JP3784865B2 - Method for producing 4,4'-bis (chloromethyl) biphenyl - Google Patents
Method for producing 4,4'-bis (chloromethyl) biphenyl Download PDFInfo
- Publication number
- JP3784865B2 JP3784865B2 JP24031595A JP24031595A JP3784865B2 JP 3784865 B2 JP3784865 B2 JP 3784865B2 JP 24031595 A JP24031595 A JP 24031595A JP 24031595 A JP24031595 A JP 24031595A JP 3784865 B2 JP3784865 B2 JP 3784865B2
- Authority
- JP
- Japan
- Prior art keywords
- biphenyl
- chloromethyl
- bis
- sulfuric acid
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/26—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
- C07C17/32—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by introduction of halogenated alkyl groups into ring compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、液晶、機能性樹脂等の合成中間体として、需要が増大している4,4’−ビス(クロロメチル)ビフェニルの工業的製造法に関する。
【0002】
【従来の技術】
芳香族誘導体のモノクロロメチル化反応については、古くから検討されている。例えば、井本・垣内・黄編集「ホルムアルデヒド」朝倉書店(昭和40年)には、ベンゼン、パラホルムアルデヒド、塩酸から塩化ベンジルが得られることが示されている。塩素源としては、塩酸の代わりに塩化チオニルが使用できること、並びに乾燥食塩粉末を懸濁させ、硫酸で分解することで塩酸を発生できることが記されている。また、触媒としては、金属塩化物が有効であること、特に、塩化亜鉛、塩化スズが代表として挙げられている。
【0003】
また、特公昭40−3774号公報には、氷酢酸、乾燥パラホルムアルデヒド(水分5%以下)、塩化亜鉛及び塩化水素ガスの組合せによる4,4’−ビス(クロロメチル)ビフェニルの製造法が開示されているが、塩化水素ガスの使用は装置上の制約が大きく、工業的には不利である。
【0004】
更に、特開平3−188029号公報には、不活性溶媒中、塩化亜鉛、塩化チオニル、パラホルムアルデヒドの組合せによる4,4’−ビス(クロロメチル)ビフェニルの製造法が開示されている。この方法は、塩化水素ガスを使用しない点で改善されているが、非水系での反応であり、有害なビスクロロメチルエーテルが副生する危険がある。
【0005】
相間移動触媒を用いた反応に関しては、Maurizio Selva, Francesco Trotta, Pietro Tundoの報告「SYNTHESIS No. 11, p1003 (1991)」があるが、この報告では基質がアルキルベンゼンに限定されており、またビスクロロメチル化への適用可能性にも言求されていない。
【0006】
【発明が解決しようとする課題】
本発明は、ビス(クロロメチル)エーテルの生成を抑制できる水系で、安全かつ高効率で4,4’−ビス(クロロメチル)ビフェニルを製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
そこで、本発明者らは、水系で反応を円滑に行わせる条件を鋭意検討した結果、不活性有機溶媒と水の二液相とし、相間移動触媒を用いればよいことを見出し、本発明に至った。
すなわち、本発明は、水、不活性有機溶媒及び相間移動触媒の存在下、ホルムアルデヒド類、硫酸とアルカリ金属若しくはアルカリ土類金属の塩化物を用いて、ビフェニルをクロロメチル化することを特徴とする4,4'−ビス(クロロメチル)ビフェニルの製造方法である。ここで、硫酸濃度が60〜85重量%となるように上記水及び硫酸の使用量を調整する必要がある。
【0008】
不活性有機溶媒は、ビフェニルが可溶で反応に不活性であって、水に対して非相溶性であれば種類は限定されないが、アルカン、シクロアルカン類、例えばn−ヘプタン、シクロヘキサンを挙げることができる。そして、これは反応温度より高い沸点を有することが好ましい。不活性有機溶媒の使用量は、ビフェニルの溶解度によりなるが、通常、ビフェニルに対して重量比3〜15、好ましくは5〜10の範囲である。
【0009】
水は、硫酸と混合したときの硫酸濃度が60〜85重量%となる量とすることが好ましい。硫酸濃度がこの範囲より低濃度では反応が極端に遅くなり、これより高濃度ではメチレンが架橋したビフェニル縮合物、その他の副生成物の増大により収率が低下する。
硫酸の使用量は、ビフェニルに対し、モル比2〜30の範囲であり、好ましくは5〜20の範囲である。
【0010】
相間移動触媒は、公知のアンモニウム塩触媒を使用することができるが、特に、含窒素複素環化合物とハロゲン化アルキルの4級塩の組合せが好ましい。複素環化合物としてはピリジン、キノリン、イソキノリン、ピコリン等が挙げられる。ハロゲン化アルキルとしては、炭素数8〜18のものが好ましく、ハロゲン種は塩素、臭素が好ましい。また、これらの混合物を相間移動触媒としてもよい。相間移動触媒の使用量は、通常ビフェニルに対し、モル比0.01〜0.5、好ましくは0.05〜0.35の範囲である。
【0011】
ホルムアルデヒド類は、ホルムアルデヒド又はホルムアルデヒドを反応系で発生するものであり、ホルマリン、パラホルムアルデヒド、トリオキサン、ジメチルホルマール等を挙げることができるが、パラホルムアルデヒドが好ましい。ホルムアルデヒド類の使用量は、ホルムアルデヒドとして通常、ビフェニルに対し、モル比1.5〜10、好ましくは2.5〜8の範囲である。
【0012】
アルカリ金属若しくはアルカリ土類金属の塩化物としては、食塩、塩化カリウム、塩化カルシウム等が挙げられるが、好ましくは食塩である。この塩化物の使用量は、食塩等のアルカリ金属の塩化物の場合、ビフェニルに対し、モル比1.5〜10、好ましくは2〜5の範囲である。アルカリ土類金属の塩化物の場合は、モル比はその1/2と計算される。
【0013】
反応温度は、40〜120℃、好ましくは60〜90℃である。反応時間は、通常1〜10時間であり、ビフェニルの転化率から決定される。また、反応圧力は、常圧であっても加圧であってもよいが、常圧が簡便である。また、液相中の水溶液相と有機溶媒相との比は1:9〜9:1の範囲とすることがよい。
【0014】
本反応は液相が2相となるだけでなく、固、液、気相からなる不均一系となることが多いため、反応中は攪拌することが必要である。濃硫酸を後から系に滴下すると、脱水反応が起こり、メチレンで架橋したビフェニルの縮合物が多く生成する他、触媒のアンモニウム塩が酸化されるるため、好ましくない。反応方法は、特に限定されないが、全原料を一括で仕込んでから加熱攪拌する方法が有利であろう。
【0015】
反応終了後は、反応液を冷却後、濾過して、粗製品を得、これを例えば、水洗後、イソプロパノール等で再結晶すれば精製された4,4’−ビス(クロロメチル)ビフェニルを得ることができる。
【0016】
【発明の実施の形態】
反応液を攪拌すると、有機溶媒は小滴に分散し、ビフェニルがこの滴中に溶解、分散する。水相で食塩と硫酸が反応して塩化水素ガスが生じ、水相に溶解する。反応基質であるビフェニルと塩酸が異なる相に分布するため、両相を相間移動触媒が移動し、効率的に反応すると考えられる。
【0017】
【実施例】
実施例1〜4
ビフェニル2g(13mモル)、相間移動触媒(ビフェニルに対し、0.2倍モル量)、有機溶媒14g、パラホルムアルデヒド2.7g、食塩2.5g、硫酸35g、硫酸濃度が80%となるに必要な水を攪拌器とコンデンサを付けた300ml丸フラスコに仕込む。丸フラスコを油浴に漬け、80℃に加熱し、所定時間反応させる。反応終了後、反応液を室温に冷却する。
【0018】
その後、反応液を取り出し、トルエン抽出を行い、抽出液をガスクロマトグラフで分析し、ビフェニル転化率と4,4’−ビス(クロロメチル)ビフェニルの収率を求める。
その他の条件と結果を表1に示す。
【0019】
【表1】
【0020】
比較例1〜4
条件を表2に示すとおりに変更した他は、実施例と同様にして反応を行った。結果を表2に示す。
【0021】
【表2】
【0022】
なお、精製された結晶を得るためには、反応液が高粘度の場合は適量のメタノールを加え、全体を濾過する。濾過残のケーキを水洗し、硫酸、無機塩を除去したのち、メタノールで再結晶すると純度約99%の4,4’−ビス(クロロメチル)ビフェニルの結晶が得られる。
【0023】
実施例5
ビフェニル2g(13mモル)、相間移動触媒としてCPC(ビフェニルに対し、0.2倍モル量)、n−ヘプタン5g、パラホルムアルデヒド0.9g、食塩1.9g、80%硫酸12.5gを攪拌器とコンデンサを付けた300ml丸フラスコに仕込み、80℃で、4間反応させた。ビフェニル転化率は99.7%であり、4,4’−ビス(クロロメチル)ビフェニル収率は46%であった。
【0024】
実施例6
ビフェニル60g(390mモル)、CPC(ビフェニルに対し、0.2倍モル量)、n−ヘプタン140g、パラホルムアルデヒド28g、食塩57g、80%硫酸376gを攪拌器とコンデンサを付けた1リットル丸フラスコに仕込み、80℃で、4間反応させた。ビフェニル転化率は99.7%であり、4,4’−ビス(クロロメチル)ビフェニル収率は46%であった。
また、室温に冷却した反応液にメタノ−ルを加え、60℃で充分に攪拌したのち、熱時濾過し、その濾液を冷却すると99%の4,4’−ビス(クロロメチル)ビフェニルの結晶が得られた。
【0025】
【発明の効果】
本発明によれば、4,4’−ビス(クロロメチル)ビフェニルを簡便かつ収率よく得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an industrial process for producing 4,4′-bis (chloromethyl) biphenyl, which is in increasing demand as a synthetic intermediate for liquid crystals, functional resins and the like.
[0002]
[Prior art]
The monochloromethylation reaction of aromatic derivatives has been studied for a long time. For example, Imoto / Kakiuchi / Yellow “Formaldehyde” Asakura Shoten (1965) shows that benzyl chloride can be obtained from benzene, paraformaldehyde and hydrochloric acid. As a chlorine source, it is described that thionyl chloride can be used in place of hydrochloric acid, and that hydrochloric acid can be generated by suspending dry salt powder and decomposing it with sulfuric acid. As the catalyst, metal chlorides are effective, and zinc chloride and tin chloride are mentioned as representatives.
[0003]
Japanese Patent Publication No. 40-3774 discloses a method for producing 4,4′-bis (chloromethyl) biphenyl by a combination of glacial acetic acid, dry paraformaldehyde (moisture 5% or less), zinc chloride and hydrogen chloride gas. However, the use of hydrogen chloride gas is very disadvantageous from an industrial point of view because of significant restrictions on the equipment.
[0004]
Further, JP-A-3-188029 discloses a process for producing 4,4′-bis (chloromethyl) biphenyl by combining zinc chloride, thionyl chloride and paraformaldehyde in an inert solvent. This method is improved in that hydrogen chloride gas is not used, but it is a non-aqueous reaction and there is a risk that harmful bischloromethyl ether is by-produced.
[0005]
Regarding reactions using phase transfer catalysts, Maurizio Selva, Francesco Trotta, Pietro Tundo reports “SYNTHESIS No. 11, p1003 (1991)”. Nor is it claimed to be applicable to methylation.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing 4,4′-bis (chloromethyl) biphenyl in an aqueous system capable of suppressing the production of bis (chloromethyl) ether, safely and with high efficiency.
[0007]
[Means for Solving the Problems]
Thus, as a result of intensive studies on conditions for smoothly carrying out the reaction in an aqueous system, the present inventors have found that a two-liquid phase of an inert organic solvent and water may be used and a phase transfer catalyst may be used, leading to the present invention. It was.
That is, the present invention is characterized in that biphenyl is chloromethylated using formaldehyde, sulfuric acid and an alkali metal or alkaline earth metal chloride in the presence of water, an inert organic solvent and a phase transfer catalyst. This is a method for producing 4,4′-bis (chloromethyl) biphenyl. Here, it is necessary to adjust the usage-amount of the said water and a sulfuric acid so that a sulfuric acid concentration may be 60 to 85 weight%.
[0008]
The inert organic solvent is not limited as long as biphenyl is soluble and inert to the reaction, and is incompatible with water, but examples include alkanes and cycloalkanes such as n-heptane and cyclohexane. Can do. And this preferably has a boiling point higher than the reaction temperature. The amount of the inert organic solvent used depends on the solubility of biphenyl, but is usually in the range of 3 to 15, preferably 5 to 10 by weight with respect to biphenyl.
[0009]
It is preferable that the amount of water is 60 to 85% by weight when mixed with sulfuric acid. If the sulfuric acid concentration is lower than this range, the reaction becomes extremely slow. If the sulfuric acid concentration is higher than this range, the yield decreases due to the increase of the biphenyl condensate crosslinked with methylene and other by-products.
The usage-amount of a sulfuric acid is the range of 2-30 molar ratio with respect to biphenyl, Preferably it is the range of 5-20.
[0010]
As the phase transfer catalyst, a known ammonium salt catalyst can be used. In particular, a combination of a nitrogen-containing heterocyclic compound and an alkyl halide quaternary salt is preferable. Examples of the heterocyclic compound include pyridine, quinoline, isoquinoline, picoline and the like. The halogenated alkyl is preferably one having 8 to 18 carbon atoms, and the halogen species is preferably chlorine or bromine. Moreover, it is good also considering these mixtures as a phase transfer catalyst. The amount of the phase transfer catalyst used is usually in a molar ratio of 0.01 to 0.5, preferably 0.05 to 0.35, relative to biphenyl.
[0011]
Formaldehydes are those that generate formaldehyde or formaldehyde in the reaction system, and can include formalin, paraformaldehyde, trioxane, dimethyl formal, and the like, with paraformaldehyde being preferred. The amount of formaldehyde used is usually in the range of 1.5 to 10, preferably 2.5 to 8, molar ratio to biphenyl as formaldehyde.
[0012]
Examples of the alkali metal or alkaline earth metal chloride include sodium chloride, potassium chloride, and calcium chloride, and sodium chloride is preferred. In the case of chlorides of alkali metals such as sodium chloride, the amount of the chloride used is in the range of 1.5 to 10, preferably 2 to 5, with respect to biphenyl. In the case of alkaline earth metal chlorides, the molar ratio is calculated as ½.
[0013]
The reaction temperature is 40 to 120 ° C, preferably 60 to 90 ° C. The reaction time is usually 1 to 10 hours and is determined from the conversion rate of biphenyl. The reaction pressure may be normal pressure or increased pressure, but normal pressure is convenient. The ratio of the aqueous solution phase to the organic solvent phase in the liquid phase is preferably in the range of 1: 9 to 9: 1.
[0014]
In this reaction, not only the liquid phase becomes two phases, but also a heterogeneous system composed of a solid, a liquid, and a gas phase is often required. Therefore, stirring is required during the reaction. If concentrated sulfuric acid is added dropwise to the system later, a dehydration reaction occurs, and a large amount of biphenyl-condensed biphenyl condensate is produced, and the ammonium salt of the catalyst is oxidized. The reaction method is not particularly limited, but a method in which all raw materials are charged all at once and then heated and stirred will be advantageous.
[0015]
After completion of the reaction, the reaction solution is cooled and filtered to obtain a crude product, which is washed with water and recrystallized with, for example, isopropanol to obtain purified 4,4′-bis (chloromethyl) biphenyl. be able to.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
When the reaction solution is stirred, the organic solvent is dispersed in the droplets, and biphenyl is dissolved and dispersed in the droplets. Sodium chloride and sulfuric acid react in the aqueous phase to produce hydrogen chloride gas, which dissolves in the aqueous phase. Since biphenyl and hydrochloric acid, which are reaction substrates, are distributed in different phases, it is considered that the phase transfer catalyst moves in both phases and reacts efficiently.
[0017]
【Example】
Examples 1-4
2 g (13 mmol) of biphenyl, phase transfer catalyst (0.2 mol of biphenyl), 14 g of organic solvent, 2.7 g of paraformaldehyde, 2.5 g of sodium chloride, 35 g of sulfuric acid, necessary for the sulfuric acid concentration to be 80% Charge water into a 300 ml round flask equipped with a stirrer and condenser. The round flask is immersed in an oil bath, heated to 80 ° C., and allowed to react for a predetermined time. After completion of the reaction, the reaction solution is cooled to room temperature.
[0018]
Thereafter, the reaction solution is taken out, extracted with toluene, and the extract solution is analyzed by gas chromatography to determine the biphenyl conversion rate and the yield of 4,4′-bis (chloromethyl) biphenyl.
Other conditions and results are shown in Table 1.
[0019]
[Table 1]
[0020]
Comparative Examples 1-4
The reaction was carried out in the same manner as in Example except that the conditions were changed as shown in Table 2. The results are shown in Table 2.
[0021]
[Table 2]
[0022]
In order to obtain purified crystals, when the reaction solution has a high viscosity, an appropriate amount of methanol is added and the whole is filtered. The cake remaining after filtration is washed with water to remove sulfuric acid and inorganic salts, and then recrystallized with methanol to obtain crystals of 4,4′-bis (chloromethyl) biphenyl having a purity of about 99%.
[0023]
Example 5
A stirrer containing 2 g (13 mmol) of biphenyl, CPC (0.2-fold mol amount relative to biphenyl) as a phase transfer catalyst, 5 g of n-heptane, 0.9 g of paraformaldehyde, 1.9 g of sodium chloride and 12.5 g of 80% sulfuric acid Were added to a 300 ml round flask with a condenser and reacted at 80 ° C. for 4 hours. The biphenyl conversion was 99.7%, and the 4,4′-bis (chloromethyl) biphenyl yield was 46%.
[0024]
Example 6
Into a 1 liter round flask equipped with a stirrer and a condenser were added 60 g (390 mmol) of biphenyl, CPC (0.2 mol amount relative to biphenyl), 140 g of n-heptane, 28 g of paraformaldehyde, 57 g of sodium chloride and 376 g of 80% sulfuric acid. The mixture was charged and reacted at 80 ° C. for 4 hours. The biphenyl conversion was 99.7%, and the 4,4′-bis (chloromethyl) biphenyl yield was 46%.
Further, methanol was added to the reaction liquid cooled to room temperature, and after sufficiently stirring at 60 ° C., filtration was performed while hot. When the filtrate was cooled, 99% of 4,4′-bis (chloromethyl) biphenyl crystals was gotten.
[0025]
【The invention's effect】
According to the present invention, 4,4′-bis (chloromethyl) biphenyl can be obtained simply and with good yield.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24031595A JP3784865B2 (en) | 1995-09-19 | 1995-09-19 | Method for producing 4,4'-bis (chloromethyl) biphenyl |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24031595A JP3784865B2 (en) | 1995-09-19 | 1995-09-19 | Method for producing 4,4'-bis (chloromethyl) biphenyl |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0987214A JPH0987214A (en) | 1997-03-31 |
JP3784865B2 true JP3784865B2 (en) | 2006-06-14 |
Family
ID=17057644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24031595A Expired - Fee Related JP3784865B2 (en) | 1995-09-19 | 1995-09-19 | Method for producing 4,4'-bis (chloromethyl) biphenyl |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3784865B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928198A (en) * | 2009-06-22 | 2010-12-29 | 上海华理生物医药有限公司 | A preparation method of high-purity 4,4'-dichloromethyl biphenyl |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030018347A (en) * | 2001-08-28 | 2003-03-06 | 손기남 | Improved process for preparing 4,4'-bis(2,2-diphenyl-1-vinyl)-1,1'-biphenyl derivatives |
JP5244109B2 (en) * | 2006-09-29 | 2013-07-24 | クリスタリア プロデュトス キミコス ファーマシューティコス リミターダ | Method for producing chloromethyl 2,2,2-trifluoro-1- (trifluoromethyl) ethyl ether |
-
1995
- 1995-09-19 JP JP24031595A patent/JP3784865B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928198A (en) * | 2009-06-22 | 2010-12-29 | 上海华理生物医药有限公司 | A preparation method of high-purity 4,4'-dichloromethyl biphenyl |
Also Published As
Publication number | Publication date |
---|---|
JPH0987214A (en) | 1997-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5934702B2 (en) | Method for producing α・α-dimethylbenzyl isocyanate or its nuclear substituted product | |
JP3784865B2 (en) | Method for producing 4,4'-bis (chloromethyl) biphenyl | |
JP3836541B2 (en) | Method for producing 4,4'-bis (chloromethyl) biphenyl | |
EP0155441B1 (en) | A process for separating nitration isomers of substituted benzene compounds | |
JPS5838235A (en) | Purification of phenoxybenzoic acid derivative | |
EP0646566B1 (en) | Process for the preparation of acid chloride compounds | |
US4647700A (en) | Process for the preparation of meta-chloroanilines | |
JPS604149A (en) | Production of 2-acylphenol compound | |
JPS597699B2 (en) | Method for producing indolines | |
JPH0372051B2 (en) | ||
JP2865715B2 (en) | Method for hydroxylating electrophilic aromatic compounds | |
JPH0193561A (en) | Production of o-nitrobenzoic acids | |
EP0835866A1 (en) | Process for preparation of 3-piperazinylbenzisothiazoles | |
KR910003635B1 (en) | Process for the preparation of 2-(2-naphthyloxy)propion anilide derivatives | |
JPS59494B2 (en) | Purification method for benzotrifluoride derivatives | |
EP0163948B1 (en) | Process for producing an indoline | |
JPH0543695B2 (en) | ||
JPH069509A (en) | Selective dehalogenation of ortho-halogenonitrobenzene | |
JP2547089B2 (en) | Manufacturing method of carboxylic acids | |
JPH0242043A (en) | Production of 4-nitro-3-trifluoromethylaniline hydrobromide | |
JPH01228943A (en) | Production of 2,4-dichloro-3-alkyl-6-nitrophenol | |
US4654447A (en) | Process for the preparation of tribromotetramethylbiphenol and related compounds | |
JPH11199536A (en) | Production of benzaldehyde compounds | |
JPH06135937A (en) | Production of 5,5-disubstituted hydantoin | |
JPH0318617B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060316 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |