Nothing Special   »   [go: up one dir, main page]

JP3785376B2 - Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability - Google Patents

Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability Download PDF

Info

Publication number
JP3785376B2
JP3785376B2 JP2002096552A JP2002096552A JP3785376B2 JP 3785376 B2 JP3785376 B2 JP 3785376B2 JP 2002096552 A JP2002096552 A JP 2002096552A JP 2002096552 A JP2002096552 A JP 2002096552A JP 3785376 B2 JP3785376 B2 JP 3785376B2
Authority
JP
Japan
Prior art keywords
less
metal part
tensile test
steel
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002096552A
Other languages
Japanese (ja)
Other versions
JP2003293078A (en
Inventor
好男 寺田
卓也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002096552A priority Critical patent/JP3785376B2/en
Publication of JP2003293078A publication Critical patent/JP2003293078A/en
Application granted granted Critical
Publication of JP3785376B2 publication Critical patent/JP3785376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、米国石油協会(API)企画でX100以上(降伏強度で約690MPa以上、引張強度で約760MPa以上)の高強度と優れた溶接熱影響部(HAZ)靭性及び変形能を有する鋼管に関するものである。
【0002】
【従来の技術】
原油・天然ガスを長距離輸送するパイプラインに使用するラインパイプは、(1)高圧下による輸送効率の向上や、(2)薄肉化による現地での溶接効率向上のため、ますます高張力化する傾向にある。これまでにAPI規格でX80までのラインパイプが実用化されているが、さらに高強度のラインパイプに対するニーズがでてきた。現在、X100以上の高強度ラインパイプはX80級ラインパイプの製造法(NKK技報 No.138(1992)、pp.24〜31及びThe 7th offshore Mechanics Arctic Engineering(1988),volume V,pp.179〜185)を基本に検討されているが、これらのラインパイプは低温靭性、特にHAZ靭性の点で問題を抱えており、これらを克服した画期的な高強度鋼管が望まれている。さらに、永久凍土に敷設するパイプラインにおいて凍土の一部が融解と凍結を繰り返すため、パイプライン自体に歪が加わり、延性亀裂の発生を防止できる変形能の大きい、安全性に優れた鋼管が望まれている。
【0003】
低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2)高炭素島状マルテンサイト(M*)、上部ベイナイト(Bu)などの硬化相の分散状態、(3)粒界脆化の有無、(4)元素のミクロ偏析など種々の冶金学的要因に支配される。なかでも、HAZの結晶粒のサイズは低温靭性に大きな影響を与えることが知られており、HAZ組織を微細化する数多くの技術が開発実用化されている。
【0004】
例えば、TiNを微細に分散させ、490MPa級高張力鋼の大入熱溶接時のHAZ靭性を改善する手段が開示されている(「鉄と鋼」(昭和54年6月発行、第65巻第8号1232頁)。しかし、これらの析出物は溶融線近傍においては1400℃以上の高温にさらされるため大部分が粗大化或いは溶解し、HAZ組織が粗大化してHAZ靭性が劣化するという欠点を有する。
【0005】
この問題に対して、鋼中にTi酸化物を微細分散させて、溶接時のHAZにおいて粒内アシキュラーフェライト(以下IGFと呼ぶ)を生成させることにより溶融線近傍のHAZ組織は微細化され、HAZ靭性が改善されることが特開昭63−210235号公報、特開平1−15321号公報などに開示されている。
【0006】
しかしながら、X100以上の高強度になるとTi酸化物からIGFの生成は抑制され、HAZ靭性が劣化するため、X100以上の高強度鋼のHAZ靭性の改善が強く望まれている。
【0007】
一方、変形能に関して、特開平11−279700号公報では、面積分率で10〜50%の下部ベイナイトを含有する対座屈特性に優れた鋼管、特開平11−343542号公報では平均アスペクト比が2〜15である島状マルテンサイトを面積分率で2〜15%含有する耐座屈特性に優れた鋼管が開示されている。
しかしながらいずれも、X100以上の高強度鋼管を対象にしたものではない。また、鋼管の母材について耐局部座屈性を向上させることを目的としたものであり、溶接金属部を含む鋼管或いはパイプラインに関するものではない。
【0008】
【発明が解決しようとする課題】
本発明は良好なHAZ靭性及び優れた変形能を有するX100以上の高強度鋼管及びその製造方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の要旨は、以下のとおりである。
【0010】
(1) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、]
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄及び不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
【0011】
(2) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
【0012】
(3) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Mo
で定義されるQb値が2.0〜3.5の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部および溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
【0013】
(4) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Mo
で定義されるQb値が2.0〜3.5の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部および溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
【0014】
(5) 前記溶接金属が、さらに質量%で、
Cu:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%
のうち1種または2種以上を含有していることを特徴とする上記(1)〜(4)のいずれかに記載の溶接熱影響部靭性および変形能に優れた鋼管。
【0020】
) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある鋳片を950〜1200℃に加熱した後、950℃以下での圧下量を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、550〜700℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
【0021】
) 質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Moで定義されるQb値が2.0〜3.5の範囲にある鋳片を950〜1200℃に加熱した後、950℃以下での圧下量を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、550〜700℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
【0022】
) 鋳片がさらに質量%で、
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有することを特徴とする上記(6)または(7)項に記載の溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
【0023】
【発明の実施の形態】
以下に、本発明の高強度鋼管について詳細に説明する。
【0024】
本発明者らの研究によれば、HAZ靭性は(1)鋼の化学成分、(2)組織(結晶粒の大きさと硬化相の分散状態)に大きく依存し、HAZ靭性を改善するためには、鋼成分の適正化と結晶粒の微細化、特にM*などの硬化相の低減が不可欠であると考えられる。鋼板を内外面溶接して製造する鋼管(例えばUOE鋼管など)は、溶接コスト低減の観点から内面1層、外面1層の溶接が適用される。この場合、内面溶接の溶融線近傍の1400℃以上に加熱され、その後の外面溶接によりAc1点直上に再加熱された領域(粗粒+Ac1部)で、最も靭性が低下すると考えられる。これは、Ac1直上に再加熱された時にオーステナイト(ν)へ変態した領域に炭素(C)が濃縮し、その後の冷却過程でCを多量に含有した高炭素島状マルテンサイト(M*)などの硬化相が多量に生成するためである。M*は多量のCを含有しているので硬く、かつ脆性破壊の発生点になりやすい。
【0025】
鋼を高強度化させるためには、必然的に合金元素の添加量を増加させる必要があるが、粗粒+Ac1部においてM*の生成量が増加し、HAZ靭性は大きく劣化する。そこで、本発明者らは粗粒+Ac1部での靭性の劣化を防止するために、M*の生成を抑制する方法について鋭意検討した結果、(1)鋼管母材のC量を低減することによりAc1直上に再加熱された領域に濃縮するC量を低減することを見出した。さらに、極低C化した場合でも目標とする強度を満足させるために、合金元素の適正な添加量について検討した結果、B無添加鋼の場合にはPb値、B添加鋼の場合にはQb値で定義される値を所定の範囲に限定することにより、強度を確保することができることを見出した。しかしながら、極低C鋼の母材を溶接する場合、溶接金属中のC量が低くなると、δ凝固による高温割れが発生する。また、過度にC量を含有した場合、溶接金属の低温靭性が劣化する。そこで、溶接金属の高温割れを防止し、かつ良好な低温靭性を目標とする強度を満足させる適正なC量、さらには合金元素添加量を見出した。
【0026】
永久凍土に敷設されるパイプラインにおいては、凍土の融解、凍結により3%程度の歪がパイプラインに負荷されるといわれている。この場合、母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であれば、延性亀裂の発生が防止できることを見出した。また、母材の一様伸びを増加させるためには20μm以下のフェライトを5〜50%含有すること、溶接金属の一様伸びを増加させるためには島状マルテンサイトを1〜15%、好ましくは2〜15%含有させることが必要であることを見出した。さらに、母材円周方向の引張試験における降伏強度が689MPa以上(X100以上)の場合、母材管軸方向の引張試験における降伏強度は円周方向の引張試験における降伏強度の0.9倍であれば、実用上問題ないことを見出した。また、鋼管用鋼板の製造法として、650〜800℃の温度範囲で圧延を終了し、700〜850℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することにより、高強度と高一様伸びを両立する鋼板が得られることを見出し、本発明に至った。
【0027】
すなわち、本発明の特徴は、鋼管母材として、極低C−Nb−Ti系成分を適用するに際し、目標とする強度を確保するために、合金元素添加量をPb値またはQb値で定義される適正な範囲に限定すること、及び溶接金属として、高温割れ防止の観点からC量を限定すると共に、目標とする強度を満足させるために、合金元素添加量をPwで定義される適正な範囲に限定すること、さらに優れた変形能を確保するために母材部及び溶接金属部の管軸方向の引張試験の一様伸びを3%以上にすること、大きな一様伸びを得るために母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有すること、溶接金属部に島上マルテンサイトを1〜15%、好ましくは2〜15%含有させること、さらに母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であることにある。
【0028】
まず、鋼管母材の成分限定理由について説明する。
【0029】
Ac1直上に再加熱された領域へのCの濃縮量を低減させるためには、母材のC量は0.003%以下にしなければならない。これは、C量が0.003%を超えると、Ac1直上に加熱された際、オーステナイト(ν)中へのC濃縮量が増加して、その後の冷却過程で高炭素島状マルテンサイト(M*)が生成して脆性破壊の発生点となるためである。
【0030】
HAZ靭性の改善のためには母材のC量を0.003%以下にしなければならないが、目標とするX100以上の強度を満足させるためには、合金元素の添加量の適正化が必要である。すなわち、B無添加鋼の場合には、Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+Vの式で定義されるPb値を2.5〜4.0の範囲にしなければならない。Pb値が2.5未満では目標とするX100以上の強度が確保できない。また、Pb値が4.0を超えるとM*の生成が顕著となり、HAZ靭性が劣化する。このためPb値の範囲を2.5〜4.0に限定した。一方、B添加鋼の場合には、Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Moの式で定義されるQb値を2.0〜3.5の範囲にしなければならない。Qb値が2.0未満では目標とする強度が確保できない。また、Qb値が3.5を超えるとM*の生成が顕著となり、HAZ靭性が劣化する。このためQb値の範囲を2.0〜3.5に限定した。
【0031】
しかし、たとえC量を極力低減し、合金元素の添加量を適正な範囲に限定しても、母材の基本成分が適当でないと優れたHAZ靭性は得られない。以下にその他の基本成分の限定理由について説明する。
【0032】
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると現地溶接性、HAZ靭性を劣化させるので、上限を0.6%とした。鋼の脱酸はTiのみでも十分であり、Siは必ずしも添加する必要はない。
【0033】
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mnが多すぎると鋼の焼入性が増加して現地溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造鋼片の中心偏析を助長し、低温靭性も劣化させるので上限を2.5%とした。
【0034】
Nbは制御圧延時にνの再結晶を抑制して結晶粒を微細化するだけでなく、析出硬化や焼入性の増大にも寄与し、鋼を強靭化する作用を有し、本発明において必須の元素である。この効果を得るためには最低0.01%のNbが必要である。しかしながら、Nb量が多すぎるとHAZ靭性が劣化するので、その上限の値を0.05%に限定した。
【0035】
Tiは微細なTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して、ミクロ組織を微細化して、母材及びHAZの低温靭性を改善し、本発明において必須の元素である。この効果を発揮させるためには、0.005%以上の添加が必要である。また、多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性を劣化させるので、その上限の値を0.03%に限定した。
【0036】
Alは脱酸のために添加する元素であるが、多く添加するとアルミナ系非金属介在物が増加して、鋼の清浄度を劣化させるので、上限を0.05%とした。
【0037】
NはTiNを形成し、スラブ再加熱時及びHAZのν粒の粗大化を抑制して母材、HAZの低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、N量が多すぎるとスラブ表面疵や固溶NによるHAZ靭性の劣化の原因となるので、その上限の値は0.006%に抑える必要がある。
【0038】
本発明において、不可避的不純物であるP、S量を0.015%以下、0.005%以下とする。この主たる理由は母材及びHAZの低温靭性をより一層向上させるためである。P量の低減は連続鋳造スラブの中心偏析を低減させて、粒界破壊を防止し低温靭性を向上させる。また、S量の低減は制御圧延で延伸化したMnSを低減して延性、靭性を向上させる効果がある。
【0039】
つぎにNi、Cu、Cr、Mo、V、Ca、Mgの一種又は二種以上を添加する理由について説明する。基本成分はさらにこれらの元素を添加する主たる目的は本発明鋼の特徴を損なうことなく、強度・低温靭性などの特性の向上をはかるためである。したがってその添加量は自ら制限されるべき性質のものである。
【0040】
Niは溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、低温靭性を向上させるが、0.1%以下では効果が薄く、1.0%以上の添加は溶接性に好ましくないためにその上限の値を1.0%とした。
【0041】
CuはNiとほぼ同様の効果を有すると共に耐食性、耐水素誘起割れ性などにも効果があり、0.1%以上の添加が必要である。しかし、過剰に添加すると析出硬化により母材、HAZ靭性劣化や熱間圧延時にCu−クラックが発生するために、その上限の値を1.2%とした。
【0042】
Crは母材、溶接部の強度を増加させる効果があり、0.1%以上の添加が必要である。しかし、多すぎると現地溶接性やHAZ靭性を著しく劣化させる。このためCr量の上限は1.0%とした。
【0043】
Moは母材及び溶接部の強度を上昇させる元素であるが、1.0%を超えるとCrと同様に母材、HAZ靭性及び溶接性を劣化させる。また、0.1%以下の添加ではその効果が薄い。
【0044】
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して格段に弱い。その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は現地溶接性、HAZ靭性の点から0.1%まで許容できる。
【0045】
Caは硫化物(MnS)の携帯を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させるほか、耐サワー性の向上にも著しい効果を発揮する。0.001%以下ではその効果が薄く、また0.005%を超えて添加するとCaO−CaSが大量に生成してクラスター、大型介在物となり、鋼の清浄度を害するだけでなく、現地溶接性にも悪影響を及ぼす。このためCa添加量を0.001〜0.005%に制限した。
【0046】
MgはAlとMgの微細な酸化物を形成し、この酸化物を生成核として微細なTiNが生成する。このTiNは1400℃以上の高温においても化学的に安定であるので、ν粒の粗大化抑制効果を発揮し、HAZ靭性を向上させる。0.003%以下ではその効果が薄い。また、Mgの添加量が多すぎるとHAZ靭性を劣化させるので、その上限を0.002%に限定した。
【0047】
Bは極微量で鋼の焼入性を飛躍的に高め、良好な強度と靭性が得られる。この効果を発揮させるためには0.0003%以上の添加が必要である。また、多すぎるとHAZ靭性を劣化させるので、その上限の値を0.002%に限定した。
【0048】
つぎに溶接金属の成分限定理由について説明する。
【0049】
溶接金属の高温割れを防止するためには、C量は0.035%以上必要である。0.035%未満では溶接後、凝固する過程でδ凝固が起こり、高温割れが発生するためである。しかしながら、C量が0.08%を超えると、溶接金属の低温靭性が劣化するために、その上限の値を0.08%とした。
【0050】
Siは脱酸や強度向上のため添加する元素であるが、多く添加すると低温靭性や現地溶接性を劣化させるので、上限を0.6%とした。
【0051】
Mnは強度、低温靭性を確保する上で不可欠な元素であり、その下限は1.5%である。しかし、Mnが多すぎると鋼の焼入性が増加して低温靭性や現地溶接性を劣化させるので、上限を2.2%とした。
【0052】
Niを添加する目的は、低温靭性や現地溶接性を劣化させることなく、強度を上昇させるためである。しかし、添加量が多すぎると経済性だけでなく、低温靭性などを劣化させるので、その上限を2.5%、下限を1.0%とした。
【0053】
Crは強度を増加させるが、多すぎると低温靭性や現地溶接性を著しく劣化させる。このため、Cr量の上限を1.5%、下限を0.3%とした。
【0054】
Moを添加する理由は、鋼の焼入性を向上させるためである。この効果を得るためには、Moは最低0.3%必要であるが、好ましくは0.5%である。しかし、過剰なMo添加は低温靭性、現地溶接性を劣化させるので、その上限を1.5%とした。
【0055】
Nbは鋼を強靭化する作用を有し、0.01%以上必要である。しかし、Nbを0.1%以上添加すると現地溶接性や低温靭性に悪影響をもたらすので、その上限を0.1%とした。
【0056】
Ti添加は微細なTiNを形成し、低温靭性を改善する。このようなTiNの効果を発現させるためには、最低0.005%のTi添加が必要である。しかし、Ti量が多すぎるとTiNの粗大化やTiCによる析出硬化が生じ、低温靭性が劣化するので、その上限は0.03%に限定しなければならない。
【0057】
Bは極微量で鋼の焼入性を飛躍的に高める元素である。このような効果を得るためには、Bは最低でも0.0003%必要である。一方、過剰に添加すると、低温靭性を劣化させるだけでなく、かえってBの焼入性向上効果を消失せしめることもあるので、その上限を0.002%とした。
【0058】
Alは、通常脱酸元素として効果を有する。しかし、Al量が0.05%を超えるとAl系非金属介在物が増加して鋼の清浄度を害するので、上限を0.05%とした。
【0059】
NはTiNを形成して低温靭性を向上させる。このために必要な最小量は0.001%である。しかし、多すぎると低温靭性を劣化させるので、その上限は0.01%に抑える必要がある。
【0060】
Oは溶接金属中において酸化物を形成し、粒内変態フェライトの核として作用し、組織の微細化に効果がある。しかし、多すぎると溶接金属の低温靭性が劣化すると共に、スラグ巻きこみなどの溶接欠陥を起こす。このため、O量の下限を0.015%、上限を0.045%とした。
【0061】
さらに本発明では、不純物元素であるP、S量をそれぞれ0.015%以下、0.005%以下とする。この主たる理由は低温靭性をより一層向上させるためである。P量の低減は粒界破壊を防止し、低温靭性を向上させる。また、S量の低減はMnSを低減して、延靭性を向上させる効果がある。
【0062】
つぎにCu、V、Caの一種又は二種以上を添加する理由について説明する。
【0063】
基本となる成分にさらに、必要に応じてこれらの元素を添加する主たる目的は本発明鋼の優れた特徴を損なうことなく、溶接金属の強度・低温靭性などの特性の向上をはかるためである。したがって、その添加量は自ら制限されるべき性質のものである。
【0064】
CuはNiと同様に低温靭性や現地溶接性を劣化させることなく、強度を上昇させる。しかし、過剰に添加すると低温靭性が劣化するので、その上限を1.0%とした。Cuの下限0.1%は添加による材質上の効果が顕著になる最小値である。
【0065】
Vは、ほぼNbと同様の効果を有するが、その効果はNbに比較して弱い。Vは歪誘起析出し、強度を上昇させる。下限は0.01%、その上限は現地溶接性、低温靭性の観点から0.1%まで許容できる。
【0066】
Caは硫化物(MnS)の形態を制御し、低温靭性を向上(シャルピー試験における吸収エネルギーの増加など)させる。しかし、Ca量が0.001%以下では実用上効果がなく、また0.005%を超えて添加するとCaO−CaSが大量に発生して、溶接欠陥を発生させる。このためCa添加量を0.001〜0.005%に限定した。
【0067】
さらに、溶接金属においてもX100以上の強度を満足させるためには、合金元素添加量の適正化が必要である。すなわちPw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nbで定義されるPw値を0.2〜0.35の範囲に制限しなければならない。Pw値が0.2未満ではX100以上の溶接部強度が確保できない。また、Pw値が0.35を超えるとM*の生成が顕著となり、靭性が劣化すると共に、低温割れが発生する。このためPw値の範囲を0.2〜0.35に限定した。
【0068】
つぎに高い変形能を得るための限定理由について以下に述べる。
【0069】
まず、永久凍土に敷設されるパイプラインにおいては、凍土の融解、凍結により3%程度の歪がパイプラインに負荷される場合、母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であれば、3%の歪を負荷しても延性亀裂の枝分かれが起こらず、延性亀裂の発生が防止できるため、母材部及び溶接金属部の一様伸びを3%以上に限定した。
【0070】
母材の一様伸びを増加させるためには20μm以下のフェライトを5〜50%含有することが必要である。20μmを超えると母材の靭性が著しく低下するためである。フェライト分率が5%未満の場合、一様伸びの向上効果が得られないためである。また、50%を超えると十分な強度が得られないため、フェライト分率の含有量を5〜50%に限定した。
【0071】
溶接金属の一様伸びを増加させるためには島状マルテンサイトを1〜15%、好ましくは2〜15%含有させることが必要である。島状マルテンサイトを含有することにより引張試験におけるS−S曲線がラウンド型となり、一様伸びが向上する。島状マルテンサイトが1%未満では一様伸びの向上効果が得られず、15%を超えると溶接金属部の低温靭性が劣化するので、その範囲を1〜15%に限定した。
【0072】
母材円周方向の引張試験における降伏強度が689MPa以上(X100以上)の場合、母材管軸方向の引張試験における降伏強度は円周方向の引張試験における降伏強度の0.9倍以上必要である。母材部にフェライトを導入して一様伸びを向上させる場合、降伏強度の低下が認められる。円周方向の強度は内圧により決定されるが、管軸方向の降伏強度は円周方向の降伏強度の0.9倍以上であれば、実用上問題ない。このため、母材管軸方向の引張試験における降伏強度は円周方向の引張試験における降伏強度の0.9倍以上に限定した。
【0073】
鋼管に使用する鋼板の製造法として、鋳片を950〜1200℃に加熱した後、950℃以下での圧下率を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、550〜700℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却する必要がある。
【0074】
まず、再加熱温度を950〜1200℃の範囲に限定する。再加熱温度はNb析出物を固溶させ、圧延中の組織を微細化し、優れた低温靭性を得るために950℃以上としなければならない。しかし、再加熱温度が1200℃を超えると、ν粒が著しく粗大化し、圧延によっても完全に微細化できないため、優れた低温靭性が得られない。このため再加熱温度の上限を1200℃とした。
【0075】
さらに950℃以下の累積圧下率を50%以上、圧延終了温度を700〜850℃としなければならない。これは、再結晶域圧延で微細化したν粒を低温圧延によって延伸化し、結晶粒の徹底的な微細化をはかって低温靭性を改善するためである。累積圧下率が50%未満ではν組織の延伸化が不十分で、微細な結晶粒が得られない。また、圧延終了温度が850℃以上では、例えば累積圧下率が50%以上でも微細な結晶粒は達成できない。また、圧延温度が低すぎると過度のν/α2相域圧延となり、低温靭性が劣化するので、圧延終了温度の下限を700℃とした。
【0076】
圧延後、鋼板を加速冷却することが必須である。加速冷却は、低温靭性を損なわずに強度の増加及びミクロ組織の制御に基づく一様伸びの向上を可能にする。加速冷却の条件としては、圧延後550〜700℃の温度範囲から冷却速度2℃/秒以上で450℃以下の任意の温度まで冷却し、その後空冷しなければならない。冷却を開始する温度が700℃を超えると、一様伸びが低下する。また、冷却を開始する温度が550℃以下の場合、十分な強度が得られない。したがって、冷却を開始する温度範囲を550〜700℃に限定した。また、冷却速度が小さすぎたり、冷却停止温度が高すぎると加速冷却の効果が十分に得られず、十分な強度を得ることができない。
【0077】
本発明は厚板ミルに適用することが最も好ましいが、ホットコイルにも適用できる(この場合、圧延冷却後の鋼板は巻き取られ、冷却される)。また、この方法で製造した鋼板は低温靭性に優れているので、寒冷地におけるパイプラインのほか圧力容器などにも適用できる。
【0078】
【実施例】
本発明の実施例について述べる。転炉−連続鋳造法で種々の鋼成分の鋼片から製造された鋼板を用いて、鋼管を製造し、諸性質を調査した。鋼管溶接部の特性は内外面の1層のSAW(サブマージドアーク溶接)を実施した後、鋼板1/2t部より採取したシャルピー試験片を用いて評価した。ノッチ位置は溶接金属中央及びHAZ(内面溶接と外面溶接の溶接金属が交わる点から1mm)とした。また、引張試験は直径12.7mm、ゲージレングス50.8mmの丸棒引張試験片を使用した。試験の条件、結果を表1〜7に示す。表1〜4は、鋼管母材と溶接金属の化学成分を示し、表5、6に鋼板製造条件、組織及び鋼管母材の機械的性質を示し、そして、表7に鋼管溶接部の機械的性質を示した。表から明らかなように、本発明の鋼管は優れた強度(YS、TS)、一様伸び(uEl)、低温靭性、溶接部靭性を有する。これに対して比較鋼は化学成分が適切でなく、いずれかの特性が劣る。
【0079】
鋼13は母材のC量が多すぎるため、HAZ靭性が劣る。鋼14は母材のAl量が多すぎるため、HAZ靭性が劣る。鋼15は母材のPb値が低すぎるため、目標の強度を満足しない。鋼16は母材のPb値が高すぎるため、HAZ靭性が劣る。鋼17は母材のQb値が低すぎるため、目標の強度を満足しない。鋼18は母材のQb値が高すぎるため、HAZ靭性が劣る。鋼19は溶接金属のC量が少ないため、溶接金属の高温割れが発生する。鋼20は溶接金属のC量が多すぎるため、溶接金属の低温靭性が劣る。鋼21は溶接金属のPw値が低すぎるため、溶接部の強度が低い。鋼22は溶接金属のPw値が高すぎるため、溶接金属の靭性が劣る。鋼23は20μm以下のフェライト分率が5%未満であるために十分な一様伸びが得られない。鋼24は20μm以下のフェライト分率が50%を超えるために十分な強度が得られない。鋼25は溶接金属の島状マルテンサイト分率が1%未満であるために十分な一様伸びが得られない。鋼26は溶接金属の島状マルテンサイト分率が15%を超えるために溶接金属の靭性が劣化する。鋼27は母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以下であるためにパイプライン敷設時に座屈が発生した。鋼28はスラブ再加熱温度が950℃以下であるために十分な強度と低温靭性が得られない。鋼29はスラブ再加熱温度が1200℃を超えるために優れた低温靭性が得られない。鋼30は950℃以下の圧下量が50%未満であるために良好な低温靭性が得られない。鋼31は圧延終了温度が850℃を超えるために良好な低温靭性が得られない。鋼32は圧延終了温度が700℃未満であるために良好な低温靭性が得られない。鋼33は冷却開始温度が700℃を超えるために良好な一様伸びが得られない。鋼34は冷却開始温度が550℃未満であるために十分な強度が得られない。鋼35は冷却停止温度が450℃を超えるために十分な強度が得られない。鋼36は冷却速度が小さいために十分な強度が得られない。
【0080】
【表1】

Figure 0003785376
【0081】
【表2】
Figure 0003785376
【0082】
【表3】
Figure 0003785376
【0083】
【表4】
Figure 0003785376
【0084】
【表5】
Figure 0003785376
【0085】
【表6】
Figure 0003785376
【0086】
【表7】
Figure 0003785376
【0087】
【発明の効果】
本発明によるHAZ靭性に優れ、高い変形能を有する高強度鋼管(API規格X100以上)をパイプラインに採用することにより、パイプラインの安全性が著しく向上すると共に、輸送効率が飛躍的に改善された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel pipe having high strength of X100 or more (yield strength of about 690 MPa or more, tensile strength of about 760 MPa or more) and excellent weld heat affected zone (HAZ) toughness and deformability as planned by the American Petroleum Institute (API). Is.
[0002]
[Prior art]
Line pipes used for pipelines that transport crude oil and natural gas over long distances are (1) increased in tension due to improved transport efficiency under high pressure and (2) improved local welding efficiency due to thinner walls. Tend to. Up to now, line pipes up to X80 in the API standard have been put into practical use, but there is a need for higher-strength line pipes. At present, high-strength line pipes of X100 or higher are manufactured by a method for producing X80 class line pipes (NKK Technical Report No. 138 (1992), pp. 24-31 and The 7th offshore Mechanical Arctic Engineering (1988), volume V, pp. 179). However, these line pipes have problems in terms of low-temperature toughness, particularly HAZ toughness, and a revolutionary high-strength steel pipe that overcomes these problems is desired. In addition, since a part of the frozen soil repeatedly melts and freezes in the pipeline laid on permafrost, there is a need for a steel tube with high deformability and excellent safety that can prevent the occurrence of ductile cracks by distorting the pipeline itself. It is rare.
[0003]
The HAZ toughness of low alloy steel is (1) grain size, (2) high carbon island martensite (M * ), dispersed state of hardened phase such as upper bainite (Bu), (3) grain boundary embrittlement. (4) It is governed by various metallurgical factors such as elemental microsegregation. Among them, the size of the HAZ crystal grains is known to have a great influence on the low temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.
[0004]
For example, a means to finely disperse TiN and improve the HAZ toughness during high heat input welding of 490 MPa class high-strength steel is disclosed (“Iron and Steel” (published in June 1979, Vol. 65, No. However, since these precipitates are exposed to high temperatures of 1400 ° C. or higher near the melting line, most of them are coarsened or dissolved, and the HAZ structure is coarsened to deteriorate the HAZ toughness. Have.
[0005]
In response to this problem, the HAZ structure near the melting line is refined by finely dispersing Ti oxide in steel and generating intragranular acicular ferrite (hereinafter referred to as IGF) in the HAZ during welding. It is disclosed in Japanese Patent Laid-Open Nos. 63-210235 and 1-15321 that HAZ toughness is improved.
[0006]
However, when the strength becomes higher than X100, the production of IGF from the Ti oxide is suppressed and the HAZ toughness deteriorates. Therefore, improvement of the HAZ toughness of the high strength steel of X100 or higher is strongly desired.
[0007]
On the other hand, regarding deformability, Japanese Patent Application Laid-Open No. 11-279700 discloses a steel pipe containing 10 to 50% of lower bainite in area fraction and excellent in buckling characteristics, and Japanese Patent Application Laid-Open No. 11-343542 has an average aspect ratio of 2. A steel pipe excellent in buckling resistance containing 2 to 15% of island-like martensite in an area fraction of ˜15 is disclosed.
However, none are intended for high-strength steel pipes of X100 or higher. Moreover, it aims at improving local buckling resistance about the base material of a steel pipe, and is not related with the steel pipe or pipeline containing a weld metal part.
[0008]
[Problems to be solved by the invention]
The present invention provides a high-strength steel pipe of X100 or higher having good HAZ toughness and excellent deformability and a method for producing the same.
[0009]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0010]
(1) In mass%,
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less]
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
And the balance is iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A base material having a Pb value defined in the range of 2.5 to 4.0;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in a tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
[0011]
(2) By mass%
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
In addition, Ni: 0.1-1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%,
Mg: 0.0003 to 0.002%
And the balance consists of iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A base material having a Pb value defined in the range of 2.5 to 4.0;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in a tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
[0012]
(3) In mass%,
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
The balance is made of iron and inevitable impurities, and Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo
A base material having a Qb value defined in the range of 2.0 to 3.5;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in the tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
[0013]
(4) By mass%
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
In addition, Ni: 0.1-1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%,
Mg: 0.0003 to 0.002%
And the balance is composed of iron and inevitable impurities, and Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo
A base material having a Qb value defined in the range of 2.0 to 3.5;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in the tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
[0014]
(5) The weld metal is further in mass%,
Cu: 0.1 to 1.0%
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%
The steel pipe excellent in the weld heat affected zone toughness and deformability according to any one of the above (1) to (4), wherein one or more of them are contained.
[0020]
( 6 ) In mass%,
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
And the balance is made of iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
After heating a slab having a Pb value defined by 2.5 to 4.0 to 950 to 1200 ° C., the reduction at 950 ° C. or less is set to 50% or more, and a temperature range of 700 to 850 ° C. After the rolling is finished, the weld heat affected zone toughness and deformation are characterized by cooling from a temperature range of 550 to 700 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more and then air cooling. A manufacturing method for steel plates for steel pipes with excellent performance.
[0021]
( 7 ) By mass%
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
The balance is made of iron and inevitable impurities, and a slab having a Qb value defined by Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo in the range of 2.0 to 3.5 is 950 after heating to 1200 ° C., the reduction ratio at 950 ° C. or less and 50% or more, after completion of the rolling at a temperature range of 700-850 ° C., the cooling rate of 2 ° C. / sec or more from the temperature range of 550 to 700 ° C. A method for producing a steel plate for a steel pipe excellent in weld heat-affected zone toughness and deformability, characterized in that it is cooled to an arbitrary temperature of 450 ° C. or lower and then air cooled.
[0022]
( 8 ) The slab is further mass%,
Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%,
Mg: 0.0003 to 0.002%
The manufacturing method of the steel plate for steel pipes excellent in the weld heat affected zone toughness and deformability as described in said (6) or (7) characterized by containing 1 type or 2 types or more.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Below, the high-strength steel pipe of this invention is demonstrated in detail.
[0024]
According to the study by the present inventors, the HAZ toughness largely depends on (1) the chemical composition of the steel and (2) the structure (the size of the crystal grains and the dispersion state of the hardened phase), and in order to improve the HAZ toughness Therefore, it is considered indispensable to optimize steel components and refine crystal grains, particularly to reduce the hardened phase such as M * . For steel pipes manufactured by welding inner and outer surfaces of steel plates (for example, UOE steel pipes), welding of one inner layer and one outer surface is applied from the viewpoint of reducing welding costs. In this case, it is considered that the toughness is most lowered in a region (coarse grains + Ac1 part) heated to 1400 ° C. or more in the vicinity of the melting line of the inner surface welding and reheated immediately above the Ac1 point by the subsequent outer surface welding. This is because carbon (C) is concentrated in a region transformed into austenite (ν) when reheated immediately above Ac1, and high carbon island martensite (M * ) containing a large amount of C in the subsequent cooling process. This is because a large amount of the cured phase is generated. Since M * contains a large amount of C, it is hard and easily becomes a point of occurrence of brittle fracture.
[0025]
In order to increase the strength of steel, it is inevitably necessary to increase the amount of alloying element added. However, the amount of M * produced increases in coarse grains and Ac1 part, and the HAZ toughness deteriorates greatly. Therefore, as a result of intensive studies on a method for suppressing the generation of M * in order to prevent the deterioration of toughness in the coarse particles and Ac1 part, the present inventors have (1) By reducing the C content of the steel pipe base material. It has been found that the amount of C concentrated in the region reheated immediately above Ac1 is reduced. Furthermore, in order to satisfy the target strength even when the temperature is made extremely low, the appropriate addition amount of the alloy element was examined. As a result, the Pb value in the case of B-free steel and the Qb in the case of B-added steel. It has been found that the strength can be ensured by limiting the value defined by the value to a predetermined range. However, when welding a base material of extremely low C steel, if the amount of C in the weld metal decreases, hot cracking due to δ solidification occurs. Moreover, when it contains C amount excessively, the low temperature toughness of a weld metal will deteriorate. Accordingly, the inventors have found an appropriate amount of C that prevents the hot cracking of the weld metal and satisfies the target strength of good low temperature toughness, and further an amount of alloying element added.
[0026]
In a pipeline laid on permafrost, it is said that a strain of about 3% is applied to the pipeline due to the melting and freezing of the frozen soil. In this case, it was found that if the uniform elongation in the tensile test in the tube axis direction of the base metal part and the weld metal part is 3% or more, the occurrence of ductile cracks can be prevented. Further, in order to increase the uniform elongation of the base metal, 5 to 50% of ferrite of 20 μm or less is contained, and in order to increase the uniform elongation of the weld metal, 1-15% of island martensite, preferably Has been found to contain 2 to 15%. Furthermore, when the yield strength in the tensile test in the base material circumferential direction is 689 MPa or more (X100 or more), the yield strength in the tensile test in the base material pipe axis direction is 0.9 times the yield strength in the tensile test in the circumferential direction. I found that there was no problem in practical use. Moreover, as a manufacturing method of the steel plate for steel pipes, rolling is finished in a temperature range of 650 to 800 ° C., and is cooled from a temperature range of 700 to 850 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more. Then, it was found that a steel sheet having both high strength and high uniform elongation can be obtained by air cooling thereafter, and the present invention has been achieved.
[0027]
That is, the feature of the present invention is that the alloy element addition amount is defined by the Pb value or the Qb value in order to ensure the target strength when applying an extremely low C—Nb—Ti-based component as the steel pipe base material. In order to limit the C amount from the viewpoint of preventing hot cracking and to satisfy the target strength, the alloy element addition amount is an appropriate range defined by Pw. In order to ensure excellent deformability, the uniform elongation in the tensile test in the tube axis direction of the base metal part and the weld metal part should be 3% or more, and in order to obtain a large uniform elongation The metal structure contains 5-50% ferrite having a particle size of 20 μm or less, the weld metal part contains 1-15%, preferably 2-15% of martensite on the island, and the circumference of the base material part. In direction tensile test Fushimi strength 689MPa or more, and in that the yield strength in the tensile test Hahazai section tube axis direction is not less than 0.9 times the yield strength in a tensile test in the circumferential direction.
[0028]
First, the reasons for limiting the components of the steel pipe base material will be described.
[0029]
In order to reduce the concentration of C in the region reheated immediately above Ac1, the C content of the base material must be 0.003% or less. This is because when the amount of C exceeds 0.003%, the amount of C enriched in austenite (ν) increases when heated just above Ac1, and high carbon island martensite (M This is because * ) is generated and becomes a point of occurrence of brittle fracture.
[0030]
In order to improve HAZ toughness, the C content of the base material must be 0.003% or less, but in order to satisfy the target strength of X100 or more, it is necessary to optimize the addition amount of the alloy element. is there. That is, in the case of B-free steel, the Pb value defined by the formula Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V must be in the range of 2.5 to 4.0. If the Pb value is less than 2.5, the target strength of X100 or more cannot be secured. On the other hand, when the Pb value exceeds 4.0, the generation of M * becomes remarkable and the HAZ toughness deteriorates. For this reason, the range of Pb value was limited to 2.5-4.0. On the other hand, in the case of B-added steel, the Qb value defined by the formula Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo must be in the range of 2.0 to 3.5. If the Qb value is less than 2.0, the target strength cannot be ensured. On the other hand, when the Qb value exceeds 3.5, the generation of M * becomes remarkable and the HAZ toughness deteriorates. For this reason, the range of Qb value was limited to 2.0-3.5.
[0031]
However, even if the amount of C is reduced as much as possible and the addition amount of the alloy element is limited to an appropriate range, excellent HAZ toughness cannot be obtained unless the basic components of the base material are appropriate. The reasons for limiting other basic components will be described below.
[0032]
Si is an element added for deoxidation and strength improvement, but if added in large amounts, the field weldability and the HAZ toughness deteriorate, so the upper limit was made 0.6%. For the deoxidation of steel, Ti alone is sufficient, and Si does not necessarily have to be added.
[0033]
Mn is an indispensable element for securing strength and low temperature toughness, and its lower limit is 0.8%. However, if Mn is too much, not only the hardenability of the steel is increased and the on-site weldability and HAZ toughness are deteriorated, but also the center segregation of continuously cast steel pieces is promoted and the low temperature toughness is also deteriorated. 5%.
[0034]
Nb not only suppresses recrystallization of ν during controlled rolling and refines the crystal grains, but also contributes to precipitation hardening and hardenability, and has the effect of strengthening the steel and is essential in the present invention. Elements. In order to obtain this effect, a minimum of 0.01% Nb is required. However, if the amount of Nb is too large, the HAZ toughness deteriorates, so the upper limit value was limited to 0.05%.
[0035]
Ti forms fine TiN, suppresses coarsening of ν grains in slab reheating and HAZ, refines microstructure, improves low temperature toughness of base material and HAZ, and is an essential element in the present invention. It is. In order to exhibit this effect, addition of 0.005% or more is necessary. On the other hand, if it is too much, coarsening of TiN and precipitation hardening due to TiC occur and the low temperature toughness is deteriorated, so the upper limit value is limited to 0.03%.
[0036]
Al is an element added for deoxidation, but if added in a large amount, alumina-based nonmetallic inclusions increase and the cleanliness of the steel deteriorates, so the upper limit was made 0.05%.
[0037]
N forms TiN and suppresses coarsening of ν grains of HAZ during reheating of the slab and improves the low temperature toughness of the base material and HAZ. The minimum amount required for this is 0.001%. However, if the amount of N is too large, HAZ toughness is deteriorated due to slab surface flaws or solute N, so the upper limit value must be limited to 0.006%.
[0038]
In the present invention, the amounts of P and S, which are inevitable impurities, are set to 0.015% or less and 0.005% or less. The main reason is to further improve the low temperature toughness of the base material and the HAZ. The reduction of the P content reduces the center segregation of the continuously cast slab, prevents the grain boundary fracture and improves the low temperature toughness. Further, the reduction of the amount of S has the effect of reducing ductility and toughness by reducing MnS stretched by controlled rolling.
[0039]
Next, the reason for adding one or more of Ni, Cu, Cr, Mo, V, Ca, and Mg will be described. The main purpose of adding these elements as basic components is to improve properties such as strength and low-temperature toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be restricted by itself.
[0040]
Ni improves the strength and low temperature toughness of the base metal without adversely affecting weldability and HAZ toughness, but is less effective at 0.1% or less, and addition of 1.0% or more is not preferable for weldability. The upper limit value was 1.0%.
[0041]
Cu has substantially the same effect as Ni, and is also effective in corrosion resistance, resistance to hydrogen-induced cracking, and the like, and it is necessary to add 0.1% or more. However, when added excessively, Cu-cracks are generated during precipitation hardening due to precipitation hardening and HAZ toughness, and the upper limit value was set to 1.2%.
[0042]
Cr has the effect of increasing the strength of the base metal and the welded portion, and it is necessary to add 0.1% or more. However, if too much, field weldability and HAZ toughness are significantly deteriorated. For this reason, the upper limit of the Cr amount is set to 1.0%.
[0043]
Mo is an element that increases the strength of the base metal and the welded portion. However, if it exceeds 1.0%, the base metal, the HAZ toughness and the weldability are deteriorated similarly to Cr. In addition, the effect is small when 0.1% or less is added.
[0044]
V has substantially the same effect as Nb, but the effect is much weaker than Nb. In order to exhibit the effect, addition of 0.01% or more is necessary. Further, the upper limit is allowable up to 0.1% from the viewpoint of on-site weldability and HAZ toughness.
[0045]
Ca controls the carrying of sulfide (MnS) and improves low-temperature toughness (increase of absorbed energy in the Charpy test, etc.), and also exhibits a remarkable effect in improving sour resistance. If the amount is less than 0.001%, the effect is small, and if added over 0.005%, a large amount of CaO-CaS is formed, resulting in clusters and large inclusions. It also has an adverse effect. For this reason, the amount of Ca added is limited to 0.001 to 0.005%.
[0046]
Mg forms fine oxides of Al and Mg, and fine TiN is produced using this oxide as a production nucleus. Since this TiN is chemically stable even at a high temperature of 1400 ° C. or higher, it exhibits the effect of suppressing the coarsening of ν grains and improves the HAZ toughness. Less than 0.003% is less effective. Moreover, since the HAZ toughness is deteriorated when the amount of Mg added is too large, the upper limit is limited to 0.002%.
[0047]
B is a very small amount, which dramatically enhances the hardenability of the steel and provides good strength and toughness. In order to exert this effect, 0.0003% or more must be added. Moreover, since HAZ toughness will deteriorate when there is too much, the upper limit was limited to 0.002%.
[0048]
Next, the reasons for limiting the components of the weld metal will be described.
[0049]
In order to prevent hot cracking of the weld metal, the C content needs to be 0.035% or more. If it is less than 0.035%, δ solidification occurs in the process of solidification after welding, and hot cracking occurs. However, if the C content exceeds 0.08%, the low temperature toughness of the weld metal deteriorates, so the upper limit value was made 0.08%.
[0050]
Si is an element added for deoxidation and strength improvement, but if added in a large amount, the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 0.6%.
[0051]
Mn is an essential element for securing strength and low temperature toughness, and its lower limit is 1.5%. However, if there is too much Mn, the hardenability of the steel increases and the low temperature toughness and on-site weldability deteriorate, so the upper limit was made 2.2%.
[0052]
The purpose of adding Ni is to increase the strength without deteriorating the low temperature toughness and on-site weldability. However, if the addition amount is too large, not only the economical efficiency but also the low temperature toughness is deteriorated. Therefore, the upper limit is set to 2.5% and the lower limit is set to 1.0%.
[0053]
Cr increases the strength, but if it is too much, the low temperature toughness and on-site weldability deteriorate significantly. For this reason, the upper limit of the Cr amount is 1.5%, and the lower limit is 0.3%.
[0054]
The reason for adding Mo is to improve the hardenability of the steel. In order to obtain this effect, Mo needs to be at least 0.3%, preferably 0.5%. However, excessive addition of Mo deteriorates low temperature toughness and on-site weldability, so the upper limit was made 1.5%.
[0055]
Nb has an effect of strengthening steel and needs to be 0.01% or more. However, adding 0.1% or more of Nb adversely affects on-site weldability and low-temperature toughness, so the upper limit was made 0.1%.
[0056]
Ti addition forms fine TiN and improves low temperature toughness. In order to exhibit such an effect of TiN, it is necessary to add at least 0.005% Ti. However, if the amount of Ti is too large, TiN coarsening and precipitation hardening due to TiC occur and the low temperature toughness deteriorates, so the upper limit must be limited to 0.03%.
[0057]
B is an element that greatly increases the hardenability of steel in a very small amount. In order to obtain such an effect, B must be at least 0.0003%. On the other hand, if added excessively, not only the low temperature toughness is deteriorated, but also the effect of improving the hardenability of B may be lost, so the upper limit was made 0.002%.
[0058]
Al usually has an effect as a deoxidizing element. However, if the Al content exceeds 0.05%, Al-based non-metallic inclusions increase to impair the cleanliness of the steel, so the upper limit was made 0.05%.
[0059]
N forms TiN and improves low temperature toughness. The minimum amount required for this is 0.001%. However, if the amount is too large, the low temperature toughness is deteriorated, so the upper limit must be suppressed to 0.01%.
[0060]
O forms an oxide in the weld metal, acts as a nucleus of intragranular transformed ferrite, and is effective in refining the structure. However, if the amount is too large, the low temperature toughness of the weld metal deteriorates and welding defects such as slag entrainment occur. For this reason, the lower limit of the amount of O is set to 0.015%, and the upper limit is set to 0.045%.
[0061]
Further, in the present invention, the amounts of impurity elements P and S are set to 0.015% or less and 0.005% or less, respectively. The main reason is to further improve the low temperature toughness. Reduction of the P content prevents grain boundary fracture and improves low temperature toughness. Moreover, reduction of the amount of S has the effect of reducing MnS and improving ductility.
[0062]
Next, the reason for adding one or more of Cu, V, and Ca will be described.
[0063]
In addition to the basic components, the main purpose of adding these elements as necessary is to improve properties such as strength and low temperature toughness of the weld metal without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is a property that should be restricted by itself.
[0064]
Cu, like Ni, increases strength without deteriorating low-temperature toughness and on-site weldability. However, if added excessively, the low temperature toughness deteriorates, so the upper limit was made 1.0%. The lower limit of 0.1% of Cu is the minimum value at which the effect on the material due to addition becomes remarkable.
[0065]
V has almost the same effect as Nb, but the effect is weaker than that of Nb. V causes strain-induced precipitation and increases the strength. The lower limit is 0.01%, and the upper limit is acceptable up to 0.1% from the viewpoint of on-site weldability and low temperature toughness.
[0066]
Ca controls the form of sulfide (MnS) and improves low-temperature toughness (such as an increase in absorbed energy in the Charpy test). However, when the Ca content is 0.001% or less, there is no practical effect. When the Ca content exceeds 0.005%, a large amount of CaO—CaS is generated and a weld defect is generated. For this reason, Ca addition amount was limited to 0.001 to 0.005%.
[0067]
Furthermore, in order to satisfy the strength of X100 or more in the weld metal, it is necessary to optimize the addition amount of the alloy element. That is, the Pw value defined by Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb must be limited to a range of 0.2 to 0.35. When the Pw value is less than 0.2, the weld strength of X100 or more cannot be ensured. On the other hand, when the Pw value exceeds 0.35, the generation of M * becomes remarkable, the toughness is deteriorated, and low temperature cracking occurs. For this reason, the range of Pw value was limited to 0.2-0.35.
[0068]
Next, the reason for limitation for obtaining high deformability will be described below.
[0069]
First, in a pipeline laid on permafrost, when a strain of about 3% is applied to the pipeline due to the melting and freezing of the frozen soil, it is uniform in the tensile test in the tube axis direction of the base metal part and the weld metal part. If the elongation is 3% or more, even if a strain of 3% is applied, the branching of ductile cracks will not occur, and the occurrence of ductile cracks can be prevented, so the uniform elongation of the base metal part and the weld metal part is 3% or more. Limited to.
[0070]
In order to increase the uniform elongation of the base material, it is necessary to contain 5-50% of ferrite of 20 μm or less. This is because if it exceeds 20 μm, the toughness of the base material is significantly reduced. This is because when the ferrite fraction is less than 5%, the effect of improving uniform elongation cannot be obtained. Moreover, since sufficient intensity | strength is not obtained when it exceeds 50%, content of the ferrite fraction was limited to 5 to 50%.
[0071]
In order to increase the uniform elongation of the weld metal, it is necessary to contain 1 to 15%, preferably 2 to 15% of island martensite. By containing island martensite, the SS curve in a tensile test becomes a round type, and uniform elongation improves. If island-like martensite is less than 1%, the effect of improving uniform elongation cannot be obtained, and if it exceeds 15%, the low temperature toughness of the weld metal part deteriorates, so the range was limited to 1 to 15%.
[0072]
When the yield strength in the tensile test in the circumferential direction of the base metal is 689 MPa or more (X100 or more), the yield strength in the tensile test in the direction of the base pipe axis must be 0.9 times the yield strength in the tensile test in the circumferential direction. is there. When ferrite is introduced into the base material to improve uniform elongation, a decrease in yield strength is observed. Although the strength in the circumferential direction is determined by the internal pressure, there is no practical problem as long as the yield strength in the tube axis direction is 0.9 times or more the yield strength in the circumferential direction. For this reason, the yield strength in the tensile test in the base tube axis direction is limited to 0.9 times the yield strength in the tensile test in the circumferential direction.
[0073]
As a manufacturing method of a steel plate used for a steel pipe, after heating a slab to 950 to 1200 ° C., setting the rolling reduction at 950 ° C. or less to 50% or more and finishing rolling in a temperature range of 700 to 850 ° C., 550 It is necessary to cool from a temperature range of ˜700 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more.
[0074]
First, the reheating temperature is limited to a range of 950 to 1200 ° C. The reheating temperature must be 950 ° C. or higher in order to dissolve Nb precipitates, refine the structure during rolling, and obtain excellent low temperature toughness. However, when the reheating temperature exceeds 1200 ° C., the ν grains become extremely coarse and cannot be completely miniaturized even by rolling, so that excellent low temperature toughness cannot be obtained. For this reason, the upper limit of the reheating temperature was set to 1200 ° C.
[0075]
Furthermore, the cumulative rolling reduction at 950 ° C. or less must be 50% or more, and the rolling end temperature must be 700 to 850 ° C. This is because the ν grains refined by recrystallization zone rolling are stretched by low-temperature rolling, and the crystal grains are thoroughly refined to improve low-temperature toughness. If the cumulative rolling reduction is less than 50%, the extension of the ν structure is insufficient and fine crystal grains cannot be obtained. Further, if the rolling end temperature is 850 ° C. or higher, fine crystal grains cannot be achieved even if the cumulative rolling reduction is 50% or higher, for example. Further, if the rolling temperature is too low, excessive ν / α2 phase rolling occurs and the low temperature toughness deteriorates, so the lower limit of the rolling end temperature was set to 700 ° C.
[0076]
After rolling, it is essential to cool the steel plate at an accelerated rate. Accelerated cooling allows for increased strength and improved uniform elongation based on microstructure control without compromising low temperature toughness. As a condition for accelerated cooling, it must be cooled from a temperature range of 550 to 700 ° C. after rolling to an arbitrary temperature of 450 ° C. or lower at a cooling rate of 2 ° C./second or higher, and then air-cooled. When the temperature at which cooling starts exceeds 700 ° C., the uniform elongation decreases. Further, when the temperature at which cooling is started is 550 ° C. or less, sufficient strength cannot be obtained. Therefore, the temperature range which starts cooling was limited to 550-700 degreeC. Further, if the cooling rate is too low or the cooling stop temperature is too high, the effect of accelerated cooling cannot be obtained sufficiently, and sufficient strength cannot be obtained.
[0077]
The present invention is most preferably applied to a thick plate mill, but can also be applied to a hot coil (in this case, the steel sheet after rolling and cooling is wound and cooled). Moreover, since the steel plate manufactured by this method is excellent in low temperature toughness, it can be applied to a pressure vessel as well as a pipeline in a cold region.
[0078]
【Example】
Examples of the present invention will be described. Steel tubes manufactured from steel pieces of various steel components by a converter-continuous casting method were used to manufacture steel pipes, and various properties were investigated. The characteristics of the steel pipe welded part were evaluated using a Charpy test piece taken from a 1/2 t part of the steel sheet after performing SAW (submerged arc welding) of one layer on the inner and outer surfaces. The notch positions were the center of the weld metal and HAZ (1 mm from the point where the weld metal of the inner surface welding and the outer surface welding intersected). The tensile test used a round bar tensile test piece having a diameter of 12.7 mm and a gauge length of 50.8 mm. Tables 1 to 7 show the test conditions and results. Tables 1 to 4 show the chemical composition of the steel pipe base material and the weld metal, Tables 5 and 6 show the steel plate manufacturing conditions, structure and mechanical properties of the steel pipe base material, and Table 7 shows the mechanical properties of the steel pipe weld. Showed the nature. As is clear from the table, the steel pipe of the present invention has excellent strength (YS, TS), uniform elongation (uEl), low temperature toughness, and weld zone toughness. On the other hand, the chemical composition of the comparative steel is not appropriate, and any of the characteristics is inferior.
[0079]
Steel 13 is inferior in HAZ toughness because the amount of C in the base material is too large. Steel 14 is inferior in HAZ toughness because the amount of Al in the base material is too large. Steel 15 does not satisfy the target strength because the Pb value of the base material is too low. Steel 16 is inferior in HAZ toughness because the Pb value of the base material is too high. Steel 17 does not satisfy the target strength because the Qb value of the base material is too low. Steel 18 is inferior in HAZ toughness because the Qb value of the base material is too high. Since the steel 19 has a small amount of C in the weld metal, hot cracking of the weld metal occurs. Since the steel 20 has too much C amount of the weld metal, the low temperature toughness of the weld metal is inferior. Since the Pw value of the weld metal is too low, the strength of the welded portion is low. Steel 22 is inferior in toughness of the weld metal because the Pw value of the weld metal is too high. Steel 23 has a ferrite fraction of 20 μm or less and less than 5%, so that sufficient uniform elongation cannot be obtained. In steel 24, the ferrite fraction of 20 μm or less exceeds 50%, so that sufficient strength cannot be obtained. In Steel 25, the island-like martensite fraction of the weld metal is less than 1%, so that sufficient uniform elongation cannot be obtained. In steel 26, the welded metal toughness deteriorates because the island-like martensite fraction of the weld metal exceeds 15%. Steel 27 was buckled when laying the pipeline because the yield strength in the tensile test in the tube axis direction of the base metal part was 0.9 times or less than the yield strength in the tensile test in the circumferential direction. Since the steel 28 has a slab reheating temperature of 950 ° C. or lower, sufficient strength and low temperature toughness cannot be obtained. Since the slab reheating temperature of the steel 29 exceeds 1200 ° C., excellent low temperature toughness cannot be obtained. Steel 30 cannot obtain good low temperature toughness because the amount of reduction at 950 ° C. or less is less than 50%. Since the rolling end temperature of steel 31 exceeds 850 ° C., good low temperature toughness cannot be obtained. Since the rolling end temperature of the steel 32 is less than 700 ° C., good low temperature toughness cannot be obtained. The steel 33 cannot obtain a uniform elongation because its cooling start temperature exceeds 700 ° C. Since the steel 34 has a cooling start temperature of less than 550 ° C., sufficient strength cannot be obtained. Steel 35 cannot obtain sufficient strength because the cooling stop temperature exceeds 450 ° C. Since the steel 36 has a low cooling rate, sufficient strength cannot be obtained.
[0080]
[Table 1]
Figure 0003785376
[0081]
[Table 2]
Figure 0003785376
[0082]
[Table 3]
Figure 0003785376
[0083]
[Table 4]
Figure 0003785376
[0084]
[Table 5]
Figure 0003785376
[0085]
[Table 6]
Figure 0003785376
[0086]
[Table 7]
Figure 0003785376
[0087]
【The invention's effect】
By adopting a high strength steel pipe (API standard X100 or higher) having excellent HAZ toughness and high deformability according to the present invention in the pipeline, the safety of the pipeline is remarkably improved and the transportation efficiency is dramatically improved. It was.

Claims (8)

質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄及び不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
And the balance is iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A base material having a Pb value defined in the range of 2.5 to 4.0;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in a tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部及び溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
In addition, Ni: 0.1-1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%,
Mg: 0.0003 to 0.002%
And the balance consists of iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
A base material having a Pb value defined in the range of 2.5 to 4.0;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in a tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Mo
で定義されるQb値が2.0〜3.5の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部および溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
The balance is made of iron and inevitable impurities, and Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo
A base material having a Qb value defined in the range of 2.0 to 3.5;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in the tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
を含有し、さらに
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Mo
で定義されるQb値が2.0〜3.5の範囲にある母材と、
C:0.035〜0.08%、
Si:0.6%以下、
Mn:1.5〜2.2%、
P:0.015%以下、
S:0.005%以下、
Ni:1.0〜2.5%、
Cr:0.3〜1.5%、
Mo:0.3〜1.5%、
Nb:0.01〜0.1%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.01%、
O:0.015〜0.045%
を含有し、残部が鉄および不可避的不純物からなり、かつ
Pw=C+0.11Si+0.03Mn+0.02Ni+0.04Cr+0.07Mo+1.46Nb
で定義されるPw値が0.2〜0.35の範囲にある溶接金属部を有し、
母材部の金属組織が粒径20μm以下のフェライトを5〜50%含有し、
さらに溶接金属部に島状マルテンサイトを 1 〜15%含有し、
母材部円周方向の引張試験における降伏強度が689MPa以上、かつ母材部管軸方向の引張試験における降伏強度が円周方向の引張試験における降伏強度の0.9倍以上であり、
母材部および溶接金属部の管軸方向の引張試験における一様伸びが3%以上であることを特徴とする溶接熱影響部靱性および変形能に優れた鋼管。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
In addition, Ni: 0.1-1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%,
Mg: 0.0003 to 0.002%
And the balance is composed of iron and inevitable impurities, and Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo
A base material having a Qb value defined in the range of 2.0 to 3.5;
C: 0.035 to 0.08%,
Si: 0.6% or less,
Mn: 1.5-2.2%,
P: 0.015% or less,
S: 0.005% or less,
Ni: 1.0-2.5%,
Cr: 0.3 to 1.5%,
Mo: 0.3 to 1.5%,
Nb: 0.01 to 0.1%,
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.01%,
O: 0.015-0.045%
And the balance consists of iron and inevitable impurities, and Pw = C + 0.11Si + 0.03Mn + 0.02Ni + 0.04Cr + 0.07Mo + 1.46Nb
Having a weld metal part with a Pw value defined in the range of 0.2 to 0.35,
The metal structure of the base material part contains 5-50% of ferrite having a particle size of 20 μm or less,
The island martensite containing 1-15% more weld metal,
The yield strength in the tensile test in the circumferential direction of the base metal part is 689 MPa or more, and the yield strength in the tensile test in the pipe axis direction of the base metal part is 0.9 times or more of the yield strength in the tensile test in the circumferential direction,
A steel pipe excellent in weld heat affected zone toughness and deformability, characterized in that the uniform elongation in the tensile test in the pipe axis direction of the base metal part and the weld metal part is 3% or more.
前記溶接金属が、さらに質量%で、
Cu:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.001〜0.005%
のうち1種または2種以上を含有していることを特徴とする請求項1〜4のいずれかに記載の溶接熱影響部靭性および変形能に優れた鋼管。
The weld metal is further mass%,
Cu: 0.1 to 1.0%
V: 0.01 to 0.1%
Ca: 0.001 to 0.005%
The steel pipe excellent in the weld heat affected zone toughness and deformability according to any one of claims 1 to 4, wherein one or more of them are contained.
質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Pb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+Mo+V
で定義されるPb値が2.5〜4.0の範囲にある鋳片を950〜1200℃に加熱した後、950℃以下での圧下量を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、550〜700℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
Al: 0.05% or less,
N: 0.001 to 0.006%
And the balance is made of iron and inevitable impurities, and Pb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + Mo + V
After heating a slab having a Pb value defined by 2.5 to 4.0 to 950 to 1200 ° C., the reduction at 950 ° C. or less is set to 50% or more, and a temperature range of 700 to 850 ° C. After the rolling is finished, the weld heat affected zone toughness and deformation are characterized by cooling from a temperature range of 550 to 700 ° C. to an arbitrary temperature of 450 ° C. or less at a cooling rate of 2 ° C./second or more and then air cooling. A manufacturing method for steel plates for steel pipes with excellent performance.
質量%で、
C:0.03%以下、
Si:0.6%以下、
Mn:0.8〜2.5%、
P:0.015%以下、
S:0.005%以下、
Nb:0.01〜0.05%、
Ti:0.005〜0.03%、
B:0.0003〜0.002%、
Al:0.05%以下、
N:0.001〜0.006%
に残部が鉄および不可避的不純物からなり、かつ
Qb=2.7C+0.4Si+Mn+0.8Cr+0.45(Ni+Cu)+2Moで定義されるQb値が2.0〜3.5の範囲にある鋳片を950〜1200℃に加熱した後、950℃以下での圧下量を50%以上とし、700〜850℃の温度範囲で圧延を終了した後、550〜700℃の温度範囲から2℃/秒以上の冷却速度で450℃以下の任意の温度まで冷却し、その後空冷することを特徴とする溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
% By mass
C: 0.03% or less,
Si: 0.6% or less,
Mn: 0.8 to 2.5%
P: 0.015% or less,
S: 0.005% or less,
Nb: 0.01-0.05%
Ti: 0.005 to 0.03%,
B: 0.0003 to 0.002%,
Al: 0.05% or less,
N: 0.001 to 0.006%
The balance is made of iron and inevitable impurities, and a slab having a Qb value defined by Qb = 2.7C + 0.4Si + Mn + 0.8Cr + 0.45 (Ni + Cu) + 2Mo in the range of 2.0 to 3.5 is 950 after heating to 1200 ° C., the reduction ratio at 950 ° C. or less and 50% or more, after completion of the rolling at a temperature range of 700-850 ° C., the cooling rate of 2 ° C. / sec or more from the temperature range of 550 to 700 ° C. A method for producing a steel plate for a steel pipe excellent in weld heat-affected zone toughness and deformability, characterized in that it is cooled to an arbitrary temperature of 450 ° C. or lower and then air-cooled.
鋳片がさらに質量%で、
Ni:0.1〜1.0%、
Cu:0.1〜1.2%、
Cr:0.1〜1.0%、
Mo:0.1〜1.0%、
V:0.01〜0.1%、
Ca:0.0005〜0.005%、
Mg:0.0003〜0.002%
の1種または2種以上を含有することを特徴とする請求項6または請求項7に記載の溶接熱影響部靱性および変形能に優れた鋼管用鋼板の製造法。
The slab is more mass%,
Ni: 0.1 to 1.0%,
Cu: 0.1 to 1.2%,
Cr: 0.1 to 1.0%,
Mo: 0.1 to 1.0%,
V: 0.01 to 0.1%
Ca: 0.0005 to 0.005%,
Mg: 0.0003 to 0.002%
The manufacturing method of the steel plate for steel pipes excellent in the weld heat affected zone toughness and deformability of Claim 6 or Claim 7 characterized by containing 1 type (s) or 2 or more types of these.
JP2002096552A 2002-03-29 2002-03-29 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability Expired - Fee Related JP3785376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096552A JP3785376B2 (en) 2002-03-29 2002-03-29 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096552A JP3785376B2 (en) 2002-03-29 2002-03-29 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability

Publications (2)

Publication Number Publication Date
JP2003293078A JP2003293078A (en) 2003-10-15
JP3785376B2 true JP3785376B2 (en) 2006-06-14

Family

ID=29239550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096552A Expired - Fee Related JP3785376B2 (en) 2002-03-29 2002-03-29 Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability

Country Status (1)

Country Link
JP (1) JP3785376B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671959B2 (en) * 2003-12-19 2011-04-20 新日本製鐵株式会社 Steel sheets and steel pipes for ultra-high-strength line pipes excellent in low-temperature toughness and methods for producing them
CN1977059A (en) * 2004-05-11 2007-06-06 住友金属工业株式会社 Super high strength UOE steel pipe and method for production thereof
KR100917914B1 (en) 2005-04-04 2009-09-16 신닛뽄세이테쯔 카부시키카이샤 High-strength steel sheet and high-strength welded steel pipe excelling in ductile fracture perf0rmance and pr0cess f0r pr0ducing them
JP4964480B2 (en) * 2006-03-13 2012-06-27 新日本製鐵株式会社 High strength steel pipe excellent in toughness of welded portion and method for producing the same
US8110292B2 (en) 2008-04-07 2012-02-07 Nippon Steel Corporation High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same
JP4853575B2 (en) 2009-02-06 2012-01-11 Jfeスチール株式会社 High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
BR112014015715B1 (en) 2011-12-28 2021-03-16 Nippon Steel Corporation steel tube, sheet steel and production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499084B2 (en) * 1996-06-28 2004-02-23 新日本製鐵株式会社 Low yield ratio high tensile strength steel for construction with excellent brittle crack arrestability and method of manufacturing the same
JP3470632B2 (en) * 1998-03-30 2003-11-25 Jfeスチール株式会社 Steel pipe for line pipe excellent in buckling resistance and method of manufacturing the same
JP3764593B2 (en) * 1998-10-02 2006-04-12 新日本製鐵株式会社 High strength steel pipe with excellent toughness of weld heat affected zone
JP3854412B2 (en) * 1998-10-02 2006-12-06 新日本製鐵株式会社 Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP4071906B2 (en) * 1999-11-24 2008-04-02 新日本製鐵株式会社 Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP3775279B2 (en) * 2000-12-15 2006-05-17 Jfeスチール株式会社 Structural steel with excellent brittle crack propagation stoppage and fatigue crack propagation after plastic deformation and its manufacturing method

Also Published As

Publication number Publication date
JP2003293078A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
JP5251092B2 (en) Welded steel pipe for high-strength line pipe excellent in low temperature toughness and method for producing the same
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP4585483B2 (en) High strength steel pipe with excellent weld toughness and deformability and method for producing high strength steel plate
WO2010095730A1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP3812108B2 (en) High-strength steel with excellent center characteristics and method for producing the same
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP4116857B2 (en) High strength steel pipe with excellent weld toughness and deformability
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4477707B2 (en) Ultra high strength steel pipe excellent in low temperature toughness and method for producing the same
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JP3466450B2 (en) High strength and high toughness bend pipe and its manufacturing method
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3745722B2 (en) Manufacturing method of high-strength steel pipe and high-strength steel plate with excellent deformability and weld toughness
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP2001207242A (en) Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline
JP3764593B2 (en) High strength steel pipe with excellent toughness of weld heat affected zone
JP4369555B2 (en) High strength steel pipes and pipelines with excellent weld toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060317

R151 Written notification of patent or utility model registration

Ref document number: 3785376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees