both boards Respectively Therefore, the display area is not reduced as in the case of connecting the cross electrode portions of both substrates in the encapsulating region of the electro-optic material, and the outside of the substrate bonding region. As in the case of connecting the cross electrode portions of the two substrates, the cross material is not peeled off and a conduction failure does not occur.
[0030]
In this manufacturing method, the cloth material is printed on the cross electrode portion of one substrate, and the sealing material is printed on the other substrate in a frame-like pattern in which a portion corresponding to the cloth material is missing, The sealing material is crushed and spread over the entire area by pressing a pair of substrates on top of each other, and the missing portion corresponding to the cloth material of the sealing material is continued around the cloth material, and Since the cloth material printed on the cross electrode part is brought into contact with the cross electrode part of the other substrate to electrically connect the cross electrode parts of the two substrates, the pair of substrates are overlapped. When the pressure is applied, the sealing material is not sandwiched between the end surface of the cloth material and the cross electrode portion of the other substrate.
[0031]
For this reason, the cloth material may be printed to the same thickness as a predetermined substrate interval when a pair of substrates are joined via a sealing material. When the substrates are overlapped and pressed to a predetermined substrate interval, the cloth material comes into close contact with the cross electrode portion of the other substrate, so that the cross electrode portions formed on the pair of substrates are excellent. Can be connected in a conductive state, and the distance between the two substrates can be made uniform over the entire region to obtain uniform electro-optical characteristics.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
In the display panel manufacturing method according to the present invention, as described above, the cross electrode portions of both the substrates are connected by the cross material in the substrate bonding region by the sealing material, and the cross electrode portion of the one substrate is placed on the cross electrode portion. By printing a cloth material, printing a seal material on the other substrate in a frame-like pattern in which a portion corresponding to the cloth material is missing, and pressing the pair of substrates over each other to press the seal material, The missing portion corresponding to the cloth material of the sealing material is crushed and spread throughout the entire area, and the cloth material printed on the cross electrode portion of the one substrate is connected to the other substrate. The cross electrode portions of both substrates are electrically connected to each other by contacting the cross electrode portions, and the cross electrode portions of both substrates are connected in a good conductive state without reducing the display area. Together, the distance between both substrates is made uniform over the entire area, in which to obtain a uniform electro-optical properties.
[0033]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4 by taking as an example a manufacturing method when a plurality of display panels are assembled together. 1 is a view of a pair of substrates constituting the display panel as viewed from the electrode forming surface side, FIG. 2 is an enlarged view of a portion II in FIG. 1, and FIG. 3 is a state in which the pair of substrates are joined via a sealing material. FIG. 4 is a sectional view taken along line III-III in FIG.
[0034]
[Step 1]
First, as shown in FIGS. 1A and 1B, one substrate 11 out of a pair of substrates 11 and 12 bonded to each other via a frame-shaped sealing material 17 surrounding an electro-optical material enclosing region. In addition, a plurality of electrodes 13 for applying an electric field to the electro-optical material and a cross electrode portion 13b for electrically connecting the electrodes 13 to the other substrate 12 are formed. A plurality of electrodes 14 for applying an electric field to the electro-optical material, and a plurality of lead electrodes 15 and a cross electrode portion 15b for connecting each electrode 13 of the one substrate 11 to a drive circuit are formed.
[0035]
Here, an example in which a simple matrix type display panel is manufactured is shown. Of the electrodes 13 and 14 for applying an electric field to the electro-optic material, the electrode 13 formed on one substrate 11 has a row direction. The scanning electrodes along the left and right directions (in the drawing) and the electrodes 14 formed on the other substrate 12 are signal electrodes along the column direction (up and down in the drawing). Further, an insulating thermosetting adhesive, a photocurable adhesive, or the like is used for the sealing material 17.
[0036]
As shown in FIG. 1A, each scanning electrode 13 has a lead extending to one end side of each side portion of the frame-like substrate bonding region by the sealing material 17 on one end side thereof. A cross electrode portion 13b for electrically connecting the scanning electrode 13 to the other substrate 2 side is formed at the end portion of the lead portion 13a in the side portion of the substrate bonding region. It forms in the pattern formed corresponding to.
[0037]
In addition, as shown in FIG. 1B, each signal electrode 14 has a drive circuit connection terminal portion 14a extending to the outside of one side portion of the substrate bonding region at one end thereof. To form a pattern.
[0038]
The signal electrode 14 is formed in a region on one end side of the electro-optical material enclosing region surrounded by the sealing material 17, that is, in a region excluding the region near the side corresponding to the cross electrode portion 13b. The plurality of lead electrodes 15 are formed in a region near the side portion corresponding to the electrode portion 13b.
[0039]
As shown in FIG. 1B, each lead electrode 15 is bent in an L shape, and a terminal portion 14a of each signal electrode 14 in the substrate bonding region extends to one end thereof. The drive circuit connection terminal portion 15a extending outside the same side portion on the side to be connected is formed, and the other end is connected to the cross electrode portion 13b of each scanning electrode 13 in the side portion on one end side of the substrate bonding region. It forms in the pattern which formed the corresponding cross electrode part 15b.
[0040]
In the figure, for convenience, the formation region of the lead electrode 15 is greatly exaggerated, but the lead electrode 5 is formed in a very narrow region. Therefore, most of the electro-optical material-enclosed area (excluding a very small area where the lead electrode 5 is formed) is a display area where the scanning electrode 3 and the signal electrode 4 face each other.
[0041]
Although not shown in the figure, for example, when the display panel to be manufactured is a TN (twisted nematic) type liquid crystal display panel, an alignment film is formed on the electrode formation surfaces of the pair of substrates 1 and 2. To do.
[0042]
[Step 2]
Next, as shown in FIG. 1A, a cloth material 16 made of conductive resin or silver paste or the like is applied on the cross electrode portion 13b of each scanning electrode 13 of the one substrate 11 by a screen printing method or the like. Printed by a coating method using a dispenser and the like, as shown in FIG. 1B and FIG. 2, a sealing material 17 made of, for example, a thermosetting resin is applied on the electrode forming surface of the other substrate 12. Printing is performed in a frame-like pattern in which a portion serving as the inlet 18 and a portion corresponding to each of the cloth members 16 are omitted. Although not shown, the sealing material 17 is mixed with a gap material made of glass particles, resin particles, or the like for regulating the distance between the pair of substrates 11 and 12 joined via the sealing material 17. Yes.
[0043]
In this process, the cloth material 16 is printed to the same thickness as the substrate interval regulated by the gap material mixed in the seal material 17, and the seal material 17 is used as the seal material in the next substrate alignment process. In consideration of the squeezing and spreading of 17, printing is performed with a width that is sufficiently thicker than the substrate interval (gap material diameter) and somewhat smaller than the width of each side of the substrate bonding region described above.
[0044]
[Step 3]
Next, as shown in FIGS. 3 and 4, the pair of substrates 11 and 12 are pressed with the electrode forming surfaces facing each other so as to overlap each other, whereby the sealing material 17 is crushed and spread over the entire area, The missing portion of the sealing material 17 corresponding to the cloth material 16 is continued around the cloth material 16, and the distance between the substrates 11 and 12 is set to an interval regulated by the gap material mixed in the sealing material 17. At the same time, the cloth material 16 printed on the cross electrode portion 13b of each scanning electrode 13 of one substrate 11 is brought into contact with the cross electrode portion 15b of each lead electrode 15 of the other substrate 12, The cross electrode portions 13 b and 15 b of both substrates 11 and 12 are electrically connected by the cross material 16.
[0045]
In this case, since the sealing material 17 is printed in a frame-like pattern in which a portion corresponding to each cloth material 16 is omitted, the cloth material is applied when the pair of substrates 11 and 12 are overlaid and pressed. The sealing material 17 is not sandwiched between the contact surface of the sixteen substrate 12 facing the substrate 12 and the cross electrode portion 15b of the other substrate 12. Therefore, the cloth material 16 is used as the cross electrode portion 15b of the other substrate 12. In close contact.
[0046]
[Step 4]
Thereafter, the sealing material 17 is heated and cured while maintaining the pressurized state, and the pair of substrates 11 and 12 are joined through the sealing material 17 to assemble the display panel.
[0047]
Next, the plurality of display panels assembled together are separated into individual display panels by dividing the pair of substrates 11 and 12 along dividing lines 19a and 19b shown by two-dot chain lines in the drawing. Then, an electro-optical material (for example, liquid crystal) is injected and filled into the region surrounded by the sealing material 17 between the substrates 11 and 12 from the injection port 18 (the missing portion of the sealing material 17) by a vacuum injection method. The injection port 18 is sealed to complete a display panel.
[0048]
That is, in the method of manufacturing the display panel, the cross electrode portions 13b and 15b of both the substrates 11 and 12 are connected by the cross material 16 in the substrate bonding region by the seal material 17, whereby the substrate 13 is connected to the electrode 13 on the substrate 11. A drive signal can be supplied from a terminal portion 15a provided on the 12 side.
[0049]
Therefore, according to this manufacturing method, the cross electrode portions 13b and 15b are formed in the electro-optical material enclosing region surrounded by the sealing material 17, and the cross electrode portions of the substrates 11 and 12 are formed in the electro-optical material enclosing region. The display area is not reduced as in the case of connecting 13b and 15b, and the cross electrode portions 13b and 15b are formed outside the substrate bonding region, and both the substrates 11 and 11 are formed outside the substrate bonding region. As in the case of connecting the twelve cross electrode portions 13b and 15b, the cross member 16 is not peeled off and a conduction failure does not occur.
[0050]
And in this manufacturing method, the frame material pattern which printed the cloth material 16 on the cross electrode part 13b of one board | substrate 11, and omitted the part corresponding to the said cloth material 16 on the other board | substrate 12 was cut | disconnected. The sealing material 17 is crushed and spread over the entire area by superimposing and pressing the pair of substrates 11 and 12 on top of each other, and a missing portion corresponding to the cross material 16 of the sealing material 17 is removed. And the cloth material 16 printed on the cross electrode portion 13b of one substrate 11 is brought into contact with the cross electrode portion 15b of the other substrate 12 so that the cross electrode portions 13b and 15b of both the substrates 11 and 12 are brought into contact with each other. When the pair of substrates 11 and 12 are overlaid and pressed, the end surface of the cloth material 16 and the cross electrode portion 15b of the other substrate 12 are connected to each other. It is not that the sealing member 17 is sandwiched between.
[0051]
For this reason, the cloth material 16 has the same thickness as a predetermined substrate interval (interval regulated by the gap material mixed in the seal material 17) when the pair of substrates 11 and 12 are joined via the seal material 17. If the cloth material 16 has such a thickness, when the pair of substrates 11 and 12 are overlapped and pressed to a predetermined distance between the substrates, the cloth material 16 Since the cross electrode portions 15b of the other substrate 12 are in close contact with each other, the cross electrode portions 13b and 15b formed on the pair of substrates can be connected in a good conductive state, and the distance between both the substrates 11 and 12 can be connected. Can be made uniform over the entire area.
[0052]
And according to the said manufacturing method, the said sealing material 17 is printed on the frame-like pattern from which the part corresponding to the said cloth material 16 was missing, and a pair of board | substrates 11 and 12 are mutually piled up and pressurized. Since the sealing material 17 is crushed and spread so that a missing portion corresponding to the cloth material 16 of the sealing material 17 is continued around the cloth material 16, the distance between the pair of substrates 11 and 12 is predetermined. The width of the sealing material 17 when adjusted to the substrate interval is not greatly expanded in the vicinity of the cloth material 16.
[0053]
That is, in the conventional manufacturing method shown in FIGS. 5 to 8, since the cloth material 6 enters the sealing material 7 while pushing the sealing material 7 around by the applied pressure, as shown in FIGS. 7 and 8, The width of the sealing material 7 greatly increases in the vicinity of the cloth material 6, and the pair of substrates 1 and 2 may be joined by the sealing material 7 even on the dividing lines 9a and 9b as shown in FIGS. .
[0054]
The plurality of display panels assembled together are cut along the dividing lines 9a and 9b by a dicing machine or the like on the outer surfaces of the pair of substrates 1 and 2, respectively. In this case, if both the substrates 1 and 2 are joined by the sealing material 7 even on the dividing lines 9a and 9b, the substrates 1 and 2 cannot be cut well.
[0055]
In this regard, in the manufacturing method of the above embodiment, as shown in FIGS. 3 and 4, the width of the sealing material 17 is not greatly expanded in the vicinity of the cloth material 16, and is formed to have a constant width. The two substrates 11 and 12 are not joined by the sealing material 17 even on the dividing lines 19a and 19b. Therefore, the outer surfaces of the pair of substrates 11 and 12 are cut along the dividing lines 19a and 19b, respectively. The display panel that cuts both the substrates 11 and 12 along the line can be separated without any trouble.
[0056]
The manufacturing method of the above embodiment is an example in which a plurality of display panels are assembled together, but the present invention can also be applied to the case where individual display panels are assembled individually.
[0057]
The above embodiment is an example of manufacturing a simple matrix type display panel. However, the present invention supplies a signal to the active element and a plurality of pixel electrodes and TFTs or MIMs on one substrate. An active matrix type display panel in which a counter electrode opposite to the pixel electrodes is formed on the other substrate, and a plurality of segment electrodes are formed on one substrate, and the segment electrodes are formed on the other substrate. The present invention can also be applied to the manufacture of a segment display type display panel in which a common electrode facing the electrode is formed.
[0058]
【The invention's effect】
The manufacturing method of the display panel according to the present invention is the And a plurality of arrays are arranged along the substrate bonding region. Cross electrode part of both boards Respectively Connect with a cloth material, print the cloth material on the cross electrode part of one substrate, and apply the sealing material to the other substrate. The plurality of the substrate bonding regions Corresponds to the cloth material plural Missing part Discontinuous Printing on a frame-shaped pattern, pressing the pair of substrates over each other, and crushing and spreading the sealing material over the entire area, the missing portion of the sealing material corresponding to the cloth material is surrounded by the periphery of the cloth material And the cloth material printed on the cross electrode portion of the one substrate is brought into contact with the cross electrode portion of the other substrate to electrically connect the cross electrode portions of both substrates. As a result, the cross electrode portions of both substrates can be connected in a good conductive state without reducing the display area, and the distance between both substrates can be made uniform over the entire area to obtain uniform electro-optical characteristics. .
[Brief description of the drawings]
FIG. 1 is a view of a pair of substrates constituting a display panel as viewed from an electrode forming surface side according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion II in FIG.
FIG. 3 is a cross-sectional view showing a state in which the pair of substrates are joined via a sealing material.
4 is a sectional view taken along line III-III in FIG. 3;
FIG. 5 is a diagram showing a pair of substrates constituting the display panel as viewed from the electrode forming surface side, showing a conventional display panel manufacturing method;
6 is an enlarged sectional view taken along lines VIa-VIa and VIb-VIb in FIG. 5;
FIG. 7 is a cross-sectional view showing a state in which the pair of substrates are joined via a sealing material.
8 is a cross-sectional view taken along line VIII-VIII in FIG.
[Explanation of symbols]
11, 12 ... substrate
13 ... Scanning electrode
13b ... cross electrode part
14 ... Signal electrode
15 ... Lead electrode
15b ... Cross electrode part
16 ... Cross material
17 ... Sealing material

Claims (1)

電気光学物質の封入領域を囲む枠状シール材を介して互いに接合される一対の基板にそれぞれ、前記電気光学物質に電界を印加するための複数の電極、および一方の基板の前記複数の電極を他方の基板側に前記シール材による基板接合領域で電気的に接続するための、前記基板接合領域に沿って配列された複数のクロス電極部を形成する工程と、
前記一対の基板のうちのいずれか一方の基板の前記複数のクロス電極部の上にそれぞれ導電性を有するクロス材を印刷する工程と、
他方の基板に前記シール材を、前記基板接合領域において前記複数のクロス材に対応する複数の部分を欠落させて不連続な枠状パターンに印刷する工程と、
前記一対の基板を互いに重ね合わせて加圧することにより、前記シール材をその全域で潰し広げ、このシール材の前記複数のクロス材に対応する欠落部を前記複数のクロス材の周囲で連続させるとともに、前記一方の基板の複数のクロス電極部それぞれに印刷された前記複数のクロス材を前記他方の基板の対応するクロス電極部に当接させて両基板の前記複数のクロス電極部を電気的に接続する工程と、
前記シール材を硬化させ、このシール材を介して前記一対の基板を接合する工程と、
からなることを特徴とする表示パネルの製造方法。
To the pair of substrates are bonded together via a frame-shaped sealing member surrounding the containment zone of the electro-optical material, a plurality of electrodes for applying an electric field to the electro-optical material, and a plurality of electrodes of one substrate Forming a plurality of cross electrode portions arranged along the substrate bonding region for electrically connecting to the other substrate side in the substrate bonding region by the sealing material;
Printing a cross material having conductivity on each of the plurality of cross electrode portions of any one of the pair of substrates;
Printing the sealing material on the other substrate, a plurality of portions corresponding to the plurality of cloth materials in the substrate bonding region, and printing in a discontinuous frame pattern;
By pressurizing by superimposing the pair of substrates to each other, spread crushing the sealing member in its entire area, with is continuously missing portion corresponding to the plurality of cross members of the seal material around said plurality of cross members The plurality of cross materials printed on each of the plurality of cross electrode portions of the one substrate are brought into contact with the corresponding cross electrode portions of the other substrate to electrically connect the plurality of cross electrode portions of both substrates. Connecting, and
Curing the sealing material, and bonding the pair of substrates through the sealing material;
A display panel manufacturing method comprising:
JP35532397A 1997-12-24 1997-12-24 Manufacturing method of display panel Expired - Fee Related JP3794143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35532397A JP3794143B2 (en) 1997-12-24 1997-12-24 Manufacturing method of display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35532397A JP3794143B2 (en) 1997-12-24 1997-12-24 Manufacturing method of display panel

Publications (2)

Publication Number Publication Date
JPH11183914A JPH11183914A (en) 1999-07-09
JP3794143B2 true JP3794143B2 (en) 2006-07-05

Family

ID=18443265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35532397A Expired - Fee Related JP3794143B2 (en) 1997-12-24 1997-12-24 Manufacturing method of display panel

Country Status (1)

Country Link
JP (1) JP3794143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249235A (en) * 2007-06-11 2007-09-27 Casio Comput Co Ltd Liquid crystal display element

Also Published As

Publication number Publication date
JPH11183914A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP3503597B2 (en) Liquid crystal panel and manufacturing method thereof
JP2598152B2 (en) Touch panel
JP3794143B2 (en) Manufacturing method of display panel
US6490022B1 (en) LCD device and method of manufacture thereof
JPH112820A (en) Liquid crystal display device
JP2767145B2 (en) Liquid crystal element
JP2005241827A (en) Liquid crystal display
JPH11133454A (en) Liquid crystal display device
JPH0822015A (en) Liquid crystal display panel and its production
JP3769995B2 (en) Manufacturing method of liquid crystal device
JPH10268791A (en) Flat type display device and method of manufacturing it
JP2911480B2 (en) Electro-optical cell, manufacturing method thereof, and liquid crystal cell
JPH0954330A (en) Liquid crystal display element
JP2006091622A (en) Electrooptic device, manufacturing method thereof, and electronic device
JPH07301815A (en) Liquid crystal display device and its production
JPH10197887A (en) Liquid crystal display cell and its manufacture
JPH0641266Y2 (en) LCD panel structure
JP2000275672A (en) Liquid crystal device, production of liquid crystal device and electronic apparatus
JP2001154217A (en) Liquid crystal device and its manufacturing method
JP3598921B2 (en) Method for manufacturing IC mounting structure, method for manufacturing electro-optical device, and electro-optical device
JP2001125508A (en) Method of producing electro-optic device
JP3733340B2 (en) Liquid crystal display element, method for manufacturing liquid crystal display element, and electronic apparatus equipped with the liquid crystal display element
JP2002341369A (en) Liquid crystal display device and its manufacturing method and electrode wiring substrate
JP2000066231A (en) Liquid crystal display device
KR100389491B1 (en) Liquid crystal display device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees