JP3788141B2 - Exhaust gas purification system - Google Patents
Exhaust gas purification system Download PDFInfo
- Publication number
- JP3788141B2 JP3788141B2 JP30224299A JP30224299A JP3788141B2 JP 3788141 B2 JP3788141 B2 JP 3788141B2 JP 30224299 A JP30224299 A JP 30224299A JP 30224299 A JP30224299 A JP 30224299A JP 3788141 B2 JP3788141 B2 JP 3788141B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- nox
- way catalyst
- purification system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関や燃焼器等から排出される排気ガスを浄化するためのシステムに係り、特に酸素を過剰に含むリーンバーン排気ガス中の窒素酸化物を高効率で浄化し得る排気ガス浄化システムに関する。
【0002】
【従来の技術】
従来、自動車等の内燃機関から排出される排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等を浄化する触媒としては、理論空燃比で働く三元触媒が用いられている。しかし、三元触媒では、内燃機関の排気ガスが酸素過剰の時には窒素酸化物を浄化することができない。
このような内燃機関の排気ガスが酸素過剰の時に窒素酸化物を浄化する方法として、特許掲載第2600429号公報には、排気ガスが酸素過剰の時にNOxを吸収させ、吸収させたNOxを、NOx吸収剤に流入する排気ガス中の酸素の濃度を低下させて放出させ、浄化処理するという方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記特許掲載公報に記載されているような、排気ガスが酸素過剰の時にNOxを吸収させ、NOx吸収剤に流入する排気ガス中の酸素の濃度を低下させて、吸収させたNOxを放出させて浄化処理するという方法においては、NOxを脱離浄化する時に還元剤としてHCとCOを用いており、NOxを十分に還元反応させるためには、NOxの脱離浄化時に還元剤としてHCとCOを十分に供給してやる必要がある。このため、NOx以外のHCとCO成分が充分に浄化されずに排出されてしまい、十分なHC及びCO浄化性能が得られなかった。
【0004】
この解決方法としては、NOx吸蔵触媒の後段に三元触媒を配置して浄化する方法等があるが、このような触媒システムでは、HC及びCOを浄化する触媒が排気流路の後段に配置されるため、触媒入口の排気温度が低くなってしまい、十分なHC及びCOの浄化性能が得られないという課題があった。
また、上述のように吸収させたNOxを放出させて浄化処理する際に、排気ガス中のHC及びCO成分を増加させて酸素濃度を低下させると、燃費向上効果が十分には得られなくなるという課題もある。
【0005】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、酸素過剰で運転することによる燃費向上効果を十分に享有でき、HC及びCO成分を効率良く浄化し、特にエンジン始動直後の低温時に排出されるHC及びCOを効率良く浄化できる排気ガス浄化システムを提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、HCとCOを選択的に浄化する酸化触媒や三元触媒を、NOx浄化触媒の上流側に配置することにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の排気ガス浄化システムは、還元成分のうちの炭化水素と一酸化炭素を選択的に浄化し、且つ水素とアンモニアを殆ど浄化しない酸化触媒及び/又は三元触媒と、還元成分を用いて窒素酸化物を還元処理するNOx浄化触媒とを、排気ガス組成が、空燃比が酸素過剰の状態であるいわゆるリーンの状態、理論空燃比又は燃料過剰の状態であるいわゆるリッチ状態をとる内燃機関又は燃焼装置の排気通路に設置し、
上記NOx浄化触媒の上記排気ガス通路上流側に、上記酸化触媒及び/又は三元触媒を配置して成り、
上記酸化触媒及び/又は三元触媒の炭化水素の選択浄化率が98.5%以上で、一酸化炭素の選択浄化率が90%以上である、ことを特徴とする。
【0010】
また、本発明の排気ガス浄化システムの更に他の好適形態は、上記酸化触媒又は三元触媒が、白金、パラジウム及び固体酸性を有する酸化物を含み、白金及びパラジウムの含有量の50%以上が、上記固体酸性を有する酸化物と同一層に混在していることを特徴とする。
【0011】
更にまた、本発明の排気ガス浄化システムの他の好適形態は、上記NOx浄化触媒は、空燃比が上記リーン状態において窒素酸化物を還元成分と反応させて浄化するNOx選択還元触媒、空燃比が上記リーン状態において窒素酸化物を一時的に吸収し理論空燃比及び/又は上記リッチ状態で窒素酸化物を放出して還元成分によって窒素酸化物を浄化するNOx吸蔵型三元触媒、又は理論空燃比の近傍のリーン条件下で窒素酸化物を還元浄化する三元触媒及びこれらの任意の組合せに係る触媒であることを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の排気ガス浄化システムについて詳細に説明する。
上述の如く、この排気ガス浄化システムは、還元成分のうちのHCとCOを選択的に浄化する酸化触媒及び/又は三元触媒と、還元成分を用いてNOxを還元処理するNOx浄化触媒とを用いて構成されており、上記酸化触媒及び/又は三元触媒は、内燃機関又は燃焼装置の排気通路の上流側に配置され、その下流側に上記NOx浄化触媒が配置されている。
【0013】
ここで、前段の酸化触媒/三元触媒における触媒反応について説明する。
理論空燃比近傍や燃料過剰領域(リッチ領域)において、エンジンから排出される排気ガス中には、還元ガス成分としてHC及びCO以外に水素(H2)とアンモニア(NH3)が含まれている。そして、これらのH2及びNH3成分も、通常に用いられている酸化触媒や三元触媒において、次式
H2+O2→H2O
NH3+O2→N2+H2O
NO+H2→N2+H2O
などで表される反応により、HC及びCOなどの還元成分と同様に浄化されてしまう。
【0014】
このため、排気浄化システムとして、排気ガス温度が低い領域から働くように、前段にHC及びCOを浄化する酸化触媒や還元触媒を配置し、後段にNOxを浄化する還元触媒を配置した場合、後段の還元触媒にはNOxを還元浄化するための還元剤が供給されず、NOxが充分に浄化されないことになる。
よって、特許掲載第2600429号公報に記載されているような従来の排気ガス浄化システムにおいては、排気通路内の後段に配置されたNOx吸蔵触媒でNOxを脱離浄化させるための還元成分であるHC、CO、H2及びNH3等が、排気通路内の前段側の三元触媒において酸化反応してしまい、後段のNOx吸蔵触媒においては必要量の還元成分が供給されないために、排気ガス中の酸素濃度を低下させた状態でNOxを脱離させてもNOx浄化性能が充分に得ることができない。
【0015】
そこで、本発明においては、酸化触媒又は三元触媒として、HCとCOを選択的に浄化する触媒、即ち還元成分のうちHCとCOは浄化するが、H2とNH3は殆ど浄化しない特定の触媒を用いることにし、これにより、酸素過剰雰囲気下(リーン状態)でNOx浄化触媒に吸収させたNOxを処理するために必要となる還元成分を、後段のNOx浄化触媒に供給することにしている。
【0016】
かかる酸化触媒又は三元触媒としては、次式
HC+O2→H2O+CO2 …(1)
2CO+O2→2CO2 …(2)
HC+NO→H2O+N2+CO2 …(3)
CO+NO→CO2+N2 …(4)
で表される反応を促進する触媒であり、その時のHC、COのそれぞれの選択浄化率が98.5%、90%以上であることを要するが、具体的には、白金、パラジウム及び固体酸性を有する酸化物を含み、白金及びパラジウムの含有量の50%以上が、固体酸性を有する酸化物と同一の触媒層に混在している触媒を好ましく用いることができる。
【0017】
上記選択浄化率が、HCで98.5%未満、COで90%未満では、O2、NOがHC、COと反応する以外に、H2、NH3とする次式の反応
2H2+O2→2H2O …▲5▼
4NH3+3O2→2N2+6H2O …▲6▼
4H2+2NO→2H2O+N2 …▲7▼
4NH3+6NO→6H2O+5N2 …▲8▼
が進み、H2、NH3が酸化反応により消費されてしまう。
また、白金及びパラジウムの混在量がこれらの含有量の50%未満の場合には、▲1▼〜▲4▼の反応よりも▲5▼〜▲8▼の反応が促進されるため、還元剤成分としてのH2、NH3が減少してしまう。
【0018】
次に、後段に設置するNOx浄化触媒につき説明する。
このNOx浄化触媒としては、還元成分によってNOxを還元浄化できれば十分であるが、本システムにおいて、この還元成分は、上述の特定酸化触媒及び/又は三元触媒の作用により主成分がH2及び/又はNH3ということになる。
かかるNOx浄化触媒としては、NOx選択還元触媒、NOx吸蔵型三元触媒又は所定の三元触媒及びこれらの任意の組合せに係る触媒を挙げることができ、NOx選択還元触媒は、空燃比が酸素過剰な状態(リーン状態)においてNOxを還元成分と反応させて浄化し、NOx吸蔵型三元触媒は、空燃比が酸素過剰な状態においてNOxを一時的に吸収し理論空燃比及び/又はリッチな状態でNOxを放出して還元成分によりNOxを浄化し、所定の三元触媒は、理論空燃比の近傍のリーン条件下でNOxを還元浄化する機能を有する。
【0019】
上記NOx選択還元触媒としては、銅(Cu)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、ガリウム(Ga)、ランタン(La)、セリウム(Ce)、亜鉛(Zn)、チタン(Ti)、カルシウム(Ca)、バリウム(Ba)、又は銀(Ag)及びこれらの混合元素、並びに白金(Pt)、イリジウム(Ir)、ロジウム(Rh)又はパラジウム(Pd)及びこれらの混合貴金属の少なくとも一方を含むゼオライト又はアルミナを用いて成る触媒を挙げることができる。
【0020】
また、NOx吸蔵型三元触媒としては、セシウム(Cs)、バリウム(Ba)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、ランタン(La)又はカルシウム(Ca)及びこれらの混合金属元素と、白金(Pt)、パラジウム(Pd)又はロジウム(Rh)及びこれらの混合貴金属元素とを含む触媒を例示することができる。
【0021】
更に、上記NOxを理論空燃比の近傍のリーン条件下で還元浄化する三元触媒としては、白金、パラジウム又はロジウム及びこれらの混合貴金属元素と、セリウム、ランタン、ネオジウム(Nd)又はプラセオジウム(Pr)等の希土類元素及びこれら混合元素並びにジルコニアの少なくとも一方とを含む触媒を用いることができる。
【0022】
なお、本発明の排気ガス浄化システムにおいて、後段に用いるNOx還元浄化触媒については、内燃機関等におけるリーン運転の条件に応じて、NOx選択還元触媒、NOx吸蔵型三元触媒及び上記所定の三元触媒から選定することができる。
【0023】
また、本発明の排気ガス浄化システムにおいては、上述した酸化触媒、三元触媒及びNOx浄化触媒を用いる場合、一体構造型担体に担持して用いるのが好ましい。
かかる一体構造型担体としては、耐熱性材料から成るモノリス担体が好ましく、例えばコーディライトなどのセラミック製のものや、フェライト系ステンレスなどの金属製のものが用いられる。
【0024】
なお、後段のNOx浄化触媒については、理論空燃比時には三元触媒としての機能を有することが好ましいため、Pt、Pd及びRh等の貴金属はその少なくとも一部が多孔質基材に担持されることが好ましく、なかでもアルミナに担持されることが好ましい。
この際に使用されるアルミナとしては、耐熱性の高いものが好ましく、なかでも比表面積が50〜300m2/g程度の活性アルミナが好ましい。
【0025】
また、アルミナの耐熱性を向上させる目的で、従来から三元触媒で使用されているように、セリウム及びランタン等の希土類化合物やジルコニウムなどの添加物を更に加えてもよい。
更に、三元触媒としての機能を増強するために、従来から三元触媒に用いられている材料を添加してもよく、例えば酸素ストレージ機能を持つセリアや、貴金属へのHC吸着被毒を緩和するバリウムや、Rhの耐熱性向上に寄与するジルコニア等を加えてもよい。
【0026】
なお、本発明の浄化システムにおいて、NOx浄化触媒の貴金属量は、NOx吸収機能と三元機能が十分に得られる限り、特に制限されないが、一般の三元触媒で用いられているように、触媒1L当たり0.1〜10gの範囲であることが好ましい。
【0027】
本発明の排気ガス浄化システムにおいては、良好な排気ガス浄化を実現するに当たり、排気ガス組成を変動させる必要があり、かかる変動によって、空燃比を酸素過剰状態(リーン状態)、理論空燃比(ストイキ)及び燃料過剰状態(リッチ状態)のいずれかに制御することができる。
例えば、エンジンの排気ガスからH2を比較的多量に生成させるためには、燃料濃度を増大する濃度変動を行う必要があるが、かかる濃度変動は、走行条件に拘わらずに一定時間おきに実施してもよく、また、走行条件を考慮してNOx浄化触媒(NOx吸蔵型三元触媒)でのNOx吸収量が多くなっている条件下、又はNOx浄化触媒がNOxを還元浄化しやすい条件(温度条件、排気ガス流量条件等)下のタイミングに合わせて行うことが好ましい。
【0028】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
なお、図1に、以下の実施例で構築した排気ガス浄化システムの構成を概略的に示す。同図において、この排気ガス浄化システムは、エンジン1の排気系に酸化触媒/三元触媒2と、NOx浄化触媒3を設置して成り、酸化触媒/三元触媒2は、エンジン1の排気ガス出口の直後に設置され、排気ガス中のHCとCOを選択的に浄化処理し、その後段に設置されたNOx浄化触媒3は、排気ガス中に含まれるNOxを酸素過剰雰囲気で酸化吸収し、且つ還元成分が供給された時にNOxを還元処理により浄化する。
【0029】
(実施例1)
[酸化触媒/三元触媒の調製]
タングステン酸アンモニウム水溶液と市販のチタニアゾルを混合し、得られた沈殿物を焼成し、WとTiを等モル量含有するW−Ti酸化物粉末(粉末A)を調製した。更に、粉末Aにジニトロジアンミン白金水溶液と硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pt,Pd担持W−Ti酸化物粉末(粉末B)を得た。この粉末Bの貴金属濃度は4.0重量%、Pt/Pd=0.2であった。
同様に、活性アルミナ粉末にジニトロジアンミン白金水溶液と硝酸パラジウム水溶液を含浸し、150℃で12時間乾燥した後、400℃で1時間焼成して、Pt,Pd担持活性アルミナ粉末(粉末C)を得た。この粉末Cの貴金属濃度も粉末Bと同様4.0重量%、Pt/Pd=0.2とした。
【0030】
上記粉末B100g、粉末C100gと硝酸水溶液200gを磁性ボールミルに投入し、混合・粉砕してスラリーを得た。
このスラリー液をコージェライト質モノリス担体(0.1L、400セル/平方インチ)に付着させ、空気流にてセル内の余剰のスラリーを除去・乾燥し、500℃で1時間焼成した。コート量重量100g/L−担体の触媒Aを得た。貴金属担持量は4.0g/L−担体であった。
【0031】
[NOx浄化触媒の調製]
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末B)を得た。この粉末のPd濃度は5.0重量%であった。
硝酸Rh水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末C)を得た。この粉末のRh濃度は3.0重量%であった。
粉末Bを347g、粉末Cを58g、活性アルミナ粉末を496g、水900gを磁性ボールミルに投入し、混合粉砕してスラリ液を得た。粉砕時間を1時間とした。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量200g/L−担体を得た。更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ないNOx浄化触媒を調製した。
【0032】
[排気ガス浄化システムの構築]
上述のようにして得られた酸化触媒/三元触媒とNOx浄化触媒を用い、図1に示しように、エンジン1の前段に酸化触媒/三元触媒、後段にNOx浄化触媒を設置して、本実施例の排気ガス浄化システムを構築した。
【0033】
(実施例2)
酸化触媒/三元触媒については、実施例1と同様に調製したものを用いた。NOx浄化触媒については、酢酸バリウムの代わりに炭酸セシウムを用いた以外は実施例1と同様の操作を繰り返し調製した。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
【0034】
(実施例3)
酸化触媒/三元触媒は実施例1と同様に調製した。NOx浄化触媒としては、いわゆるNOx選択還元触媒を用いた。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用したNOx選択還元触媒は、下記の操作によって調製した。
【0035】
[NOx選択還元触媒の調製]
セリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末1000gに対して硝酸パラジウム溶液を用いてパラジウム2.0重量%になるように加え、よく攪拌した後、オーブン中150℃で3時間乾燥し、400℃で2時間空気雰囲気中で焼成を行った。このパラジウム担持活性アルミナ1500g、セリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末800g、10重量%HNO3硝酸460g、水1840gをボールミルポットに投入し、8時間粉砕してスラリーを得た。得られたスラリーをモノリスハニカム担体基材(1.3L、400セル)に塗布し乾燥した後、400℃で2時間、空気雰囲気中で焼成した。この時の塗布量は、焼成後に52g/個になるようにした。
【0036】
次に、γ−アルミナを主たる成分としセリウムを3モル%、ジルコニウムを3モル%、ランタンを2モル%含むセリウム、ジルコニウム、ランタン担持活性アルミナ粉末2000g、10重量%硝酸400g、水1600gをボールミルポットに投入し、8時間粉砕して得たスラリーを焼成後の塗布量52g/個になるように塗布し乾燥した後、400℃で2時間、空気雰囲気中で焼成した。
更に、0.2モル/Lの硝酸銅又は酢酸銅溶液を5.2kgとゼオライト粉末2kgを混合し、攪拌した後、濾過を行った。これを3回繰り返した後、乾燥、焼成を行い、Cuをイオン交換したゼオライト粉末を調製した。このCuをイオン交換したゼオライト粉末1890g、シリカゾル(固形分20%)1150g及び水1100gを磁性ボールミルに投入し、粉砕して得たスラリーを上記担体に焼成後に塗布量325g/個になるように塗布し乾燥した後、400℃で2時間空気中で焼成し、触媒を調製した。
【0037】
(実施例4)
酸化触媒/三元触媒は実施例1と同様に調製した。NOx浄化触媒としては、特定の三元触媒を用いた。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用した三元触媒は、下記の操作によって調製した。
【0038】
[特定三元触媒の調製]
まず、γ−アルミナを主たる成分とする活性アルミナに硝酸セリウム溶液と硝酸バリウム溶液を含浸し、乾燥した後500℃で1時間焼成した。このときのセリウム担持濃度は7重量%、バリウム濃度は5重量%とした。こうして得られた粉末に硝酸パラジウム水溶液を含浸し、乾燥した後400℃で1時間焼成して、Pd担持活性アルミナ粉末を得た。Pdの担持濃度は1.00重量%であった。この粉末700g、酸化セリウム粉末300g、アルミナゾル1000gをボールミルで混合、粉砕して得られたスラリーをモノリス担体基材(1.3L、400セル)に付着させ焼成(400℃、1時間)した。このときの付着量は200g/Lに設定した。このようにして三元触媒を得た。この三元触媒におけるPd量は1.8g/個になっていた。
【0039】
(実施例5)
酸化触媒/三元触媒は実施例1と同様に調整した。NOx浄化触媒としては、実施例1で調製したNOx浄化触媒を同一の触媒コンバータに2個、縦列配置した。両触媒を実施例1と同様に設置して本例の排気ガス浄化システムを構築した。
なお、使用した通常のマニ三元触媒は、下記の操作によって調製した。
【0040】
[通常のマニ三元触媒の調製]
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末1)を得た。この粉末のPd濃度は17.0重量%であった。
硝酸Rh水溶液をセリウム、ジルコニウムを添加した活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末2)を得た。この粉末のRh濃度は3.0重量%であった。
【0041】
粉末1を190.7g、粉末2を54.0g、酸化セリウム粉末を49g、活性アルミナ粉末を506.3gアルミナゾルを1000gを磁性ボールミルに投入し、1時間混合粉砕してスラリ液を得た。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量140g/L−担体を得た。
更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ない触媒を調製した。この時の貴金属量としては、パラジウム/ロジウムの比が20/1としてトータルの貴金属量が7g/Lになるようにした。
【0042】
(比較例)
前段に上述した通常のマニ三元触媒を配置し、後段には以下のようにして得られたNOx浄化触媒を配置し、本例の排気ガス浄化システムを構築した。
【0043】
硝酸Pd水溶液を活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Pd担持アルミナ粉末(粉末1)を得た。この粉末のPd濃度は17.0重量%であった。
硝酸Rh水溶液をセリウム、ジルコニウムを添加した活性アルミナ粉末に含浸し、乾燥後空気中400℃で1時間焼成して、Rh担持アルミナ粉末(粉末2)を得た。この粉末のRh濃度は3.0重量%であった。
【0044】
実施例1で用いた粉末1を190.7g、粉末2を54.0g、酸化セリウム粉末を49g、活性アルミナ粉末を506.3gアルミナゾルを1000gを磁性ボールミルに投入し、1時間混合粉砕してスラリ液を得た。このスラリ液をコーディライト質モノリス担体(1.3L、400セル)に付着させ、空気流にてセル内の余剰のスラリを取り除いて130℃で乾燥した後、400℃で1時間焼成し、コート層重量140g/L−担体を得た。
更に、このコートを行なった担体に酢酸バリウム水溶液を用いて含浸担持を行ない、120℃で乾燥後400℃で焼成を行ない触媒を調製した。この時の貴金属量としては、パラジウム/ロジウムの比が20/1としてトータルの貴金属量が7g/Lになるようにし、NOx浄化触媒を得た。
【0045】
<性能評価>
上記各例の排気ガス浄化システムを、排気量1.8Lの直噴ガソリンエンジンを搭載した乗用車に適用し、排気ガス浄化の性能評価を行なった。得られた結果を表1に示す。
【0046】
【表1】
【0047】
【発明の効果】
以上説明してきたように、本発明によれば、HCとCOを選択的に浄化する酸化触媒や三元触媒を、NOx浄化触媒の上流側に配置することとしたため、酸素過剰で運転することによる燃費向上効果を十分に享有でき、HC及びCO成分を効率良く浄化し、特にエンジン始動直後の低温時に排出されるHC及びCOを効率良く浄化できる排気ガス浄化システムを提供することができる。
即ち、本発明の排気ガス浄化システムを用いると、酸素過剰雰囲気下の幅広いA/F領域で高いNOx浄化処理が行なえ、燃費性能を向上できるのみならず、HC及びCO浄化性能とNOx浄化性能を高い転化率で両立することができる。
【図面の簡単な説明】
【図1】本発明の排気ガス浄化システムの一実施例を示すシステム構成図である。
【符号の説明】
1 エンジン
2 酸化触媒/三元触媒
3 NOx浄化触媒[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for purifying exhaust gas discharged from an internal combustion engine, a combustor, and the like, and particularly, exhaust gas purification capable of purifying nitrogen oxide in lean burn exhaust gas containing excessive oxygen with high efficiency. About the system.
[0002]
[Prior art]
Conventionally, as a catalyst for purifying carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx), etc. contained in exhaust gas discharged from an internal combustion engine such as an automobile, a ternary that works at a theoretical air-fuel ratio is used. A catalyst is used. However, the three-way catalyst cannot purify nitrogen oxides when the exhaust gas of the internal combustion engine has excessive oxygen.
As a method of purifying nitrogen oxides when the exhaust gas of the internal combustion engine is excessive in oxygen, Japanese Patent Publication No. 2600609 discloses that NOx is absorbed when the exhaust gas is excessive in oxygen, and the absorbed NOx is converted into NOx. A method is disclosed in which the concentration of oxygen in the exhaust gas flowing into the absorbent is reduced and released, and the purification process is performed.
[0003]
[Problems to be solved by the invention]
However, as described in the above patent publication, NOx is absorbed when the exhaust gas is in excess of oxygen, and the concentration of oxygen in the exhaust gas flowing into the NOx absorbent is reduced, and the absorbed NOx is released. In the method of purifying NOx, HC and CO are used as reducing agents when desorbing and purifying NOx, and in order to sufficiently reduce NOx, HC and CO are used as reducing agents during NOx desorption purification. It is necessary to supply enough CO. For this reason, HC and CO components other than NOx are discharged without being sufficiently purified, and sufficient HC and CO purification performance cannot be obtained.
[0004]
As a solution to this problem, there is a method in which a three-way catalyst is disposed after the NOx storage catalyst to purify it. In such a catalyst system, a catalyst for purifying HC and CO is disposed in the latter stage of the exhaust passage. Therefore, the exhaust temperature at the catalyst inlet is lowered, and there is a problem that sufficient HC and CO purification performance cannot be obtained.
Also, when purifying by releasing the absorbed NOx as described above, if the oxygen concentration is decreased by increasing the HC and CO components in the exhaust gas, the fuel efficiency improvement effect cannot be obtained sufficiently. There are also challenges.
[0005]
The present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to sufficiently enjoy the fuel efficiency improvement effect by operating with excess oxygen, and to make the HC and CO components efficient. An object of the present invention is to provide an exhaust gas purification system that can purify well and efficiently purify HC and CO discharged at a low temperature immediately after engine startup.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have arranged an oxidation catalyst or a three-way catalyst for selectively purifying HC and CO on the upstream side of the NOx purification catalyst. Has been found to be achieved, and the present invention has been completed.
[0007]
That is, the exhaust gas purification system of the present invention selectively removes hydrocarbons and carbon monoxide among the reducing components , and also provides an oxidation catalyst and / or a three-way catalyst that hardly purifies hydrogen and ammonia, and a reducing component. An NOx purification catalyst that uses nitrogen oxides for reduction treatment, and the exhaust gas composition has a so-called lean state in which the air-fuel ratio is in an oxygen-excess state, a so-called rich state in which the stoichiometric air-fuel ratio or a fuel-excess state is in a rich state Installed in the exhaust passage of the engine or combustion device ,
The oxidation catalyst and / or the three-way catalyst is disposed upstream of the exhaust gas passage of the NOx purification catalyst,
The selective purification rate of hydrocarbons of the oxidation catalyst and / or the three-way catalyst is 98.5% or more, and the selective purification rate of carbon monoxide is 90% or more .
[0010]
Further, in another preferred embodiment of the exhaust gas purification system of the present invention, the oxidation catalyst or the three-way catalyst contains platinum, palladium and an oxide having solid acidity, and 50% or more of the content of platinum and palladium is more than 50%. The oxide having solid acidity is mixed in the same layer.
[0011]
Furthermore, in another preferred embodiment of the exhaust gas purification system of the present invention, the NOx purification catalyst is a NOx selective reduction catalyst that purifies by reacting nitrogen oxides with a reducing component in the lean state of the air / fuel ratio, NOx occlusion type three-way catalyst that temporarily absorbs nitrogen oxides in the lean state and releases nitrogen oxides in the rich state and purifies nitrogen oxides by reducing components, or the theoretical air-fuel ratio A three-way catalyst that reduces and purifies nitrogen oxides under lean conditions in the vicinity of the catalyst and a catalyst according to any combination thereof.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the exhaust gas purification system of the present invention will be described in detail.
As described above, this exhaust gas purification system includes an oxidation catalyst and / or a three-way catalyst that selectively purifies HC and CO among the reducing components, and a NOx purification catalyst that reduces NOx using the reducing components. The oxidation catalyst and / or the three-way catalyst are arranged on the upstream side of the exhaust passage of the internal combustion engine or the combustion apparatus, and the NOx purification catalyst is arranged on the downstream side thereof.
[0013]
Here, the catalytic reaction in the preceding oxidation catalyst / three-way catalyst will be described.
In the vicinity of the stoichiometric air-fuel ratio and in the excessive fuel region (rich region), the exhaust gas discharged from the engine contains hydrogen (H 2 ) and ammonia (NH 3 ) in addition to HC and CO as reducing gas components. . These H 2 and NH 3 components are also represented by the following formula H 2 + O 2 → H 2 O in an oxidation catalyst or a three-way catalyst that is usually used.
NH 3 + O 2 → N 2 + H 2 O
NO + H 2 → N 2 + H 2 O
As a result, the reaction is purified in the same manner as reducing components such as HC and CO.
[0014]
For this reason, as an exhaust purification system, when an oxidation catalyst or a reduction catalyst for purifying HC and CO is arranged at the front stage and a reduction catalyst for purifying NOx is arranged at the rear stage so as to work from a region where the exhaust gas temperature is low, This reducing catalyst is not supplied with a reducing agent for reducing and purifying NOx, and NOx is not sufficiently purified.
Therefore, in the conventional exhaust gas purification system as described in Japanese Patent Publication No. 2600609, HC, which is a reducing component for desorbing and purifying NOx by the NOx storage catalyst arranged at the rear stage in the exhaust passage. , CO, H 2, NH 3, etc. are oxidized in the three-way catalyst on the front stage side in the exhaust passage, and the necessary amount of reducing component is not supplied to the NOx storage catalyst in the rear stage. Even if NOx is desorbed in a state where the oxygen concentration is lowered, sufficient NOx purification performance cannot be obtained.
[0015]
Therefore, in the present invention, as an oxidation catalyst or a three-way catalyst, a catalyst that selectively purifies HC and CO, that is, a specific component that purifies HC and CO among the reducing components but hardly purifies H 2 and NH 3 . By using the catalyst, the reducing component necessary for treating the NOx absorbed in the NOx purification catalyst in an excess oxygen atmosphere (lean state) is supplied to the subsequent NOx purification catalyst. .
[0016]
As such an oxidation catalyst or a three-way catalyst, the following formula HC + O 2 → H 2 O + CO 2 (1)
2CO + O 2 → 2CO 2 (2)
HC + NO → H 2 O + N 2 + CO 2 (3)
CO + NO → CO 2 + N 2 (4)
The selective purification rate of HC and CO at that time is required to be 98.5% and 90% or more , specifically, platinum, palladium and solid acidic A catalyst in which 50% or more of the content of platinum and palladium is mixed in the same catalyst layer as the oxide having solid acidity can be preferably used.
[0017]
The selection purification rate is less than 98.5% in HC, in the less than 90% CO, O2, NO is HC, in addition to reacting with CO, the following reaction to H 2, NH 3 2H 2 + O 2 → 2H 2 O… ▲ 5 ▼
4NH 3 + 3O 2 → 2N 2 + 6H 2 O (6)
4H 2 + 2NO → 2H 2 O + N 2 ( 7)
4NH 3 + 6NO → 6H 2 O + 5N 2 ... (8)
As a result, H 2 and NH 3 are consumed by the oxidation reaction.
Further, when the mixed amount of platinum and palladium is less than 50% of these contents, the reactions (5) to (8) are promoted rather than the reactions (1) to (4), and therefore the reducing agent. H 2 and NH 3 as components are reduced.
[0018]
Next, the NOx purification catalyst installed in the latter stage will be described.
As this NOx purification catalyst, it is sufficient if NOx can be reduced and purified by a reducing component, but in this system, this reducing component is mainly composed of H 2 and / or by the action of the above-mentioned specific oxidation catalyst and / or three-way catalyst. or it comes to NH 3.
Examples of the NOx purification catalyst include a NOx selective reduction catalyst, a NOx occlusion type three-way catalyst, a catalyst according to a predetermined three-way catalyst, and any combination thereof, and the NOx selective reduction catalyst has an air-fuel ratio with excess oxygen. NOx is reacted with a reducing component to purify in a clean state (lean state), and the NOx occlusion type three-way catalyst temporarily absorbs NOx in a state where the air-fuel ratio is excessive in oxygen, and the stoichiometric air-fuel ratio and / or rich state The predetermined three-way catalyst has the function of reducing and purifying NOx under lean conditions in the vicinity of the theoretical air-fuel ratio.
[0019]
As the NOx selective reduction catalyst, copper (Cu), cobalt (Co), nickel (Ni), iron (Fe), gallium (Ga), lanthanum (La), cerium (Ce), zinc (Zn), titanium ( Ti), calcium (Ca), barium (Ba), silver (Ag) and mixed elements thereof, and platinum (Pt), iridium (Ir), rhodium (Rh) or palladium (Pd) and mixed noble metals thereof. Mention may be made of a catalyst comprising zeolite or alumina containing at least one.
[0020]
Further, as the NOx occlusion type three-way catalyst, cesium (Cs), barium (Ba), sodium (Na), potassium (K), magnesium (Mg), lanthanum (La) or calcium (Ca) and mixed metals thereof Examples of the catalyst include an element and platinum (Pt), palladium (Pd), rhodium (Rh), and a mixed noble metal element thereof.
[0021]
Furthermore, as the three-way catalyst for reducing and purifying the NOx under lean conditions near the stoichiometric air-fuel ratio, platinum, palladium or rhodium and mixed noble metal elements thereof, cerium, lanthanum, neodymium (Nd) or praseodymium (Pr) A catalyst containing at least one of rare earth elements such as these and mixed elements thereof and zirconia can be used.
[0022]
In the exhaust gas purification system of the present invention, the NOx reduction purification catalyst used in the subsequent stage is selected according to the lean operation conditions in the internal combustion engine or the like, the NOx selective reduction catalyst, the NOx occlusion type three-way catalyst, and the predetermined three-way catalyst. The catalyst can be selected.
[0023]
Further, in the exhaust gas purification system of the present invention, when the above-described oxidation catalyst, three-way catalyst and NOx purification catalyst are used, it is preferably supported by being used on an integral structure type carrier.
As such a monolithic structure type carrier, a monolithic carrier made of a heat-resistant material is preferable. For example, a ceramic material such as cordierite or a metal material such as ferritic stainless steel is used.
[0024]
Since the NOx purification catalyst at the latter stage preferably has a function as a three-way catalyst at the stoichiometric air-fuel ratio, at least a part of noble metals such as Pt, Pd and Rh is supported on the porous substrate. Among them, it is preferable to be supported on alumina.
As the alumina used in this case, one having high heat resistance is preferable, and activated alumina having a specific surface area of about 50 to 300 m 2 / g is particularly preferable.
[0025]
Further, for the purpose of improving the heat resistance of alumina, an additive such as a rare earth compound such as cerium and lanthanum or zirconium may be further added as conventionally used in a three-way catalyst.
Furthermore, in order to enhance the function as a three-way catalyst, materials conventionally used for the three-way catalyst may be added. For example, ceria with oxygen storage function and HC adsorption poisoning to precious metals are alleviated. Barium, zirconia that contributes to improving the heat resistance of Rh may be added.
[0026]
In the purification system of the present invention, the amount of the noble metal of the NOx purification catalyst is not particularly limited as long as the NOx absorption function and the three-way function are sufficiently obtained, but as used in a general three-way catalyst, It is preferably in the range of 0.1 to 10 g per liter.
[0027]
In the exhaust gas purification system of the present invention, it is necessary to change the exhaust gas composition in order to achieve good exhaust gas purification. Due to such fluctuation, the air-fuel ratio is changed to an oxygen-excess state (lean state), a stoichiometric air-fuel ratio (stoichiometry). ) And an excess fuel state (rich state).
For example, in order to generate a relatively large amount of H 2 from the exhaust gas of an engine, it is necessary to perform a concentration fluctuation that increases the fuel concentration. However, such a concentration fluctuation is performed at regular intervals regardless of driving conditions. In addition, in consideration of running conditions, the NOx absorption amount in the NOx purification catalyst (NOx storage type three-way catalyst) is increased, or the NOx purification catalyst can easily reduce and purify NOx ( (Temperature conditions, exhaust gas flow rate conditions, etc.)
[0028]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
FIG. 1 schematically shows the configuration of an exhaust gas purification system constructed in the following embodiment. In this figure, this exhaust gas purification system is configured by installing an oxidation catalyst / three-way catalyst 2 and a NOx purification catalyst 3 in the exhaust system of the
[0029]
Example 1
[Preparation of oxidation catalyst / three-way catalyst]
An aqueous solution of ammonium tungstate and a commercially available titania sol were mixed, and the resulting precipitate was fired to prepare W-Ti oxide powder (powder A) containing equimolar amounts of W and Ti. Further, powder A is impregnated with a dinitrodiammine platinum aqueous solution and a palladium nitrate aqueous solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain Pt, Pd-supported W—Ti oxide powder (powder B). Obtained. The noble metal concentration of the powder B was 4.0% by weight and Pt / Pd = 0.2.
Similarly, the activated alumina powder is impregnated with a dinitrodiammine platinum aqueous solution and a palladium nitrate aqueous solution, dried at 150 ° C. for 12 hours, and then fired at 400 ° C. for 1 hour to obtain a Pt, Pd-supported activated alumina powder (powder C). It was. The noble metal concentration of the powder C was set to 4.0 wt% and Pt / Pd = 0.2 as in the case of the powder B.
[0030]
100 g of powder B, 100 g of powder C and 200 g of nitric acid aqueous solution were put into a magnetic ball mill, mixed and pulverized to obtain a slurry.
This slurry was adhered to a cordierite monolith support (0.1 L, 400 cells / in 2), excess slurry in the cells was removed and dried with an air stream, and calcined at 500 ° C. for 1 hour. A catalyst A having a coat weight of 100 g / L-support was obtained. The amount of noble metal supported was 4.0 g / L-carrier.
[0031]
[Preparation of NOx purification catalyst]
An activated alumina powder was impregnated with a Pd nitrate aqueous solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain a Pd-supported alumina powder (powder B). The Pd concentration of this powder was 5.0% by weight.
An activated alumina powder was impregnated with an aqueous Rh nitrate solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (powder C). The Rh concentration of this powder was 3.0% by weight.
347 g of powder B, 58 g of powder C, 496 g of activated alumina powder, and 900 g of water were put into a magnetic ball mill, mixed and ground to obtain a slurry liquid. The grinding time was 1 hour. This slurry liquid is attached to a cordierite monolith carrier (1.3 L, 400 cells), excess slurry in the cells is removed with an air flow, dried at 130 ° C., and then baked at 400 ° C. for 1 hour. A layer weight of 200 g / L-carrier was obtained. Further, an impregnation support was carried out on the coated carrier using an aqueous barium acetate solution, dried at 120 ° C. and then calcined at 400 ° C. to prepare a NOx purification catalyst.
[0032]
[Construction of exhaust gas purification system]
Using the oxidation catalyst / three-way catalyst and NOx purification catalyst obtained as described above, as shown in FIG. 1, an oxidation catalyst / three-way catalyst is installed in the front stage of the
[0033]
(Example 2)
As the oxidation catalyst / three-way catalyst, one prepared in the same manner as in Example 1 was used. The NOx purification catalyst was prepared by repeating the same operation as in Example 1 except that cesium carbonate was used instead of barium acetate. Both catalysts were installed in the same manner as in Example 1 to construct an exhaust gas purification system of this example.
[0034]
Example 3
The oxidation catalyst / three-way catalyst was prepared as in Example 1. A so-called NOx selective reduction catalyst was used as the NOx purification catalyst. Both catalysts were installed in the same manner as in Example 1 to construct an exhaust gas purification system of this example.
The NOx selective reduction catalyst used was prepared by the following operation.
[0035]
[Preparation of NOx selective reduction catalyst]
Add 1000% of cerium, zirconium, and lanthanum-supported activated alumina powder containing 3 mol% of cerium, 3 mol% of zirconium, and 2 mol% of lanthanum using a palladium nitrate solution to add 2.0 wt% of palladium. After stirring, it was dried in an oven at 150 ° C. for 3 hours and calcined at 400 ° C. for 2 hours in an air atmosphere. 1500 g of this palladium-supported activated alumina, 3 mol% of cerium, 3 mol% of zirconium, 800 g of cerium, zirconium and lanthanum-supported activated alumina powder containing 2 mol% of lanthanum, 460 g of 10 wt% HNO 3 nitric acid, and 1840 g of water are placed in a ball mill pot. The slurry was charged and pulverized for 8 hours to obtain a slurry. The obtained slurry was applied to a monolith honeycomb carrier substrate (1.3 L, 400 cells), dried, and then fired at 400 ° C. for 2 hours in an air atmosphere. The coating amount at this time was 52 g / piece after firing.
[0036]
Next, γ-alumina as a main component is 3 mol% cerium, 3 mol% zirconium, 2 mol% cerium, zirconium, lanthanum-supporting activated alumina powder 2000 g, 400 wt% nitric acid 400 g, and water 1600 g are ball mill pots. The slurry obtained by pulverizing for 8 hours was applied so that the applied amount after baking was 52 g / piece, dried, and then fired in an air atmosphere at 400 ° C. for 2 hours.
Further, 5.2 kg of 0.2 mol / L copper nitrate or copper acetate solution and 2 kg of zeolite powder were mixed and stirred, followed by filtration. After repeating this three times, drying and firing were performed to prepare a zeolite powder in which Cu was ion-exchanged. 1890 g of this Cu ion-exchanged zeolite powder, 1150 g of silica sol (solid content 20%) and 1100 g of water were put in a magnetic ball mill, and the slurry obtained by pulverization was applied to the above carrier so that the coating amount was 325 g / piece. After drying, the mixture was calcined at 400 ° C. for 2 hours to prepare a catalyst.
[0037]
(Example 4)
The oxidation catalyst / three-way catalyst was prepared as in Example 1. A specific three-way catalyst was used as the NOx purification catalyst. Both catalysts were installed in the same manner as in Example 1 to construct an exhaust gas purification system of this example.
The three-way catalyst used was prepared by the following operation.
[0038]
[Preparation of specific three-way catalyst]
First, activated alumina containing γ-alumina as a main component was impregnated with a cerium nitrate solution and a barium nitrate solution, dried, and then fired at 500 ° C. for 1 hour. At this time, the cerium carrying concentration was 7 wt%, and the barium concentration was 5 wt%. The powder thus obtained was impregnated with an aqueous palladium nitrate solution, dried and then calcined at 400 ° C. for 1 hour to obtain a Pd-supported activated alumina powder. The supported concentration of Pd was 1.00% by weight. A slurry obtained by mixing and pulverizing 700 g of this powder, 300 g of cerium oxide powder, and 1000 g of alumina sol by a ball mill was attached to a monolith support substrate (1.3 L, 400 cells) and fired (400 ° C., 1 hour). The adhesion amount at this time was set to 200 g / L. A three-way catalyst was thus obtained. The amount of Pd in this three-way catalyst was 1.8 g / piece.
[0039]
(Example 5)
The oxidation catalyst / three-way catalyst was prepared in the same manner as in Example 1. As the NOx purification catalyst, two NOx purification catalysts prepared in Example 1 were arranged in tandem in the same catalytic converter. Both catalysts were installed in the same manner as in Example 1 to construct an exhaust gas purification system of this example.
In addition, the normal manifold three-way catalyst used was prepared by the following operation.
[0040]
[Preparation of ordinary Mani three-way catalyst]
An activated alumina powder was impregnated with a Pd nitrate aqueous solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain a Pd-supported alumina powder (powder 1). The Pd concentration of this powder was 17.0% by weight.
An activated alumina powder to which cerium and zirconium were added was impregnated with an aqueous Rh nitrate solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (powder 2). The Rh concentration of this powder was 3.0% by weight.
[0041]
190.7g of
Further, impregnation support was carried out on the coated carrier using an aqueous barium acetate solution, dried at 120 ° C. and then calcined at 400 ° C. to prepare a catalyst. The amount of noble metal at this time was such that the ratio of palladium / rhodium was 20/1 and the total amount of noble metal was 7 g / L.
[0042]
(Comparative example)
The exhaust gas purification system of this example was constructed by arranging the above-described ordinary manifold three-way catalyst in the front stage and the NOx purification catalyst obtained as follows in the rear stage.
[0043]
An activated alumina powder was impregnated with a Pd nitrate aqueous solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain a Pd-supported alumina powder (powder 1). The Pd concentration of this powder was 17.0% by weight.
An activated alumina powder to which cerium and zirconium were added was impregnated with an aqueous Rh nitrate solution, dried, and then fired in air at 400 ° C. for 1 hour to obtain an Rh-supported alumina powder (powder 2). The Rh concentration of this powder was 3.0% by weight.
[0044]
190.7 g of
Further, impregnation support was carried out on the coated carrier using an aqueous barium acetate solution, dried at 120 ° C. and then calcined at 400 ° C. to prepare a catalyst. The amount of noble metal at this time was such that the ratio of palladium / rhodium was 20/1 and the total amount of noble metal was 7 g / L to obtain a NOx purification catalyst.
[0045]
<Performance evaluation>
The exhaust gas purification system in each of the above examples was applied to a passenger car equipped with a direct-injection gasoline engine having a displacement of 1.8 L, and the exhaust gas purification performance was evaluated. The obtained results are shown in Table 1.
[0046]
[Table 1]
[0047]
【The invention's effect】
As described above, according to the present invention, the oxidation catalyst and the three-way catalyst that selectively purify HC and CO are arranged upstream of the NOx purification catalyst, and therefore, by operating with excess oxygen. It is possible to provide an exhaust gas purification system that can sufficiently enjoy the fuel efficiency improvement effect, efficiently purify HC and CO components, and particularly efficiently purify HC and CO discharged at a low temperature immediately after engine startup.
That is, when the exhaust gas purification system of the present invention is used, high NOx purification processing can be performed in a wide A / F region under an oxygen-excess atmosphere, and not only fuel efficiency can be improved, but also HC and CO purification performance and NOx purification performance can be achieved. Both can be achieved at a high conversion rate.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of an exhaust gas purification system of the present invention.
[Explanation of symbols]
1 Engine 2 Oxidation catalyst / Three-way catalyst 3 NOx purification catalyst
Claims (7)
上記NOx浄化触媒の上記排気ガス通路上流側に、上記酸化触媒及び/又は三元触媒を配置して成り、
上記酸化触媒及び/又は三元触媒の炭化水素の選択浄化率が98.5%以上で、一酸化炭素の選択浄化率が90%以上である、ことを特徴とする排気ガス浄化システム。NOx purification that selectively removes hydrocarbons and carbon monoxide among the reducing components , and that reduces and eliminates nitrogen oxides using an oxidation catalyst and / or three-way catalyst that hardly removes hydrogen and ammonia. The exhaust gas composition is installed in the exhaust passage of an internal combustion engine or a combustion device that takes a so-called lean state in which the air-fuel ratio is in an oxygen-excess state, a stoichiometric air-fuel ratio or a so-called rich state in which the fuel is excessive ,
The oxidation catalyst and / or the three-way catalyst is disposed upstream of the exhaust gas passage of the NOx purification catalyst,
An exhaust gas purification system characterized in that the selective purification rate of hydrocarbons of the oxidation catalyst and / or the three-way catalyst is 98.5% or more and the selective purification rate of carbon monoxide is 90% or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30224299A JP3788141B2 (en) | 1999-10-25 | 1999-10-25 | Exhaust gas purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30224299A JP3788141B2 (en) | 1999-10-25 | 1999-10-25 | Exhaust gas purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001123827A JP2001123827A (en) | 2001-05-08 |
JP3788141B2 true JP3788141B2 (en) | 2006-06-21 |
Family
ID=17906673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30224299A Expired - Lifetime JP3788141B2 (en) | 1999-10-25 | 1999-10-25 | Exhaust gas purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3788141B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4290391B2 (en) * | 2002-06-07 | 2009-07-01 | ヴァルティオン テクンニィルリネン ツッツキムスケスクス | Method and apparatus for catalytic removal of nitrogen oxides |
DE10248508A1 (en) * | 2002-07-15 | 2004-01-29 | Volkswagen Ag | Internal combustion engine system with direct-injection gasoline engine and a catalyst system |
DE10300298A1 (en) | 2003-01-02 | 2004-07-15 | Daimlerchrysler Ag | Exhaust gas aftertreatment device and method |
JP2007130580A (en) * | 2005-11-10 | 2007-05-31 | Toyota Motor Corp | Apparatus and method of purifying exhaust gas |
CN103316709A (en) * | 2007-10-29 | 2013-09-25 | 优美科触媒日本有限公司 | Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same |
EP2354485A1 (en) * | 2010-01-13 | 2011-08-10 | Delphi Technologies Holding S.à.r.l. | Exhaust system for compression-ignition engine |
JP5691779B2 (en) * | 2010-12-07 | 2015-04-01 | 株式会社デンソー | Exhaust gas purification device |
JP5747794B2 (en) * | 2011-03-08 | 2015-07-15 | 株式会社デンソー | Hydrocarbon selective oxidation catalyst and method for producing the same |
JP5843699B2 (en) * | 2012-05-31 | 2016-01-13 | 本田技研工業株式会社 | Exhaust gas purification system for internal combustion engine |
US9266092B2 (en) * | 2013-01-24 | 2016-02-23 | Basf Corporation | Automotive catalyst composites having a two-metal layer |
US9861961B2 (en) | 2013-07-08 | 2018-01-09 | Umicore Shokubai Japan Co., Ltd. | Catalyst for nitrogen oxide removal |
EP3024574B1 (en) * | 2013-07-26 | 2021-11-24 | Johnson Matthey Public Limited Company | Tungsten/titania oxidation catalyst |
PL3097977T3 (en) | 2014-01-22 | 2022-01-10 | Umicore Shokubai Japan Co., Ltd. | Exhaust-gas purifying catalyst for lean-burn engine |
JP6378222B2 (en) * | 2016-02-12 | 2018-08-22 | トヨタ自動車株式会社 | Exhaust gas purification catalyst device, exhaust gas purification system, and deterioration detection method of exhaust gas purification catalyst device |
JP7202051B2 (en) * | 2017-06-09 | 2023-01-11 | ビーエーエスエフ コーポレーション | Catalytic articles and exhaust gas treatment systems |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05187230A (en) * | 1992-01-14 | 1993-07-27 | Toyota Motor Corp | Exhaust emission purifier for internal combustion engine |
JPH11104493A (en) * | 1997-10-02 | 1999-04-20 | Nissan Motor Co Ltd | Catalyst for purifying exhaust gas and its use |
-
1999
- 1999-10-25 JP JP30224299A patent/JP3788141B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001123827A (en) | 2001-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10260395B2 (en) | Nitrous oxide removal catalysts for exhaust systems | |
JP4092441B2 (en) | Exhaust gas purification catalyst | |
US10919025B2 (en) | N2O removal from automotive exhaust for lean/rich systems | |
JP3788141B2 (en) | Exhaust gas purification system | |
JP3965676B2 (en) | Exhaust gas purification catalyst and exhaust gas purification system | |
JP3493792B2 (en) | Exhaust gas purification catalyst | |
JPH08281106A (en) | Catalyst for purifying exhaust gas and its production | |
JPH10192713A (en) | Exhaust gas purifying catalyst and its use | |
JPH10128114A (en) | Catalyst for purifying exhaust gas | |
JPH08281110A (en) | Catalyst for purifying exhaust gas and its production | |
JPH09220470A (en) | Catalyst for purification of exhaust gas | |
JPH10165819A (en) | Catalyst for cleaning of exhaust gas and its use method | |
JPH1157477A (en) | Exhaust gas cleaning catalyst and method of using the same | |
JP2001293374A (en) | Catalyst for cleaning exhaust gas and exhaust gas cleaning system | |
JP2003290629A (en) | Cleaning system for exhaust gas | |
JP3560147B2 (en) | Exhaust gas purification system | |
JP3477974B2 (en) | Exhaust gas purification catalyst | |
JP4106762B2 (en) | Exhaust gas purification catalyst device and purification method | |
JP3477982B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH0871424A (en) | Catalyst for purification of exhaust gas | |
JPH08281111A (en) | Catalyst for purifying exhaust gas and its production | |
JP3682845B2 (en) | Exhaust gas purification system | |
JP2001190931A (en) | Method for purifying waste gas containing methane | |
JPH11294150A (en) | Exhaust emission control device and its use | |
JPH09206594A (en) | Catalyst for purification of exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060320 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3788141 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |