JP3787774B2 - Floating separation method and apparatus - Google Patents
Floating separation method and apparatus Download PDFInfo
- Publication number
- JP3787774B2 JP3787774B2 JP2002170293A JP2002170293A JP3787774B2 JP 3787774 B2 JP3787774 B2 JP 3787774B2 JP 2002170293 A JP2002170293 A JP 2002170293A JP 2002170293 A JP2002170293 A JP 2002170293A JP 3787774 B2 JP3787774 B2 JP 3787774B2
- Authority
- JP
- Japan
- Prior art keywords
- solid particles
- tank
- floc
- floating
- flocs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007667 floating Methods 0.000 title claims description 78
- 238000000926 separation method Methods 0.000 title claims description 38
- 239000002245 particle Substances 0.000 claims description 101
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 77
- 239000007787 solid Substances 0.000 claims description 74
- 229920000642 polymer Polymers 0.000 claims description 21
- 244000144992 flock Species 0.000 claims description 15
- 238000005188 flotation Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 9
- 238000005339 levitation Methods 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 4
- 239000000853 adhesive Substances 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 238000005243 fluidization Methods 0.000 claims description 2
- 239000010865 sewage Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000005484 gravity Effects 0.000 description 9
- 239000004794 expanded polystyrene Substances 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229920006317 cationic polymer Polymers 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 238000005345 coagulation Methods 0.000 description 5
- 230000015271 coagulation Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- -1 fluorine ions Chemical class 0.000 description 5
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 229920006318 anionic polymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 3
- 238000005189 flocculation Methods 0.000 description 3
- 230000016615 flocculation Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009300 dissolved air flotation Methods 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、工場排水、下水、上水原水など懸濁粒子、リン酸イオン、フッ素イオン、金属イオン、色度成分、COD成分など除去対象物質を含有する被処理水(以下「原水」ともいう)の新概念による浮上分離方法及び装置に関し、原水中の除去対象物質を、従来の凝集沈殿法又は浮上分離法の50倍以上の超高速度で浮上分離できる革新技術に関する。
本発明は、有機性の懸濁粒子を含有する合流式下水道の雨天時越流水(CSOと略称される)、又は下水処理施設に流入する下水の超高速固液分離技術として特に好適な革新技術に関する。
【0002】
【従来の技術】
最近、合流下水道における雨天時越流水(CSO)の、公共水域への汚濁負荷が大きな問題になっている。合流式下水道の雨天時越流水(CSO)は、短時間に膨大な水量が発生するため、非常にコンパクトな装置でCSOの汚濁物質を除去できる装置が切望されている。
また、下水処理施設に流入する下水は、まず最初沈殿池で沈殿分離されたのち、活性汚泥処理されるが、最初沈殿池のSSの除去率が悪いため、凝集剤を添加して凝集沈殿処理する例が北欧で普及している。しかし、この方法は凝集沈殿速度が小さく、大きな沈殿池を必要とする欠点がある。そのためCSO及び下水を超高速度で固液分離できる革新技術が待望されている。
また、従来より、原水に加圧溶解空気含有水又は微細気泡を吹き込んで、気泡に懸濁粒子を付着させて浮上分離する方法が知られている。
【0003】
【発明が解決しようとする課題】
しかし、従来の浮上分離方法では、浮上分離速度がせいぜい100〜200mm/min程度と小さく、しかも空気圧縮機、空気溶解設備などの付帯設備が必要という欠点がある。
本発明は、このような実情よりなされたものであり、従来の浮上分離技術の問題点を解決し、簡単な操作によって、河川水、湖沼水などの上水原水、排水、下水など各種原水中の懸濁粒子、リン酸イオン、フッ素イオン、金属イオン、色度成分、COD成分などの除去対象物質を極めて高速度で浮上分離でき、かつまた、空気溶解設備が不要な新規な浮上分離方法及び装置を提供することを課題とする。
【0004】
【問題を解決するための手段】
本発明は、下記の手段により上記の課題を解決することができた。
(1)除去対象物質を含有する被処理水に少なくとも高分子凝集剤を添加して、浮上性固体粒子を液中に存在させた流動槽に供給し、凝集除去対象物質の凝集フロックを該流動槽内の浮上性固体粒子表面に付着させながら、フロック付着浮上性固体粒子をその浮上力を利用して処理水と分離し、流動槽の下部に位置する処理水分離部から処理水を取り出すとともに、分離したフロック付着浮上性固体粒子を流動槽からフロック剥離部に移送し、該浮上性固体粒子からフロックを剥離させ、剥離フロックを系外に排除し、フロックが剥離した浮上性固体粒子を前記流動槽の凝集フロック付着部に返送することを特徴とする浮上分離方法。
【0005】
(2)浮上性固体粒子を液中に存在させ、高分子凝集剤を含む被処理水を流入させて凝集フロックを浮上性固体粒子表面に付着させる流動槽と、流動槽からのフロック付着浮上性固体粒子を受け入れて該フロック付着浮上性固体粒子からフロックを剥離させるフロック剥離槽と、前記フロック剥離槽からの流出物が供給されて、フロックが剥離された浮上性固体粒子を洗浄し剥離フロックを排出する洗浄装置と、前記洗浄装置で洗浄された浮上性固体粒子を流動槽の上部に返送する通路からなる移送手段とからなり、前記流動槽が、該槽内の水面と該槽内下部の処理水分離部との間にある浮上性固体粒子流動部、該槽内下部に設けた処理水分離部、該処理水分離部に配設された処理水の排出部、及び前記流動部内から上方に向かって延びて前記フロック剥離槽に連通する通路を有し、前記流動部内のフロック付着浮上性固体粒子を前記フロック剥離槽に送るフロック付着固体粒子循環部を備えたものであることを特徴とする浮上分離装置。
(3)流動槽内に攪拌機を設けたことを特徴とする前記(2)記載の浮上分離装置。
(4)前記フロック付着固体粒子循環部におけるフロック付着浮上性固体粒子の、前記流動槽から前記フロック剥離槽への移送手段がポンプ又はエアリフトであることを特徴とする前記(2)記載の浮上分離装置。
【0006】
本発明の骨子は、発泡スチロール粒子などの「浮上性固体微粒子」を、従来の浮上分離法における気泡の代わりに用い、原水に有機高分子凝集剤又は無機凝集剤と有機高分子凝集剤を添加して浮上性固体粒子群の流動槽に供給し、同槽内を下降流として流下させ、その下降流中で原水中の凝集除去対象物質の凝集フロックを浮上性固体粒子表面に付着コーティングさせつつ、フロック付着浮上性固体粒子を高速度で浮上分離するという基本的技術思想である。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の超高速浮上分離装置の一実施態様を示す概要図である。
原水1に、無機凝集剤3を添加して凝集槽2で30秒程度撹拌したのち、高分子凝集剤4を添加し、粒径50〜1000ミクロン程度の微粒子状で比重が0.2以下(好ましくは0.01〜0.1)の浮上力が極めて大きい浮上性固体粒子(たとえば発泡スチロール微粒子)5が多数存在する流動槽6に、原水1を供給し、下降水流の手段で浮上性固体粒子5が水面に浮上するのを阻止しつつ、かつ浮上性固体粒子5が処理水へ流出しない条件で流動させる。なお、その際攪拌を行うことにより下降水流の降下速度を加減することができ、また浮上性固体粒子5が水面に浮上する速度を変えることができる。下降水流の降下速度はいろいろ変えられるが、3〜6m/minの範囲が好ましい。
【0008】
本発明によれば、驚くべきことに、該流動槽6を通過する短時間(数10秒)の間に、原水1中の凝集除去対象物質の凝集マイクロフロックが、浮上性固体粒子5表面にしっかりと付着コーティングされつつ、処理水に対して浮上分離することが見出された。
フロックが付着した浮上性固体粒子(簡単のために「フロック付着粒子」ともいう)10は、流動槽壁下端部から、隣接する浮上粒子循環部8に自動的に移行し、浮上し、剥離槽13に流入する。清澄な処理水12は流動槽6下部から流出する。
本発明の「原水1中の除去対象物質が浮上性固体粒子5表面に付着した状態のもの」の浮上速度(すなわち流動槽部6の下降流速)は極めて大きく、驚くべきことに、浮上速度は3〜6m/minと従来の加圧溶解空気泡を利用する浮上分離装置の約50倍も大きい。
【0009】
しかして、フロック付着粒子10を、任意の移送手段(図示例はエアリフト)8によって、フロック剥離槽13に移送し、激しくインペラで撹拌するか又は超音波を照射すると、フロックがフロック付着粒子10からせん断剥離する。
本発明の洗浄浮上物の移送ポンプとして好ましい形式は、エアリフトポンプ、混気ジェットポンプ(空気と圧力水を管の下部に送り込み、水の駆動力を与えるもの)、スクリューポンプ、スクリューコンベヤなどが特に好適である。エアリフトポンプ、混気ジェットポンプは機械的回転機構が不要であり、構造がシンプルであるほか、浮上物移送中の閉塞が起きないと言う重要な利点がある。スクリューポンプは、ポンプ内で浮上性固体粒子3の閉塞が起きないので好適である。なお、フロツク移送手段としてポンプ(軸流ポンプ、遠心ポンプなど)、エアリフトを適用すると、フロック移送経路において、フロック付着粒子10にせん断力が与えられ、フロックが剥離できるので、別個の剥離部を省くこともできる。
【0010】
付着フロックを浮上性固体粒子から剥離・分離するために、液体サイクロンを利用することも出来る。すなわち、フロック付着粒子10をポンプで液体サイクロンに送り込むと、ポンプを通過する際のせん断力によって、フロックが浮上性固体粒子5から剥離し、サイクロン内で浮上性固体粒子5の比重は水より大幅に小さいので、遠心力でサイクロンの中心部に集まり、比重が1より大きい剥離フロックはサイクロンの外周部に集まるので、浮上性固体粒子5をサイクロンの中心部から抜き出すことによって、剥離フロックと浮上性固体粒子5を容易に分離できる。
【0011】
浮上性固体粒子5としては、発泡スチロール(微粒子)が好適であり、発泡スチロールは比重が非常に小さいので、衝突エネルギ(粒子質量に比例する)が非常に小さく、サイクロンや配管、ポンプが磨耗することがない。
これに対し、砂などの比重が大きい粒子をフロックに付着させてフロックの錘にする公知の凝集沈殿方法において、液体サイクロンで砂を回収する例があるが、砂の激しい流動によってサンドプラスターのようになってしまい、サイクロン、配管、ポンプなどが非常に磨耗しやすい欠点がある。
【0012】
次に、フロック剥離槽13からの流出物を剥離フロック排除部14に供給する。剥離フロック排除部14の上から洗浄水(原水1の一部を利用できる)15を供給し、下から排水17を取り出し、剥離したフロックを排出させ、洗浄された浮上性固体粒子16を、流動槽6に返送する。
【0013】
しかして、洗浄した浮上性固体粒子16の流動槽6への循環量として好適な範囲は、少なすぎると処理水12にリークする未付着フロック量が増加し、多すぎると浮上性固体粒子5の移送、剥離、洗浄量が増加し不利である。したがって、浮上性固体粒子5の循環量は、原水1処理量あたりの「かさ容積」で5〜100(ml浮上性固体粒子/リットル原水程度)が好適で、さらに好ましくは、10〜40(ml浮上性固体粒子/リットル原水)の範囲である。
フロック剥離槽13からの排水は水量が少ないので、CSO処理の場合は、そのまま下水処理場に流し、それ以外の場合は、通常の沈殿槽に供給し、沈殿汚泥を汚泥処理工程にて処理処分するなどすればよい。
【0014】
本発明に適用するために最適な浮上性固体粒子5を種々検討した結果、浮上性固体粒子5の比重として極力小さいものを使用することが大きな浮上分離速度を得るために重要で、比重が0.2以下のものが好適である。特に発泡スチロールなどの発泡プラスチツク微粒子、中でも発泡スチロールは発泡倍率を変えることによって、比重を0.04〜0.15程度と任意に変えることができ、極めて浮上力が大きいこと、低価格で、入手も容易であるので最適である。
【0015】
原水1に添加する浮上性固体粒子5の粒径も重要因子であり、過度に大きいとフロックが浮上性固体粒子に付着しにくくなる問題があり、一方、過度に小さいと浮上速度が小さくなるので、粒径300〜1500μm、さらに好ましくは500〜800μm程度が好適範囲である。
【0016】
硫酸アルミニウム、PAC、塩化第2鉄、硫酸鉄、ポリ硫酸鉄、鉄シリカ凝集剤などの無機凝集剤3の適正添加率は原水1の水質によって変化するが、下水を本発明によって処理する場合は、PACでは100〜150mg/リットル、塩化第2鉄では50〜100mg/リットル程度である。
リン酸イオン、フッ素イオンなどをイオンを除去する場合は、無機凝集剤3の添加は不可欠であるが、それ以外の場合は無機凝集剤3の添加は不可欠ではなく、カチオン系ポリマ単独又はカチオンポリマと両性ポリマの併用、カチオンボリマとアニオンポリマの併用、カチオンポリマとノニオンポリマの併用のいずれかで処理可能である。
【0017】
本発明において、高分子凝集剤(ポリマ)4は浮上性固体粒子5へのフロック付着を行うために不可欠であり、アニオン性、ノニオン性、カチオン性、両性ポリマのいずれか、またはこれらを併用する。下水中の凝集除去対象物質を除去する場合、その注入率は1〜5mg/リットル程度で十分である。
また上水処理の場合は、高分子凝集剤4の添加量は、0.5〜1mg/リットル程度で十分である。
【0018】
最も効果的な凝集方法を検討した結果、原水1に無機凝集剤3又はカチオンポリマ4を添加して撹拌したのち、ノニオンポリマと両性ポリマ、又はアニオンポリマと両性ポリマを添加する方法が、非常に付着性が大きくフロック強度が強いフロックが形成され、極めて効果的に浮上性固体粒子5の表面に凝集フロックを付着させることが出来ることを見出した。
【0019】
前記のように、高分子凝集剤4の添加位置は、浮上性固体粒子5の流動槽6の上部又は原水1流入管に添加するのが、浮上性固体粒子5表面にフロックを効果的に付着させるために非常に効果的であり、したがって、高分子凝集剤4を添加してフロック形成するための撹拌槽を前もって別個に設ける必要はない。
【0020】
他の好適実施例としては、浮上分離物の一部を、そのままポンプで引き抜き原水1に循環させるようにし、浮上分離物の残部だけをフロック剥離部13に送るようにしても良い。このようにすると、フロック付着浮上性粒子5の表面にさらに新たなフロックが雪だるま式に付着してゆく。しかし付着量には上限があるので、浮上分離物の残部をフロック剥離部8に送り、浮上性固体粒子5を洗浄してから原水1に戻すようにする。この方法によれば、フロック剥離槽13に送られる浮上性固体粒子5の量が図1の方法よりも少なくなり、フロック剥離槽13の容積、撹拌機が小さいもので済む。
なお、図1において、2は、無機凝集剤3による原水1中の凝集除去対象物質の凝集槽であり、7は流動槽6の撹拌機の撹拌翼である。
【0021】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこの実施例により何等制限されるものではない。
【0022】
実施例1 合流式下水道の雨天時越流水(CSO)の処理試験
流量50m3/hのCSO(SS 230mg/リットル)に、塩化第2鉄を40mg/リットル添加し、20秒間急速撹拌を行った後、ポリマ(アニオン性ポリマ、分子量1500万、銘柄エバグロースA151)を1.5mg/リットル添加し、2秒間管路撹拌を行ったのち、水中に平均粒径600μm、比重0.1の球状発泡スチロール微粒子を下降流速によって流動状態としている流動槽に供給した。
流動槽は櫂型インペラによって旋回流を与えた。この流動槽の原水滞留時間は15秒とした。この結果、凝集フロックは流動槽を通過する間に、発泡スチロール粒子表面にしっかりと付着コーテングされ、浮上分離された。
流動槽下部からは、下降流速5m/minで清澄な処理水が分離され、系外に流出した。
また流動槽壁下端部からは、フロック付着浮上粒子が、隣接する浮上分離部に自然に移行し、ほぼ瞬間的に浮上した。
【0023】
この浮上物をエアリフトで、フロック剥離槽に移し、回転数450rpmのスクリュー羽根撹拌槽で1〜2分間撹拌させたところ、浮上性固体粒子に付着していたフロックが剥離した。次に剥離フロックと発泡スチロール粒子を剥離フロック排除部に自然流下で移送した。
原水の一部を剥離フロック排除槽の上から洗浄用水として供給し、剥離フロックを系外に流出させた。
このような連続運転を行った結果、処理水SSは安定して8〜12mg/リットルとなり、CSO中のSSが超高速で高度に除去された。
【0024】
比較例1
従来公知の加圧溶解空気を利用する浮上分離装置で試験した。原水は実施例1と同一である。下水(SS 230mg/リットル)に塩化第2鉄を40mg/リットル添加し、30秒間急速撹拌を行った後、ノニオン性ポリマ、分子量1500万、銘柄エバクロースN800を3mg/リットル添加し、1分間急速撹拌したのち、加圧溶解空気を含んだ水を供給し、浮上分離速度200mm/minの浮上分離速度に設定した浮上分離装置に流入させた。この結果、浮上性固体粒子に付着したフロックは緩慢に浮上した。処理水SSは12mg/リットルとなり、下水中のSSが除去された。
しかし浮上速度300mm/minに設定して運転したところ、フロックはほとんど浮上せず、下降流の水流に随伴されて処理水に流出し、処理水SSが185mg/リットルと著しく悪化し処理不能であった。
【0025】
【発明の効果】
本発明によれば、以下の優れた効果が得られる。
(1)従来の気泡による浮上分離法では全く不可能であった、超高速度の固液分離速度で原水中の懸濁粒子、リン酸イオン、色度成分、COD成分など凝集除去対象物質を、浮上分離できる。本発明の固液分離速度は、文字通り驚異的であり、5(m/min)が容易に可能であり、従来の浮上分離法の約50倍の浮上分離速度が可能である。
(2)したがって、合流式下水道の雨天時越流水(CSO)のように、短時間に膨大な水量が発生する原水に極めて好適であり、非常にコンパクトな装置でCSOの懸濁粒子を除去できる。
【0026】
(3)高分子凝集剤を添加してフロック形成させる凝集撹拌槽を、浮上分離装置本体と別個に設置する必要がなく、浮上性固体粒子の流動槽の上部に高分子凝集剤を添加するだけで、浮上性固体粒子の表面にフッロックを効果的に付着させつつ浮上分離できる。したがって装置全体の構成をシンプルに出来、設置面積も縮小できる。
(4)従来の加圧溶解空気浮上分離法で不可欠であった空気コンプレッサ、空気溶解槽などが不要であり、設備費、動力費が削減できる。
(5)浮上分離された浮上性固体粒子は容易に回収して再利用出来、使い捨てる必要がない。
(6)浮上物からのフロック剥離(洗浄)も容易であり、設備費、動力費が少なくて済む。
(7)砂のような比重の大きな粒子をフロックの錘に使用しないので、ポンプ、サイクロン、配管がサンドブラスト効果によって磨耗することがない。
【図面の簡単な説明】
【図1】本発明の浮上分離装置の一実施態様を示す系統図である。
【符号の説明】
1 原水
2 凝集槽
3 無機凝集剤
4 高分子凝集剤
5 浮上性固体粒子
6 流動槽
7 撹拌翼
8 フロック付着粒子循環部
9 エアリフト空気
10 フロック付着粒子
11 処理水分離部
12 処理水
13 フロック剥離槽
14 剥離フロック排除部
15 洗浄水
16 洗浄された浮上性固体粒子
17 排水[0001]
BACKGROUND OF THE INVENTION
The present invention is treated water (hereinafter also referred to as “raw water”) containing substances to be removed such as suspended particles such as industrial wastewater, sewage, and raw water, phosphate ions, fluorine ions, metal ions, chromaticity components, and COD components. ) Is a novel floating technology that can float and separate substances to be removed in raw water at an ultra-high speed 50 times or more than the conventional coagulation sedimentation method or the floating separation method.
INDUSTRIAL APPLICABILITY The present invention is an innovative technology that is particularly suitable as a technology for ultra-high-speed solid-liquid separation of rainwater overflow (abbreviated as CSO) in a combined sewer containing organic suspended particles or sewage flowing into a sewage treatment facility. About.
[0002]
[Prior art]
Recently, the pollution load of public waters due to rainwater overflow (CSO) in the combined sewer has become a major problem. Since rainwater overflow (CSO) in a combined sewer generates a huge amount of water in a short time, a device that can remove CSO contaminants with a very compact device is eagerly desired.
In addition, the sewage flowing into the sewage treatment facility is first precipitated and separated in the settling basin, and then treated with activated sludge. However, since the SS removal rate of the first settling basin is poor, a coagulant is added to the flocculated sedimentation treatment. An example of this is prevalent in Scandinavia. However, this method has a disadvantage that the coagulation sedimentation rate is small and a large sedimentation basin is required. Therefore, an innovative technology that can solid-liquid separate CSO and sewage at an extremely high speed is awaited.
Conventionally, a method is known in which pressurized dissolved air-containing water or fine bubbles are blown into raw water, and suspended particles are attached to the bubbles to float and separate.
[0003]
[Problems to be solved by the invention]
However, the conventional levitation separation method has a drawback that the levitation separation speed is as low as about 100 to 200 mm / min, and additional facilities such as an air compressor and an air melting facility are required.
The present invention has been made based on such a situation, and solves the problems of the conventional floating separation technology, and by simple operations, various raw water such as river water, lake water, drainage, sewage, etc. New floating separation method capable of floating and separating substances to be removed such as suspended particles, phosphate ions, fluorine ions, metal ions, chromaticity components and COD components at an extremely high speed, and which does not require an air dissolution facility, and It is an object to provide an apparatus.
[0004]
[Means for solving problems]
The present invention has solved the above-described problems by the following means.
(1) At least a polymer flocculant is added to the water to be treated containing the substance to be removed, and the floating solid particles are supplied to a fluidized tank in the liquid, and the flocs of the substance to be removed are agglomerated. While adhering to the surface of the buoyant solid particles in the tank, the floc-attached buoyant solid particles are separated from the treated water using its levitation force, and the treated water is taken out from the treated water separation part located at the bottom of the fluidized tank. The separated floc-attached floating solid particles are transferred from the fluidized tank to the floc peeling part, the flocs are peeled off from the floating solid particles, the flaking flocs are excluded from the system, and the floating solid particles separated from the flocs are A flotation separation method characterized by returning to the agglomerated floc adhering portion of the fluidized tank.
[0005]
(2) A fluidized tank in which floating solid particles are present in the liquid and water to be treated containing a polymer flocculant is introduced to attach the aggregated flocs to the surface of the floating solid particles , and floc adhesion and floatability from the fluidized tank A floc peeling tank that receives solid particles and peels off the flocs from the floating solid particles, and an effluent from the floc peeling tank is supplied to wash the floating solid particles from which the flocs have been peeled off to remove the flocs. a cleaning device for discharging, consists of a transport means comprising a passage for returning the washed flying solid particles by the cleaning device at the top of the fluidization vessel, the flow tank, in the tank water and the tank bottom flying solid particles flow section located between the treated water separating unit, the vessel treated water separation section provided on the lower, discharge end of the treatment water disposed on the treated water separation section, and upwardly from said fluidized section before extending toward the It has a passage communicating with flock stripping vessel, flotation device, characterized in that said at flock adhesion flying solid particles in the fluidized section that includes a flock adhesive solid particles circulating unit to send to the flock stripping vessel.
(3) The floating separation apparatus according to (2), wherein a stirrer is provided in the fluidized tank.
(4) Floating separation according to (2) above, wherein the means for transferring the floc-attached floating solid particles in the floc-attached solid particle circulating section from the fluid tank to the floc peeling tank is a pump or an air lift. apparatus.
[0006]
The essence of the present invention is to use “floating solid fine particles” such as expanded polystyrene particles instead of bubbles in the conventional flotation separation method, and add organic polymer flocculant or inorganic flocculant and organic polymer flocculant to raw water. The flocculating solid particle group is supplied to the fluidized tank, and the inside of the tank is caused to flow down as a downward flow. This is a basic technical idea of flotation and separation of flock-attached levitating solid particles at high speed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the ultrahigh-speed levitation separation apparatus of the present invention.
After adding the inorganic flocculant 3 to the raw water 1 and stirring in the flocculant tank 2 for about 30 seconds, the polymer flocculant 4 is added, and the specific gravity is 0.2 or less in the form of fine particles having a particle size of about 50 to 1000 microns ( Preferably, the raw water 1 is supplied to a fluidized tank 6 in which a large number of floating solid particles (for example, polystyrene fine particles) 5 having an extremely high floating force of 0.01 to 0.1) are present, and the floating solid particles are obtained by means of a descending water flow. While 5 is prevented from floating on the water surface, the floating solid particles 5 are caused to flow under the condition that they do not flow into the treated water. In addition, by performing stirring at that time, the descending speed of the descending water flow can be adjusted, and the speed at which the floating solid particles 5 float on the water surface can be changed. Although the descent speed of the lower precipitation stream can be variously changed, a range of 3 to 6 m / min is preferable.
[0008]
Surprisingly, according to the present invention, during a short time (several tens of seconds) of passing through the fluid tank 6, the aggregated micro flocs of the substance to be aggregated and removed in the raw water 1 are formed on the surface of the floating solid particles 5. It has been found that it floats and separates from the treated water while being firmly attached to the coating.
Floating solid particles (also referred to as “floc-adhering particles” for simplicity) 10 to which flocs are attached are automatically transferred from the lower end of the fluid tank wall to the adjacent floating
The floating speed (that is, the descending flow rate of the fluidized tank section 6) of the present invention “in the state in which the substance to be removed in the raw water 1 is attached to the surface of the floating solid particles 5” is extremely large. It is 3 to 6 m / min, which is about 50 times larger than a conventional flotation separation apparatus using pressurized dissolved air bubbles.
[0009]
When the floc-adhering
The preferred types of transfer pumps for washing and floating objects of the present invention are air lift pumps, mixed-jet pumps (which supply air and pressure water to the lower part of the pipe to provide driving force for water), screw pumps, screw conveyors, etc. Is preferred. The air lift pump and the mixed-air jet pump do not require a mechanical rotation mechanism, have a simple structure, and have an important advantage that no blockage occurs during floating object transfer. The screw pump is preferable because the floating solid particles 3 are not blocked in the pump. If a pump (an axial flow pump, a centrifugal pump, etc.) or an air lift is applied as the floc transfer means, a shear force is applied to the
[0010]
A hydrocyclone can also be used to peel and separate the adhering floc from the buoyant solid particles. That is, when the floc-attached
[0011]
As the buoyant solid particles 5, foamed polystyrene (fine particles) is suitable, and the foamed polystyrene has a very small specific gravity, so the collision energy (proportional to the particle mass) is very small, and the cyclone, piping, and pump are worn. Absent.
On the other hand, there is an example in which sand is collected with a hydrocyclone in a known coagulation sedimentation method in which particles such as sand having a large specific gravity are attached to the floc to form a floc weight. As a result, cyclones, pipes, pumps, and the like are subject to wear.
[0012]
Next, the effluent from the floc peeling tank 13 is supplied to the peeling floc removing unit 14. Washing water (a part of the raw water 1 can be used) 15 is supplied from above the peeling floc exclusion section 14 ,
[0013]
Therefore, the range suitable for the circulation amount of the washed floating
Since the amount of water discharged from the floc stripping tank 13 is small, in the case of CSO treatment, it flows directly to the sewage treatment plant. In other cases, it is supplied to a normal sedimentation tank, and the precipitated sludge is disposed of in the sludge treatment process. You can do it.
[0014]
As a result of various investigations on the optimal floating solid particles 5 to be applied to the present invention, it is important to use the smallest possible specific gravity of the floating solid particles 5 in order to obtain a large floating separation speed, and the specific gravity is 0. .2 or less is preferred. In particular, expanded plastic particles such as expanded polystyrene, especially expanded polystyrene, can change the specific gravity from 0.04 to 0.15 arbitrarily by changing the expansion ratio, extremely high levitation force, low price, easy to obtain So it is optimal.
[0015]
The particle size of the floating solid particles 5 added to the raw water 1 is also an important factor. If the particle size is excessively large, there is a problem that the flocs are difficult to adhere to the floating solid particles. The particle size is preferably in the range of about 300 to 1500 μm, more preferably about 500 to 800 μm.
[0016]
The appropriate addition rate of inorganic flocculant 3 such as aluminum sulfate, PAC, ferric chloride, iron sulfate, polyiron sulfate, iron silica flocculant varies depending on the quality of raw water 1, but when treating sewage according to the present invention PAC is about 100 to 150 mg / liter, and ferric chloride is about 50 to 100 mg / liter.
Addition of the inorganic flocculant 3 is indispensable when removing ions such as phosphate ions and fluorine ions, but in other cases, addition of the inorganic flocculant 3 is not indispensable, and the cationic polymer alone or the cationic polymer. And a combination of an amphoteric polymer, a combination of a cationic polymer and an anionic polymer, or a combination of a cationic polymer and a nonionic polymer.
[0017]
In the present invention, the polymer flocculant (polymer) 4 is indispensable for flocking to the floating solid particles 5, and either an anionic, nonionic, cationic or amphoteric polymer or a combination thereof is used. . When removing the target substance for coagulation removal in sewage, an injection rate of about 1 to 5 mg / liter is sufficient.
In addition, in the case of water treatment, it is sufficient that the amount of the polymer flocculant 4 added is about 0.5 to 1 mg / liter.
[0018]
As a result of examining the most effective flocculation method, after adding the inorganic flocculant 3 or the cationic polymer 4 to the raw water 1 and stirring, the method of adding the nonionic polymer and the amphoteric polymer or the anionic polymer and the amphoteric polymer is very It has been found that flocs having high adhesion and high floc strength are formed, and the aggregated flocs can be adhered to the surface of the floating solid particles 5 very effectively.
[0019]
As described above, the addition position of the polymer flocculant 4 is added to the upper part of the flow tank 6 of the floating solid particles 5 or the raw water 1 inflow pipe so that the flocs are effectively attached to the surface of the floating solid particles 5. Therefore, it is not necessary to separately provide a stirring tank for adding the polymer flocculant 4 to form a floc.
[0020]
As another preferred embodiment, a part of the floating separation may be withdrawn as it is and circulated to the raw water 1, and only the remaining part of the floating separation may be sent to the flock peeling unit 13. If it does in this way, a new floc will adhere to the surface of the floc adhesion floating particle 5 like a snowman. However, since there is an upper limit on the amount of adhesion, the remainder of the floating separation is sent to the
In FIG. 1, 2 is a flocculation tank for a substance to be removed by flocculation in the raw water 1 by the inorganic flocculant 3, and 7 is a stirring blade of a stirrer of the fluidized tank 6.
[0021]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
[0022]
Example 1 Treatment test of stormwater overflow (CSO) in combined sewers Ferric chloride was added at 40 mg / liter to CSO (SS 230 mg / liter) at a flow rate of 50 m 3 / h, and rapid stirring was performed for 20 seconds. Thereafter, 1.5 mg / liter of a polymer (anionic polymer,
The fluid tank was swirled by a vertical impeller. The raw water residence time in this fluid tank was 15 seconds. As a result, the agglomerated floc was firmly adhered to the surface of the expanded polystyrene particles while passing through the fluidized tank, and separated by floating.
From the lower part of the fluid tank, clear treated water was separated at a descending flow rate of 5 m / min and flowed out of the system.
Further, from the lower end portion of the fluid tank wall, the floc-attached floating particles naturally moved to the adjacent floating separation portion and floated almost instantaneously.
[0023]
The float was transferred to a floc peeling tank by an air lift and stirred for 1 to 2 minutes in a screw blade stirring tank with a rotation speed of 450 rpm. As a result, the floc adhered to the floating solid particles was peeled off. Next, the peeling floc and the expanded polystyrene particles were transferred to the peeling floc exclusion part under natural flow.
A part of the raw water was supplied as cleaning water from above the peeling floc removal tank, and the peeling floc was discharged out of the system.
As a result of such continuous operation, the treated water SS was stably 8 to 12 mg / liter, and the SS in the CSO was highly removed at a very high speed.
[0024]
Comparative Example 1
It tested with the floating separation apparatus using a conventionally well-known pressurized dissolved air. The raw water is the same as in Example 1. 40 mg / liter of ferric chloride was added to sewage (SS 230 mg / liter), and after rapid stirring for 30 seconds, 3 mg / liter of nonionic polymer,
However, when operating with the ascent rate set at 300 mm / min, the floc hardly floated up, and it flowed into the treated water along with the downward flow, and the treated water SS deteriorated significantly to 185 mg / liter and could not be treated. It was.
[0025]
【The invention's effect】
According to the present invention, the following excellent effects can be obtained.
(1) Aggregate and remove substances such as suspended particles, phosphate ions, chromaticity components, and COD components in raw water at an extremely high solid-liquid separation rate, which was impossible at all by conventional airborne flotation methods. Can float and separate. The solid-liquid separation speed of the present invention is literally astonishing, can easily be 5 (m / min), and can be about 50 times as high as the conventional floating separation method.
(2) Therefore, it is extremely suitable for raw water that generates a huge amount of water in a short time, such as rainwater overflow (CSO) in a combined sewer system, and suspended particles of CSO can be removed with a very compact device. .
[0026]
(3) There is no need to install a flocculent stirring tank for floc formation by adding a polymer flocculant separately from the floating separator main body, and only the polymer flocculant is added to the upper part of the fluidized solid particle flow tank. Thus, floating separation can be achieved while effectively attaching floc to the surface of the floating solid particles. Therefore, the configuration of the entire apparatus can be simplified and the installation area can be reduced.
(4) An air compressor, an air dissolution tank, and the like, which are indispensable in the conventional pressurized dissolved air flotation separation method, are unnecessary, and equipment costs and power costs can be reduced.
(5) The floating solid particles that have been floated and separated can be easily recovered and reused, and do not need to be disposable.
(6) Flock peeling (cleaning) from the levitated object is easy, and equipment costs and power costs can be reduced.
(7) Since particles having a large specific gravity such as sand are not used for the flock weight, the pump, cyclone and piping are not worn by the sandblast effect.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a flotation separation apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Coagulation tank 3 Inorganic flocculant 4 Polymer flocculant 5 Floating solid particle 6 Fluid tank 7
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170293A JP3787774B2 (en) | 2002-06-11 | 2002-06-11 | Floating separation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002170293A JP3787774B2 (en) | 2002-06-11 | 2002-06-11 | Floating separation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004009028A JP2004009028A (en) | 2004-01-15 |
JP3787774B2 true JP3787774B2 (en) | 2006-06-21 |
Family
ID=30436602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002170293A Expired - Fee Related JP3787774B2 (en) | 2002-06-11 | 2002-06-11 | Floating separation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3787774B2 (en) |
-
2002
- 2002-06-11 JP JP2002170293A patent/JP3787774B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004009028A (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5770091A (en) | Method of plain sedimentation and physical-chemical sedimentation of domestic or industrial waste water | |
JP3773169B2 (en) | High speed biological treatment method and apparatus for organic wastewater | |
JP2010527787A (en) | Hydrocyclone floating separator and water pollution control system including the same | |
US7244362B2 (en) | Water treatment by ballasted flocs and degreasing | |
WO1999033541A1 (en) | Coagulation precipitator | |
JP3787774B2 (en) | Floating separation method and apparatus | |
CN103030229B (en) | Oily wastewater treatment device and treatment method in steel industry | |
JP3755756B2 (en) | High-speed solid-liquid separation method and apparatus | |
JP3734163B2 (en) | Ultra-high speed levitation separation method and apparatus | |
JP2004016871A (en) | High-speed floatation separation method and apparatus | |
JP4142508B2 (en) | High speed levitation separation method and apparatus | |
JP4202924B2 (en) | Raw water levitation separation treatment method and levitation separation treatment system | |
CN1312226A (en) | Counter-current air floating water-treating method and apparatus | |
JP2005040709A (en) | High speed levitation separation method and apparatus | |
JP2005007354A (en) | Water treatment method and apparatus | |
JP4142504B2 (en) | High speed levitation separation method and apparatus | |
JP2006035221A (en) | Method and apparatus for high-speed biological treatment of organic sewage | |
JP2003170158A (en) | Method and apparatus for carrying out ultrahigh-speed flotation and filtration | |
KR20020068311A (en) | Apparatus for clarifying water and wastewater | |
JP2004073989A (en) | Method and equipment for high-speed solid-liquid separation of suspension water | |
JP2004025116A (en) | Method and apparatus for cleaning floatable solid particle in floatation separation | |
JP2000000405A (en) | Flocculating and concentrating device and flocculating and concentrating method | |
CN204981223U (en) | Novel cavitation air supporting machine | |
JPH09271754A (en) | Floating separation device | |
CN215855216U (en) | Scum degassing device for air floatation tank and air floatation tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040722 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060315 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3787774 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |